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Abstract. The space of 2-jets of a real function of two real vari-
ables, denoted by J2(R2,R), admits the structure of a metabelian
Carnot group, so J2(R2,R) has a normal abelian sub-group A. As
any sub-Riemannian manifold, J2(R2,R) has an associated Hamil-
tonian geodesic flow. The Hamiltonian action of A on T ∗J2(R2,R)
yields the reduced Hamiltonian Hµ on T ∗H ≃ T ∗(J2(R2,R)/A),
where Hµ is a two-dimensional Euclidean space. The paper is de-
voted to proving that reduced Hamiltonian Hµ is non-integrable by
meromorphic functions for some values of µ. This result suggests
the sub-Riemannian geodesic flow on J2(R2,R) is not meromor-
phically integrable.

1. Introduction

Let J2(R2,R) be the space of 2-jets of a real function of two variables.
J2(R2,R) is a Carnot group with step 3 and growth vector (5, 7, 8). Let
j be the graded Lie algebra of J2(R2,R), that is,

j = j1 ⊕ j2 ⊕ j3, such that [ji, jj] ⊆ ji+j and j4 = {0}.
Let π : J2(R2,R) → R5 ≃ j1 be the canonical projection and let R5

be endowed with the Euclidean metric. Consider the sub-Riemannian
metric on J2(R2,R) such that π is a sub-Riemannian submersion, see
Definition 2.1 for the formal definition of a sub-Riemannian submer-
sion, by construction the sub-Riemannian structure is left-invariant un-
der the Carnot group multiplication. Like any sub-Riemannian struc-
ture, the cotangent bundle T ∗J2(R2,R) is equipped with a Hamilton-
ian system whose underlying Hamiltonian HsR is one whose solutions
curves are sub-Riemannian geodesics on J2(R2,R). This Hamiltonian
system is called the sub-Riemannian geodesic flow on J2(R2,R).
We say that a group G is metabelian if [G,G] is abelian. In [12], we

considered the sub-Riemannian geodesics flow on a general metabelian
Carnot group G. Then, we performed the symplectic reduction of
the cotangent bundle T ∗G by the Hamiltonian action of the maximal
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normal abelian sub-group A containing [G,G], where A acts on G by
left multiplication. This action is free and proper, so H := G/A is well
defined. Let a be the Lie algebra of A and let µ be in a∗, since A is
abelian, the isotropic sub-group of Aµ := {g ∈ A : Ad∗gµ = µ} is A and
the symplectic reduced space is diffeomorphic to T ∗(G/A) ≃ T ∗H. For
more details about the symplectic reduction of the sub-Riemannian
geodesics flow on a metabelian Carnot group, see [12], and for the
general theory, see [8] or [11].

In the case G = J2(R2,R), we have [j, j] = j2⊕ j3 and the Lie bracket
relations in equations (2.2) and (2.3), see below, show [j2 ⊕ j3, j2 ⊕
j3] = 0 meaning J2(R2,R) is a metabelian Carnot group. Following the
notation used in [12]: A is a 6-dimensional sub-group, whose Lie algebra
is framed by {Ea

1, E
a
2, E

a
3, E

a
4, E

a
5, E

a
6}, see equations 2.2 and 2.3. Then,

H is a 2-dimensional Euclidean space and the reduced Hamiltonian is a
two degree of freedom system with polynomial potential, see equation
3.3.

The main Theorem of this paper is the following.

Theorem A. Let Hµ : T ∗H → R be the reduced Hamiltonian given by
the symplectic reduction of sub-Riemannian geodesic flow on J2(R2,R)
under the action of A, where µ is in a∗. Then, there exists a one
parameter family in a∗ such that the reduced Hamiltonian Hµ is not
meromorphically integrable.

Theorem A suggests the sub-Riemannian geodesic flow on J2(R2,R)
is not meromorphically integrable.

