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Abstract. We consider nilpotent Lie groups for which the derived subgroup is abelian.

We equip them with subRiemannian metrics and we study the normal Hamiltonian flow

on the cotangent bundle. We show a correspondence between normal trajectories and

polynomial Hamiltonians in some euclidean space. We use the aforementioned corre-

spondence to give a criterion for the integrability of the normal Hamiltonian flow. As

an immediate consequence, we show that in Engel-type groups the flow of the normal

Hamiltonian is integrable. For Carnot groups that are semidirect products of two abelian

groups, we give a set of conditions that normal trajectories must fulfill to be globally

length-minimizing. Our results are based on a symplectic reduction procedure.
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1. Introduction

In this paper we focus on nilpotent Lie groups, equipped with left-invariant subRie-

mannian metrics. Roughly speaking, we fix a left-invariant distribution, i.e., a subbundle

of the tangent bundle, and we define the distance between two points to be the infimum
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of absolutely continuous curves that are tangent to the distribution almost everywhere

and join the two points. The length is measured with respect to some left-invariant Rie-

mannian metric. Our aim is to study length-minimizing curves in metabelian groups,

that is, groups in which the derived subgroup is abelian. We will focus on normal tra-
jectories, locally length-minimizing curves admitting a lift to the cotangent bundle of the

group, called normal extremal, solving the Hamilton equation for a smooth Hamiltonian,

the normal Hamiltonian, see (14). Although not all length-minimizing curves are normal

trajectories [16], in every subRiemannian manifold there exists an open dense set whose

points are connected to the origin by a length-minimizing normal trajectory [3, Theorem

1]. As a consequence, understanding the flow of the normal Hamiltonian is an important

step in understanding the subRiemannian distance on subRiemannian nilpotent groups.

The main idea of this paper is that the normal Hamiltonian associated to a left-invariant

subRiemannian structure on a Lie group is invariant under a canonical action of the Lie

group on its cotangent bundle. The symmetries encoded by this action are related to the

presence of prime integrals of the normal Hamiltonian flow [20], and the presence of this

prime integrals simplifies the study of normal trajectories.

We develop the idea described above using the formalism of symplectic reductions, first

introduced by Marsden and Weinstein [13]. We restrict to the action of an abelian sub-

group of the Lie group on its cotangent bundle to avoid the technicalities that would arise

from the action of a non-commutative group.

Theorem 1.1. (After Marsden-Weinstein, [13, Theorem 1]) LetG be a Lie group with left-
invariant subRiemannian structure, let A < G be an abelian subgroup. Then, the action of
A on G by left multiplication induces a Hamiltonian action of A on T ∗G, with momentum
J : T ∗G → Lie(A)∗, that fixes the normal Hamiltonian H . For every µ ∈ Lie(A)∗ the
symplectic reduction T ∗G //µ A is a smooth manifold admitting a unique symplectic form
ωµ such that Π∗

µωµ = i∗ω, where Πµ : J−1(µ) → T ∗G //µ A is the canonical projection,
i : J−1(µ) → T ∗G is the inclusion and ω is the standard symplectic form of T ∗G. In
particular, for every normal extremal λ : [0, 1] → T ∗G there exists µ ∈ Lie(A)∗ such that
J ◦λ = µ and the projection of λ to the symplectic reduction T ∗G//µA solves the Hamilton
equation for the reduced HamiltonianHµ. Conversely, every curve in a symplectic reduction
T ∗G //µ A, with µ ∈ Lie(A)∗, solving the Hamilton equations for Hµ, is the projection of
some normal extremal.

In the setting of Theorem 1.1, since the momentum is constant along normal extremals,

we will say that a normal extremal λ : [0, 1] → T ∗G has momentum µ ∈ Lie(A)∗ if

J ◦ λ = µ. We apply the result in Theorem 1.1 to metabelian simply connected nilpotent

Lie groups. For these groups, we give an explicit description of the reduced normal Hamil-

tonians that arise performing symplectic reductions in terms of a connection 1-form, see

Definition 2.5. This will give a natural generalization of a phenomenon that occurs in the

Heisemberg group and in the Engel group. Indeed, it is known that in the first group the

curvature of normal trajectories is constant, whereas in the latter group it is proportional

to a linear function of the projection of the curve to the abelianization of the group. Both

this conditions can be expressed saying that the projections of normal extremals to some

symplectic reduction solve the Hamilton equations for the Hamiltonian of a particle in

an electro-magnetic field. In this paper we show that the latter statement holds for every

metabelian simply connected nilpotent Lie group. We stress that metabelian nilpotent

groups constitute a wide class of examples, as for instance all step 3 nilpotent groups and

all jet spaces are metabelian and nilpotent.
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Before stating the main result of this paper we introduce some notation. LetG be a simply

connected nilpotent Lie group with left-invariant distribution ∆ and left-invariant Rie-

mannian metric. Let A be an abelian subgroup of G with [G,G] ⊆ A. Then we have that

A is normal in G (we use the notation A◁G). Moreover, G/A admits a canonical metric,

induced by a scalar product, that makes the projection Π : G → G/A a submetry. We

denote with π : T ∗(G/A) → G/A the canonical projection. We write || · ||T∗(G/A) for

the dual norm induced by the scalar product in T (G/A) on T ∗(G/A), and we use || · ||A
to denote the dual norm induced by the left-invariant scalar product on the distribution

∆ on the left-invariant extension of (Lie(A) ∩ ∆1)
∗

(we identify Lie(A) with T1A). If

η ∈ Ω1(G,R) is a 1-form, we write ηA for the restriction of η to the left-invariant exten-

sion of Lie(A)∩∆1. For α ∈ Ω1(T ∗G,Lie(A)), we define ᾱ ∈ Ω1(G/A,Lie(A)) setting

ᾱAg(dgΠX) := αg(X) for all g ∈ G, for all X ∈ dLg(Lie(A) ∩∆1)
⊥

(remark that ᾱ is

well defined since Lie(G) = Lie(A)⊕ (Lie(A) ∩∆1)
⊥

).

Theorem 1.2. LetG be a metabelian simply connected nilpotent Lie group, equipped with a
left-invariant subRiemannian structure. LetA◁G be an abelian subgroup with [G,G] ⊆ A.
Then there exists an A-invariant Lie(A)-valued 1-form α ∈ Ω1(G,Lie(A)) for which the
following holds: for all µ ∈ Lie(A)∗ there is a symplectomorphism φµ : T ∗G //µ A →
T ∗(G/A) such that, if Hµ ∈ C∞(T ∗G //µ A) is the reduced normal Hamiltonian, there
holds

(1) (Hµ ◦ φ−1
µ )(η) =

1

2
||η + ⟨µ, ᾱ⟩(π(η))||2T∗(G/A) +

1

2
||⟨µ, α⟩A(q)||2A,

for all η ∈ T ∗(G/A) and q ∈ Π−1(π(η)). In particular, there is a correspondence between
normal extremals in T ∗G with momentum µ and lifts of curves in T ∗(G/A) solving the
Hamilton equation for Hµ ◦ φ−1

µ .

The main idea in the proof of Theorem 1.2 is that we can trivialize the structure of A-

principal bundle of G. Using this trivialization, we define a closed connection 1-form α.

With this choice of α, the shift sµ : T ∗G→ T ∗G, defined by sµ(λ) := λ− ⟨µ, α⟩, for all

λ ∈ T ∗G, is a symplectomorphism. We define φµ as the composition of two maps: a map

s̄µ : T ∗G//µA→ T ∗G//0A induced by sµ|J−1(µ), and a canonical symplectomorphism

ψ̄0 : T ∗G//0A→ T ∗(G/A). We then prove (1) using the explicit formulas of sµ, ψ̄0 and

of the normal Hamiltonian.

When we will need to perform explicit computations, it will be convenient to fix a

system of coordinates. We choose particular exponential coordinates of second type Φ̄ :
Rn → G/A, see (31), and we prove that there exist polynomial mapsA1, ...,An, β1, ..., βn1

:
Rn → Lie(A) for which equation (1) rewrites as

(2) H̃µ(p, x) =
1

2

n∑
1

|pi + ⟨µ,Ai(x)⟩|2 +
1

2

n1∑
1

|⟨µ, βl(x)⟩|2,∀(p, x) ∈ T ∗Rn,

where H̃µ := (Hµ ◦ φ−1
µ ◦ T ∗Φ̄−1). To approach various problems related to normal

trajectories we will either directly apply Theorem 1.2 or use the formulation in coordinates

given by Equation (2). The first problem we address is the study of the integrability of the

normal Hamiltonian flow. We prove that if the Hamiltonian flow of each reduction of the

normal Hamiltonian is integrable and some smoothness condition on the prime integrals

holds, then the flow of the normal Hamiltonian is integrable. We apply this result to prove

the integrability of the normal Hamiltonian flow in nilpotent groups having an abelian

subgroup of co-dimension 1 and in groups of Engel-type, see Section 7.2 or [8, Section 5].
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Corollary 1.3. LetG bemetabelian simply connected nilpotent Lie group, with left-invariant
subRiemannian structure. Let A ◁ G be an abelian subgroup containing [G,G]. Let φµ :
T ∗G//µA→ T ∗(G/A) be the symplectomorphism coming fromTheorem 1.2. Assume there
exist smooth functions f1, ..., fdim(G)−dim(A) : T

∗(G/A)×Lie(A)∗ → R such that, for all
µ ∈ Lie(A)∗, the functions f1(·, µ), ..., fdim(G)−dim(A)(·, µ) ∈ C∞(T ∗(G/A)) are a set
of independent prime integrals forHµ ◦φ−1

µ that are in involution. Then the normal Hamil-
tonian flow is Arnold-Liouville integrable. As a consequence, if dim(A) = dim(G)−1 then
the normal Hamiltonian flow is Arnold-Liouville integrable.

Corollary 1.4. The normal Hamiltonian flow in Engel-type groups is Arnold-Liouville in-
tegrable.

Corollary 1.3 provides a general procedure to prove that the normal Hamiltonian flow

is Arnold-Liouville integrable. We stress that all jet spaces J(R,Rn) of smooth functions

from R to Rn are metabelian and admit an abelian subgroup of dimension 1, thus as a

particular case of Corollary 1.3 we have that the normal Hamiltonian flow in J(R,Rn) is

Arnold-Liouville integrable for all n ∈ N. We refer to [17, Section 6.5] for a presentation

of jet spaces.

Using Theorem 1.2 we can also study metric lines, that is, globally length-minimizing

curves. We focus on Carnot groups (see Definition 2.16) that are semidirect products of

two abelian groups. In these groups, we present a class of normal trajectories that cannot

be globally length-minimizing. The basic idea is to look for conditions that prevent the

existence of a 1-parameter subgroup in the set of blow-downs of the normal trajectory

(we refer to Section 5 for more details). In order to write a precise statement we first

need to introduce some notation: if G is a metabelian Carnot group, and A ◁ G is a

normal subgroup with [G,G] < A, we denote with Φ : Rn+m → G and Φ̄ : Rn →
G/A the coordinates of second type for which (2) holds. We define for all µ ∈ Lie(A)∗

the functions Vµ, F1,µ, ..., Fn1,µ ∈ C∞(Rn) setting Vµ :=
∑n1

l=1⟨µ, βl⟩2 and Fi,µ :=∑n1

1 ⟨µ, βl⟩dθi(Φ∗βl), for all i ∈ {1, ..., n1}. We use Πµ : T ∗G → G //µ A and π :
T ∗Rn → Rn to denote the canonical projections.

