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Abstract. The space of k-jets of n real function of one real variable x
admits the structure of a Carnot group, which then has an associated
Hamiltonian geodesic flow. As in any Hamiltonian flow, a natural ques-
tion is the existence of periodic solutions. Does the space of k-jets have
periodic geodesics? This study will demonstrate the integrability of sub-
Riemannian geodesic flow, characterize and classify the subRiemannian
geodesics in the space of k-jets, and show that they are never periodic.

1. Introduction

This paper is the generalization of [10, 8, 9]: In [10], the space of k-
jets of real function of a single variable was presented as a subRiemannian
manifold, the subRiemannian geodesic flow was defined and its integablity
was verified. In [8], the subRiemannian geodesics were classified and some
of their minimizing properties were studied. In [9], the non-existence of
periodic geodesics on the space of k-jets of a real function of a single variable
was proved.

The k-jets space of n real functions of a single real variable, denoted
here by Jk(R,Rn) or Jk for short, is a (n(k + 1) + 1)-dimensional manifold
endowed with a canonical rank n+1 distribution, i.e., a linear sub-bundle of
its tangent bundle. This distribution is globally framed by n vector fields,
denoted by X1, · · · , Xn+1 in Section 2, whose iterated Lie brackets give
Jk(R,Rn) the structure of a stratified group. Declaring X1, · · · , Xn+1 to
be orthonormal endows Jk(R,Rn) with the structure of a subRiemannian
manifold, which is left-invariant under the group multiplication. Like any
subRiemannian structure, the geodesics are projection of the solution to a
Hamiltonian system defined on T ∗Jk, called the geodesic flow on Jk(R,Rn).

This paper has four main goals, the following theorem is the first.

Theorem A. The subRiemannian geodesic flow on Jk(R,Rn) is integrable.

The bijection between geodesics on Jk(R,R) and the pairs (F, I) will
be generalized, module translation F (x) → F (x − x0), where F (x) is a
polynomial of degree k or less and I is a closed interval associated to F (x),
made by Monroy-Perez and Anzaldo-Meneses [2, 3, 4], also described in [8]
(see pg. 4). In the present paper it will be a bijection between the geodesic
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in Jk(R,Rn) and the pairs (F, I), module translation F (x) → F (x − x0),
where F (x) = (F 1(x), · · · , Fn(x)) is a polynomial vector of degree k or less
and I is a closed interval associated to F (x), see Definition 3.1 for more
detail of I.

In Section 3, it will be described how to build a geodesic in Jk(R,Rn)
given a pair (F, I) and prove the following main result.

Theorem B. The prescription described in Section 3 yields a geodesic in
J(R,Rn) parameterized by arclength. Conversely, any arc-length parame-
terized geodesic in Jk(R,Rn) can be achieved by this prescription applied to
some polynomial vector F (x) of degree k or less.

Jk(R,Rn) comes with a projection Π : Jk(R,Rn) → Rn+1 onto the Eu-
clidean plane, which projects the frame X1, · · · , Xn+1 onto the standard
coordinate frame {∂/∂x, ∂/∂θ10, · · · , ∂/∂θ10} of Rn+1, see Section 2 for the
meaning of the coordinates.

In subRiemannian geometry, a curve tangent to D is called C1-rigid or
singular if it is a critical point of the endpoint map, see [14] chapter 3, or
[1, 11], in other words, given an initial and end points, a curve is C1-rigid if
it is the only curve tangent to D joining the given points. This property does
not depend of the subRiemannian metric only on the distribution D, and it
is said that the C1-curve is minimizing regardless of how we measure length,
that is, it is geodesic by virtue of its singular nature alone. Sometimes, a
C1-curve is not a solution to the geodesic equations and it is called abnormal
geodesics, while, if it is also a solution to the geodesic equations it is called
binormal geodesics.

It is well know that J1(R,R) does not have singular curves. In the case
of Jk(R,R), with k > 1, C1 curves are tangent to X2 (see [15]), that is,
C1-curves correspond the the polynomial F (x) = 1 and they are binormal
geodesics. The third main result characterizes the C1-curves in Jk(R,Rn)
and ensures that they can be achieved by Theorem B.

Theorem C. C1-curves in Jk(R,Rn) are binormal and they correspond to
constant vector polynomials such that ||F (x)||2 = 1.

