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Notation

§ Fix F {Qp finite.

§ Fix G{F connected reductive (eg G “ GLn, Sp2n,UnpE{F q).

§ Let pG denote the dual group of G over C
(yGLn “ GLnpCq,zSp2n “ SO2n`1pCq).

§ Let WF be the Weil group of F .

§ Define the “L-group” of G to be LG :“ pG ¸WF .



The Local Langlands Correspondence (LLC)

§ Idea: Relates “nice” irreducible representations of G pF q and
“nice” finite dimensional representations of WF valued in pG .

§ Simplest Case: LCFT = LLC for Gm! The local Artin map

Art : W ab
F – Fˆ

induces a bijection

"

Continuous characters
of GmpF q

* "

Continuous homs

WF Ñ GmpCq “ yGm

*



General Case

§ Exists finite to one map

R : AF pG q Ñ GF pG q

§ AF pG q the set of equivalence classes of irreducible smooth
G pF q-representations

§ GF pG q equivalence classes of “L-parameters ” :
φ : WF ˆ SL2pCq Ñ LG .

§ Fibers Πpφq :“ R´1pφq called “L-packets”.

Key Question of Talk: How to characterize R?

Our goal: Describe new characterization generalizing work of
Scholze (2013).
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The GLn Case

§ GLn case is special: The local Langlands map
R : AF pG q Ñ GF pG q is a bijection.

§ R constructed by Harris–Taylor, Henniart.

§ Characterized by Henniart using L, ε factors.

§ In 2013, Scholze gave a new characterization coming from
geometry.



Beyond GLn Case

§ GSp4 Gan–Takeda.

§ Sp2n, SO2n`1, and SO2n(almost) due to Arthur.

§ Quasisplit UnpE{F q Mok.

§ Inner forms of UnpE{F q Kaletha–Minguez–Shin–White.

§ Inner forms of SLn Hiraga–Saito.

§ Supercuspidal case for “almost all” groups Kaletha.

§ Characterization typically by compatibility with GLn.
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Scholze’s Construction

§ Given τ PW`
F and h P C8pGLnpOF qq constructs

fτ,h P C
8
c pGLnpF qq.

§ Constructs (via Shimura varieties) R for supercuspidals
satisfying Key Equation

trpπ | fτ,hq “ trpRpπq| ¨ |
1´n

2 | τqtrpπ | hq.

§ Extends to all of AF pG q by proving compatibility with
parabolic induction.



Scholze’s Characterization in the Supercuspidal Case

§ Suppose R1,R2 : AF pG q Ñ GF pG q satisfy Key Equation:

trpπ | fτ,hq “ trpRi pπq| ¨ |
1´n

2 | τqtrpπ | hq.

§ Pick π P AF pGLnq and h P C8pGLnpOF qq such that
trpπ | hq ‰ 0.

§ We have

trpR1pπq| ¨ |
1´n

2 | τq “
trpπ | fτ,hq

trpπ | hq
“ trpR2pπq| ¨ |

1´n
2 | τq.

§ Implies R1pπq „ R2pπq.



Work of Scholze–Shin

§ Scholze–Shin (2011) extend construction of fτ,h to unramified
“PEL type” and get a function f µτ,h P C

8
c pG pF qq for each:

§ τ PW`
F

§ h P C8c pGpOF qq, (where GpOF q is hyperspecial)
§ µ P X˚p pG q minuscule

§ Youcis (thesis) defines f µτ,h in “Abelian type” cases.

§ f µτ,h described by cohomology of tubular neighborhoods inside
of Rapoport–Zink spaces.



Scholze–Shin Conjecture (No Endoscopy Case)

§ Let φ : WF Ñ
LG be a supercuspidal L-parameter, G

unramified.

§ Let SΘφ :«
ř

πPΠpφq

Θπ be the “stable distribution of φ”

(Θπpf q :“ trpπ | f q)

§ Conjecture (Scholze–Shin Equation)

We have the following trace identity:

SΘφpf
µ
τ,hq “ trpr´µ ˝ φ| ¨ |

´xµ,ρy | τqSΘφphq.

§ Known cases
§ EL, some PEL cases (Scholze, Scholze–Shin)
§ G “ Dˆ appropriately interpreted (Shen)
§ Unramified UnpE{F q (BM, Youcis)



Hint of Proof

§ Fix global group G{F such that Gp “ G and exists nice
Shimura datum pG,X q.

§ Langlands–Kottwitz–Scholze method: for K Ă GpFq compact

trpτ ˆ f ph | H˚pShKqq “
ÿ

SOpf pf8f
µ
τ,hq

§ Study of cohomology of Shimura varieties (Kottwitz and
others) gives:

ÿ

trpπ | f phqtrpr´µ ˝ φπ | τq « trpτ ˆ f ph | H˚pShKqq

§ Stable trace formula gives:

ÿ

SOpf pf8f
µ
τ,hq «

ÿ

trpπ | f pf8f
µ
τ,hq

§ “Localize at p” to get result.
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Supercuspidal Parameters

§ From now on, assume G quasisplit (for simplicity)

§ L-parameter φ : WF ˆ SL2pCq Ñ LG supercuspidal if trivial on
SL2 part and doesn’t factor through a Levi subgroup of LG .

§ Reasons for supercuspidal parameters:
§ Easy to work with (behaves well with elliptic endoscopy)
§ Can prove Scholze–Shin equations
§ Considered in literature (Kaletha, Scholze)

§ Need “Backwards LLC”

Π :

"

Supercuspidal
L-Parameters

* "

Finite Subsets of
supercuspidal G pF q reps

*

φ Πpφq



Desired Properties

§ Dis: Πpφq X Πpφ1q ‰ H implies φ „ φ1.