Corollary 1.5. Let G be a metabelian Carnot group, A ◁ G an abelian subgroup with
[G,G] ⊆ A. Denote with V1 the first layer of Lie(G). Assume (Lie(A) ∩ V1)

⊥ to be an
abelian sub-algebra of Lie(G). Let λ : R → T ∗G be a normal extremal with momentum
µ ∈ Lie(A)∗. Define x := π ◦ T ∗Φ̄ ◦ Πµ(λ), Vµ and Fi,µ using the notation introduced
before the corollary. If one of the two following condition holds,

(i) there exists a compact set Ω ⊆ Rn such that x(t) ∈ Ω for all t ∈ R, and there is
an open set U , with Ω ⊆ U , such that 1

2 is a regular value for Vµ|U ;
(ii) for some i ∈ {1, ..., n1} the limits limt→∞ Fi,µ(x(t)) and limt→−∞ Fi,µ(x(t))

exist and do not coincide;
then the normal trajectory associated to λ is not a metric line.

The above corollary was already known for jet spaces, see [6, Theorem B]. The tech-

nique used is based on the concept of Hill region and is in some part inspired by [18].

Corollary 1.5 restricts the family of curves one should deal with when looking for metric

lines. For example, if µ ∈ Lie(A)∗ is such that
1
2 is a regular value of Vµ and the region

V −1
µ

([
0, 12

])
is compact, then all normal trajectories associated to extremals with mo-

mentum µ are not metric lines. Natural candidates metric lines are normal extremals λ
for which the curve π ◦ T ∗Φ̄ ◦ Πµ(λ) converges to critical points of Vµ as time goes to
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±∞. We conjecture that the associated normal trajectory will be a metric line if and only

if condition (ii) of Corollary 1.5 is not satisfied.

Conjecture 1.6. In the setting of Corollary 1.5, the normal trajectory associated to λ is
a metric line if and only if for all i ∈ {1, ..., n1} the limits limt→−∞ Fi,µ(x(t)) and
limt→+∞ Fi,µ(x(t)) exist and there holds

lim
t→−∞

Fi,µ(x(t)) = lim
t→+∞

Fi,µ(x(t)).

When the normal extremal is the lift of a periodic trajectory in some symplectic re-

duction we can prove a slighter stronger statement than the one in Corollary 1.5, giving

an explicit bound of the time when the normal trajectory stops being length-minimizing.

The interested reader can find more details in Section 6.

1.1. Organization of the paper. The first part of the second section of this paper is de-

voted to a brief presentation of symplectic manifolds and symplectic reductions. We then

shortly define subRiemannian manifolds, nilpotent and Carnot groups, normal trajecto-

ries. The proof of Theorems 1.1 and 1.2 is contained in Section 3. The latter section also

includes a presentation of the reduction in coordinates of second type and the description

of the procedure to lift the flow of a reduction of the normal Hamiltonian. Corollary 1.3

is proved in Section 4. Section 5 is devoted to the study of metric lines and the proof

Corollary 1.5. Section 6 contains an explicit bound of the cut-time for curves that project

to periodic curves in some symplectic reduction. Section 7 contains some examples and

the proof of Corollary 1.4.
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2. Preliminaries

We present in this section the main definitions and results we will need along the

paper. We briefly describe the symplectic structure of cotangent bundles and recall some

results on symplectic reductions. We give the definitions of subRiemannian manifolds

and Carnot groups, we present normal extremals and the normal Hamiltonian.

2.1. Symplectic structures. We recall here some basic facts on symplectic manifolds

and symplectic reductions. We refer to [4] and [1] for an extensive presentation.

Definition 2.1. A symplectic manifold is a smooth manifold with a closed non-degenerate
differential 2-form, called the symplectic form.
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On cotangent bundles, we define a canonical symplectic structure: if G is a smooth

manifold, we choose as the symplectic form onT ∗G the two form−ds, where s : T (T ∗G) →
R is the tautological form defined by

sλ(X) := λ(dλπX), ∀λ ∈ T ∗G,∀X ∈ TλT
∗G,

where π : T ∗G→ G is the canonical projection.

A symplectic form ω on a manifold M allows us to associate to every h ∈ C∞(M) the

Hamiltonian vector field h⃗ ∈ Vec(M) solving

ω(⃗h, ·) = dh.

We call Hamiltonian flow of h ∈ C∞(M) the function ϕh : [0,+∞)×M →M solving

(3) ϕ̇th(p) = h⃗(ϕth(p)), ∀t ∈ [0,+∞),∀p ∈M.

Let I ⊆ R be an interval. We say that a curve γ : I → M solves the Hamilton equations
for h ∈ C∞(M) if for all t0 ∈ I we have γ(t− t0) = ϕt−t0h (γ(t0)) for all t ∈ I, t ≥ t0.

When one considers two functions f, g ∈ C∞(M), it is common use to describe the

non-commutativity of their Hamiltonian flows in terms of their Poisson bracket

(4) {f, g} := f⃗g.

The symmetries of symplectic manifolds are encoded in the action of a group via sym-

plectomorphisms.

Definition 2.2. Let (M,ω), (N,ω′) be symplectic manifolds. A diffeomorphism ϕ :M →
N is a symplectomorphism if ϕ∗ω′ = ω. We say that a Lie group A acts via symplecto-

morphisms onM if there exists a smooth homomorphism between A and the group of the
symplectomorphisms ofM onto itself.

The action via symplectomorphisms of a Lie group A over a symplectic manifold M
induces an infinitesimal action σ : Lie(A) → Vec(M) defined by

(5) σ(X)(p) :=
d

dt
exp(tX) · p

∣∣
t=0

, ∀p ∈M.

We say that the action of A on M is Hamiltonian if the infinitesimal action σ lifts to a

map J∗ : Lie(A) → C∞(M) that makes the following diagram commute:

C∞(M)

Lie(A) Vec(M)

Φ
J∗

σ

,

where Φ is the map associating to each smooth function the corresponding Hamiltonian

vector field. When the action is Hamiltonian we can define a momentum map J : M →
Lie(A)∗, setting

(6) J(p)(X) := J∗(X)(p),∀p ∈M,∀X ∈ Lie(A).

Once we have a Hamiltonian action of a Lie group on a symplectic manifold we can

perform a symplectic reduction.

Theorem 2.3. (Symplectic reduction, [13, Theorem 1]) Let A be a Lie group acting freely
and properly via symplectomorphism on a symplectic manifold (M,ω). Assume the action
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to be Hamiltonian. Let J : M → Lie(A)∗ be the momentum map and µ ∈ Lie(A)∗ be co-
adjoint invariant. Then J−1(µ) is an A-invariant smooth submanifold, and the symplectic
reduction

M //µ A := J−1(µ)/A

is a smooth manifold. Moreover, M //µ A admits a unique symplectic form ωµ such that
Π∗
µωµ = i∗ω, with i : J−1(µ) ↪→ M being the canonical inclusion and Πµ : J−1(µ) →

M //µ A being the canonical projection.

Corollary 2.4. (Reduction of the dynamics, [13, Corollary 3]) LetA be a Lie group acting
freely and properly via symplectomorphism on the symplectic manifold (M,ω). Assume
the action to be Hamiltonian. Let J : M → Lie(A)∗ be the momentum map and let h ∈
C∞(M) be A-invariant. The Hamiltonian flow ϕh : [0,+∞) ×M → M of h commutes
with the action of A. Moreover, J is constant along the trajectories of ϕh. In particular,
for all co-adjoint invariant µ ∈ Lie(A)∗, the submanifold J−1(µ) is ϕh invariant. Define
hµ ∈ C∞(M //µ A) setting h|J−1(µ) = hµ ◦ Πµ, where Πµ : J−1(µ) → M //µ A is the
canonical projection. If ϕhµ

: [0,+∞) ×M //µ A → M //µ A is the Hamiltonian flow of
hµ, then

Πµ ◦ ϕth|J−1(µ) = ϕthµ
◦Πµ, ∀t ∈ [0,+∞).

Consider a free and proper Hamiltonian action of an abelian Lie group A on a sym-

plectic manifold (M,ω). Fix an A-invariant function h ∈ C∞(M). As a consequence of

Corollary 2.4, we have that every trajectory of the Hamiltonian flow of h lies in a sub-

manifold J−1(µ), for some µ ∈ Lie(A)∗, and is the lift of a trajectory of the flow of hµ
inM //µA. Consequently, if we want to study the dynamic of the Hamiltonian flow of h,

it is sufficient to study the dynamic of the Hamiltonian flows of hµ in M //µ A for every

µ ∈ Lie(A)∗.

When we deal with the action of a Lie group over a cotangent bundle we are able to

describe the symplectic structure in the reduction using connection 1-forms.

Definition 2.5. Let A be a Lie group acting freely and properly on an A-principal bundle
G. A connection 1-form α ∈ Ω1(G,Lie(A)) is a Lie(A)-valued 1-form such that

α ◦ σ = idLie(A), where σ is defined in (5),(7)

α(a∗v) = Ada α(v),(8)

where in the left hand side of (8) we interpret a ∈ A as a function a : G → G using the
action of A over G.

Defining a connection 1-form allows us to explicitly describe the symplectic structure

of cotangent bundle reductions. We present here a particular case of [21, Theorem 6.6.3].

Theorem 2.6. Let A be an abelian Lie group acting freely and properly (on the left) on a
manifoldG. This action induces a Hamiltonian action on T ∗Gwith the canonical symplectic
form. Fix a connection 1-form α ∈ Ω1(G,Lie(A)). Then, for all µ ∈ Lie(A)∗, there exists
a symplectomorphism φµ : T ∗G //µ A → T ∗(G/A), the latter space with the symplectic
form ωcan −Bµ, where ωcan is the canonical symplectic form and Bµ is defined from Bµ :=

Π∗B̃µ, π∗B̃µ := d⟨µ, α⟩, the maps Π : T ∗(G/A) → G/A and π : G → G/A being
the canonical projections. Moreover, the map φµ is the composition of two maps: the map
s̄µ : T ∗G //µ A→ T ∗G //0 A induced by the fiber translation sµ : J−1(µ) → J−1(0),

(9) sµ(λ) := λ− ⟨µ, α⟩, ∀λ ∈ J−1(µ),
7



and the map ψ̄0 : T ∗G //0 A→ T ∗(G/A), induced by the map ψ0 : J−1(0) → T ∗(G/A),
defined from

(10) (ψ0(λ))(π∗X) := λ(X), ∀λ ∈ J−1(0), ∀X ∈ Vec(G).

A consequence of the definition of Bµ in Theorem 2.6 is the following:

Lemma 2.7. In the setting of Theorem 2.6, if ker(α) is an integrable distribution thenBµ =
0 and φµ is a symplectomorphism between T ∗G //µ A and (T ∗(G/A), ωcan).