Using Theorem B, the geodesic in Jk(R,Rn) will be classified into two
main families: line-geodesics and non-line-geodesics: We say that a geodesic
γ(t) is a line-geodesics if γ(t) corresponds to a constant polynomial vector
and its projection to Rn+1 is a line, in particular, binormal geodesics are
line-geodesics. We say that a geodesic γ(t) is a non-line-geodesic if γ(t)
corresponds to a non-constant polynomial and its Hill interval is compact.
Moreover, if I = [x0, x1], we say that a non-line-geodesic γ(t) is x-periodic
(or regular), if x0 and x1 are regular points of ||F (x)||2, that is, exist L(F, I)
such that x(t + L(F, I)) = x(t). While, γ(t) is critical if one point or both
are critical points of ||F (x)||2; in this case the x-coordinate has an asymp-
totic behavior to the critical point and then the x-coordinate has an infinite
period.
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The fourth main result is the answer to a question by Enrico Le Donne:
Does Jk(R,Rn) have periodic geodesics?

Theorem D. Jk(R,Rn) does not have periodic geodesics.

Following this classification, the only candidates to be periodic are x-
periodic geodesics; so the focus is on non-constant vectors correspondig to
x-periodic geodesics.

Remark 1: Viewing Jk(R,Rn) as a Carnot group, Theorem D is a partic-
ular case of the conjecture made by Enrico Le Donne.

Conjecture 1. Carnot groups do not have periodic geodesics.

Remark 2: In control theory a “chained normal form” is a control system
that is locally diffeomorphic to the canonical distribution for Jk(R,Rn), see
[16].

1.1. Outline of paper. The outline of the paper is as follows. In Section
2, the k-th jet space Jk(R,Rn) is presented as a subRiemannian manifold,
as well as, the notation that will be followed throughout the work. The
subRiemannian geodesic flow is defined and the proof of Theorem A is given.
Finally, the Carnot structure of Jk(R,Rn) is presented. In Section 3, the
prescription for constructing geodesic in Jk(R,Rn) given the pair (F, I) is
described, the Hamilton equation are computed and Theorem B is proved.
In Section 4, the abnormal equation is computed to show Theorem C. In
Section 5, the proof of Theorem D is given.

Acknowledgments. I would like to express my gratitude to Enrico Le
Donne for asking us about the existence of periodic geodesics and thus pos-
ing the problem. I would like to thank my advisor Richard Montgomery
for his invaluable help. This paper was developed with the support of the
scholarship (CVU 619610) from “Consejo de Ciencia y Tecnologia” (CONA-
CYT).

2. Jk(R,Rn) as a subRiemannian manifold

The k-jet of a smooth function f : R → Rn at a point x0 ∈ R is its k-th
order Taylor expansion at x0. We will this encode this k-jet as a (k+2)-tuple
of real numbers as follows:

(jkf) = (x0, f
k(x0), · · · , f1(x0), f(x0)) ∈ Rn(k+1)+1.

As f varies over smooth functions and x0 over R, these k-jets sweep out
the k-jet space. Jk(R,Rn) is diffeomorphic to Rn(k+1)+1 and we will use the
global coordinates

(x, uk, · · · , u1, u0) ∈ Rn(k+1)+1.

Where, ui = (u1i , · · · , uni ) and, if f = u0, then u1 = du0/dx, and more
general, ui+1 = dui/dx, j ≥ 1. These equations are rewritten into du0 =
u1dx, and in general, dui = ui+1dx, we see that Jk(R,Rn) is endowed with a
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natural rank (n+ 1) distribution D ⊂ TJk characterized by the nk Pfaffian
equations

0 = du0 − u1dx
0 = du1 − u2dx
... =

...

0 = duk − uk−1dx.

Jk(R,Rn) has a natural definition using the coordinates ui, but they do not
reflect the symmetries of the dynamics, see the proof of Theorem A in Section
3. We will introduce the alternate coordinates θi for Jk(R,Rn) describes in
[2, 3] and also introduced in [8, 9], they are exponential coordinates of the
second type, see [6] Section 6.2.;

θ0 = uk

θ1 = xuk − uk−1
... =

...

θk =
xk

k!
uk −

xk

k!
uk−1dx+ · · ·+ (−1)ku0.

