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Abstract. Carnot groups are subRiemannian manifolds. As such, they
admit geodesic flows, which are left-invariant Hamiltonian flows on their
cotangent bundles. Some of these flows are integrable; some are not. The
k-jets space of for real-valued functions on the real line forms a Carnot
group of dimension k + 2. In this study, it is shown that its geodesic
flow is integrable and that its geodesics generalize Euler’s elastica, with
the case k = 2 corresponding to the elastica, as shown in [1, 2, 3].

1. Introduction

The k-jets space of real functions of a single real variable, denoted here
by J k, is a k + 2-dimensional manifold endowed with a canonical rank 2
distribution, i.e., a linear sub-bundle of its tangent bundle. This distribu-
tion is framed by two vector fields, below denoted X1, X2 , whose iterated
Lie brackets give J k the structure of a stratified group. Declaring X1 and
X2 to be orthonormal endows J k with the structure of a subRiemannian
manifold, which is (left-) invariant under the group multiplication. Like any
subRiemannian structure, the cotangent bundle T ∗J k is endowed with a
Hamiltonian system whose underlying Hamiltonian H is that whose solu-
tion curves project to the subRiemannian geodesics on J k. We call this
Hamiltonian system the geodesic flow on J k.

This paper has two main goals, the following theorem is the first.

Theorem 1.1. The geodesic flow for the subRiemannian structure on J k
is integrable.

J 1 is isometric to the Heisenberg group where this theorem is well-known,
see [4] and [5]. J 2 is isometric to the Engel’s group, and Ardentov and
Sachkov showed that its subRiemannian geodesics correspond to Euler elas-
tica. Their result inspired Theorem 1.2, see below.
J k comes with a projection Π : J k → R2 = R2

x,uk
onto the Euclidean

plane which projects the frame X1, X2 projects onto the standard coordinate
frame ∂

∂x ,
∂
∂uk

of R2. (See 2 below for the meaning of the coordinates). As a

consequence, a horizontal curve γ in J k is parameterized by (subRiemannian
) arc-length if and only if its planar projection Π ◦ γ to R2 is parameterized
by arc-length. We will characterize geodesics on J k in terms of their planar
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2 A. BRAVO-DODDOLI

projections. As alluded to already, Ardentov and Sachkov [2], proved that
when k = 2, the planar projections of geodesics are Euler elastica. These
elastica have “‘directrix” the u2-line, the line orthogonal to the x-axis. There
are several ways to characterize Euler’s elastica, see, e.g., [6, 7, 8, 9]. The
one we will use is as follows. Take a planar curve c(s) = (x(s), y(s)) and
consider its curvature κ = κ(s), where s is arc-length. Then the curve c is
an Euler elastica with a line directrix parallel to the y-axis, if and only if,
κ(s) = P (x(s)) for P (x) some linear polynomial in x, that is, P (x) = ax+b
for some constants a and b (See FIGURE 1.1).

Figure 1.1. Some classic solutions of the Elastica equation
generated by F2(x) = ax2 + α, on the left the Euler Soliton
with α = 1 and a = −2, in the center the pseudo-sinusoid
α = 0 and a = −1, on the right the pseudo-lemniscate with
α = .65222... and a = 1.65222....

The following theorem is the second main goal.

Theorem 1.2. Let γ : I → J k be a subRiemannian geodesic parameter-
ized by arc-length s, and π ◦ γ = c(s) = (x(s), uk(s)) its planar projection.
Let κ be the curvature of c. Then κ(s) = p(x(s)) for some degree k − 1-
polynomial p(x) in the coordinate x. Conversely, any plane curve c(s) in
the (x, uk) plane, which is parameterized by arc-length s and whose curva-
ture κ(s) equals p(x(s)) for some polynomial p(x) of degree at most k− 1 in
x, is the projection of such a subRiemannian geodesic.

Example For the case k = 1 of the Heisenberg group, the theorem asserts
that κ = P (x), where P is a degree 0 polynomial ,i.e., a constant function.
The only curves having constant curvature are lines and circles, and these
are well-known to be the projections of the Heisenberg geodesics.