Proof. Fix a connection 1-form α ∈ Ω1(G,Lie(A)) with an integrable distribution has a

kernel. Define the map hor : TG→ ker(α) setting

hor(Y ) := Y − σ(α(Y )), ∀Y ∈ TG.

where σ is defined in (5). To show that Bµ is 0 we have to show

d⟨µ, α⟩(hor(X),hor(Y )) = 0, ∀X,Y ∈ Vec(G),

see for example [14, Definition 2.1.7] or [14, Theorem 2.1.9, Lemma 2.1.10]. Fix X,Y ∈
Vec(G). We have

d⟨µ, α⟩(hor(X),hor(Y )) = hor(X)⟨µ, α⟩(hor(Y ))− hor(X)⟨µ, α⟩(hor(Y )) +

⟨µ, α⟩([hor(X),hor(Y )]) = 0,

where in the last equality we used that hor(X),hor(Y ) ∈ ker(α) by definition of the

map hor and [hor(X),hor(Y )] ∈ ker(α) being ker(α) an integrable distribution. □

2.1.1. Abelian subgroup acting on a Lie group. In this paper, we will be interested in the

case of an abelian subgroup of a subRiemannian Lie group acting via left-translation on

the cotangent bundle of the Lie group. Let G be a Lie group and A < G be an abelian

subgroup. The left-action of A on G induces a symplectic action of A on T ∗G given by

a · λ := (La−1)∗λ, ∀a ∈ A,∀λ ∈ T ∗G.

This action is Hamiltonian and the momentum function J : G→ Lie(A)∗ is given by

(11) J(λ)(X) := λ(X†), ∀λ ∈ T ∗G,∀X ∈ Lie(A),

where X†
is the right-invariant extension of X (we identify Lie(A) with T1A). Being A

abelian, every element µ ∈ Lie(A)∗ is co-adjoint invariant and consequently the sym-

plectic reduction T ∗G //µ A is a smooth manifold for every µ ∈ Lie(A)∗. Moreover, the

group G has the structure of an A-principal bundle. The conditions (7) and (8) defining

connection 1-forms rewrite as

αg(dRgX) = X, ∀g ∈ G,∀X ∈ Lie(A) ≃ T1A,(12)

L∗
aα = α, ∀a ∈ A.(13)

2.2. SubRiemannianmanifolds. We present some definitions and facts in subRieman-

nian geometry that we need in the paper.

Definition 2.8. A distribution on a smooth manifold is a subbundle of the tangent bun-
dle. A distribution is bracket-generating if the Lie algebra generated by sections of the
distribution contains a frame of the tangent bundle in a neighborhood of every point. A
subRiemannian manifold is a smooth manifold with a bracket-generating distribution and
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a Riemannian metric. On a SubRiemannian manifoldM with distribution∆ and Riemann-
ian metric ρ we consider the Carnot-Carathéodory distace

dcc(x, y) := inf

{∫ 1

0

√
ρ(γ̇(t), γ̇(t))dt

∣∣∣∣ γ : [0, 1] →M absolutely continuous ,

γ(0) = x, γ(1) = y, γ̇(t) ∈ ∆γ(t) for a.e. t ∈ [0, 1]

}
.

By Chow’s Theorem [9, Section 0.4], we have that the Carnot-Carathéodory distance

is always finite. Throughout the paper, we will only consider Lie groups equipped with

left-invariant bracket-generating distributions and left-invariant Riemannian metrics. It

is known that if a curve in a subRiemannian manifold is length-minimizing, it is either

a normal or an abnormal extremal (see for example [2, Section 4] for a comprehensive

study of length-minimizing curves in subRiemannian manifolds). This paper will focus

only on the dynamics of normal trajectories in Lie groups.

Definition 2.9. Let G be a Lie group with left-invariant bracket-generating distribution
∆ and left-invariant Riemannian metric ρ. An absolutely continuous curve is a normal

trajetory if it admits a lift λ : [0, 1] → T ∗G, called normal extremal, solving the Hamilton
equations for H ∈ C∞(T ∗G), defined by

(14) H(η) := max
X∈∆π(η)

(
⟨η,X⟩ − 1

2
ρ(X,X)

)
=

d∑
1

1

2
|⟨η,Xi⟩|2, ∀η ∈ T ∗G,

where π : T ∗G → G is the canonical projection, and X1, ..., Xd is any orthonormal frame
of the distribution. We call H the normal Hamiltonian.

Normal extremals are known to be smooth and locally length-minimizing [2, Corol-

lary 17.4]. Along the paper, we will be interested in the study of the integrability of the

normal Hamiltonian flow and we will try to bound the time when normal trajectories stop

being length-minimizing. We recall here the definitions of integrability and cut-time.

Definition 2.10. Let (M,ω) be a 2n-dimensional symplecticmanifold and letH ∈ C∞(M).
We say that the Hamiltonian flow ofH is Arnold-Liouville integrable if for all p ∈M there
exist smooth functions F1, ..., Fn :M → Rn satisfying:

(i) (prime integral) there holds {Fi, H} = 0 for all i ∈ {1, ..., n}.
(ii) (independence) The rank of the Jacobian matrix of F is n in a neighborhood of p.
(iii) (involution) We have {Fi, Fj} = 0 for all i, j ∈ {1, ..., n}.

Definition 2.11. LetM be a subRiemannian manifold. The cut-time of a geodesic γ : I →
M at a time t0 ∈ I is

tcut(γ, t0) := sup{t ∈ I : t > t0, γ|[t0,t] is length-minimizing}.

When the cut-time of a normal trajectory is infinite, then (up to re-parametrization)

we call the length-minimizing curve a metric line.

Definition 2.12. LetM be a subRiemannianmanifold. Ametric line is a curve γ : R →M
such that

d(γ(a), γ(b)) = |a− b|,∀a, b ∈ R.
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2.3. Nilpotent groups. In this paper we will consider simply connected metabelian

nilpotent groups, equipped with left-invariant distributions and left-invariant Riemann-

ian metrics.

Definition 2.13. Let G be a group. Given a subgroup H < G we denote with [H,G] the
subgroup generated by the set {hgh−1g−1 : h ∈ H, g ∈ G}. For i ∈ N define Gi < G
setting {

G1 := G;

Gi := [Gi−1, G] if i > 1;
.

A group G is nilpotent if there exists n ∈ N such that Gn = {1G}.
A group G is metabelian if [G,G] is abelian.

The interested reader can find more details on nilpotent groups in [7]. We refer to [23]

for an extensive presentation of metabelian groups.

In simply connected nilpotent Lie groups there is a convenient way to choose a base of the

Lie algebra in order to make exponential coordinates of second type a diffeomorphism.

Definition 2.14. Let G be nilpotent a Lie group. An ordered basis X1, ..., Xn of Lie(G)
is a (weak) Malcev basis if for all m ∈ {1, ..., n} the vector space Span{X1, ..., Xm} is a
sub-algebra of Lie(G)

It is well known that in nilpotent groups Malcev basis exist [7, Theorem 1.1.13]. In

metabelian nilpotent groups the construction of a Malcev basis is very simple.

Lemma 2.15. Let G be a simply connected nilpotent Lie group. Let A ◁ G be an abelian
subgroup with [G,G] < A. Let {Y1, ..., Ym, X1, ..., Xn} ∈ Lie(G) be a base of Lie(G)
with Y1, ..., Ym base of Lie(A). Then the ordered set of vectors Y1, ..., Ym, Xn, ..., X1 is a
Malcev base of Lie(G).

Proof. Being A abelian, for all j < m we have that Span{Y1, ..., Yl} is an abelian sub-

algebra. Moreover, for all i ∈ {1, ..., n} the vector subspace Span{Y1, ..., Ym, Xn, ..., Xi}
is a sub-algebra since [G,G] ⊆ Lie(A) ⊆ Span{Y1, ..., Ym, Xn, ..., Xi}. □

Being more careful in the choice of the base of Lie(A) in Lemma 2.15, one could find

an ordered base for which the span of the first vectors is an ideal of Lie(G). However,

since this is not necessary for our purposes, we prefer to stick with the weaker notion of

Malcev basis and avoid to add unnecessary technical details in the proof of Lemma 2.15.

2.3.1. Carnot groups. When studying globally length-minimizing curves we will focus on

Carnot groups, particular nilpotent Lie groups that are of great interest in subRiemannian

geometry.

Definition 2.16. A stratification of a Lie algebra g is a direct sum decomposition g :=
V1 ⊕ ...⊕ Vs, with

[V1, Vj ] = Vj+1, ∀j ∈ 1, ..., s,

where Vs+1 := {0}. The sub-spaces {Vi}i∈{1,...,s} are called layers of the stratification. We
call s the step. A Lie algebra equipped with a stratification is stratified.
ACarnot group is a simply connected Lie groupwith stratified Lie algebra. On Carnot groups
we consider the left-invariant extension of the first layer as distribution and a left-invariant
Riemannian metric.

One of the properties of Carnot groups we will need in the paper is the presence of

dilations.
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Definition 2.17. LetG be a Carnot group with stratified Lie algebraLie(G) = V1⊕...⊕Vs.
The dilation δh : G→ G of a factor h > 0 is the Lie group automorphism defined by

(δh)∗ v := hiv, ∀v ∈ Vi,∀i ∈ {1, ..., s}.

3. Symplectic reduction with respect to an abelian subgroup

Using the notions and results recalled in Section 2 we prove Theorem 1.1.

Proof of Theorem 1.1. As we recalled in Section 2.1.1, the action ofA onG is Hamiltonian

with momentum function J : G → Lie(A)∗ given by (11). Being A abelian, every µ ∈
Lie(A)∗ is co-adjoint invariant. Therefore, we can apply Theorem 2.3: J−1(µ) is an A-

invariant submanifold and T ∗G //µ A := J−1(µ)/A is a smooth submanifold admitting

a unique symplectic form that makes the projection a symplectic map. Moreover, the

normal HamiltonianH (defined in (14)) isA-invariant, thus the assumptions of Corollary

2.4 are satisfied. Therefore, J is invariant under the Hamiltonian flow ϕH : [0,+∞) ×
T ∗G→ T ∗G of H and for all µ ∈ Lie(A)∗ there holds

(15) Πµ ◦ ϕtH |J−1(µ) = ϕtHµ
◦Πµ, ∀t ∈ [0,+∞),

where Π : J−1(µ) → T ∗G //µ A is the canonical projection and Hµ ∈ C∞(T ∗G //µ A)

is defined setting H|J−1(µ) = Hµ ◦Πµ.

Fix a normal extremal λ : R → T ∗G. Being λ normal there holds λ(t− t0) = ϕtH(λ(t0)),
for all t, t0 ∈ R with t0 < t. Thus, J(λ(t)) is constant, and from (15) we have that the

projection of λ to T ∗G //J(γ(0)) A solves the Hamilton equations for HJ(γ(0)).

Vice versa, fix µ ∈ Lie(A)∗ and define η(t) := ϕtHµ
(η0), with t ∈ [0,+∞], for some

η0 ∈ T ∗G //µ A. We claim that for every λ0 ∈ T ∗G for which

(16)

{
λ0 ∈ J−1(µ),

Πµ(λ0) = η0,

the normal extremal λ(t) := ϕtH(λ0) projects to η. Indeed, J is constant along normal

trajectories thus λ(t) ∈ J−1(µ) for all t ∈ [0,+∞). Moreover, for all t ∈ [0,+∞), we

have from (15) that

Πµ ◦ λ(t) = Πµ ◦ ϕtH(λ0)
(15)

= ϕtHµ
(Πµ(λ0)) = ϕtHµ

(η0) = η(t).

□

3.1. Symplectic reduction for metabelian groups. One of the steps needed in the

proof of Theorem 1.2 is exhibiting a connection 1-form (see Definition 2.5) with integrable

distribution as kernel. We do it in the following lemma.

Lemma 3.1. Let G be a metabelian simply connected nilpotent Lie group. Let A ◁G be an
abelian subgroup such that [G,G] ⊆ A. Consider the action of A onG via left-translations.
There exists a connection 1-form α ∈ Ω1(G,Lie(A)) such that ker(α) is an integrable
distribution.

