NO PERIODIC GEODESICS IN JET SPACE

ALEJANDRO BRAVO-DODDOLI

ABSTRACT. The J^k space of k-jets of a real function of one real variable x admits the structure of a subRiemannian manifold, which then has an associated Hamiltonian geodesic flow, and it is integrable. As in any Hamiltonian flow, a natural question is the existence of periodic solutions. Does J^k have periodic geodesics? This study will find the action-angle coordinates in T^*J^k for the geodesic flow and demonstrate that geodesics in J^k are never periodic.

1. Introduction

This paper is the first attempt to prove that Carnot groups do not have periodic subRiemannian geodesics; Enrico Le Donne made this conjecture. Here, we will establish the first case we found, which also has a simple and elegant proof.

This work is the continuation of [1, 2], in [1] J^k was presented as sub-Riemannian manifold, the subRiemannian geodesic flow was defined, and its integrability was verified. In [2], the subRiemannian geodesics in J^k were classified, and some of their minimizing properties were studied. The main goal of this paper is to prove:

Theorem A. J^k does not have periodic geodesics.

Following the classification of geodesics from [2] (see pg. 5), the only candidates to be periodic are the ones called x-periodic (the other geodesics are not periodic on the x-coordinate); so we are focusing on the x-periodic geodesics.

An essential tool during this work is the bijection made by Monroy-Perez and Anzaldo-Meneses [3, 4, 5], also described in [2] (see pg. 4), between geodesics on J^k and the pair (F, I) (module translation $F(x) \to F(x - x_0)$), where F(x) is a polynomial of degree bounded by k and I is a closed interval called Hill interval. Let us formalize its definition.

Key words and phrases. Carnot group, Jet space, integrable system, Goursat distribution, sub Riemannian geometry, Hamilton-Jacobi, periodic geodesics.

Definition 1. A closed interval I is called Hill interval of F(x), if for each x inside I then $F^2(x) < 1$ and $F^2(x) = 1$ if x is in the boundary of I.

By definition, the Hill interval I of a constant polynomial $F^2(x) = c^2 < 1$ is \mathbb{R} , while the Hill interval I of the constant polynomial $F(x) = \pm 1$ is a single point. Also, I is compact, if and only if, F(x) is not a constant polynomial; in this case, if I is in the form $[x_0, x_1]$, then $F^2(x_1) = F^2(x_0) = 1$. This terminology comes from celestial mechanics, and I is the region where the dynamics governed by the fundamental equation (3.5) take place.

Geodesics corresponding to constant polynomials are called horizontal lines since their projection to (x, θ_0) planes are lines. In particular, geodesic corresponding to $F(x) = \pm 1$ are abnormal geodesics (see [6], [7] or [8]). Then this work will be restricted to geodesics associated with non-constant polynomials. x-periodic geodesics correspond to the pair $(F, [x_0, x_1])$, where x_0 and x_1 are regular points of F(x), which implies they are simple roots of $1 - F^2(x)$.

Outline of the paper. In Section 2, Proposition 1 is introduced and Theorem A is proved. The main purpose of Section 3 is to prove Proposition 1. In sub-Section 3.1, the subRiemannian structure and the subRiemannian Hamiltonian geodesic function are introduced. In sub-Section 3.2, a generating function is presented and a canonical transformation from traditional coordinates in T^*J^k to action-angle coordinates (μ, ϕ) for the Hamiltonian systems are shown. In sub-Section 3.3, Proposition 1 is proved.

Acknowledgments. I want to express my gratitude to Enrico Le Donne for asking us about the existence of periodic geodesics and thus posing the problem. I want to thank my advisor Richard Montgomery for his invaluable help. This paper was developed with the support of the scholarship (CVU 619610) from "Consejo de Ciencia y Tecnologia" (CONACYT).

2. Proof of theorem A

Throughout the work the alternate coordinates $(x, \theta_0, \dots, \theta_k)$ will be used, the meaning of which meaning is introduced in the Section 3 and described in more detail in [3, 4] or [2]. x-periodic geodesics have the property that the change undergone by the coordinates θ_i after one x-period is finite and does not depend on the initial point. We summarize the above discussion with the following proposition.