D is globally framed by (n+ 1) vector fields:

(2.1) X0 =
∂

∂x
, Xj

0 =
k∑
i=0

xi

i!

∂

∂θji
for 1 ≤ j ≤ n.

A subRiemannian structure on Jk(R,Rn) is defined by declaring these (n+1)
vector fields to be orthonormal. In these coordinates the subRiemannian
metric is defined by restricting ds2 = dx2 + (dθ10)2 + · · ·+ (dθn0 )2 to D.

During this work we will use the convention θji , where i = 0, · · · k and
j = 1, · · · , n , that is, i is used to denotes the vector θi and j denote the
j-th entry of the vector θi

2.1. Hamiltonian. Let (px, pθ0 , · · · , pθk , x, θ0, · · · , θk) be the traditional co-

ordinates for the cotangent bundle T ∗Jk, or abbreviated as (p, q). Also, let
PX0 ,PX1

0
, · · · , PXn

0
: T ∗Jk → R be the momentum functions of the vector

fields X0, X
1
0 , · · · , Xn

0 , in the coordinates (p, q); the momentum functions
are given by

(2.2) PX0 = px, P
Xj

0
=

k∑
i=0

xi

i!
p
θji

for 0 ≤ j ≤ k.

Then the Hamiltonian governing the subRiemannian geodesic flow on Jk(R,Rn)
is

(2.3) H =
1

2
(P 2

X0
+ P 2

X1
0

+ · · ·+ P 2
Xk

0
)
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(see [14], pg 8). We will see in Section 3 that the condition H = 1/2 implies
that the geodesics are parameterized by arc-length.

2.2. Proof of Theorem A.

Proof. The Hamiltonian H does not depend on the coordinate θji because
the Hamilton equations p

θji
is a constant of motion. Then {H, p

θji
} is a set of

n(k+1)+1 constants of motion that Poisson commute and they are linearly
independent. �

2.3. Carnot Group structure. The frame {X0, X
1
0 , · · · , Xn

0 } generates
(n(k+ 1) + 1)-dimensional nilpotent Lie algebra, under the iterated bracket.
That is,

X1
0 = [X0, X

j
0 ], · · · , Xj

k = [X0, X
k−1
j ], · · · 0 = [X0, X

j
k],

all the other Lie brackets [X`
m, X

j
i ] are zero. Then the frame {X0, X

j
i } with

0 ≤ i ≤ k and 1 ≤ j ≤ n forms a n(k + 1) + 1-dimensional graded nilpotent
Lie algebra:

gk = V1 ⊕ · · · ⊕ Vk+1, V1 = {X0, X
j
0}, Vi = {Xj

i−1}, 1 ≤ i ≤ k, 1 ≤ j ≤ n.
Like any graded nilpotent Lie algebra, this algebra has an associated Lie
group which is a Carnot group G w.r.t the subRiemannian structure. We

can identify G with Jk(R,Rn), using the flows of {X0, X
j
i }. For more detail

on the jets space as a Carnot group see [7].

3. Geodesic in Jk(R,Rn)

This Section describes how to build a geodesic on Jk(R,Rn): Let us
formalize the definition of the interval I.

Definition 3.1. We say that a closed interval I is a Hill interval, associated
to F (x), if F 2(x) < 1 for all x in the interior of I and G2(x) = 1 for x in
the boundary of I. Then, i is compact if and only if F (x) is not a constant
polynomial, if I is in the form [x0, x1], x0 and x1 are called endpoints of the
Hill interval.

Consider the Hamiltonian system of one degree of freedom defined on the
plane phase space (px, x) and with potential 1/2||F (x)||2, in other words, a
Hamiltonian function given by

(3.1) HF (px, x) =
1

2
p2x +

1

2
||F (x)||2;

then, the Hamilton equations are give by

(3.2) ẋ = px, ṗx = (
dF

dx
, F (x)),

where dF/dx is the derivative of the polynomial vector and ( , ) is the Eu-
clidean dot product on Rn. Since the Hamiltonian is autonomous, we choose
HF = 1/2; then the dynamic takes place in the point where ||F (x)||2 ≤ 1.
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If F (x) is not the constant polynomial vector, and I = [x0, x1] is the Hill
interval, then ẋ = 0 if and only if x = x0, x1. Moreover, x0 and x1 are
equilibrium points, if and only if, x0 and x1 are critical points of ||F (x)||2,
in other words, 0 = (dF/dx, F (x)).