Examples of Carnot groups with a non-integrable geodesic flow are
the following: One is the group of all 4 by 4 lower triangular matrices
with 1’s on the diagonal proved by R. Montgomery, M. Shapiro and
A. Stolin, see [10]. Another is the Carnot group with growth vector
(3, 6, 14) showed by I. Bizyaev, A. Borisov, A. Kilin, and I. Mamaev,
see [3]. Finally, there is the Carnot group with growth vector (2, 3, 5, 8).
Verified by L. V. Lokutsievskiy and Y. L. Sachkov, see [6].

Kruglikov, B., Vollmer, A. and Lukes-Gerakopoulos, G. made a clas-
sification of the integrable geodesic flow on Carnot groups of rank 2
and low dimension, see [4].

2. J2(R2,R) as a Carnot group

The 2-jet of a smooth function f : R2 → R at a point (x0, y0) ∈ R2

is its 2-th order Taylor polynomial at x0. We will encode the 2-jet as
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a 8-tuple of real numbers (j2f)|(x0,y0) as follows:

(j2f)|(x0,y0) :=

(
x0, y0,

∂2f

∂x2
,
∂2f

∂x∂y
,
∂2f

∂y2
,
∂f

∂x
,
∂f

∂y
, f

)
|(x0,y0) ∈ R8

As f varies over smooth functions and (x0, y0) varies over R2, these
2-jets sweep out the 2-jet space, denoted by J2(R2,R). One can see
that J2(R2,R) is diffeomorphic to R8 and its points are coordinatized
according to

g = (x, y, u2,0, u1,1, u0,2, u1,0, u0,1, u) ∈ R8.

Recall that if u = f(x, y), then u1,0 = ∂u
∂x
, u0,1 = ∂u

∂y
, u2,0 = ∂u1,0

∂x
,

u1,1 =
∂u1,0

∂y
= ∂u0,1

∂x
and u0,2 =

∂u0,1

∂y
. We see that J2(R2,R) is endowed

with a natural rank 5 distribution D ⊂ TJ2(R2,R) characterized by
the following Pfaffian equations

u1,0dx+u0,1dy−du = u2,0dx+u1,1dy−du1,0 = u1,1dx+u0,2dy−du0,1 = 0.

A sub-Riemannian structure on a manifold consists of a non-integrable
distribution D together with a smooth inner product (·, ·)J2(R2,R) on D.
We arrive at the sub-Riemannian structure by observing that D is
globally framed by

X1 =
∂

∂x
+ u1,0

∂

∂u
+ u2,0

∂

∂u1,0

+ u1,1
∂

∂u0,1

,

X2 =
∂

∂y
+ u0,1

∂

∂u
+ u1,1

∂

∂u1,0

+ u0,2
∂

∂u0,1

,

Y1 =
∂

∂u2,0

, Y2 =
∂

∂u1,1

, Y3 =
∂

∂u0,2

.

(2.1)

The Canonical projection π is defined by

π(g) = g mod [J2(R2,R), J2(R2,R)],
and in coordinates is given by π(g) = (x, y, u2,0, u1,1, u0,2). Now the
restrictions of the one-forms dx, dy, du2,0, du1,1, du0,2 to D form a global
co-frame for D∗ which is dual to the frame from equation (2.1). Let us
introduce the formal definition of a sub-Riemannian submersion.

Definition 2.1. Let (M,DM , (·, ·)M) and (N,DN , (·, ·)N) be two sub-
Riemannian manifolds and let ϕ : M → N a submersion, we consider
the case dim(M) ≥ dim(N). We say that ϕ is a sub-Riemannian
submersion if (ϕ)∗DM = DN and (ϕ)∗(·, ·)N = (·, ·)M .

Therefore sub-Riemannian metric on J2(R2,R) making π a sub-
Riemannian submersion is given in coordinates by

(·, ·)J2(R2,R) = (dx2 + dy2 + du2
2,0 + du2

1,1 + du2
0,2)|D.
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An equivalent way to define the sub-Riemannian metric is to declare
the left-invariant vector fields from equation (2.1) orthonormal. For
more details about the jet space as Carnot group, see [14].