Proposition 1. Let $\gamma(t) = (x(t), \theta_0(t), \dots, \theta_k(t))$ in J^k be an x-periodic geodesic corresponding to the pair (F, I). Then the x-period is

(2.1)
$$L(F,I) = 2 \int_{I} \frac{dx}{\sqrt{1 - F^{2}(x)}},$$

Moreover, it is twice the time it takes for the x-curve to cross its Hill interval exactly once. After one period, the changes $\Delta \theta_i := \theta_i(t_0 + L) - \theta_i(t_0)$ for i = 0, 1, ..., k undergone by θ_i are given by

(2.2)
$$\Delta\theta_i(F,I) = \frac{2}{i!} \int_I \frac{x^i F(x) dx}{\sqrt{1 - F^2(x)}}.$$

In [2], a subRiemannian manifold \mathbb{R}_F^3 , called magnetic space, was introduced and a similar statement like Proposition 1 was proved, see Proposition 4.1 from [2] (pg. 13), with an argument of classical mechanics, see [9] page 25 equation (11.5).

1 implies that a x-periodic geodesic $\gamma(t)$ corresponding to the pair (F, I) is periodic if and only if $\Delta \theta_i(F, I) = 0$ for all i.

Because that period L from equation (2.1) is finite, we can define an inner product in the space of polynomials of degree bounded by k in the following way;

(2.3)
$$\langle P_1(x), P_2(x) \rangle_F := \int_I \frac{P_1(x)P_2(x)dx}{\sqrt{1 - F^2(x)}}.$$

This inner product is non-degenerate and will be the key to the proof of theorem A.

2.1. Proof of Theorem A.

Proof. We will proceed by contradiction. Let us assume $\gamma(t)$ is a periodic geodesic on J^k corresponding to the pair (F, I), where F(x) is not constant, then $\Delta \theta_i(F, I) = 0$ for all i in $0, \dots, k$.

In the context of the space of polynomials of degree bounded by k with inner product $<,>_F$, the condition $\Delta\theta_i(F,I)=0$ is equivalent to F(x) being perpendicular to x^i ($0=\Delta\theta_i(F,I)=< x^i,F(x)>_F$), so F(x) being perpendicular to x^i for all i in $0,1,\cdots,k$. However, the set $\{x^i\}$ with $0 \le i \le k$ is a base for the space of polynomials with degree bounded by k, then F(x) is perpendicular to any vector, so F(x) is zero since the inner product is non-degenerate. Being F(x) equals 0 contradicts the assumption that F(x) is not a constant polynomial. \square

Coming work: The proof of the conjecture in the meta-abelian group \mathbb{G} , that is, \mathbb{G} is such that $0 = [[\mathbb{G}, \mathbb{G}], [\mathbb{G}, \mathbb{G}]]$.

3. Proof of Proposition 1

3.1. J^k as a subRiemannian manifold. The subRiemannian structure on J^k will be here briefly described. For more details, see [1, 2]. We see J^k as \mathbb{R}^{k+2} , using $(x, \theta_0, \cdots, \theta_k)$ as global coordinates, then J^k is endowed with a natural rank 2 distribution $D \subset TJ^k$ characterized by the k Pafaffian equations

(3.1)
$$0 = d\theta_i - \frac{1}{i!} x^i d\theta_0, \qquad i = 1, \dots, k.$$

D is globally framed by two vector fields

(3.2)
$$X_1 = \frac{\partial}{\partial x}, \qquad X_2 = \sum_{i=0}^k \frac{x^i}{i!} \frac{\partial}{\partial \theta_i}.$$

A subRiemannian structure on \mathcal{J}^k is defined by declaring these two vector fields to be orthonormal. In these coordinates the subRiemannian metric is given by restricting $ds^2 = dx^2 + d\theta_0^2$ to D.

3.1.1. Sub-Riemannian geodesic flow. Here it is emphasized that the projections of the solution curves for the Hamiltonian geodesic flow are geodesics, that is, if $(p(t), \gamma(t))$ is a solution for the Hamiltonian geodesic flow then $\gamma(t)$ is a geodesic on J^k .

