A Characterization of the Supercuspidal Local Langlands Correspondence

Alexander Bertoloni Meli (Joint with Alex Youcis)

June 12, 2020

Introduction and Motivation

Study of Known Cases

Scholze-Shin Equations

Back to Characterization

Endoscopy and Reduction to the Singleton Packet Case

Notation

- ▶ Fix F/\mathbb{Q}_p finite.
- Fix G/F connected reductive (eg $G = GL_n, Sp_{2n}, U_n(E/F)$).
- Let \widehat{G} denote the dual group of G over \mathbb{C} $(\widehat{GL_n} = GL_n(\mathbb{C}), \widehat{Sp_{2n}} = SO_{2n+1}(\mathbb{C})).$
- Let W_F be the Weil group of F.
- ▶ Define the "*L*-group" of *G* to be ${}^LG := \hat{G} \times W_F$.

The Local Langlands Correspondence (LLC)

- Idea: Relates "nice" irreducible representations of G(F) and "nice" finite dimensional representations of W_F valued in \hat{G} .
- ▶ Simplest Case: LCFT = LLC for \mathbb{G}_m ! The local Artin map

$$Art: W_F^{ab} \cong F^{\times}$$

induces a bijection

$$\left\{ \begin{array}{c} \mathsf{Continuous\ characters} \\ \mathsf{of}\ \mathbb{G}_m(F) \end{array} \right\} \longleftrightarrow \left\{ \begin{array}{c} \mathsf{Continuous\ homs} \\ W_F \to \mathbb{G}_m(\mathbb{C}) = \widehat{\mathbb{G}_m} \end{array} \right\}$$

General Case

Exists finite to one map

$$R: \mathcal{A}_F(G) \to \mathcal{G}_F(G)$$

- $\mathcal{A}_F(G)$ the set of equivalence classes of irreducible smooth G(F)-representations
- $\mathcal{G}_F(G)$ equivalence classes of "L-parameters" : $\phi: W_F \times SL_2(\mathbb{C}) \to {}^LG$.
- Fibers $\Pi(\phi) := R^{-1}(\phi)$ called "L-packets".

Key Question of Talk: How to characterize R?

Our goal: Describe new characterization generalizing work of Scholze (2013).

Introduction and Motivation

Study of Known Cases

Scholze-Shin Equations

Back to Characterization

Endoscopy and Reduction to the Singleton Packet Case

The GL_n Case

- ▶ GL_n case is special: The local Langlands map $R: A_F(G) \to \mathcal{G}_F(G)$ is a bijection.
- ▶ *R* constructed by Harris–Taylor, Henniart.
- Characterized by Henniart using L, ϵ factors.
- In 2013, Scholze gave a new characterization coming from geometry.

Beyond GL_n Case

- GSp₄ Gan-Takeda.
- ▶ Sp_{2n} , SO_{2n+1} , and SO_{2n} (almost) due to Arthur.
- Quasisplit $U_n(E/F)$ Mok.
- ▶ Inner forms of $U_n(E/F)$ Kaletha–Minguez–Shin–White.
- ▶ Inner forms of *SL_n* Hiraga–Saito.
- Supercuspidal case for "almost all" groups Kaletha.
- Characterization typically by compatibility with GL_n .

Introduction and Motivation

Study of Known Cases

Scholze-Shin Equations

Back to Characterization

Endoscopy and Reduction to the Singleton Packet Case

Scholze's Construction

- Given $\tau \in W_F^+$ and $h \in C^{\infty}(GL_n(\mathcal{O}_F))$ constructs $f_{\tau,h} \in C_c^{\infty}(GL_n(F))$.
- Constructs (via Shimura varieties) R for supercuspidals satisfying Key Equation

$$\operatorname{tr}(\pi \mid f_{\tau,h}) = \operatorname{tr}(R(\pi)|\cdot|^{\frac{1-n}{2}} \mid \tau)\operatorname{tr}(\pi \mid h).$$

• Extends to all of $A_F(G)$ by proving compatibility with parabolic induction.