Let {E1, E2, E
a
1, E

a
2, E

a
3} be the base for first layer j1, where Xi(g) =

(Lg)∗Ei for i = 1, 2 and Yj(g) = (Lg)∗E
a
j for j = 1, 2, 3. The frame for

j1 generates the following Lie algebra:

Ea
4 := [E1, E

a
1] = [E2, E

a
2], Ea

5 := [E1, E
a
2] = [E2, E

a
3],(2.2)

equations (2.2) define the vector corresponding to the second layer j2,

Ea
6 := [E1, E

a
4] = [E2, E

a
5],(2.3)

equations (2.3) define the vector corresponding to the third layer j3. All
the other brackets are zero. The Lie bracket relations in equations (2.2)
and (2.3) imply that a is framed by {Ea

1, E
a
2, E

a
3, E

a
4, E

a
5, E

a
6}. Let H

be the 2-dimensional Euclidean space defined by quotient J2(R2,R)/A.
Since [E1, E2] = 0, we can think H as a sub-group of J2(R2,R) such
that J2(R2,R) ≃ A⋊H.

2.1. The exponential coordinates of the second kind. The jet
space J2(R2,R) has a natural definition using the coordinates x, y,
and u’s; however, these coordinates do not easily show the symmetries
of the system. The exponential coordinates of the second kind exhibit
the symmetries:

We recall that the exponential map exp : j → J2(R2,R) is a global
diffeomorphism, this allow us to endow J2(R2,R) with coordinates
(x, y, θ1, θ2, θ3, θ4, θ5, θ6) in the following way: a point g in J2(R2,R)
is given by

g :=
6∏

i=1

exp(θiE
a
i ) ∗ exp(yE2) ∗ exp(xE1).

Then the horizontal left-invariant vector fields are given by

X1 :=
∂

∂x
, X2 :=

∂

∂y
,(2.4)

and

Y1 :=
∂

∂θ1
+ x

∂

∂θ4
+

x2

2!

∂

∂θ6
,

Y2 :=
∂

∂θ2
+ y

∂

∂θ4
+ x

∂

∂θ5
+ xy

∂

∂θ6
,

Y3 :=
∂

∂θ3
+ y

∂

∂θ5
+

y2

2!

∂

∂θ6
.

(2.5)
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The left-invariant vector fields from equation (2.4) and (2.5) just de-
pend on the independent variables x and y. All the metabelian Carnot
groups have this property, which is the heart of the symplectic reduc-
tion. For more details, see [12].

The change from the coordinates (x, y, u2,0, u1,1, u0,2, u1,0, u0,1, u) to
the exponential coordinates of the second kind (x, y, θ1, θ2, θ3, θ4, θ5, θ6)
is the following

x
y
θ1
θ2
θ3
θ4
θ5
θ6


=



x
y
u2,0

u1,1

u0,2

xu2,0 + yu1,1 − u
xu1,1 + yu0,2 − u

x2

2
+ xyu1,1 +

y2

2
u0,2 − xu1,0 − yu0,1 + u


3. Geodesic flow on J2(R2,R)

Let us consider the traditional coordinates on T ∗J2(R2,R), that is,
(p, g) where p := (px, py, p1, p2, p3, p4, p5, p6) are the momentum associ-
ated with exponential coordinates of the second type, see [2] and [5] for
more details about the traditional coordinates. Let PX1 , PX2 , PY1 , PY2

and PY3 be the momentum functions associated with the left-invariant
vector fields on the first layer j1 are given by

PX1 = px, PX2 = py Y1 = p1 + xp4 +
x2

2!
p6,

Y2 = p2 + yp4 + xp5 + xyp6, Y3 = p3 + yp5 +
y2

2!
p6,

(3.1)

see [9], or [1] for more details about the momentum functions. Then,
the Hamiltonian governing the sub-Riemannian geodesic flow on J2(R2,R)
is

(3.2) HsR :=
1

2
(P 2

X1
+ P 2

X2
+ P 2

Y1
+ P 2

Y2
+ P 2

Y3
).