Proof. Choose a vector subspace H such that Lie(A)⊕H = Lie(G). Define Φ : Lie(A)×
H → G setting

(17) Φ(X, v) := exp(X) exp(v), ∀X ∈ Lie(A),∀v ∈ H.
11



By Lemma 2.15 and [7, Proposition 1.2.7] the map Φ is a diffeomorphism. Define α̃ ∈
Ω1(Lie(A)⊕H,Lie(A)) setting

α̃(X,v)(Y,w) := Y, ∀X,Y ∈ Lie(A),∀v, w ∈ H.

Set

α := (Φ−1)∗α̃ ∈ Ω1(G,Lie(A)).

We claim that α is a connection 1-form for the action of A over G and that ker(α) is an

integrable distribution. Indeed,

α
(
dRexp(X) exp(v)Y

)
(17)

= α (dX,vΦY ) = α̃(X,v)(Y ) = Y,∀X,Y ∈ Lie(A),∀v ∈ H.

Fix Y ∈ Lie(A). Being (Φ−1 ◦ Lexp(Y ) ◦ Φ)(X, v) = (X + Y, v) for all X ∈ Lie(A), for

all v ∈ H, we have (Φ−1 ◦Lexp(Y ) ◦Φ)∗α̃ = α̃ and therefore L∗
exp(Y )α = α. We proved

that α is A-invariant and satisfies (12), thus α is a connection 1-form. The kernel of α is

an integrable distribution since ker(α̃) is and Φ is a diffeomorphism. □

To prove Theorem 1.2, we perform the symplectic reduction on T ∗G using the struc-

ture of A-principal bundle of G. This will allow us to get an explicit formula for the

reduced Hamiltonian.

Proof of Theorem 1.2. Once for all µ ∈ Lie(A)∗ we prove the existence of φµ and α and

we show that (1) holds, the correspondence between normal geodesics with momentum

µ and curves in T ∗(G/A) solving Hamilton equations for Hµ ◦ φ−1
µ is given by Theo-

rem 1.1.

By Theorem 1.1 and beingA abelian, we have that the action ofA on T ∗G is Hamiltonian

with momentum J : T ∗G → Lie(A) defined by (11), and for all µ ∈ Lie(A)∗ the sym-

plectic reduction is a smooth manifold. Fix µ ∈ Lie(A)∗ and use Lemma 3.1 to choose a

connection 1-formα such that ker(α) is an integrable distribution. From Theorem 2.6 and

Lemma 2.7 we know that there exists a symplectomorphismφµ : T ∗G//µA→ T ∗(G/A),

the target with the canonical symplectic form. Moreover, we have φµ = ψ̄0 ◦ s̄µ where

ψ̄0 and s̄µ are defined as in the statement of Theorem 2.6. We have to prove that (1) holds.

The reduced Hamiltonian Hµ ∈ C∞(T ∗G //µ A) is defined from Hµ ◦ Πµ = H|J−1(µ),

where Πµ : J−1(µ) → T ∗G //µ A is the canonical projection. Therefore, we have that

Hµ ◦ φ−1
µ is uniquely determined by

(18) (Hµ ◦ φ−1
µ ) ◦ φµ ◦Πµ = H|J−1(µ).

Since the following diagram commutes

(19)

J−1(µ) J−1(0)

T ∗G //µ A T ∗G //0 A T ∗(G/A)

sµ

Πµ Π0

ψ0

s̄µ

φµ

ψ̄0

,

equation (18) is equivalent to

(20) (Hµ ◦ φ−1
µ ) ◦ ψ0 ◦ sµ = H|J−1(µ).
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To prove (1), we define H̄ ∈ C∞(T ∗(G/A)) setting H̄(η) := 1
2 ||η+⟨µ, ᾱ⟩(π(η))||2T∗(G/A)+

1
2 ||⟨µ, α⟩A(qπ(η))||

2
A, for all η ∈ T ∗(G/A), with qπ(η) ∈ Π−1(π(η)), and we show

(21) H̄ ◦ ψ0 ◦ sµ = H|J−1(µ).

By (9) and (10) we have

(22) (ψ0 ◦ sµ)(λ)(π∗X) = ⟨λ,X⟩ − ⟨⟨µ, α⟩, X⟩, ∀X ∈ Vec(G),∀λ ∈ J−1(µ).

Fix an orthonormal base X1, ..., Xn, Y1, ..., Yn1 of ∆, with Y1, ..., Yn1 ∈ Lie(A). For

λ ∈ J−1(µ), we have

H̄(ψ0 ◦ sµ(λ)) =
1

2

n∑
1

(⟨ψ0 ◦ sµ(λ) + ⟨µ, ᾱ⟩, π∗Xi⟩)2 +
1

2

n1∑
1

⟨⟨µ, α⟩, Yl⟩2

(12),(22)

=
1

2

n∑
1

(⟨λ− ⟨µ, α⟩, Xi⟩+ ⟨⟨µ, α⟩, Xi⟩)2 +
1

2

n1∑
1

⟨µ, Yl⟩2

=
1

2

n∑
1

⟨λ,Xi⟩2 +
1

2

n1∑
1

⟨λ, Yl⟩2 = H(λ).

We proved (21), thus, sinceHµ◦φ−1
µ is uniquely characterized by (20), we proved (1). □

3.2. The reduction in coordinates. In simply connected nilpotent Lie groups, it is con-

venient to work with exponential coordinates since the normal Hamiltonian will have a

polynomial form. When working with quotients, it is natural to work in exponential coor-

dinates of the second type, as writing the projection to right cosets is particularly simple

in this setting. We introduce some notation to simplify the definition of this kind of coor-

dinates: we will write

∏1
n exp(xiXi) for exp(xnXn) exp(xn−1Xn−1)·...·exp(x1X1) and∏m

1 exp(θlYl) for exp(θ1Y1) · ... · exp(θmYm). A statement equivalent to the following

lemma was stated for rank 2 Carnot groups in [19, Theorem 2.2].

Lemma 3.2. Let G be a metabelian simply connected nilpotent Lie group and A ◁ G an
abelian subgroup containing [G,G]. Fix a base {Y1, ..., Ym} of Lie(A) and complete it to
a base {Y1, ..., Ym, X1, ..., Xn} of Lie(G). Define exponential coordinates of second type
Φ : Rm+n → G setting

(23) Φ(θ1, ..., θm, x1, ..., xn) :=

m∏
l=1

exp(θlYl)

1∏
i=n

exp(xiXi),

for all θ1, ..., θm, x1, ..., xn ∈ R. Then

(24) Xi(Φ(θ, x)) =
∂Φ

∂xi
(x, θ) + dRΦ(θ,x)Ai(x), ∀θ ∈ Rm,∀x ∈ Rn,

and

(25) Yl(Φ(θ, x)) = dRΦ(θ,x)βl(x), ∀θ ∈ Rm,∀x ∈ Rn,

where A1, ...,An, β1, ..., βm : Rn → Lie(A) are polynomial maps (we identify Lie(A)
with T1A) defined for all x ∈ Rn, θ ∈ Rm, i ∈ {1, ..., n}, l ∈ {1, ...,m}, by

Aj(x) := −Ad∏1
i=n exp(xiXi)

(
Ad∏j−1

i=1 exp(−xiXi)
Xj −Xj

)
,(26)

βl(x) := Ad∏1
i=n exp(xiXi)

Yl.(27)
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Proof. Since [G,G] ⊆ A, it is clear that the Ai’s and the βl’s take value in Lie(A). More-

over, (25) comes trivially from (27) and the fact that A is abelian.

We have to prove (24). We start computing some partial derivatives of Φ. Fix j ∈
{1, ..., n}, θ ∈ Rm and x ∈ Rn. There holds

∂Φ

∂xj
(θ, x) =

d

dϵ
L∏m

l=1 exp(θlYl)
∏j

i=n exp(xiXi)
R∏1

i=j−1 exp(xiXi)
exp(ϵXj)

∣∣
ϵ=0

=
d

dϵ
LΦ(θ,x)C∏j−1

i=1 exp(−xiXi)
exp(ϵXj)

∣∣
ϵ=0

= dLΦ(θ,x) Ad∏j−1
i=1 exp(−xiXi)

Xj .

Consequently,

∂Φ

∂xj
(θ, x)−Xj(Φ(θ, x)) = dLΦ(θ,x)

(
Ad∏j−1

i=1 exp(−xiXi)
Xj −Xj

)
(28)

= dRΦ(θ,x) AdΦ(θ,x)

(
Ad∏j−1

i=1 exp(−xiXi)
Xj −Xj

)
(29)

= dRΦ(θ,x) Ad∏1
i=n exp(xiXi)

(
Ad∏j−1

i=1 exp(−xiXi)
Xj −Xj

)
,(30)

where in the last equality we used Ad∏j−1
i=1 exp(−xiXi)

Xj − Xj ∈ Lie(A) and that A is

abelian. From (26) and (30), we get (24). □

We have from Lemma 2.15 and [7, Proposition 1.2.7] that the coordinates defined by

(23) are a global diffeomorphism. We rewrite Theorem 1.2 using exponential coordinates

of second type.

Corollary 3.3. Let G be a metabelian simply connected nilpotent Lie group with left-
invariant subRiemannian structure. Let A ◁ G be an abelian subgroup containing [G,G].
For µ ∈ Lie(A), let φµ : T ∗G //µ A → T ∗(G/A) be the symplectomorphism coming from
Theorem 1.2. Then there exist polynomial maps A1, ...,An, β1, ..., βn1 : Rn → Lie(A) and
exponential coordinates of second type Φ̄ : Rn → G/A for which equation (1) rewrites as
(2).

Proof. Fix an orthonormal baseX1, ...Xn, Y1, ..., Yn1 of the distribution withY1, ..., Yn1 ∈
Lie(A). Extend Y1, ..., Yn1 to a base Y1, ..., Ym of Lie(A). Define Φ : Rn+m → G as in

(23). By Lemma 2.15 and [7, Theorem 1.2.12] we have that the map Φ̄ : Rn → G/A,

defined from

(31) Φ̄(x1, ..., xm) := A

1∏
i=n

exp(xiXi), ∀x1, ..., xn ∈ R,

is a global diffeomorphism. By [15, Proposition 6.3.2], Φ and Φ̄ induce canonical sym-

plectomorphisms T ∗Φ : T ∗G → T ∗Rn+m and T ∗Φ̄ : T ∗(G/A) → T ∗Rn. Choose a

connection 1-form α such that

(32) ker(α)Φ = Span

{
∂Φ

∂xi

}
i=1,...,n

.
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Fix η ∈ T ∗(G/A) and write (px, x) := T ∗Φ̄(η) . If vi := π∗Xi for all i ∈ {1, ..., n}, we

have

||η + ⟨µ, ᾱ⟩||2T∗(G/A) =

n∑
1

(⟨η + ⟨µ, ᾱ⟩(π(η)), vi⟩)2

=

n∑
1

(pi + ⟨⟨µ, α⟩, Xi(Φ(θ, x))⟩)2

(24),(32)

=

n∑
1

(pi + ⟨⟨µ, α⟩,dRΦ(θ,x)Ai(x)⟩)2

(12)

=

n∑
1

(pi + ⟨µ,Ai(x)⟩)2,

where in the second and third equation θ is some (any) element of Rm. Similarly by (25)

and (12) we get

||⟨µ, α⟩A||2 =

n1∑
1

⟨µ, βl(x)⟩2.