Let $(p_x, p_{\theta_0}, \dots, p_{\theta_k}, x, \theta_0, \dots, \theta_k)$ be the traditional coordinates on T^*J^k , or in short way as (p, q). Let $P_1, P_2 : T^*J^k \to \mathbb{R}$ be the momentum functions of the vector fields X_1, X_2 , see [6] 8 pg or see [10], in terms of the coordinates (p, q) are given by

(3.3)
$$P_1(p,q) := p_x, \qquad P_2(p,q) := \sum_{i=0}^k p_{\theta_i} \frac{x^i}{i!}.$$

Then the Hamiltonian governing the geodesic on J^k is

(3.4)
$$H_{sR}(p,q) := \frac{1}{2}(P_1^2 + P_2^2) = \frac{1}{2}p_x^2 + \frac{1}{2}(\sum_{i=0}^k p_{\theta_i} \frac{x^i}{i!})^2.$$

It is noteworthy that h=1/2 implies that the geodesic is parameterized by arc-length. It can be noticed that H does not depend on θ_i for all i, then p_{θ} 's define a k+1 constants of motion.

Lemma 1. The subRiemannian geodesic flow in J^k is integrable, if $(p(t), \gamma(t))$ is a solution then

$$\dot{\gamma}(t) = P_1(t)X_1 + P_2(t)X_2, \qquad (P_1(t), P_2(t)) = (p_x(t), F(x(t))),$$
where $p_{\theta_i} = i!a_i$ and $F(x) = \sum_{i=0}^k a_i x^i$.

Proof. H does not depend on t and θ_i for all i, so $h := H_{sR}$ and p_{θ_i} are constants of motion, thus the Hamiltonian system is integrable. First equation form the Lemma 1 is consequence that P_1 and P_2 are linear in p_x and p_{θ} 's. We denote by (a_0, \dots, a_k) the level set $i!a_i = p_{\theta_i}$, then by definition of P_1 and P_2 given by equation 3.3.

3.1.2. Fundamental equation. The level set (a_0, \dots, a_k) defines a fundamental equation

(3.5)
$$H_F(p_x, x) := \frac{1}{2}p_x^2 + \frac{1}{2}F^2(x) = H|_{(a_0, \dots, a_k)}(p, q) = \frac{1}{2}.$$

Here $H_F(p_x, x)$ is a Hamiltonian function in the phase plane (p_x, x) , where the dynamic of x(s) takes place in the Hill region $I = [x_0, x_1]$ and its solution $(p_x(t), x(t))$ with energy h = 1/2 lies in an algebraic curve or loop given by

(3.6)
$$\alpha_{(F,I)} := \{(p_x, x) : \frac{1}{2} = \frac{1}{2}p_x^2 + \frac{1}{2}F^2(x) \text{ and } x_0 \le x \le x_1\},$$

and $\alpha_{(F,I)}$ is close and simple.

Lemma 2. $\alpha(F, I)$ is smooth if and only if x_0 and x_1 are regular points of F(x), in other words, $\alpha(F, I)$ is smooth if and only if the corresponding geodesic $\gamma(t)$ is x-periodic.

Proof. A point $\alpha = (p_x, x)$ in $\alpha(F, I)$ is smooth if and only

$$0 \neq \nabla H_F(p_x, x)|_{\alpha(F,I)} = (p_x, F(x)F'(x)),$$

then α is smooth for all $p_x \neq 0$, the points $\alpha(F, I)$ such that $p_x = 0$ correspond to endpoints of the Hill interval I, since the condition $p_x = 0$ implies $F^2(x) = 1$, the point $\alpha = (0, x_0)$ is smooth if $F'(x_0) \neq 0$, as well as, the point $\alpha = (0, x_1)$ is smooth if $F'(x_1) \neq 0$. Then $\alpha(F, I)$ is smooth if and only x_0 and x_1 are regular points of F(x). Also, $\alpha(F, I)$ is smooth is equivalent to $H_F(p_x, x)|_{\alpha(F, I)}$ is never zero, which is equivalent to the Hamiltonian vector field is never zero on $\alpha(F, I)$. \square

3.1.3. Arnold-Liouville manifold. The Arnold-Liouville manifold $M|_F$ is given by

$$M_F := \{(p,q) \in T^*J^k : \frac{1}{2} = H_F(p_x, x), \ p_{\theta_i} = i!a_i\}.$$

In the case $\gamma(t)$ is x-periodic, M_F is diffeomorphic to $\mathbb{S}^1 \times \mathbb{R}^{k+1}$, where \mathbb{S}^1 is the simple closed and smooth curve $\alpha(F, I)$.