See [9], or [1] for more details about the definition of HsR.
The Hamiltonian function HsR does not depend on the coordinates

θ1, θ2, θ3, θ4, θ5 and θ6, so they are cyclic coordinates, in other words,
p1, p2, p3, p4, p5 and p6 are constants of motion, see [5] or [2] for more
details about the cyclic coordinates. Moreover, since HsR is invariant
under the action of A, these constants of motion correspond to the
momentum map J : T ∗J2(R2,R) → a∗ given by

J(p, g) = µ := (a1, a2, a3, a4, a5, a6) where pi = ai, 1 ≤ i ≤ 6.
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See [9] or [11] for the formal definition of the momentum map. See [12]
for the construction of the momentum map in the context of metabelian
Carnot group.

3.1. The reduced Hamiltonian. By the symplectic theory, the re-
duced space is diffeomorphic to T ∗(G/A) ≃ T ∗H, and the reduced
Hamiltonian is a two-degree-of-freedom system with a polynomial po-
tential of degree four in the variables x and y, and depending on the
parameters µ := (a1, a2, a3, a4, a5, a6) in a∗, given by

(3.3) Hµ(px, py, x, y) :=
1

2

(
p2x + p22 + ϕµ(x, y)

)
,

where ϕµ(x, y) is the following potential

(3.4) (a1+a4x+
x2

2!
a6)

2+(a2+a5x+a4y+a6xy)
2+(a3+a5y+a6

y2

2!
)2.

Let πA : J2(R2,R) → H be the canonical projection given by

πA(g) = (x, y).

Let ΠA : T ∗G → T ∗H be co-lift projection associated to πA, that is,

ΠA(p, g) = (px, py, x, y).

Then symplectic reduction implies

HsR|J−1(µ) = Hµ ◦ ΠA.

3.2. Background Theorem. Here we introduce the Background
Theorem, which provides a complete classification of the Yang-Mills
Hamiltonian system by S. Shi and W. Li, in [13].

Background Theorem. Let H be the Hamiltonian system given by

(3.5) H =
1

2c
(p2x + p2y) +

1

2c
(ax2 + by2) +

1

4c2
(cx2 + dy2 + 2ex2y2),

where a, b, c ̸= 0, d and e are in R. Then H is meromorphically
integrable in the Liouvillian sense (i.e., the existence of an additional
meromorphic integral) if and only if one of the following conditions
hold:

(A) e = 0,
(B) c = d = e,
(C) a = b and e = 3c = ed,
(D) b = 4a, e = 3c and d = 8c,
(E) b = 4a, e = 6c and d = 16c,
(F) b = 4a, e = 3d and c = 8d,
(G) b = 4a, e = 6d and c = 16d.
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A consequence of the Background Theorem is the following.

Corollary 3.1. Let H be the Hamiltonian given by

(3.6) H =
1

2
(p2x + p2y) +

1

4c2
(cx4 + 4cx2y2 + cy4).

Then H is not meromorphically integrable in the Liouvillian sense.

Proof. Following the notation from the Background Theorem, we
have that c = d, e = 2c, and a = b = 0, so H is not meromorphically
integrable. □

An alternative proof of corollary 3.1 is given by Maciejewski, A. J.
and Przybylska, M., in [7].

3.3. Proof of Theorem A. Now we are ready to prove Theorem A.

Proof. If µ =
(
0, 0, 0, 0, 0, 0, 0,

√
2
c

)
with c in (0,∞), then equation

(3.4) implies the potential ϕµ(x, y) is 1
4c2

(cx4 + 4cx2y2 + cy4). Let
Hµ be given by equation (3.3), then Hµ is equal to the Hamiltonian
given by equation (3.6), so by Corollary 3.1 Hµ is not integrable by
meromorphic functions. □
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