Substituting the latter two equations in (1) we get (2), concluding the proof of the corol-

lary. □

3.2.1. The computation of the lift. Using exponential coordinates of the second type, we

are able to write an explicit set of polynomial differential equations for the lift of curves

in the symplectic reduction. Let G be a metabelian simply connected nilpotent Lie group

with left-invariant subRiemannian structure. Choose an Abelian subgroup A < G con-

taining [G,G]. Fix µ ∈ Lie(A)∗ and a curve η : [0, 1] → T ∗G //µ A solving the

Hamilton equations for the reduced normal Hamiltonian Hµ ∈ C∞(T ∗G //µ A). A lift

λ : [0, 1] → T ∗G is a normal extremal starting from some λ0 ∈ T ∗G for which (16) holds.

Fix an orthonormal base X1, ..., Xn, Y1, ..., Yn1
of the distribution, with Yl ∈ Lie(A) for

all l ∈ {1, ..., n1}. Complete Y1, ..., Yn1
to a base Y1, ..., Ym of Lie(A). Denote with

T ∗Φ : T ∗G → T ∗Rn+m the symplectomorphism induced by the map Φ defined in (23).

By (14), (24) and (25) the normal Hamiltonian is

(33) (H◦T ∗Φ−1)(px, pθ, x, θ) =
1

2

n∑
1

|pxi
+⟨pθ,Φ∗Ai(x)⟩|2+

1

2

n1∑
1

|⟨pθ,Φ∗βl(x)⟩|2,

for all (pθ, θ) ∈ T ∗Rm, for all (px, x) ∈ T ∗Rn. Set (px, pθ, x, θ) := T ∗Φ ◦ λ. The

curve (px, pθ, x, θ) solves the Hamilton equations for H ◦ T ∗Φ−1
, thus pθ is constantly

equal to Φ∗µ and (x, px) solves the Hamilton equations for the reduced Hamiltonian H̃µ

defined in (2) (which is exactly what we know to be true from Corollary 3.3, since we have

(x, px) = T ∗Φ̄ ◦ φµ ◦ Πµ(λ)). Moreover, using the Hamilton equations for H ◦ T ∗Φ−1

and (33), we get a differential equation for the remaining coordinates of λ:

(34) θ̇i =

n∑
1

(pxi
+ ⟨µ,Ai(x)⟩)dθi(Φ∗A(x)) +

n1∑
1

⟨µ, βl(x)⟩dθi(Φ∗βl(x)),

where i ∈ {1, ...,m}. We use (34) when we need to compute the end-point of a normal

trajectory. Equation (34) implies that if there exist t1, t2 ∈ R such that x(t1) = x(t2)

then θ̇(t1) = θ̇(t2). This, together with the observation that the ∂θl ’s are right-invariant

vector-fields, leads us to the following remark.
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Remark 3.4. Let γ : R → G be a normal trajectory. Assume there exist t1, t2 ∈ R such
that for i ∈ {1, 2} we have γ(ti) ∈ A and γ̇(ti) ∈ Tγ(ti)A. Then

γ̇(t2) = dRγ(t2)γ(t1)−1 γ̇(t1).

3.2.2. The reduced Hamiltonian in coordinates. When we deal with a Carnot group G, we

will usually identify G with (Rn+m, ·), using coordinates (θ, x), with θ ∈ Rm, x ∈ Rn.

We will directly exhibit a left-invariant frameX1, ..., Xn, Y1, ..., Ym ∈ Vec(Rm+n) of the

tangent bundle made of vector fields of the form

Xi(θ, x) = ∂xi
+

m∑
k=1

Xk
i (x1, ..., xi−1)∂θk ,∀i ∈ {1, ..., n},(35)

Yl(θ, x) =

m∑
k=1

Y kl (x)∂θk ,∀l ∈ {1, ...,m},(36)

for all x ∈ Rn, for all θ ∈ Rm, for some suitable polynomial functionsXk
j , Y

k
l : Rn → R.

Moreover, we will ask the vector fields X1, ..., Xn, Y1, ..., Yn1
to form an orthonormal

frame of the distribution for some n1 ≤ m. With this identification of G with Rm+n
and

the choice of the base Y1, ..., Ym, X1, ..., Xn, the coordinates Φ : Rm+n → Rm+n
defined

in Lemma 3.2 are the identity map. Moreover, we have that Span(Y1, ..., Ym) is an abelian

sub-algebra, thus we can setA := exp (Span {Y1, ..., Ym}) and apply Theorem 1.2. Using

that ∂θ1 , ..., ∂θm are right-invariant vector-fields (it is trivial to prove this statement from

(23)), we have for all x ∈ Rn and for all θ ∈ Rm that

Ai(x)
(24)

= dR−1
(x,θ)(Xi(x)− ∂xi

)

(35)

=

m∑
1

Xk
i (x)dR

−1
(x,θ)∂θk

=

m∑
1

Xk
i (x)∂θk

= Xi(x)− ∂xi
.

(37)

Analogously,

βl(x)
(25)

= dR−1
(x,θ)Yl(x)

(36)

=
∑

Y kl dR
−1
(x,θ)∂θk

=
∑

Y kl ∂θk

= Yl(x).

(38)

Being ∂θ1 , ..., ∂θl a frame for the right-invariant extension of T1A, we can write every

right-invariant extension of a co-vector µ ∈ Lie(A)∗ ≃ T ∗
1A as

µ =

m∑
1

µkdθk,

with µ1, ..., µm ∈ R. Identify the quotient G/A with Rn so that the projection Π :
T ∗G→ T ∗(G/A) is the map Π : T ∗Rm × T ∗Rn → T ∗Rn

(39) Π(η1, η2) = η1,∀η1 ∈ T ∗Rn,∀η2 ∈ T ∗Rm.
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The map Π is a symplectic map between T ∗Rm+n
and T ∗Rn with their canonical sym-

plectic forms. By (2), (37) and (38) we can write the reduced HamiltonianHµ ∈ C∞(T ∗Rn)
as

(40) Hµ(px, x) =
1

2

n∑
1

|pxi
+ ⟨µ,Xi(x)− ∂xi

⟩|2 + 1

2

n1∑
1

|⟨µ, Yl(x)⟩|2,

for all (px, x) ∈ T ∗Rn. Equation (40) is what we will use when dealing with explicit

examples.

4. Conseqences of the symplectic reduction

This section is dedicated to the proof of some of the immediate consequences of the

symplectic reduction we perform on metabelian nilpotent groups.

Proof of Corollary 1.3. Denote n := dim(G) and d := dim(A). Assume there exists

f1, ..., fn−d ∈ C∞ (T ∗(G/A)× Lie(A)∗) such that for all µ ∈ Lie(A)∗ the functions

f1(·, µ), ..., fn−d(·, µ) : T ∗(G/A) → R are a set of independent prime integrals for

Hµ ◦ φ−1
µ that are in involution. Fix a connection 1-form α ∈ Ω1(T ∗G,Lie(A)) with

integrable distribution as a kernel, see Lemma 3.1. For µ ∈ Lie(A)∗, define the map

Pµ : J−1(µ) → T ∗(G/A) by

(41) Pµ(λ)(π∗X) := ⟨λ,X⟩ − ⟨⟨µ, α⟩, X⟩, ∀λ ∈ J−1(µ),∀X ∈ Vec(T ∗G),

where π : G → G/A is the canonical projection and J : T ∗G → Lie(A) is the momen-

tum map. For i ∈ {1, ..., n− d}, define f̃i ∈ C∞(T ∗G) setting for all λ ∈ T ∗G

(42) f̃i(λ) := fi(PJ(λ)(λ), J(λ)).

Fix a base Y1, ..., Yd of Lie(A) and set Ji := J(·)(Yi) for all i ∈ {1, ..., d}. We claim

that the functions {J1, ..., Jd, f̃1, ..., f̃n−d} are a set of independent prime integrals for

the flow of the normal Hamiltonian that are in involution. By (19) and (22) we have that

the following diagram commutes

J−1(µ)

T ∗G //µ A T ∗(G/A)

Pµ
Πµ

φµ

.

In particular, for every i ∈ {1, ..., n − d} the function f̃i is A-invariant, and if f̃i,µ ∈
C∞(T ∗G //µ A) is defined by f̃i|J−1(µ) = f̃i,µ ◦Πµ, we have

(43) f̃i,µ ◦ φ−1
µ = fi(·, µ).

The fact that the functions {J1, ..., Jd, f̃1, ..., f̃n−d} are independent is an exercise. We

show that they are in involution. By [22, Proposition 1.1] we have for all µ ∈ Lie(A)∗,

for all i, j ∈ {1, ..., n− d}, that

(44) {f̃i, f̃j}|J−1(µ) = {f̃i,µ, f̃j,µ} ◦Πµ.

For all i, j ∈ {1, ..., n − d}, equations (43) and (44) together with the assumption that

{fi(·, µ), fj(·, µ)} = 0 for all µ ∈ Lie(A)∗, imply that {f̃i, f̃j} = 0. The fact the f̃i’s
are in involution with Jl for all l ∈ {1, ..., d} is an immediate consequence of the A-

invariance of this functions.

17



To finish the proof one needs to show that {J1, ..., Jd, f̃1, ..., f̃n−d} is a set of prime in-

tegrals. The fact that {H,Jl} = 0 for all l ∈ {1, ..., d} follows by the A-invariance of H .

Fix i ∈ {1, ..., n− d}. By [22, Proposition 1.1] we have for all µ ∈ Lie(A)∗ that

(45) {f̃i, H}|J−1(µ) = {f̃i,µ, Hµ} ◦Πµ.

Being {Hµ ◦ φ−1
µ , fi(·, µ)} = 0 for all µ ∈ Lie(A)∗ by assumption, equations (43) and

(45) imply that {H, f̃i} = 0. We proved that {J1, ..., Jd, f̃1, ..., f̃n−d} is a set of prime

integrals, thus the proof of the first part of corollary is concluded.

Assume now dim(A) = dim(G)−1. Then, by Theorem 1.2, for all µ ∈ Lie(A)∗ the space

T ∗G//µA is symplectomorphic to T ∗R. In particular, for every µ ∈ Lie(A)∗, the flow of

the reduced HamiltonianHµ is Arnold-Liouville integrable with prime integralHµ. Thus,

by the first part of the Corollary, the flow of the normal Hamiltonian is Arnold-Liouville

integrable. □

As a consequence of Theorem 1.2 we are able to produced several examples of the

Hamiltonians that could arise when performing a symplectic reduction of the normal

Hamiltonian flow.

Corollary 4.1. LetF1, ..., Fk : Rn → R be polynomial maps. Set ϕ :=
∑k

1 F
2
i . Then, there

exists a metabelian Carnot group G, an abelian subgroup A < G, a co-vector µ ∈ Lie(A)∗

and a symplectomorphism f : T ∗G //µ A→ T ∗Rn for which

(46) Hµ ◦ f−1 = ||p||2 + ϕ(x),∀(p, x) ∈ T ∗Rn,

where Hµ ∈ C∞(T ∗G //µ A) is the reduced normal Hamiltonian and || · || is the norm
induced on T ∗Rn by the euclidean norm of Rn.