§ Bij: Each Whittaker datum w gives a bijection

iw : Πpφq – IrrpCφq,

where Cφ “ Z
pG
pimφq{Z p pG qΓF .

§ Stab: SΘφ :“
ř

πPΠpφq

dimpiwpπqqΘπ is stable.

§ SS: Each φ satisfies the Scholze–Shin equations.

SΘφpf
µ
τ,hq “ trpr´µ ˝ φ| ¨ |

´xµ,ρy | τqSΘφphq.

§ We will need to assume G is “good”: If
trprµ ˝ φ | τq “ trprµ ˝ φ

1 | τq for all µ, τ then φ „ φ1.



Main Theorem(Imprecise Version)

Theorem (BM-Youcis)

For G a “good” reductive group, a supercuspidal LLC is
characterized by Dis,Bij,Stab, SS, + compatibility with
endoscopy.

§ Dis: Packets are disjoint.

§ Bij: iw : Πpφq – IrrpCφq

§ Stab: SΘφ is stable.

§ SS: SΘφpf
µ
τ,hq “ trpr´µ ˝ φ| ¨ |

´xµ,ρy | τqSΘφphq



Proof in the Singleton Packet Case

§ Suppose Π1,Π2 are supercuspidal LLCs.

§ Pick φ and suppose Π1pφq “ tπu is a singleton.

§ If we knew Π2pφ
1q “ tπu for some φ1 then we could compare

φ, φ1 using SS.

§ Need Atomic Stability: If Θ “
ř

i
aiΘπi is stable then Θ is a

linear combination of SΘφs.

§ Do NOT need AtomicStab axiom (Thanks to Prof. Hiraga!)



Proof Assuming Atomic Stability

§ Suppose Π1pφq “ tπu.

§ By Stab, we have Θπ is stable.

§ By AtomicStab for Π2 we have Π2pφ
1q “ tπu for some φ1.

§ By SS:

trprµ ˝ φ| ¨ |
´xµ,ρy | τq “

trpπ | f µτ,hq

trpπ | hq
“ trpr´µ ˝ φ

1| ¨ |´xµ,ρy | τq.

§ Implies φ „ φ1 since G is good.
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Introduction to Endoscopy

§ Elliptic endoscopic groups of G are auxiliary groups H with a
map η : LH Ñ LG and s P Z p pHqΓF .

§ GLn only elliptic endoscopic group of GLn.

§ Elliptic endoscopy of UnpE{F q of the form
Un1pE{F q ˆ Un2pE{F q with n1 ` n2 “ n.



A Useful Lemma

§ Lemma
If φ : WF Ñ

LG is supercuspidal then there is a bijection:

"

pH, φHq with
η ˝ φH “ φ

* "

conjugacy classes

in Cφ :“ Z
pG
pimφq{Z p pG qΓF

*

§ In particular, φ factors through an elliptic endoscopic
η : LH Ñ LG iff Cφ ‰ 1.

§ By Bij, we have Πpφq a singleton iff φ does not factor through
non trivial LH.

§ Want to induct on dimG using endoscopy.



Elliptic Hyperendoscopy

§ An elliptic hyperendoscopic datum is a sequence
pLH1, s1, η1q, ..., p

LHn, sn, ηnq so that pLH1, s1, η1q is an elliptic
endoscopic datum for G and pLHi , si , ηi q an elliptic endoscopic
datum for Hi´1.

§ ECI: Let pH, s, ηq an elliptic endoscopic datum for G and
f P C8c pG pF qq, f

H P C8c pHpF qq a pair of match of matching
functions. Then

SΘφH pf
Hq “

ÿ

πPΠpφq

trpiwpπq | sqΘπpf q



Supercuspidal LLC

§ Definition
A supercuspidal LLC for G is a map for each elliptic
hyperendoscopic H:

ΠH :

"

Supercuspidal
L-parameters of H

* "

Finite subsets of
supercuspidal HpF q reps

*

§ Theorem (BM – Youcis)

Let G be such that each elliptic hyperendoscopic H is good.
Suppose Π1,Π2 are supercuspidal LLCs such that
Ť

φ Π1,Hpφq Ă
Ť

φ Π2,Hpφq for all H and Πi ,H satisfy
Dis,Bij,Stab,SS, and ECI. Then Π1,H “ Π2,H for all H.



§ Groups with “good” elliptic hyperendoscopy:
PGLn,GLn,Un,GUn, SO2n`1,G2.

§ Groups with “bad” elliptic hyperendoscopy: Sp2n,SO2n,E8.

§ Corollary (BM – Youcis)

LLC for UnpE{F q as in Mok is characterized by the above.



Sketch of inductive step

§ Suppose we have proven that Π1,H “ Π2,H for all elliptic
endoscopic H of G .

§ Let φ be an L-parameter of G . If Cφ “ 1, done by singleton
packet case.

§ Otherwise pick π P Π1,G pφq and 1 ‰ s P Cφ such that
trpiwpπq | sq ‰ 0 and get pH, φHq from lemma.

§ By ECI

ÿ

π1PΠ1,G pφq

trpiwpπ
1q | sqΘπ1pf q “ SΘφH pf

Hq

“
ÿ

π1PΠ2,G pφq

trpiwpπ
1q | sqΘπ1pf q

§ Hence π P Π2,G pφq by independence of characters.



Some Questions

§ Can one show in a direct way that Kaletha’s construction of
LLC for supercuspidals satisfies SS?

§ For GLn we know this indirectly since Kaletha is compatible
with Harris–Taylor (by Oi–Tokimoto) and Harris–Taylor is
known to agree with Scholze.

§ Can one define a useful version of SS that avoids the “good
group” assumption? Perhaps this would look like
Genestier-Lafforgue’s characterization in terms of Bernstein
center elements: tzI ,f ,pγi qiPI u.
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