Having found the solution x(t), next we solve

(3.3) θ̇j0(t) = F j(x(t)),

for θi0. Then, c(t) = (x(t), θ0(t)) is a curve on Rn+1 parameterized by arc-
length. Finally, we solve the horizontal lift equation associated to the curve
c(t)

θ̇j1 = x(t)F j(x(t)),

θ̇j2 =
x2(t)

2!
F j(x(t)),

... =
...

θ̇jk =
xk(t)

k!
F j(x(t)).

(3.4)

3.1. Hamilton equations. To proof Theorem B, we need to write down
the Hamilton equations for the geodesic flow. Since the Hamiltonian func-
tion 2.3 is a left invariant function on the cotangent bundle of the Lie group
G, the ’Lie-Poisson bracket’ structure can be used for such Hamiltonian
flows to find the equations, see Appendix [5] or chapter 4 [13]. That is, if X
and Y are left invariant vector fields then

(3.5) {PX , PY } = −P[X,Y ].

In this context, the Hamilton equations are read as ḟ = {f,H}. With the
Hamiltonian of this system, they expand to

ḟ = {f, P0}P0 + {f, PX1
0
}PX1

0
+ · · · {f, PXn

0
}PXn

0
.

Using {P0, PXj
0
} = −P

Xj
1
, we see that P0 and P

Xj
0

evolves according to

the equations

(3.6) Ṗ0 = −PX1
0
PX1

1
− · · · − PX2

0
PX2

1
Ṗ
Xj

0
= P0PXj

1
for 1 ≤ j ≤ n.

For 1 < i < k, we have {P
Xj

i
, P0} = P

Xj
i+1

and {P
Xj

i
, PXm

`
} = 0, so

Ṗ
Xj

3
= P0PXj

2

Ṗ
Xj

4
= P0PXj

3

... =
...

Ṗ
Xj

k−1
= P0PXj

k

Ṗ
Xj

k
= 0,

(3.7)
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for all 1 ≤ j ≤ n. We also compute the Hamilton equations for the coordi-
nates (x, θ0, · · · , θn),

(3.8) ẋ = P0 θ̇ji =
xi

i!
P
Xj

0
for 0 ≤ i ≤ k and 1 ≤ j ≤ n.

3.2. Proof of Theorem B.

Proof. Let γ(t) be a curve corresponding to the pair (F, I), that is, the
coordinates x, θi0, θ

i
j are solutions to the equations (3.1), (3.3) and (3.4), we

will associate to γ(t) some momentum functions and show that they hold
equations (3.6) and (3.7), respectively.

Let (px(t), x(t)) be the solution to the equation (3.2) with x(t) laying in
the I, comparing with the geodesic equation from (3.8), we define P0 := px.
In the same way, comparing the equations (3.3) and (3.4) with the Hamilton

equations (3.8) and (3.7) for θj0 and θji , we define P
Xj

0
(t) := F j(x(t)) and

P
Xj

i
(t) := di

dxi
F j(x(t)). Then using the change rule we have

Ṗ
Xj

0
(t) =

d

dt
F j(x(t)) =

dF j

dx
ẋ = P

Xj
1
P0,

which is the equation (3.6). In the same way

(3.9) Ṗ
Xj

i
(t) =

d

dt

diF j

dxi
(x(t)) =

di+1F j

dxi+1
ẋ = P

Xj
1
P0.

Since F i(x) is a polynomial of degree k or less, we obtain Ṗ
Xj

k
(t) = 0 for all

j = 1, ·, n, and the equation (3.9) is the same as equation (3.7).
Conversely, let γ(t) be a geodesic parameterized by arc-length with the

initial condition γ(0), that is, γ(t) is the projection to the solution (p(t), γ(t))

of the Hamiltonian function (2.3), we will show that the coordinates x, θj0, θ
j
i

of the geodesic γ(t) hold the equations (3.1), (3.3) and (3.4), respectively.
Being γ(t) a solution to the Hamilton equations pθij

(t) is constant, if

aji := i!p
θji

and F j(x) := aj0 + aj1x+ · · ·+ ajkx
k for all 1 ≤ j ≤ n, then, using

these expressions and xp = PX0 , the Hamiltonian function (2.3) became

H =
1

2
(P 2

X0
+ P 2

X1
0

+ · · ·+ P 2
Xk

0
) =

1

2
(p2x + ||F (x)||2) = HF .