Proof. Denote m := max1,...,k deg(Fi) and let N be the dimension of the vector space

Pn,m of polynomials from Rn to R of degree less than m. For every multindex I :=

(i1, ..., in) ∈ Rn use xI to denote xi11 · ... · xinn . By definition of N there exists a family of

multindexes {Ij}j∈{1,...,N} such that every polynomial Fl ∈ Pn,m, with l ∈ {1, ..., k},

can be written as

(47) Fl(x) =

N∑
j=1

cl,jx
Ij ,∀x ∈ Rn,

for suitable coefficients cl,I1 , ..cl,IN ∈ R. ConsiderRkN+n
with coordinates {xi}i∈{1,...,n}

and {θl,j}l∈{1,...,k},j∈{1,...,N}. Define G ≃ (RNk+n, ·) to be the Lie group with the Lie

algebra of left-invariant vector fields generated by

Xi := ∂xi
, for i ∈ {1, ..., n},(48)

Yl :=

N∑
1

xIj∂θl,j , for l ∈ {1, ..., k}.(49)

It is an easy exercise to show that g := Lie(G) is a stratified Lie algebra with first layer

Span{{Xi}i∈{1,...,n}, {Yl}l∈{1,...,k}} and that Span{{Yl}l∈{1,...,k}}}⊕[g, g] is an abelian

sub-algebra. Set A := log(Span{{Yl}l∈{1,...,k}}} ⊕ [g, g]) and fix on G the subRieman-

nian metric for which X1, ..., Xm, Y1, ..., Yk is an orthonormal frame of the distribution.

Choosing

(50) µ :=
∑

cl,jdθl,j ,
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we have by (40) that

(51) Hµ(px, x) =

n∑
1

p2xi
+

k∑
l=1

(

N∑
1

cl,jx
Ij )2,∀(px, x) ∈ T ∗Rn,

which by (47) is exactly (46). □

5. Normal metric lines

In this section we study the presence of metric lines (see Definition 2.12) in metabelian

Carnot groups that are semidirect products of two abelian groups. The main idea is to

study the flow of the reduced normal Hamiltonian and show that under some hypothesis

normal trajectories cannot have a 1-parameter subgroup as blow-down, and, consequently,

cannot be metric lines.

We start this section recalling the only property of metric lines that we will need in

the proof of Corollary 1.5. We use δh to denote the dilation of a factor h ∈ R, see Defini-

tion 2.17.

Proposition 5.1. ([10, Corollary 1.6]) LetG be a Carnot group. Let γ : R → G be a metric
line. For all h ∈ R define

γh := δh ◦ γ ◦ δ 1
h
.

Then there exists a sequence {hn}n∈N, with limn→∞ hn = 0, for which the sequence of
curves {γhn

}n∈N converges uniformly on compact sets to a 1-parameter subgroup parametrized
by arc-length as n→ ∞.

An immediate consequence of Proposition 5.1 is the following:

Lemma 5.2. LetG be a subRiemannian Carnot group. Let γ : R → G be an absolutely con-
tinuous curve parametrized by arc-length. Fix a non-trivial vector subspace V ⊆ G/[G,G]
and denote with π1 : G/[G,G] → V the orthogonal projection. Denote with π : G →
G/[G,G] the canonical projection. Define σ := π ◦ γ. If π1 ◦ σ is bounded and

(52) lim sup
T→∞

1

T

∫ T

0

√
1− ||(π1 ◦ σ)′(t)||2dt < 1,

then γ is not a metric line.

Proof. Assume by contradiction that γ is a metric line. For h ∈ R \ {0}, define the

curve σh : R → G/[G,G] setting σh(t) := hσ( th ) for all t ∈ R. By Proposition 5.1 we

know there exists a sequence {hn}n∈N, with limn→∞ hn = 0, such that γhn
converges

uniformly on compact sets to a 1-parameter subgroup parametrized by arc-length. In

particular, there exists v ∈ G/[G,G], with ||v|| = 1, such that the σhn converges uni-

formly on compact sets to the line L : R → G/[G,G], L(t) := tv for all t ∈ R. Since

π1 ◦ σ is bounded we have limn→∞ π1 ◦ σhn
(t) = 0 for all t ∈ R. Consequently, if

π2 : G/[G,G] → V ⊥ ⊆ G/[G,G] is the orthogonal projection, π2 ◦ σhn
converges to L

uniformly on compact sets and therefore, for all T ∈ R, we have

(53) 1 =
1

T

∫ T

0

||v||dt = lim
n→∞

1

T

∫ T

0

||(π2 ◦ σhn
)′(t)||dt.

On the other hand, being γ parametrized by arclength we have ||π2◦σ′|| =
√

1− ||π1 ◦ σ′||2.

Therefore, (52) implies

(54) lim sup
T→∞

1

T

∫ T

0

||(π2 ◦ σ)′(t)||dt < 1.
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Consequently,

lim
n→∞

1

T

∫ T

0

||(π2 ◦ σhn
)′(t)||dt = lim

n→∞

1

T

∫ T

0

∣∣∣∣∣∣∣∣(π2 ◦ σ)′( t

hn

) ∣∣∣∣∣∣∣∣dt
= lim
n→∞

hn
T

∫ T
hn

0

||(π2 ◦ σ)′(t)||dt
(54)

< 1.

The latter equation implies that (53) doesn’t hold, therefore we reached a contradiction.

We showed that if π1 ◦ σ is bounded and (54) holds then γ cannot be a metric line, thus

the proof of the lemma is concluded. □

We state now a technical lemma that gives us a tool to verify the hypothesis in Lemma 5.2

using Hamilton equations for some reduced normal Hamiltonians.

Lemma5.3. Fix a scalar product onRn and call ||·|| the induced norm. LetV ∈ C∞(Rn,R)
be a positive smooth function. Fix a compact set Ω ⊆ Rn such that 1

2 is a regular value of
V |U for some open set U ⊆ Rn for which Ω ⊆ U . Define H ∈ C∞(T ∗Rn) setting

(55) H(p, x) :=

n∑
1

p2i + V (x), ∀(p, x) ∈ T ∗Rn.

Fix x0 ∈ Ω, with V (x0) <
1
2 , and choose p0 ∈ Rn such that H(p0, x0) = 1

2 . Define the
curve (p, x) : [0,+∞) → Rn setting

(56) (p(t), x(t)) := ϕtH(p0, x0), ∀t ≥ 0,

where we denote with ϕtH the flow of the Hamiltonian H , see (3). Assume x(t) ∈ Ω for all
t ≥ 0. Then

(57) lim sup
T→∞

1

T

∫ T

0

√
1− ||ẋ(t)||2dt < 1.

Since the proof of Lemma 5.3 is not helpful in understanding the statement of the

lemma, nor contains any idea coming from subRiemannian geometry, we prefer to post-

pone it to Appendix A. We are finally ready to prove Corollary 1.5.

Proof of Corollary 1.5. Being (Lie(A) ∩ V1)
⊥

an abelian sub-algebra, the functions Ai,

defined by (26) for all i = 1, ..., n, are constantly 0. Let λ : R → T ∗G be a normal

extremal with momentum µ ∈ Lie(A)∗. Set

H̃µ(p, x) :=

n∑
1

p2i + Vµ(x),∀(p, x) ∈ T ∗Rn.

Write (pθ, px, θ, x) := T ∗Φ(λ). By Corollary 3.3 we have that the couple (px, x) solves

the Hamilton equations for H̃µ. Assume first that condition (1) holds. We have that x is

bounded (since x(t) is in the compact set Ω for all t ∈ R) and that (57) holds by Lemma

5.3. Consequently, we can apply Lemma 5.2 with V = π̄(exp((Lie(A) ∩ V1)⊥)), where

π̄ : G → G/[G,G] is the canonical projection, and conclude that the normal trajectory

associated to λ is not a metric line.

Assume instead that condition (2) holds. By (34) we have limt→∞ θ̇i(t) ̸= limt→−∞ θ̇i(t).
In particular, there cannot exist a sequence {hj} decreasing to 0 such that hjθi(

·
hj
) con-

verges uniformely on compact sets to a linear function. As a consequence, by Proposi-

tion 5.1, the normal trajectory associated to λ is not a metric line. □
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6. Cut-times

In the section we improve the result in Corollary 1.5, showing that for some particular

normal trajectories we can give an explicit bound on the time at which they stop being

length-minimizing. In particular, we prove that if a normal extremal is the lift of an L-

periodic curve, with L ∈ R, then under some conditions the associated normal trajectory

stops to be length-minimizing before time L. The first key idea we need is contained in

the following theorem. Recall that we denote with tcut(γ, 0) the supremum of times t for

which γ|[0,t] is length-minimizing.

Theorem 6.1. LetG be a subRiemannian Lie group. Let γ : R → G be a normal trajectory
with γ(0) = 1G. Assume there exists L > 0 such that

(58) dRγ(L)γ̇(0) = γ̇(L).

Then either tcut(γ, 0) ≤ L or γ is a 1-parameter subgroup.

Proof. We show that if γ is not a 1-parameter subgroup, there exists a non constantly zero

Jacobi vector field J : R → TG such that J(0) = 0 and J(L) = 0. Then the theorem

will follow from [2, Theorem 8.61, Proposition 15.6]. We refer to [2, Chapter 15] for an

extended presentation of Jacobi vector fields. Set

(59) J(t) := γ̇(t)− dRγ(t)γ̇(0).

The vector field J is a Jacobi vector field since it is the difference between two Jacobi

vector fields: it is well known that γ̇(t) is a Jacobi vector field, and Rγ(t)γ̇(0) is a Jacobi

vector field being a Killing vector field (see [2, Lemma 5.15]). By (58) we have J(0) = 0
and J(L) = 0. Moreover, J is constantly 0 if and only if

γ̇(t) = dRγ(t)γ̇(0),∀t ∈ R,

thus if and only if γ is a 1-parameter subgroup. □

Using the above theorem and the discussion we had in Section 3.2.1, we are able to

study the cut-time of normal extremals that project to periodic curves.

Proposition 6.2. Let G be a metabelian simply connected nilpotent Lie group with left-
invariant distribution ∆ and left-invariant Riemannian metric. Let A ◁ G be an abelian
subgroup with [G,G] ⊆ A. Let γ : R → G be a normal trajectory and let λ : R → T ∗G
be the corresponding normal extremal. Assume γ(0) = 1G. Denote with µ ∈ Lie(A)∗ the
momentum of λ. Call Πµ : T ∗G → T ∗G //µ A the canonical projection. If Πµ ◦ λ is
L-periodic and either

(60) λ(0)(X) = 0, ∀X ∈ (Lie(A) ∩∆)⊥,

or (Lie(A) ∩∆)⊥ is an abelian sub-algebra, then tcut(γ, 0) ≤ L.

Proof. Assume first that condition (60) holds. Then there holds γ̇(0) ∈ Tγ(0)A. Since

Πµ ◦λ is L-periodic we have also γ(L) ∈ A and γ̇(L) ∈ Tγ(L)A. By Remark 3.4 we have

that (58) holds, thus we can apply Theorem 6.1 and conclude the proof of the first part of

the proposition.

Assume now that (Lie(A)∩∆)⊥ is an abelian sub-algebra. Fix a base Y1, ..., Ym of Lie(A)
with Y1, ..., Yn1

orthonormal base of ∆, and complete Y1, ..., Yn1
to an orthonormal base

Y1, ..., Yn1
, X1, ..., Xn of the distribution. Define exponential coordinates of second type
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Φ : Rm+n → G as in (23). Call Φ̄ : Rn → G/A the coordinates induced on the quo-

tient, see (31). Remark that being Span{X1, ..., Xn} abelian by assumption, equation (26)

implies that the Ai’s appearing in equation (2) are constantly zero. Thus (2) rewrites as

H̃µ(px, x) =

n∑
1

p2xi
+

1

2

n1∑
1

|⟨µ, βl(x)⟩|2,∀(px, x) ∈ T ∗Rn,

where the βl’s are defined from (27).