Scholze's Characterization in the Supercuspidal Case

▶ Suppose $R_1, R_2 : A_F(G) \to \mathcal{G}_F(G)$ satisfy **Key Equation**:

$$\operatorname{tr}(\pi \mid f_{\tau,h}) = \operatorname{tr}(R_i(\pi) \mid \cdot \mid^{\frac{1-n}{2}} \mid \tau) \operatorname{tr}(\pi \mid h).$$

- ▶ Pick $\pi \in \mathcal{A}_F(GL_n)$ and $h \in C^{\infty}(GL_n(\mathcal{O}_F))$ such that $\operatorname{tr}(\pi \mid h) \neq 0$.
- We have

$$\operatorname{tr}(R_1(\pi)|\cdot|^{\frac{1-n}{2}}\mid\tau)=\frac{\operatorname{tr}(\pi\mid f_{\tau,h})}{\operatorname{tr}(\pi\mid h)}=\operatorname{tr}(R_2(\pi)|\cdot|^{\frac{1-n}{2}}\mid\tau).$$

▶ Implies $R_1(\pi) \sim R_2(\pi)$.

Work of Scholze-Shin

- Scholze–Shin (2011) extend construction of $f_{\tau,h}$ to unramified "PEL type" and get a function $f_{\tau,h}^{\mu} \in C_c^{\infty}(G(F))$ for each:
 - $\tau \in W_F^+$
 - ▶ $h \in C_c^{\infty}(\mathcal{G}(\mathcal{O}_F))$, (where $\mathcal{G}(\mathcal{O}_F)$ is hyperspecial)
 - $\mu \in X^*(\widehat{G})$ minuscule
- Youcis (thesis) defines $f_{\tau,h}^{\mu}$ in "Abelian type" cases.
- $f_{\tau,h}^{\mu}$ described by cohomology of tubular neighborhoods inside of Rapoport–Zink spaces.

Scholze–Shin Conjecture (No Endoscopy Case)

- Let $\phi: W_F \to {}^L G$ be a supercuspidal L-parameter, G unramified.
- Let $S\Theta_{\phi} :\approx \sum_{\pi \in \Pi(\phi)} \Theta_{\pi}$ be the "stable distribution of ϕ " $(\Theta_{\pi}(f) := \operatorname{tr}(\pi \mid f))$
- Conjecture (Scholze–Shin Equation)

We have the following trace identity:

$$S\Theta_{\phi}(f_{\tau,h}^{\mu}) = \operatorname{tr}(r_{-\mu} \circ \phi |\cdot|^{-\langle \mu, \rho \rangle} |\tau) S\Theta_{\phi}(h).$$

- Known cases
 - ► EL, some PEL cases (Scholze, Scholze–Shin)
 - $G = D^{\times}$ appropriately interpreted (Shen)
 - Unramified $U_n(E/F)$ (BM, Youcis)

Hint of Proof

- Fix global group \mathbf{G}/\mathbf{F} such that $\mathbf{G}_p = G$ and exists nice Shimura datum (\mathbf{G}, X) .
- ▶ Langlands–Kottwitz–Scholze method: for $\mathbf{K} \subset \mathbf{G}(\mathbf{F})$ compact

$$\operatorname{tr}(\tau \times f^p h \mid H^*(Sh_{\mathbf{K}})) = \sum SO(f^p f_{\infty} f_{\tau,h}^{\mu})$$

Study of cohomology of Shimura varieties (Kottwitz and others) gives:

$$\sum \operatorname{tr}(\pi \mid f^{p}h)\operatorname{tr}(r_{-\mu} \circ \phi_{\pi} \mid \tau) \approx \operatorname{tr}(\tau \times f^{p}h \mid H^{*}(Sh_{K}))$$

Stable trace formula gives:

$$\sum SO(f^pf_{\infty}f^{\mu}_{\tau,h}) \approx \sum \mathrm{tr}(\pi \mid f^pf_{\infty}f^{\mu}_{\tau,h})$$

"Localize at p" to get result.

Introduction and Motivation

Study of Known Cases

Scholze-Shin Equations

Back to Characterization

Endoscopy and Reduction to the Singleton Packet Case

Supercuspidal Parameters

- ► From now on, assume *G* quasisplit (for simplicity)
- L-parameter $\phi: W_F \times SL_2(\mathbb{C}) \to {}^LG$ supercuspidal if trivial on SL_2 part and doesn't factor through a Levi subgroup of LG .
- Reasons for supercuspidal parameters:
 - Easy to work with (behaves well with elliptic endoscopy)
 - Can prove Scholze–Shin equations
 - Considered in literature (Kaletha, Scholze)
- Need "Backwards LLC"