A geodesic is called globally minimizing if each of its compact sub-arcs
realizes the distance between its endpoints. The geodesic on J k will be
classified and used to present the Conjecture 6.2, which attempts to make a
complete classification of global minimizing geodesics on J k.

The outline of the paper is as follows. In section 2 presents J k, the k-th jet
space as a subRiemannian manifold, and the notation that will be followed
throughout the work. Also, the Hamiltonian subRiemannian geodesic flow
is defined and give some details are given about the Carnot structure of J k.
In section 3, the Poisson-Lie reduction is used to prove Theorem 1.1 and an
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explicit expression of the Casimir functions are presented. In section 4 we
use the Lie-Poisson bracket and the geodesic equations to prove Theorem
1.2. In section 5, it is shown that the geodesics are generically periodic on
x-coordinates and the geodesics on the J k are classified. Finally, in section
6, a Conjecture 6.2 is introduced about a complete classification of globally
minimizing geodesics on J k.

Acknowledgments. I would like to acknowledge my advisor and friend,
Richard Montgomery, for introducing me to subRiemannian geometry, set-
ting up the problem, and for his invaluable help on this paper. I am grateful
for the opportunity to work alongside Richard at UC Santa Cruz, as his
passion for mathematics and kind-heartedness have been important in the
development of my research. This paper was developed with the support
of the scholarship (CVU 619610) from ”Consejo de Ciencia y Tecnologia”
(CONACYT).

2. set-up

The k-jet of a smooth function f : R → R at a point x0 ∈ R is its kth
order Taylor expansion at x0. We will encode this k-jet as a k + 2-tuple of
real numbers as follows:

(2.1) (jkf)(x0) = (x0, f
k(x0), f

k−1(x0), . . . , f
′(x), f(x0)) ∈ Rk+2

As f varies over smooth functions and x0 varies over R, these k-jets sweep
out the k-jet space, denoted by J k. One can see that J k is diffeomorphic
to Rk+2 and its points are coordinatized according to

(x, uk, uk−1, . . . , u1, y) ∈ Rk+2 := J k.
Recall that if y = f(x), then u1 = dy/dx, while uj+1 = duj/dx, j ≥ 1.

Rearranging these equations into dy = u1dx, duj = uj+1dx, we see that J k
is endowed with a natural rank 2 distribution D ⊂ TJ k characterized by
the k Pfaffian equations

u1dx− dy = 0

u2dx− du1 = 0
... =

...

ukdx− duk−1 = 0

The typical integral curves of D are the k-jet curves x 7→ (jkf)(x). In
addition to these integral curves we have a distinguished family of curves
which arise by varying only the highest derivative uk, and which are the
integral curves of the vector field X2 below (eq (2.2). These latter curves
are C1-rigid in the sense of Bryant-Hsu,[10], and they exhaust the supply of
C1-rigid curves.

A subRiemannian structure on a manifold consists of a non-integrable
distribution together with a smoothly varying family of inner products on
the distribution. We have our distribution D on J k. We arrive at our
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subRiemannian structure by observing that D is globally framed by the two
vector fields

(2.2) X1 =
∂

∂x
+ u1

∂

∂y
+

k∑
i=2

ui
∂

∂ui−1
and X2 =

∂

∂uk

and then declaring these two vector fields to be orthonormal . Now the
restrictions of the one-forms dx, duk to D form a global co-frame for D∗
which is dual to our frame (equation (2.2). Therefore an equivalent way to
describe our subRiemannian structure is to say that its metric is dx2 + du2k
restricted to D.

For the purposes of Theorem 1.2 the following alternative characterization
of the subRiemannian metric is crucial. Consider the projection

Π : J k → R2
x,uk

; Π(x, uk, uk−1, . . . , u1, y) = (x, uk).

Its fibers are transverse to D, and since Π∗X1 = ∂
∂x ,Π∗X2 = ∂

∂uk
, the frame

pushes down to the standard frame for R2. The metric on each two-plane
Dp, p ∈ J k is characterized by the condition that dΠp (which is just Π
since Π is linear), restricted to Dp is a linear isometry onto R2, where R2 is
endowed with the standard metric dx2 + du2k. It follows immediately that
the length of any horizontal path equals the length of its planar projection,
that Π is a “submetry”, i.e., Π(Br(p)) = Br(Π(p)), where Br(p) denotes the
metric ball of radius r about q, and the horizontal lift of a Euclidean line in
R2 is a geodesic in J k.