Call (px, x) : R → T ∗Rn the function (px, x) := T ∗Φ̄ ◦ φµ ◦ Πµ(λ). Being H̃µ(p, y) =

H̃µ(−p, y) for all (p, y) ∈ T ∗Rn, and since (px, x) solves the Hamilton equations for H̃µ,

also the curve (p̃x, x̃) : R → T ∗Rn, defined by (p̃x, x̃)(t) := (−px(−t), x(−t)) for all

t ∈ R, solves the Hamilton equation for H̃µ. Call λ̃ the lift of T ∗Φ̄−1(p̃x, x̃) at −λ(0) and

denote γ̃ := π◦λ̃, where π : T ∗G→ G is the canonical projection. We show that γ(L) =
γ̃(L), this will imply tcut(γ, 0) ≤ L since γ ̸= γ̃ and Length(γ|[0,L]) = Length(γ̃|[0,L]).
Write (θ, x) := Φ−1(γ) and (θ̃, x̃) := Φ−1(γ̃). By definition of (p̃x, x̃) we have

(61) x̃(t) = x(−t), ∀t ∈ R,

BeingΠµ(λ) anL-periodic function we have thatx isL-periodic and consequently x̃(L) =
x(−L) = x(L). Moreover, the functions Fi : R → R, with i ∈ {1, ...,m},

Fi :=

n1∑
1

⟨µ, βl(x)⟩dθi(Φ∗βl(x)),

are L-periodic, since they are functions of x, and therefore

(62)

∫ L

0

Fi(t)dt =

∫ L

0

Fi(−t)dt, ∀i ∈ {1, ...,m}.

Consequently, for all i ∈ {1, ...,m},

(63) θi(L)
(34)

=

∫ L

0

Fi(t)dt
(62)

=

∫ L

0

Fi(−t)dt
(34)

= θ̃i(L).

We proved the claim γ(L) = γ̃(L). Thus we concluded the proof of the proposition.

□

7. Examples

We present some explicit examples of the symplectic reduction procedure described in

Theorem 1.2. Throughout this section, we will give a proof of Corollary 1.4.

7.1. 2-abelian extensions. We present some applications of Theorem 1.2 to 2-abelian
extensions, i.e., to nilpotent groups containing a normal abelian subgroup of dimension

2. The notation used in naming the following groups mainly follows [12]. We start with

simple examples to help the reader to get familiar with the procedure used in Theorem

1.2.

7.1.1. F23 or Cartan group as 2-abelian extension. Let F23 be the free-nilpotent Lie group

of rank 2 and step 3, also known as Cartan group. The Lie algebra of F23 is spanned by

5 vector fields X1, X2, Y1, Y2, Y3. A base of the first layer V1 is given by {X1, X2}, and

the only non-trivial bracket relations defining the Lie algebra structure of Lie(F23) are

Y1 := [X1, X2], Y2 := [X1, Y1], Y3 := [X2, Y1].
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ChooseA := exp(Span{Y1, Y2, Y3}). We identify F23 with (R5, ·), using the coordinates

in Lemma 3.2. We choose as left-invariant orthonormal frame of the distribution the

vector fields

X1(x1, x2, θ1, θ2, θ3) :=
∂

∂x1
,

X2(x1, x2, θ1, θ2, θ3) :=
∂

∂x2
+ x1

∂

∂θ1
+
x21
2

∂

∂θ2
+ x1x2

∂

∂θ3
;

where x1, x2, θ1, θ2, θ3 ∈ R. If we apply Theorem 1.2 to F23, the subgroup A and µ :=∑3
i=1 aldθl, with ai ∈ R for i ∈ {1, ..., 3}, by (40) the reduced Hamiltonian Hµ ∈

C∞(T ∗R2) is

Hµ(px, x) =
1

2
p2x1

+
1

2

(
px2

+ a1x1 + a2
x21
2

+ a3x1x2

)2

,∀(px, x) ∈ T ∗R2.

The Hamiltonian flow of Hµ is Arnold-Liouville integrable. Indeed, for all µ ∈ Lie(A)∗

we can exhibit two meromorphic prime integrals that are in involution, Hµ and Cµ ∈
C∞(T ∗R2), where the second is given by

Cµ := a3px − a2py + a1a3x2 +
a23
2
x22.

Since Hµ and Cµ are smooth as functions of µ, by Corollary 1.3 we have that the normal

Hamiltonian flow in F23 is Arnold-Liouville integrable. The integrability of the normal

flow in F23 is already known in literature, we refer for example to [2, Exercise 7.80].

7.1.2. N6,2,5a∗ as 2-abelian extension. Let N6,2,5a∗ be the Carnot group with Lie algebra

spanned by 6 vectors X1, X2, Y1, Y2, Y3, Y4 satisfying the following bracket relations

Y1 = [X1, X2], Y2 = [X1, Y1],

Y3 = [X2, Y1], Y4 = [X1, Y2] = [X2, Y3].

[X2, Y4] = [Y2, X2] = [X1, Y4] = [X1, Y3] = 0.

Using the coordinates defined in Lemma 3.2 we identifyN6,2,5a∗ with R6
. Choose as left-

invariant orthonomal frame of the distribution the two vector fields X1, X2 ∈ Vec(R6)
defined by

X1(x1, x2, θ) :=
∂

∂x1

X2(x1, x2, θ) :=
∂

∂x2
+ x1

∂

∂θ1
+
x21
2

∂

∂θ2
+ x1x2

∂

∂θ3
+ (

x31
3!

+
x1x

2
2

2
)
∂

∂θ4
,

for all x1, x2 ∈ R, for all θ ∈ R4
.

Apply Theorem 1.2 withG = N6,2,5a∗ ,A := exp(Span{Yi}i=1,...,4) andµ :=
∑4
i=1 aidθi,

with ai ∈ R for all i ∈ {1, ..., 4}. By (40) we have that the reduced Hamiltonian

Hµ ∈ C∞(T ∗R2) is

Hµ(px, x) =
1

2

(
p2x1

+

(
px2 + a1x1 + a2

x21
2

+ a3x1x2 + a4

(
x31
3!

+
x1x

2
2

2

))2
)
,
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for all (px, x) ∈ T ∗R2
. The normal Hamiltonian flow is Arnold-Liouville integrable.

Indeed, it was proven in [11, Section 5] that the function

(64) I(px, py, x, y) := PX1
PY3

− PX2
PY2

+
1

2
P 2
Y1
,

is an A-invariant prime integral in involution with the normal Hamiltonian and with the

momentum map, where for Z ∈ Vec(N6,2,5a∗) the function PZ ∈ C∞(T ∗N6,2,5a∗) is

defined by PZ(λ) := ⟨λ, Z⟩.

7.1.3. F24 as 2-abelian extension. Let F24 be the free-nilpotent Lie algebra with rank 2
and step 4. The Lie algebra of F24 is spanned by the 8 vectors X1, X2, Y1, ..., Y6. The Lie

algebra structure is defined by the only non trivial bracket relations

Y1 := [X1, X2], Y2 := [X1, Y1], Y3 := [X2, Y1],

Y4 := [X1, Y2], Y5 := [X1, Y3] = [X2, Y4], Y6 := [X2, Y3].

Identify F24 with (R8, ·) using the coordinates in Lemma 3.2. Choose as orthonormal

frame for the distribution the two vectorfields X1, X2 ∈ Vec(R8) defined by

X1(x1, x2, θ) :=
∂

∂x1

X2(x1, x2, θ) :=
∂

∂x2
+ x1

∂

∂θ1
+
x21
2

∂

∂θ2
+ x1x2

∂

∂θ3
+
x31
3!

∂

∂θ4
+

+
x21x2
2

∂

∂θ5
+
x1x

2
2

2

∂

∂θ6
,

for all x1, x2 ∈ R, for all θ ∈ R6
. Apply Theorem 1.2 with G = F24, with A =

exp(Span{Yi}i=1,...,6) and µ =
∑6
i=1 aidθi, with ai ∈ R for i ∈ {1, ..., 6}. By (40)

the reduced Hamiltonian is

Hµ (px, x) =
1

2
p2x1

+
1

2

(
px2

+ a1x1 + a2
x21
2

+ a3x1x2 + a4
x31
3!

+ a5
x1x

2
2

2
+ a6

x22x1
2

)2

,

for all (px, x) ∈ T ∗R2
.

7.2. Engel-type groups. Denote withEng(n) the Carnot group with Lie algebra spanned

by 2n+2 vectors X1, ..., Xn, Y0, ..., Yn+1 satisfying as only non trivial bracket relations

(65) Yi := [Xi, Y0], Yn+1 := [Xi, Yi].

These groups have been studied in [8]. Using the coordinates described in Lemma 3.2, we

identify the group Eng(n) with R2n+2
. We choose as orthonormal left-invariant frame of

the distribution the vector fieldsX1, ..., Xn, Y0 ∈ Vec(R2n+2) defined for all x ∈ Rn, θ ∈
Rn+2

by

Xi(x, θ) :=
∂

∂xi
, ∀i ∈ {1, ..., n},

Y0(x, θ) :=
∂

∂θ0
+

n∑
i=1

xi
∂

∂θi
+
x2i
2

∂

∂θn+1
.

Apply Theorem 1.2 with G = Eng(n), Lie(A) := Span({Yl}l∈{0,...,n+1}) and µ :=∑n+1
i=0 aidθi. By (40) we have that the reduced Hamiltonian Hµ ∈ C∞(Rn) is of the
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form

(66) Hµ(px, x) =
1

2
||px||2eu

+
1

2

(
a0 +

n∑
i=1

aixi +
an+1

2
||x||2

eu

)2

, ∀(px, x) ∈ T ∗Rn,

where || · ||eu denotes the euclidean norm. Since for all µ ∈ Lie(A)∗ we get the Hamil-

tonian of an harmonic oscillator, the Hamiltonian flow of the reduced Hamiltonian Hµ

is Arnold-Liouville integrable for all µ ∈ Lie(A)∗ with set of prime integrals smoothly

depending on µ (see for example [5]). In particular, as an immediate consequence of

Corollary 1.3, we get Corollary 1.4.

The integrability of the normal Hamiltonian flow in Eng(n) can be proven directly ex-

hibiting 2n+ 2 independent prime integrals that are in involution, we refer to Appendix

B for an extended presentation.

Appendix A. Proof of Lemma 5.3

Proof of Lemma 5.3. We claim that we can choose ϵ > 0 such that for all y ∈ V −1([ 12 −
ϵ, 12 ]) ∩ Ω we have ∇V (y) ̸= 0 (we denote with ∇ the gradient with respect to the

chosen scalar product). Indeed, if by contradiction this was not possible, we could find

a sequence of points yn ∈ V −1([ 12 − 1
n ,

1
2 ]) ∩ Ω, with n ∈ N, for which ∇V (yn) = 0.

Being Ω compact, up to sub-sequence we can assume that {yn}n∈N converges to some

y ∈ Ω. By the smoothness of V we would have V (y) = 1
2 and ∇V (y) = 0, this would

contradict the hypothesis that
1
2 is a regular value for V restricted to some neighborhood

of Ω. Denote Ωϵ := V −1([ 12 − ϵ, 12 ]) ∩ Ω and Ω ϵ
2
:= V −1([ 12 − ϵ

2 ,
1
2 ]) ∩ Ω. Set M :=

supy∈Ω,v∈B(0,1)

∑
i,j

∂2V
∂xi

∂xj
(y)vivj . Up to change ϵ we can assume that

(67) δ = δ(ϵ) := inf
y∈Ωϵ

||∇V (y)||2 −Mϵ > 0

Indeed, δ(ϵ) is increasing as ϵ decreases to 0, and δ(0) > 0.