$$\Pi: \left\{ \begin{array}{ll} \text{Supercuspidal} \\ \text{L-Parameters} \end{array} \right\} \longrightarrow \left\{ \begin{array}{ll} \text{Finite Subsets of} \\ \text{supercuspidal } G(F) \text{ reps} \end{array} \right\}$$

$$\phi \longmapsto \Pi(\phi)$$

Desired Properties

- ▶ **Dis**: $\Pi(\phi) \cap \Pi(\phi') \neq \emptyset$ implies $\phi \sim \phi'$.
- ▶ **Bij**: Each Whittaker datum 𝔞 gives a bijection

$$i_{\mathfrak{w}}: \Pi(\phi) \cong \operatorname{Irr}(\overline{C_{\phi}}),$$

where $\overline{C_{\phi}} = Z_{\widehat{G}}(\mathrm{im}\phi)/Z(\widehat{G})^{\Gamma_F}$.

- Stab: $S\Theta_{\phi} := \sum_{\pi \in \Pi(\phi)} \dim(i_{\mathfrak{w}}(\pi)) \Theta_{\pi}$ is stable.
- **SS**: Each ϕ satisfies the Scholze–Shin equations.

$$S\Theta_{\phi}(f_{\tau,h}^{\mu}) = \operatorname{tr}(r_{-\mu} \circ \phi |\cdot|^{-\langle \mu, \rho \rangle} |\tau) S\Theta_{\phi}(h).$$

• We will need to assume *G* is "good": If $\operatorname{tr}(r_{\mu} \circ \phi \mid \tau) = \operatorname{tr}(r_{\mu} \circ \phi' \mid \tau)$ for all μ, τ then $\phi \sim \phi'$.

Main Theorem(Imprecise Version)

Theorem (BM-Youcis)

For G a "good" reductive group, a supercuspidal LLC is characterized by **Dis**, **Bij**, **Stab**, **SS**, + compatibility with endoscopy.

- Dis: Packets are disjoint.
- ▶ **Bij**: $i_{\mathfrak{w}} : \Pi(\phi) \cong \operatorname{Irr}(\overline{C_{\phi}})$
- **Stab**: $S\Theta_{\phi}$ is stable.
- SS: $S\Theta_{\phi}(f_{\tau,h}^{\mu}) = \operatorname{tr}(r_{-\mu} \circ \phi|\cdot|^{-\langle \mu, \rho \rangle} \mid \tau) S\Theta_{\phi}(h)$

Proof in the Singleton Packet Case

- ▶ Suppose Π_1, Π_2 are supercuspidal LLCs.
- Pick ϕ and suppose $\Pi_1(\phi) = \{\pi\}$ is a singleton.
- If we knew $\Pi_2(\phi') = \{\pi\}$ for some ϕ' then we could compare ϕ, ϕ' using **SS**.
- Need Atomic Stability: If $\Theta = \sum_{i} a_i \Theta_{\pi_i}$ is stable then Θ is a linear combination of $S\Theta_{\phi}$ s.
- ▶ Do NOT need AtomicStab axiom (Thanks to Prof. Hiraga!)

Proof Assuming Atomic Stability

- Suppose $\Pi_1(\phi) = \{\pi\}.$
- By **Stab**, we have Θ_{π} is stable.
- ▶ By **AtomicStab** for Π_2 we have $\Pi_2(\phi') = \{\pi\}$ for some ϕ' .
- By **SS**:

$$\operatorname{tr}(r_{\mu} \circ \phi|\cdot|^{-\langle \mu, \rho \rangle} \mid \tau) = \frac{\operatorname{tr}(\pi \mid f_{\tau, h}^{\mu})}{\operatorname{tr}(\pi \mid h)} = \operatorname{tr}(r_{-\mu} \circ \phi'|\cdot|^{-\langle \mu, \rho \rangle} \mid \tau).$$

• Implies $\phi \sim \phi'$ since G is good.

Introduction and Motivation

Study of Known Cases

Scholze-Shin Equations

Back to Characterization

Endoscopy and Reduction to the Singleton Packet Case

Introduction to Endoscopy

- ▶ Elliptic endoscopic groups of G are auxiliary groups H with a map $\eta: {}^L H \to {}^L G$ and $s \in Z(\widehat{H})^{\Gamma_F}$.
- GL_n only elliptic endoscopic group of GL_n .
- ► Elliptic endoscopy of $U_n(E/F)$ of the form $U_{n_1}(E/F) \times U_{n_2}(E/F)$ with $n_1 + n_2 = n$.