 $\alpha(F, I)$ has two natural charts using x as coordinates and given by solve the equation $H_F = 1/2$ with respect of p_x , namely, $(p_x, x) = (\pm \sqrt{1 - F^2(x)}, x)$. Having this in mind,

Lemma 3. Let $d\phi_t$ be the close one-form on $M_F \subset T^*J^k$ give by

(3.7)
$$d\phi_h := \frac{p_x}{\Pi(F, I)}|_{M_F} dx = \frac{\sqrt{1 - F^2(x)}}{\Pi(F, I)} dx,$$

where $\Pi(F, I)$ is the area enclosed by $\alpha(F, I)$. Then,

$$\int_{\alpha_{(F,I)}} d\phi_h = 1 \qquad \frac{\partial}{\partial h} \Pi(F,I) = L(F,I).$$

as a consequence exist the inverse function $h(\Pi)$.

Proof. Let $\Omega(F, I)$ be the closed region by $\alpha(F, I)$, then $d\phi_h$ can be extended to $\Omega(F, I)$ and Stokes' Theorem implies

(3.8)
$$\Pi(F,I) := \int_{\alpha_{(F,I)}} p_x dx = \int_{\Omega(F,I)} dp_x \wedge dx, \\ = 2 \int_I \sqrt{2h - F^2(x)} |_{h = \frac{1}{2}} dx.$$

This tell that $\int_{\alpha_{(F,I)}} d\phi_h = 1$, thus $d\phi_h$ is not exact.

 $\Pi(F, I)$ is a function of h, so

(3.9)
$$\frac{\partial}{\partial h}\Pi(F,I) = \frac{\partial}{\partial h} \int_{I} d\phi_{h} = \int_{I} \frac{2dx}{\sqrt{1 - F^{2}(x)}}.$$

 $\Pi(F, I)$ is also called an adiabatic invariant see [11] pg 297. We will use Π when we use it as a variable and $\Pi(F, I)$ for the adiabatic invariant.

3.2. Action-angle variables in T^*J^k . We will consider the actions $\mu = (\Pi, a_0, \dots, a_k)$ and find its angle coordinates $\phi = (\phi_h, \phi_0, \dots, \phi_k)$, such the set (μ, ϕ) of coordinates are an action-angle coordinates in T^*J^k .

Lemma 4. There exist a canonical transformation $\Phi(p,q) = (\mu,\phi)$, where ϕ_h is the local function defined by the close form $d\phi_h$ from Lemma 3 and

$$\phi_i = -\int^x \frac{\tilde{x}^i F(\tilde{x}) d\tilde{x}}{\sqrt{1 - F^2(\tilde{x})}} + i! \theta_i \qquad x \in I \quad and \quad i = 0, \dots, k.$$

To construct the canonical transformation $\Phi(p,q)$, we will look for its generating function $S(\mu,q)$, of the second type that satisfies the three following conditions.

$$(3.10) p = \frac{\partial S}{\partial q}, \quad \phi = \frac{\partial S}{\partial \mu}, \quad H(\frac{\partial S}{\partial q}, q) = h(\Pi) = \frac{1}{2},$$

where $h(\Pi)$ is the function defined in Lema 3. For more detail on the definition of $S(\mu, q)$, see [11] Section 50 or [9].

To find $S(\mu, q)$, we will solve the subRiemannian Hamilton-Jacobi equation associated with the subRiemannian geodesic flow. For more details about the definition of this equation in subRiemannian geometry and its relations with the Eikonal equation, see [6] 8 pg or [2].