We prove equation (57) in two steps:

(i) We show that there exists Cϵ > 0 such that, for all t1, t2 ∈ R, with t1 < t2, if

(q(t), y(t)) : [t1, t2] → T ∗Rn solves the Hamilton equation forH ,H(q(t1), y(t1)) =
1
2 and one of the two following condition holds

(a) y(t) ∈ Ω \ Ω ϵ
2

for all t ∈ [t1, t2];

(b) V (y(t1)) = V (y(t2)) =
1
2 − ϵ, y(t) ∈ Ωϵ for all t ∈ [t1, t2], and there exists

t̄ ∈ (t1, t2) such that y(t̄) ∈ Ω ϵ
2

;

then

1

t2 − t1

∫ t2

t1

√
1− ||ẏ(t)||2 < 1− Cϵ.

(ii) We prove that there exists a sequence {ti}i∈N with 0 ≤ ti < ti+1 and limi→∞ ti =
+∞, such that for all i > 1 one between conditions (a) and (b) of point (1) holds

for x|[ti,ti+1].

If (1) and (2) hold it is trivial to prove that

lim sup
T→∞

1

T

∫ T

0

√
1− ||ẋ(t)||2dt ≤ 1− Cϵ.
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Therefore, proving (i) and (ii) we prove (57) and we conclude the proof of the lemma.

We start proving point (i): set C := supΩ ||∇V || > 0 and

(68) Cϵ := min

{
1−

√
1− ϵ

2
,
δ

2C2

(
1−

√
1− ϵ

2

)}
.

Being H(q(t), y(t)) = 1
2 for all t ∈ [t1, t2] and ẏ = q, we have

(69) ||ẏ|| =
√

1

2
− V (y(t)), ∀t ∈ [t1, t2].

If condition (a) holds, then V (y(t)) ≤ 1
2 − ϵ

2 for all t ∈ [t1, t2]. Consequently, by (69) we

have ||ẏ|| ≥
√

ϵ
2 and therefore

1

t2 − t1

∫ t2

t1

√
1− ||ẏ(t)||2dt <

√
1− ϵ

2
≤ 1− Cϵ.

Assume now that condition (b) holds. For all t ∈ [t1, t2] we have

(V (y(t)))′ = ∇V · ẏ(t);(70)

(V (y(t)))′′ = −||∇V (y(t))||2 +
∑
i,j

∂2V

∂xi
∂xj

(y(t))ẏi(t)ẏj(t).(71)

For all t ∈ [t1, t2], since y(t) ∈ Ωϵ we have by (69) that

(72) ||ẏ(t)|| ≤
√
ϵ.

By the definition of δ in (67) and equations (70), (71) and (72), we have for all t ∈ [t1, t2]
that

V (y(t))′ ≤ C
√
ϵ,(73)

V (y(t))′′ ≤ −δ.(74)

Equations (73) and (74) imply

1

2
− ϵ = V (t2) ≤ V (y(t1)) + V ′(t1)(t2 − t1)− δ(t2 − t1)

2

≤ 1

2
− ϵ+ C

√
ϵ(t2 − t1)− δ(t2 − t1)

2.

Therefore,

(75) t2 − t1 ≤ C
√
ϵ

δ
.

Since there exists t̄ such that y(t̄) ∈ Ω ϵ
2

, and since V (y(t1)) =
1
2 − ϵ and y(t) ∈ Ωϵ for

all t ∈ [t1, t2], there exist t3 ∈ [t1, t2] such that V (y(t3)) =
1
2 − ϵ

2 and y(t) ∈ Ωϵ \ Ω ϵ
2

for all t ∈ [t1, t3]. By (73) we have

(76) t3 − t1 ≥
√
ϵ

2C
.

By (69) we have ||ẏ(t)|| ≥
√

ϵ
2 for all t ∈ [t1, t3]. Therefore

(77)

∫ t3

t1

√
1− ||ẏ(t)||2dt ≤ (t3 − t1)

√
1− ϵ

2
.
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We have

1

t2 − t1

∫ t2

t1

√
1− ||ẏ(t)||2dt =

=
1

t2 − t1

∫ t3

t1

√
1− ||ẏ(t)||2dt

+
1

t2 − t1

∫ t2

t3

√
1− ||ẏ(t)||2dt

(77)

≤ (t3 − t1)

t2 − t1

√
1− ϵ

2
+
t2 − t3
t2 − t1

= 1 +
(t3 − t1)

t2 − t1
(

√
1− ϵ

2
− 1)

(75),(76)

≤ 1− δ

2C2
(1−

√
1− ϵ

2
)

(68)

≤ 1− Cϵ.

thus we concluded the proof of (i).

We prove now (ii). Up to choose ϵ small we can assume x(0) /∈ Ωϵ. Choose t1 = 0. Define

for all k ∈ N, with k > 0,

t2k := inf
{
t > t2k−1 : V (x(t)) =

1

2
− ϵ and

s > t, V (x(s)) =
1

2
− ϵ =⇒ ∃s′ ∈ (t, s) s.t. x(s′) ∈ Ω ϵ

2

}
t2k+1 := inf

{
t > t2k : V (x(t)) =

1

2
− ϵ
}
.

It is trivial to check that for all k ∈ N we have that condition (a) holds for x|[t2k+1,t2k+2]

and property (b) holds for x|[t2k,t2k+1], thus the proof of point (ii) (and therefore the proof

of the lemma) is concluded. □

Appendix B. Integrability of the normal Hamiltonian flow in Eng(n)

This appendix is dedicated to an alternative proof of the integrability of the normal

Hamiltonian flow in Engel-type groups. We refer to Section 7.2 for the definition of

Eng(n). The proof we present follows [5].

Fix n ∈ N. Choose a base X1, ...., Xn, Y0, ..., Yn+1 of Lie(Eng(n)) satisfying (65), with

X1, ..., Xn, Y0 orthonormal base of the first layer. For X ∈ Vec(Eng(n)) define PX ∈
C∞(T ∗M) setting

(78) PX(λ) = ⟨λ,X⟩, ∀λ ∈ T ∗G.

We remark that the normal Hamiltonian (see (14)) is

(79) H =

n∑
i=1

P 2
Xi

+ P 2
Y0
.

When computing Poisson brackets we will make constant use of the following relation:

for all left-invariant vector-fields X,Y ∈ Vec(T ∗M) we have

(80) {PX , PY } = P[X,Y ].
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For, i, j ∈ {1, ..., n}, i ̸= j and N ∈ {1, ..., n} define Lij , CN ∈ C∞(T ∗ Eng(n))

Lij := PXi
PYj

− PXj
PYi

;

CN :=
1

2

∑
i,j∈{1,...,N}

i̸=j

L2
ij .(81)

We start proving that the Lij ’s and the CN ’s are constant along the flow of the normal

Hamiltonian.

Lemma B.1. The functions Lij and CN are prime integrals for the normal Hamiltonian
flow in Eng(n).

Proof. Fix i, j ∈ {1, ..., n}, i ̸= j. To prove that Lij is constant along the flow of the

normal Hamiltonian H we prove that {Lij , H} = 0:

{Lij , H} (81)

=PXi
{PYj

, H}+ PYj
{PXi

, H} − PXj
{PYi

, H} − PYi
{PXj

, H}
(79),(80)

= − PXi
PXj

PYn+1
+ PYj

PY0
PYi

+ PXj
PXi

PYn+1
− PYi

PY0
PYj

= 0.

CN is constant along the flow of the normal Hamiltonian since it is the sum of functions

that are constant along the flow of the normal Hamiltonian. □

In the next three lemmas we compute some Poisson brackets that we will need to prove

that the set of prime integrals we consider in the proof of Theorem (B.4) are in involution.

Lemma B.2. Fix i, j, k, l ∈ {1, ..., n}, with i ̸= j and k ̸= l. We have

{Lij , Lkl} = PYn+1
(δikLjl + δjlLik − δilLjk − δjkLil).(82)

Proof. We start the proof computing the Poisson brackets {PXi
, Lkl} and {PYj

, Lkl}: we

have

{PXi
, Lkl}

(81)

=PXk
{PXi

, PYl
}+ PYl

{PXi
, PXk

}
− PXl

{PXi
, PYk

} − PYk
{PXi

, PXl
}

(80)

=PYn+1
(PXk

δil − PXl
δik),

(83)

and

{PYj
, Lkl}

(81)

=PXk
{PYj

, PYl
}+ PYl

{PYj
, PXk

}
− PXl

{PYj
, PYk

} − PYk
{PYj

, PXl
}

(80)

=PYn+1
(−PYl

δjk + PYk
δjl).

(84)

Using the two equations above we compute {Lij , Lkl} proving the lemma:

{Lij , Lkl}
(81)

=PXi
{PYj

, Lkl}+ PYj
{PXi

, Lkl}
− PXj

{PYi
, Lkl} − PYi

{PXj
, Lkl}

(83),(84)

= PYn+1
(PXi

(−PYl
δjk + PYk

δjl) + PYj
(PXk

δil − PXl
δik)

− PXj
(−PYl

δik + PYk
δil)− PYi

(PXk
δjl − PXl

δjk))

= PYn+1(δikLjl + δjlLik − δilLjk − δjkLil).

□
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Lemma B.3. The functions Lij and CN satisfy

{CN , Lkl} = 0 if N ≤ k < l or k < l ≤ N.(85)

Proof. For N ∈ {1, ..., n} and k, l ∈ {1, ..., n} we have

{CN , Lkl}
(81)

=

N∑
i,j=1

Lij{Lij , Lkl}

(82)

= PYn+1

N∑
i,j=1

Lij(δikLjl + δjlLik − δilLjk − δjkLil).

(86)

We prove (85) for k < l ≤ N , the case N ≤ k < l is analogous. If k < l < N , then δik ,

δjl, δilLjk and δjk are zero and the lemma is trivially true. Assume now k < l = N . We

have

{CN , Lkl}
(86)

= PYn+1

∑
i<j≤N

Lij(δikLjl + δjlLik − δilLjk − δjkLil)

+ PYn+1

∑
j<i≤N

Lij(δikLjl + δjlLik − δilLjk − δjkLil) = 0

where in the last equality we used Lij = −Lji. □

We can finally prove the integrability of the normal Hamiltonian flow in Eng(n).

Theorem B.4. The normal Hamiltonian flow in Eng(n) is Arnold-Liouville integrable.

Proof. We consider first the case of n even. Write n = 2v for some v ∈ N. We claim

that {H,L1,2, L3,4, . . . , L2v−1,2v, C4, C6, · · · , C2v} is a set of independent prime inte-

grals for the flow of the normal Hamiltonian H that are in involution. Indeed, by Lem-

mas B.1-B.3 the above functions are all prime integrals that are in involution. The in-

dependence of these functions easily follows by their definitions (see (81)). When n
is odd, we write n = 2v + 1 for some v ∈ N we can prove in a similar way that

{H,L2,3, L4,5, . . . , L2v,2v+1, C2, C4, · · · , C2v} is a set of independent prime integrals

for the flow of the normal Hamiltonian that are in involution. □
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