2.1. Hamiltonian. Let P1, P2 : T ∗J k → R be the ‘power functions’ of the
vector fields X1, X2 above (see [5], page 8) . In terms of traditional cotangent
coordinates (x, uk, uk−1, . . . , u1, y, px, pk, pk−1, . . . , p1, py) for T ∗J k, with pi
short for pui we have

P1 = px + u1py + u2p1 + . . .+ ukpk−1; P2 = pk.

Then the Hamiltonian governing the subRiemannian geodesic flow on J k is

(2.3) H =
1

2
(P 2

1 + P 2
2 )

(see [5], 8 page). Where the condition H = 1/2 implies that the geodesics
are parameterized by arc-length, and this we will do in what follows.

Remark. [C1-rigidity]. A curve tangent to D is called C1-rigid if it is
a critical point of the endpoint map (see [5] chapter 3). The uk curves are
C1-rigid for D, and form what Liu-Sussmann christened as the “regular-
singular” curves for D. As such, they are geodesics for any subRiemannian
metric Edx2 + 2Fdxduk + Gdu2k, restricted to D such that ds2 is positive
definite and for E,F,G functions of the jet coordinates (x, uk, uk−1, . . . , y),
regardless on whether or not they satisfy the corresponding (normal) geo-
desic equations. For the present metric each uk-curve is indeed the projec-
tion to J k of a solution to our H, so we do not go to extra effort to account
for these abnormal geodesics (REF [5], chapter 3).
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2.2. Carnot Group structure. Under iterated bracket, the frame {X1, X2}
generates a k + 2-dimensional nilpotent Lie algebra which can be identified
pointwise with the tangent space to J k. Specifically, if we write

X3 = [X2, X1], X4 = [X3, X1], . . . , Xk+2 = [Xk+1, X1], 0 = [Xk+2, X1],

then we compute that

Xk+2 =
∂

∂y
, Xk+1 =

∂

∂u1
, Xk =

∂

∂u2
, . . . , X3 =

∂

∂uk−1

while all other Lie brackets [Xi, Xj ] are zero. The span of the Xi thus
forms a k + 2-dimensional graded nilpotent Lie algebra

gk = V1⊕V2⊕. . . Vk+1, V1 = span{X1, X2}, Vi = span{Xi+1}, 1 < i ≤ k+1.

Like any graded nilpotent Lie algebra, this algebra has an associated Lie
group which is a Carnot group G w.r.t. the subRiemannian structure, and
by using the flows of the Xi, we can identify G with J k, and the Xi with
left-invariant vector fields on G ∼= J k.

3. Integrability: Proof of Theorem 1.1

Our Hamiltonian H is a left-invariant Hamiltonian on the cotangent bun-
dle of a Lie group G. Let us recall the general ‘Lie-Poisson’ structure for
such Hamiltonian flows, see Appendix [11] or ch 4 [12].

T ∗G

JL||

JR

""
g∗+ g∗−

The arrows JR, JL are the momentum maps for the actions of G on it-
self by right and left translation, lifted to T ∗G. The subscripts ± are for
a plus or minus sign in front of the Lie-Poisson (also known as Kostant-
Kirrilov-Souriau) bracket on g∗. JR corresponds to left translation back to
the identity and realizes the quotient of T ∗G by the left action. JL cor-
responds to right translation of a covector back to the identity and forms
the components of the momentum map for left translation, lifted to the
cotangent bundle. In this case, g∗ = Rk+2 and

JR = (P1, P2, P3, . . . , Pk+2)

with Pi as the power function associated to Xi, so that

P3 = pk−1, P4 = pk−2, . . . , Pk+2 = py

in terms of standard canonical coordinates as above.
When the Hamiltonian H : T ∗G→ R is left-invariant, it can be expressed

as a function of the components of JR, that is, H = h◦JR for some h : g∗ →
R, and H Poisson commutes with every component of the left momentum
map JL, so that these left-components are invariants. JL and JR are related
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by JL(g, p) = (Adg)
∗JR(g, p), where we have written p ∈ T ∗gG, and where

Adg is the adjoint action of g.
The reason underlying the integrability of this system is a simple dimen-

sion count.