Proof. The subRiemannian Hamilton-Jacobi equation is given by

(3.11)
$$h|_{1/2} = \frac{1}{2} (\frac{\partial S}{\partial x})^2 + \frac{1}{2} (\sum_{i=0}^k \frac{x^i}{i!} \frac{\partial S}{\partial \theta_i})^2.$$

Take the ansatz

$$S(\mu, q) := f(x) + \sum_{i=0}^{k} i! a_i \theta_i,$$

as a solution. The equation (3.11) becomes equation (3.5), then the generating function is given by

(3.12)
$$S(\mu, q) = \int_{x_0}^{x} \sqrt{2h(\Pi) - F^2(\tilde{x})} d\tilde{x} + \sum_{i=0}^{n} i! a_i \theta_i$$

Here, $h(\Pi) = 1/2$ and $S(\mu, q)$ is a local function, since x must lay in the Hill region I, that is, $S(\mu, q)$ is defined in the sub-set $\mu \times I \times \mathbb{R}^{k+1}$.

We can see that conditions 1 and 3 of equation (3.10) are satisfied: $p(\mu, q) = \partial S/\partial q$ and $H(p(\mu, q), q) = h$. To find the new coordinates ϕ , we use the condition 2:

$$\frac{\partial S}{\partial h} = \int^x \frac{d\tilde{x}}{\sqrt{1 - F^2(\tilde{x})}} = \phi_h,$$

$$\frac{\partial S}{\partial a_i} = -\int^x \frac{\tilde{x}^i F(\tilde{x}) d\tilde{x}}{\sqrt{1 - F^2(\tilde{x})}} + i! \theta_i = \phi_i.$$

Note: In [2] a projection $\pi_F: J^k \to \mathbb{R}^3_F$ was built and the solution to the subRiemannian Hamilton-Jacobi equation on the magnetic space \mathbb{R}^3_F was found. The solution given by equation (3.12) is the pull-back by π_F of the solution previously found it in \mathbb{R}_F , where π_F is in fact, a subRiemannian submersion.

Corollary 1. (μ, ϕ) are action-angle coordinates.

Proof. Using the Hamilton equations for the new coordinates (μ, ϕ) , we have $\phi_t = t$ and $\phi_i = const$.

Note: that h and ϕ_t are action-angles coordinates for the Hamiltonian H_F .

3.2.1. Horizontal derivative. A horizontal derivative ∇_{hor} of a function $S: J^k \to \mathbb{R}$ is the unique horizontal vector field that satisfies; for every q in J^k ,

$$(3.13) \langle \nabla_{hor} S, v \rangle_q = dS(v), \text{ for } v \in D_q,$$

where $<,>_q$ is th subRiemannian metric in D_q . For more detail see [6] pg 14-15 or [10].

Lemma 5. Let $\gamma(t)$ be a geodesic parameterized by arc-length corresponding to the pair (F, I) and S_F the solution given by equation (3.12), then

$$dS_F(\dot{\gamma})(t) = 1.$$

Proof. Let us prove that $\dot{\gamma}(t) = (\nabla_{hor} S_F)_{\gamma(t)}$, which is just a consequence that S_F is solution to the Hamilton-Jacobi equation, that is,

$$X_1(S_F)|_{\gamma(t)} = \frac{\partial S}{\partial x}|_{\gamma(t)} = p_x(t),$$

but, Lemma 1 implies that $P_1(t) = p_x(t)$, so $P_1(t) = X_1(S_F)|_{\gamma(t)}$. As well,

$$X_2(S_F)|_{\gamma(t)} = \sum_{i=0}^k \frac{x^i(t)}{i!} \frac{\partial S}{\partial \theta_i}|_{\gamma(t)} = \sum_{i=0}^k a_i x^i(t) = F(x(t)),$$

also, Lemma 1 implies that $P_2(t) = F(x(t))$, so $P_2(t) = X_2(S_F)|_{\gamma(t)}$. As a consequence;

$$\nabla_{hor} S|_{\gamma(t)} := X_1(S_F)|_{\gamma(t)} X_1 + X_2(S_F)|_{\gamma(t)} X_2 = P_1(t) X_1 + P_2(t) X_2,$$

Lemma 1 implies $P_1(t)X_1 + P_2(t)X_2 = \dot{\gamma}(t)$. Thus, $\nabla_{hor}S = \dot{\gamma}(t)$ and $dS_F(v)|_q = \langle \nabla_{hor}S_F, v \rangle$ for all D_q . In particular,

$$dS_F(\dot{\gamma}) = \langle \dot{\gamma}(t), \dot{\gamma}(t) \rangle = 1,$$

since t is arc-length parameter.