A Useful Lemma

Lemma

If $\phi: W_F \to {}^L G$ is supercuspidal then there is a bijection:

- ▶ In particular, ϕ factors through an elliptic endoscopic $\eta: {}^L H \to {}^L G$ iff $\overline{C_\phi} \neq 1$.
- ▶ By **Bij**, we have $\Pi(\phi)$ a singleton iff ϕ does not factor through non trivial LH .
- Want to induct on dim G using endoscopy.

Elliptic Hyperendoscopy

- An elliptic hyperendoscopic datum is a sequence $({}^LH_1, s_1, \eta_1), ..., ({}^LH_n, s_n, \eta_n)$ so that $({}^LH_1, s_1, \eta_1)$ is an elliptic endoscopic datum for G and $({}^LH_i, s_i, \eta_i)$ an elliptic endoscopic datum for H_{i-1} .
- ▶ **ECI**: Let (H, s, η) an elliptic endoscopic datum for G and $f \in C_c^{\infty}(G(F))$, $f^H \in C_c^{\infty}(H(F))$ a pair of match of matching functions. Then

$$S\Theta_{\phi^H}(f^H) = \sum_{\pi \in \Pi(\phi)} \operatorname{tr}(i_{\mathfrak{w}}(\pi) \mid s) \Theta_{\pi}(f)$$

Supercuspidal LLC

Definition

A supercuspidal LLC for G is a map for each elliptic hyperendoscopic H:

$$\Pi_{H}: \left\{ \begin{array}{c} \text{Supercuspidal} \\ \text{L-parameters of } H \end{array} \right\} \longrightarrow \left\{ \begin{array}{c} \text{Finite subsets of} \\ \text{supercuspidal } H(F) \text{ reps} \end{array} \right\}$$

Theorem (BM – Youcis)

Let G be such that each elliptic hyperendoscopic H is good. Suppose Π_1, Π_2 are supercuspidal LLCs such that $\bigcup_{\phi} \Pi_{1,H}(\phi) \subset \bigcup_{\phi} \Pi_{2,H}(\phi)$ for all H and $\Pi_{i,H}$ satisfy **Dis**, **Bij**, **Stab**, **SS**, and **ECI**. Then $\Pi_{1,H} = \Pi_{2,H}$ for all H.

- Groups with "good" elliptic hyperendoscopy: PGL_n, GL_n, U_n, GU_n, SO_{2n+1}, G₂.
- Groups with "bad" elliptic hyperendoscopy: Sp_{2n} , SO_{2n} , E_8 .
- ► Corollary (BM Youcis) LLC for $U_n(E/F)$ as in Mok is characterized by the above.

Sketch of inductive step

- Suppose we have proven that $\Pi_{1,H} = \Pi_{2,H}$ for all elliptic endoscopic H of G.
- Let ϕ be an L-parameter of G. If $\overline{C_{\phi}}=1$, done by singleton packet case.
- Otherwise pick $\pi \in \Pi_{1,G}(\phi)$ and $1 \neq s \in \overline{C_{\phi}}$ such that $\operatorname{tr}(i_{\mathfrak{w}}(\pi) \mid s) \neq 0$ and get (H, ϕ^H) from lemma.
- ▶ By **ECI**

$$\begin{split} \sum_{\pi' \in \Pi_{1,G}(\phi)} \operatorname{tr}(i_{\mathfrak{w}}(\pi') \mid s) \Theta_{\pi'}(f) &= S \Theta_{\phi^H}(f^H) \\ &= \sum_{\pi' \in \Pi_{1,G}(\phi)} \operatorname{tr}(i_{\mathfrak{w}}(\pi') \mid s) \Theta_{\pi'}(f) \end{split}$$

▶ Hence $\pi \in \Pi_{2,G}(\phi)$ by independence of characters.

 $\pi' \in \Pi_2$ $G(\phi)$

Some Questions

- Can one show in a direct way that Kaletha's construction of LLC for supercuspidals satisfies SS?
- For GL_n we know this indirectly since Kaletha is compatible with Harris-Taylor (by Oi-Tokimoto) and Harris-Taylor is known to agree with Scholze.
- Can one define a useful version of **SS** that avoids the "good group" assumption? Perhaps this would look like Genestier-Lafforgue's characterization in terms of Bernstein center elements: $\{\mathfrak{z}_{I,f,(\gamma_i)_{i\in I}}\}$.