Proposition 3.1. If the generic co-adjoint orbit of g∗ is 2-dimensional,
then the left-invariant Hamiltonian flow on T ∗G is integrable.

Let us recall that the symplectic reduced spaces for the left translation
action are the co-adjoint orbits, for g∗+, and that JR realizes this symplectic

reduction procedure, mapping each J−1L (µ) onto the co-adjoint orbit through
µ. The hypothesis of the Proposition asserts that the symplectic reduced
spaces associated to the G-action are zero or two dimensional, so, morally
speaking, the system is automatically integrable by reasons of dimension
count.

Proof of Proposition. We must produce n commuting integrals in
involution, where n = dim(G). The hypothesis asserts that there are n− 2
Casimirs C1, . . . , Cn−2 for g∗, these being the functions whose common level
sets at a generic value define a generic co-adjoint orbit. These Casimirs are
a functional basis for the Ad∗G invariant polynomials on g∗. When viewed as
functions on T ∗G via Ci ◦ JR, the Casimirs Poisson commute with any left-
invariant function on T ∗G, and in particular with H and with each other.
Thus, H,C1, C2, . . . , Cn−2 yield n− 1 integrals. To get the last commuting
integral, take any component of JL.

Q.E.D.
Proof of Theorem 1.1. In order to use the proposition, we need to

verify that the co-adjoint orbits are generically 2-dimensional. We have the
Poisson brackets

(3.1) {P1, Pi} = Pi+1, 1 < i < k + 1, and {P1, Pk+2} = 0,

with all other Poisson brackets {Pi, Pj}, 1 < i < j ≤ k+ 2 being zero. Thus
the Poisson tensor B at a point Z = (P1, P2, P3, . . . , Pk+2) ∈ g∗+ is :

(3.2) B :=

 0 Zk 0
Ztk 0 0
0 0 0

 , where Zk = (P3, . . . , Pk+2),

which generically has rank 2, and rank 0, if and only if, Zk = 0, i.e., if and
only if, Pi = 0 for 2 < i.

Q.E.D.
Note: After writing this paper, we learned about closely related work by

Anzaldo-Meneses and Monroy-Perez, see [13, 14], who obtained many of the
same results in a different way.

Thanks to Theorem 1.1, we know that the system has k Casimir functions.
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Theorem 3.2. Let Ci be the functions defined by C1 = Pk+2 and

Ci = P i−1k+2Pk+2−i +
i−2∑
j=1

(−1)jP
i−(j+1)
k+2 Pk+2−j

P jk+1

(j)!
+ (−1)i−1

P ik+1

(i− 2)! i
,

(3.3)

for i > 1. If Pk+2 6= 0, then Ci’s are constants of motion for the geodesic
equations on J k, in others words they are Casimir functions1.

4. Integration and curvature: proof of Theorem 1.2

Hamilton’s equations read df
dt = {f,H}. With the Hamiltonian of this

system, they expand to df
dt = {f, P1}P1 + {f, P2}P2. Returning to our

coordinates x, uk, we compute {x, P1} = 1, {x, P2} = 0, and {uk, P1} =
0, {uk, P2} = 1, so that

(4.1)
dx

dt
= P1 and

duk
dt

= P2.

Thus (P1, P2) are the components of the tangent vector to the plane curve
(x(s), uk(s)) obtained by projecting a geodesic to the plane. If H = 1/2,
then this vector is a unit vector, the parameter t of the flow is the arc-length
s, and we can write

(P1, P2, θ̇) = (cos(θ), sin(θ), κ).

Using {P1, P2} = P3, we see that the P1, evolves according to the equations

Ṗ1 = P3P2

Ṗ2 = −P3P1.
(4.2)

We also have that Ṗ1 = −θ̇ sin(θ) = −θ̇P2 and Ṗ2 = +θ̇ cos(θ) = +θ̇P1, from
which we see that

−P3 = κ.