3.3. Proof of Proposition 1.

Proof. It is well-known that the fundamental system system H_F with energy 1/2 has period L(F, I) given by equation (2.1) and the relation between $\Pi(F, I)$ and L(F, I) is given by Lemma 3, see [11] pg 281. Let $\gamma(t)$ be a x-periodic corresponding to (F, I), we are interested in seeing the change suffered by the coordinates θ_i after one L(I, F). For that,

we consider the change in $S(\mu, q)$ after $\gamma(t)$ travel form t to t + L(F, I), in other words,

(3.14)
$$L(F, I) = \int_{t}^{t+L(F,I)} dS(\dot{\gamma}(t))dt = \Pi(F, I) + \sum_{i=0}^{n} i! a_i \Delta \theta_i(F, I).$$

On the left side of the equation is a consequence of Lemma 5, and the right side is the integration term by term. The derivative of equation (3.14) with respect to a_i to find $-\frac{\partial}{\partial a_i}\Pi(F,I) = i!\Delta\theta_i$, which is equivalent to equation (2.2).

We differentiate $\Delta \theta_i := \theta_i(t+L) - \theta_i(t)$ respect to t, to see that $\Delta \theta_i(F, I)$ is independent of the initial point. The derivative is

$$\frac{x^{i}(t+L)F(x(t+L))}{\sqrt{1-F^{2}(x(t+L))}} - \frac{x^{i}(t)F(x(t))}{\sqrt{1-F^{2}(x(t))}},$$

but x(t+L) = x(t).

References

- [1] Alejandro Bravo-Doddoli. Higher elastica: Geodesics in the jet space. *European Journal of Mathematics*.
- [2] Alejandro Bravo-Doddoli and Richard Montgomery. Geodesics in Jet Space. Regular and Chaotic Dynamics, 2021.
- [3] A. Anzaldo-Meneses and F. Monroy-Perez. Goursat distribution and subriemannian structures. *Journal of Mathematical Physics*, 44(12):6101–6111.
- [4] A. Anzaldo-Meneses and F. Monroy-Perez. Integrability of nilpotent subriemannian structures.
- [5] Felipe Monroy-Pérez and A. Anzaldo-Meneses. Optimal control on nilpotent lie groups. *Journal of Dynamical and Control Systems*, 8:487–504, 2002.
- [6] Richard Montgomery. A tour of subriemannian geometries, their geodesics and applications. Number 91. American Mathematical Soc.
- [7] Robert Bryant and Hsu Lucas L. Rigidity of integral curves of rank 2 distributions. *Inventiones mathematicae*, 114(2):435–462, 1993.
- [8] Richard Montgomery and Michail Zhitomirskii. Geometric approach to goursat flags. volume 18, pages 459–493.
- [9] LD Landau and EM Lifshitz. Mechanics third edition: Volume 1 of course of theoretical physics. *Elsevier Science*, 1976.
- [10] Andrei Agrachev, Davide Barilari, and Ugo Boscain. A Comprehensive Introduction to Sub-Riemannian Geometry. Cambridge University Press, 2019.
- [11] Vladimir Igorevich Arnol'd. Mathematical methods of classical mechanics. Springer Science.
- [12] Ben Warhurst. Jet spaces as nonrigid carnot groups. *Journal of Lie Theory*, 15(1):341–356, 2005.

ALEJANDRO BRAVO-DODDOLI: DEPT. OF MATHEMATICS, UCSC, 1156 HIGH STREET, SANTA CRUZ, CA 95064

Email address: Abravodo@ucsc.edu