Thus the x-coordinate of the geodesic γ(t) is a solution to the Hamilton-
ian system of one degree of freedom with potential 1/2||F (x)||, defined by
equation (3.1), where the initial condition x(0) lays in a Hill interval I and,
so does x(t). In the same way, using the solution x(t) and the Hamilton

equation for θj0, that is, θ̇j0 = ∂H/∂p
θj0

= F j(x(t)), thus the θj0-coordinate

of the geodesic γ(t) is a solution to equation (3.3). Finally, the Hamilton

equation for θji , that is, θ̇ji = ∂H/∂p
θji

= xi

i! F
i(x(t)) is equivalent to the

horizontal equation (3.4). Thus, γ(t) is a geodesic corresponding to the pair
(F, I). �
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3.3. Geodesics Classification in Jk(R,Rn). Using the bijection between
geodesics in Jk(R,Rn) and the pair (F, I), the geodesics are classified. Let
γ(t) be a geodesic corresponding to (F, I), as said before the first dichotomy
is if the projected curve π(γ(t)) = c(t) is a line or not.

• We say that γ(t) is a line-geodesic if F (x) is the constant polynomial
vector, since equation (3.3) implies that the curve c(t) = (x(t), θ0(t))
in Rn+1 is a line.
• We say that γ(t) is a non-line-geodesic if F (x) is not the constant

polynomial vector with Hill interval I = [x0, x1], since equation
(3.2) implies that the x-dynamics takes place in I and curve c(t) =
(x(t), θ0(t)) in Rn+1 is not a line.

Let γ(t) be a non-line-geodesic corresponding to (F, I), where I = [x0, x1],
the second dichotomy refers to the qualitative behavior of the x(t) dynamic.

• We say that γ(t) is x-periodic or regular, that is, exist L(F, I) such
that x(t + L(F, I)) = x(t), if x0 and x1 are regular points of the
potential 1/2||F (x)||2, if and only if, x0 and x1 are simple roots of
1 − ||F (x)||2, if and only if, 1 − ||F (x)||2 = (x − x0)(x1 − x)q(x),
where q(x) is not zero if x is in I.
• We say that γ(t) is critical, if one or both endpoints x0 and x1 are

critical points of the potential 1/2||F (x)||2, if and only if, one or both
endpoints x0 and x1 are not simple roots of 1− ||F (x)||2. Then, by
equation (3.1), the critical points are equilibrium points of a one
degree of freedom system, and the solution x(t) has an asymptotic
behavior to the critical points.

3.3.1. Periods. x-periodic geodesics have the property that the change un-
dergone by the coordinates θij after one x-period L(F, I) is finite and does
not depend on the initial point. This is summarized in the following propo-
sition.

Proposition 3.1. Let γ(t) = (x(t), θ0(t), · · · , θk(t)) in Jk(R,Rn) be an x-
periodic geodesic corresponding to the pair (F, I). Then the x-period is

(3.10) L(F, I) = 2

∫
I

dx√
1− ||F (x)||2

,

and is twice the time it takes for the x-curve to cross its Hill interval exactly

once. After one period, the changes ∆θji := θji (t0 + L) − θji (t0) for i =

0, 1, . . . , k and j = 1, · · · , n undergone by θji are given by

(3.11) ∆θji (F, I) =
2

i!

∫
I

xiF j(x)dx√
1− ||F (x)||2

.

The proof of this Proposition is equivalent to the proofs of Proposition
4.1 from [8] (pg. 13) or Proposition 2.1 from [9] (pg. 2). In [8] an argument
of classical mechanics was used, see [12] pg. 25 equation (11.5); while, in
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[9], a generating function to find action-angle coordinates for Hamiltonian
systems was constructed, see [5] Section 50.

Then a x-periodic geodesic γ(t) corresponding to the pair (F, I) is periodic

if and only if ∆θji (F, I) = 0 for all for i = 0, 1, . . . , k and j = 1, · · · , n.