Now, for k + 2 > i > 2 we have that {Pi, P1} = −Pi+1, {Pi, P2} = 0, and
{Pj , Pk+2} = 0 for all j, so that

Ṗ3 = −P1P4,

Ṗ4 = −P1P5,

...

Ṗk+1 = −P1Pk+2,

Ṗk+2 = 0.

(4.3)

1In the case i = 2 the sum is empty
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Proof of Theorem 1.2. Consider a geodesic γ and an arc of the geo-
desic for which ẋ 6= 0. Instead of arc-length t = s, we use x to parameterize
this arc. From equation (4.1) along this arc

d

dx
=

1

P1

d

ds
,

so that the equations for the evolution of P3, P4, . . . , Pk+2 along the curve
become

dP3

dx
= −P4

dP4

dx
= −P5

... =
...

dPk+1

dx
= −Pk+2

dPk+2

dx
= 0,

(4.4)

these equations can be summarized by

dkP3

dxk
= 0,

which asserts that the curvature P3, of the projected curve c = π ◦ γ, is a
polynomial p(x) of degree k− 1 in x, at least along this arc-length. Finally,
since γ is an analytic function of s, so are c(s) and κ(s), so that if κ(s)
enjoys a relation κ(s) = p(x(s)) along some subarc of c(s), it enjoys this
same relation everywhere along c.

To prove the converse, first consider a general smooth curve c(s) in the
(x, u) plane along which dx/ds > 0. We can parameterize the curve either
by arc-length c(s) = (x(s), u(s)) or as a graph, u = u(x). Define the function
F (x), with −1 ≤ F (x) ≤ 1, by way of relating the two parameterizations:

(4.5) (ẋ, u̇) :=

(
dx

ds
,
du

ds

)
= (
√

1− F (x)2, F (x))

so that dx =
√

1− F (x)2ds and

u′(x) :=
du

dx
=

F (x)√
1− F (x)2

.

Therefore,

u′′ =
F ′

(1− F (x)2)3/2
.

The curvature of c(s), when viewed as a graph, is well-known to be

κ(x) =
u′′(x)

(1 + u′(x)2)3/2
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and so

(1 + u′(x)2) =
1

1− F (x)2
,

from which we conclude that

(4.6) κ = F ′(x).

To end this proof, suppose that we are given a curve c(s) in the plane
(x, u), with u = uk, whose curvature κ is a degree k − 1 polynomial in x.
Define F (x) by equation (4.5) along an arc of c(s) for which dx/ds > 0. From
equation (4.6), we know that F is an anti-derivative of κ and so a polynomial
of degree k in x. The constant term in the integration F (x) =

∫ x
κdx is fixed

by choosing any point (x∗, u∗) = (x(s∗), u(s∗)) along c(s) for which dx/ds >
0, so that −1 < du/ds|s=s∗ < 1 and setting F (x∗) = du/ds|s=s∗ .) By the
preceding analysis, c(s) has curvature κ(x(s)) along the entire arc dx/ds > 0

of c(s) which contains (x∗, u∗). Moreover, u′(x) = F (x)/
√

1− F (x)2. Set

(4.7) (P1(x), P2(x)) := (
√

1− (F (x))2, F (x)),

and

(4.8) P3(x) := F ′(x), and Pi+2 := (−1)i
diF

dix
(x), i > 1.

We look at the Pi as momentum functions. Reparameterize the momentum
functions by s using dx/ds = P1(x). Then we verify that the Pi satisfies
4.2 and 4.3, so that the horizontal curve γ(x(s)) in J k with these momenta
satisfies the geodesic equations and projects on our given curve c(s).

Q.E.D.

Corollary 4.1. Suppose that the momentum functions Pi are related to the
degree k polynomial F (x) as per equations (4.7, 4.8), and that H = 1/2,
then a critical point x0 of F (x) corresponds to a relative equilibrium for the
reduced equations 4.2 and 4.3 if and only if F (x0) = ±1.

Proof. The equilibria of equations (4.2) and (4.3) are the points with
P1 = 0 and P3 = 0, as long as H 6= 0. If H = 1

2 , the condition P1 = 0 forces
P2 = ±1, but P2 = F (x). Finally, P3 = F ′(x).

5. Structure of the higher Elastica

From the proof of Theorem 1.2, we have some freedom selecting a primi-
tive function for p(x), then, given Fk(x) =

∫
p(x)dx, the dynamic is trivial

if Fk(x(s)) is constant for all s, that is, when F−1k ([−1, 1]) is empty or a set

of isolated points. Then we take F−1k ([−1, 1]) as follows

F−1k ([−1, 1]) := ∪I [xi0, xi1], where F 2
k (xi0) = 1, F 2

k (xi1) = ±1,

xi0 < xi1 ≤ xi+1
0 < xi+1

1 and the condition that |Fk(x)| < 1 if x ∈ (xi0, x
i
1);

note that we allow Fk(x
i
0)Fk(x

i
1) = 1 or Fk(x

i
0)Fk(x

i
1) = −1, this dichotomy
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will help us to classify the geodesic in subsection 5.1. Choose [xi0, x
i
1] =

[x0, x1].

Theorem 5.1. The curve c(s) in (x, u) with curvature k((x(s)) = p(x) is
bounded in the x-direction; generically the curve is periodic in x, and the
period L is given by

L :=

∫ x1

x0

2dx√
1− F 2

k (x)
, we also define , ∆u :=

∫ x1

x0

2Fk(x)dx√
1− F 2

k (x)
.

Finally, we have that u(s+ L) = u(s) + ∆u.

Due corollary 4.1, we know, the points x0 and x1 are equilibrium points if
and only if they are critical points of the function Fk(x), so it takes infinite
time to arrive to them.

Let x0 be a regular point, we notice that if c(s) is reparameterized as a
graph u = u(x), as in the proof of Theorem 1.2, c(s) stop to be a graph
at the point x0, (See FIGURES 1.1). We will answer the question of how
to extend the curve c(s) to a ”multiple value function” on x at x = x0
such that its lift to Dk is a smooth solution to the geodesic equations. Set
(P1, P2) = (cos θ, sin θ) and θ̇ = p(x), since Fk(x0) = ±1 define θ(x0) = ±π

2

and θ̇(x0) 6= 0, then P1 changes sign, while P2 does not change. Therefore,
if x(s0) = x0 we define

(5.1) (ẋ, u̇) =

(±
√

1− F 2
k (x), Fk(x)) if s0 − L

2 ≤ s ≤ s0,

(∓
√

1− F 2
k (x), Fk(x)) if s0 ≤ s ≤ s0 + L

2 .

Hence, the curve stays in the interval [x0, x1], we extend the curve c(s) to
a ”multiple value function” on x at x = x1 in the same way. If both are
regular points, we can read the equation P1 =

√
1− Fk(x) as the restriction

P1(x)|{H= 1
2
,C1,...,Ck} and consider action function I given by the area under

the graph
√

1− Fk(x) going from x0 to x1 and the area of −
√

1− Fk(x)
going from x1 to x0, i.e.,

I(H =
1

2
, C1, . . . , Ck) := 2

∫ x1

x0

√
1− Fk(x)dx.

Finally, the period is given by ∂I
∂H |{H= 1

2
,C1,...,Ck} = L, (see [11] chapter 10).

The period goes to infinity when x0 or x1 are critical points, much like the
well-known homoclinic connection of a pendulum.
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Let us consider (x0, u∗) the initial point of the curve, x(s) ∈ [x0, x1] and
2s ≤ L, then

u(s) + τ =

∫ x(s)

x0

Fk(x)dx√
1− F 2

k (x)
+

∫ x1

x0

2Fk(x)dx√
1− F 2

k (x)
+ u∗,

= (

∫ x(s)

x0

+

∫ x1

x(s)
+

∫ x1

x0

+

∫ x(s+L)

x0

)
Fk(x)dx√
1− F 2

k (x)
+ u∗ = u(s+ L).

Once again, we use the fact that
∫ x1
x0

Fk(x)dx√
1−F 2

k (x)
=
∫ x0
x1

Fk(x)dx

−
√

1−F 2
k (x)

.

Q.E.D.