4. Abnormal Geodesics and proof of Theorem C

Proof. To prove Theorem C, we will compute the abnormal geodesics using
the Pontryagin’s maximun principle [1]. Let us look at the following optimal
control problem:

(4.1) γ̇(t) = u0X0 + u1X
1
0 + · · ·+ vnXn

0 ,

with the boundary conditions γ(0) and γ(T ) and performance the functional

(4.2) ` =

∫ T

0

√
u20 + u21 + · · ·+ u2ndt→ min,

with the condition u20 +u21 + · · ·+u2n = 1. Then the Hamiltonian associated
to the optimal control problem (4.1) and (4.2) for the abnormal case is

(4.3) H(p, q, u) = u0px +
n∑
j=1

k∑
i=0

p
θji
uj
xi

i!
.

From Pontryagin’s Maximum principle for this Hamiltonian we obtain a
Hamiltonian system for the variables p:

(4.4) ṗx = −∂H
∂x

= −
n∑
j=1

k∑
i=1

p
θji
uj

xi−1

(i− 1)!
, ṗ

θji
= −∂H

∂θji
= 0,

for all i = 0, · · · , k and j = 1, · · · , n, the maximun condition is

max
u∈Rn+1

H(p(t), q(t), u),

where u(t) and q(t) is the optimal process, and the condition p 6= 0 of
non-triviality. So, Theorem C is equivalent to showing that the optimal
process corresponds to u0 = 0 and uj constant different than zero such that
u21 + · · ·+ u2n = 1.

From the maximum condition, we obtain

(4.5) 0 =
∂H

∂u0
= px 0 =

∂H

∂uj
=

k∑
i=0

p
θji

xi

i!
;

differentiating these equations with respect to time, we get that

(4.6) 0 =
n∑
j=1

k∑
i=1

p
θji
uj

xi−1

(i− 1)!
, 0 = u0

k∑
i=1

p
θji

xi−1

(i− 1)!

with j = 1, · · · , n. The second equation in (4.6) implies that u0 = 0 or∑k
i=1 pθji

xi−1

(i−1)! = 0. If u0 = 0, then x is constant, since ẋ = u0 according
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to equation (4.1). If
∑k

i=1 pθji
xi−1

(i−1)! = 0, we can differentiate again to get

u0
∑k

i=2 pθji
xi−2

(i−2)! = 0. This equation also implies that
∑k

i=2 pθji
xi−2

(i−2)! = 0 or

u0 = 0. Following this process, it is concluded that u0 = 0, and therefore x
is constant.

First equation in (4.6) is rewritten as interior product:

0 = (u1, · · · , un) · (
k∑
i=1

pθ1i
xi−1

(i− 1)!
, · · · ,

k∑
i=1

pθni
xi−1

(i− 1)!
).

This is a lineal equation and it has (n − 1) lineal independent solutions,
which can be written in terms of the constants p

θji
and x for j = 1, · · · , n.

Hence, uj is constant.
Then, to build the abnormal geodesic γ(t) as in the prescription of Section

3, we define Fj(x) = uj and the condition u20 + · · ·+ u2n = 1, which implies
||F (x)||2 = 1. Therefore, the abnormal geodesics are line-geodesics and a
solution to the Hamiltonian flow from (2.3). �

5. Proof of Theorem D

Because that period L(F, I) in equation (3.10) is finite, we can define an
inner product in the space of polynomials of degree k or less as follows

(5.1) < P1(x), P2(x) >F :=

∫
I

P1(x)P2(x)dx√
1− F 2(x)

.

This inner product is not degenerated and will be the key to the proof of
Theorem D.

5.1. Proof of Theorem D.

Proof. It will be proceeded by contradiction. Let us assume γ(t) is a periodic
geodesic on Jk(R,Rn) corresponding to the pair (F, I), where F (x) is not

a constant polynomial vector; then ∆θji (F, I) = 0 for all i = 0, · · · , k and
j = 1, · · · , n.

In the context of the space of polynomials of degree k or less with inner

product < , >F , the condition ∆θji (F, I) = 0 for all i and j is equiva-
lent to each F j(x) being perpendicular to xi for all i ∈ 0, 1, · · · , k (0 =

∆θji (F, I) =< xi, F j(x) >F ). But {xi} is a basis for the space of polyno-
mials of degree k or less, then each F j(x) is perpendicular to any vector,
so each F j(x) is zero since the inner product is not degenerated. This is a
contradiction to the assumption that F (x) is not a constant polynomial. �
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