5.1. Geodesic classification. There are three cases:

• x-periodic - geodesics whose x-coordinate is periodic, p(x0) 6= 0 and
p(x1) 6= 0.
• Homoclinic - geodesics whose plane curve is asymptotic to a one

line in both directions - p(x0) = 0 and p(x1) 6= 0, or p(x0) 6= 0 and
p(x1) = 0.
• Heteroclinic- geodesics whose plane curve is asymptotic to two lines

- p(x0) = 0 and p(x1) = 0.

In the heteroclinic case, we add one more dichotomy into the mix.

Definition 5.2. A heteroclinic geodesic is said to be of turn-back type if
Fk(x0)Fk(x1) = −1. Otherwise, it is said that the heteroclinic is of direct
type, in which case Fk(x0)Fk(x1) = −1.

To have a better understanding of definition 5.2 (See FIGURES 5.2 and
5.3).

5.2. General Euler Soliton. The elastica equation has a distinguished
solution called the Euler Kink. Other names for it are the Euler soliton or
Convict’s curve (See FIGURES 1.1 and 5.2), see [2, 8, 9, 6]. We define the
Euler soliton at the level k in the sense that the curvature of the curve
(x, uk(x)) is always proportional to xk−1. See FIGURE 5.2.

Theorem 5.3. If 1 < k then the level k has a Soliton curve.

Consider the polynomial Fk(x) = xk

ak
−α. Set x = a k

√
α+ cos(t) , we find

the following expressions

u(t) =

∫ t1

t0

cos(t)dt

(α+ cos(t))
k−1
k

, t(x) =
a

k

∫ t1

t0

dt

(α+ cos(t))
k−1
k

.
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Figure 5.1. On the left is the graph of F (x) = 1 − 2xk

and on the right the corresponding plane curves in (x, u) for
k = 2, 3, 4 .

Figure 5.2. On the left is the graph of F2k+1(x) from propo-
sition 5.4 and on the right the corresponding plane curves in
(x, u) for k = 3, 5, 7.

The case k = 2 is the classic solution for the Elastica equation, (see [9] page
436). If α = 1, then we have the explicit expression

u(x) =

∫ x

k√2

x
k
2 dx√

2− xk
− 2

k
√

2
ln(

√
2−
√

2− xk

x
k
2

),

t(x) =
1

3
2

√
2

ln(

√
2−
√

2− xk

x
k
2

).

We can find a explicit second order ODE for θ̇,

puk−1
=
∂P

∂x
(x) = kxk−1 and

θ̇2

k2a2k
= (cos θ + α)

2(k−1)
k .(5.2)

If k > 1 and α = 1, the ODE defined by the right side from equation 5.2
has a unique equilibrium point θ = π and a homoclinic connection. In the
case k = 2, this ODE is the same as the pendulum equation defined in [2].

5.3. Heteroclinic geodesics. k = 1, 2 does not have heteroclinic geodesics,
since a polynomial p(x) of degree 1 has at must one root. In the case 2 < k
we have the opposite.

Proposition 5.4. If k > 2, then J k admits heteroclinic geodesics.

We split in the even and odd case, in both case the Hill interval is [−1, 1]:
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Figure 5.3. On the left is the graph for F2k(x) from propo-
sition 5.4 and on the right the corresponding plane curves in
(x, u) for k = 4, 6, 8.

• Turn-back type: Consider F2k+1(x) = −x2k+1−(2k+1)x
2k . The points

x = ±1 are equilibrium points, since F2k+1(±1) = ±1 and ∂F
∂x (±1) =

0.
• Direct type: Consider F2k(x) = −x2k−kx2

1−k . The points x = ±1 are

equilibrium points, since F2k(±1) = −1 and ∂F
∂x (±1) = 0.

Q.E.D.

6. Future work

Definition 6.1. A geodesic γ(t) is globally minimizing if each of its compact
sub-arcs realizes the distance between its endpoints, in other words, γ(t) is
an isometric embedding of the real line.

In [1, 2, 3], Andertov and Sachkov proved that the Euler Soliton for
k = 2 is globally minimizing geodesic and in, [4], Hakavuori and Donne
showed that neither periodic nor turn back geodesics are globally minimizing
geodesic. These results suggest the following conjecture.

Conjecture 6.2. The global minimizers geodesics on Jk are homoclinic and
heteroclinic of direct type.
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