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Abstract—We consider a kinematic model of a mobile robot with a trailer moving on a homo-
geneous plane. The robot can move back and forth and make a pivot turn. For this model, we
pose the following optimal control problem: transfer the “robot–trailer” system from an arbitrar-
ily given initial configuration into an arbitrarily given final configuration so that the amount of
maneuvering is minimal. By a maneuver we mean a functional that defines a trade-off between
the linear and angular robot motion. Depending on the trailer–robot coupling, this problem
corresponds to a two-parameter family of optimal control problems in the 4-dimensional space
with a 2-dimensional control.

We propose a nilpotent approximation method for the approximate solution of the problem.
A number of iterative algorithms and programs have been developed that successfully solve the
posed problem in the ideal case, namely, with no state constraints. Based on these algorithms,
we propose a dedicated reparking algorithm that solves a particular case of the problem where
the initial and final robot position coincide and takes into account a state constraint on the
trailer’s turning angle occurring in real systems.

Keywords: robot with trailer, kinematic model, optimal control, nilpotent approximation, sub-
Riemannian problem
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1. INTRODUCTION

Consider a wheeled mobile robot with a trailer moving on a horizontal plane. The friction of
wheels and the mass and shape of the robot and trailer are disregarded. By a robot we mean
a leading wheelpair centered at the point (x, y) ∈ R

2
x,y with the angle θ ∈ S1

θ defining the direction
of wheel motion with respect to the abscissa axis. By a trailer we mean a passive wheelpair coupled
with the leading one at some point (see Fig. 1). The trailer position is defined by the angle ϕ ∈ S1

ϕ

of its orientation relative to the robot. Thus, the position of the robot with the trailer is defined by
a point q = (x, y, θ, ϕ) in the space M = R

2
x,y × S1

θ × S1
ϕ. The parameters lr ≥ 0, lt > lr prescribe

the distances from the coupling point to the center of the robot and to the center of the trailer,
therewith defining the configuration of the robot–trailer coupling.

The kinematic model is given by a differential system arising (see [1]) from a nonholonomic
constraint for the no-slip motion of the robot and trailer wheels. The present paper continues the
study of this model commenced in [2]. We propose a method for approximately solving the problem
of control of the “robot–trailer” system that is based on constructing a nilpotent approximation,
i.e., a simpler system preserving the important properties of the original system. Such an approach
was used in [3] to control a “robot with two trailers” system.

We consider the problem of parking a robot with a trailer. This problem can be formalized as
a two-point boundary value control problem (see [4]) in the state space M ; namely, given boundary
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74 ARDENTOV, MASHTAKOV

conditions, find a trajectory q(t) ∈ M , t ∈ [0, t1], satisfying these conditions, admissible in the
sense of nonholonomic constraints (i.e., satisfying the differential system), and minimizing a given
functional defining the weighted cost of angular and linear robot displacements.

Fig. 1. Model of wheeled mobile robot with trailer and its parameters.

The problem of controlling nonholonomic systems is widely known in robotics [1]. The kinematic
models of various mobile robots are described by control systems of the form

q̇ =

k∑
i=1

uiXi(q), q ∈M, dimM = n ≥ k, ui ∈ R, (1)

where the Xi are smooth vector fields on the manifold M .
The solution of the problem for systems (1) of the general form remains unknown. A satisfactory

solution is available only for systems of special form. The differential–geometric approach [5, 6] is
one of the most efficient techniques.

The use of trigonometric controls is investigated in [7, 8] for nonholonomic systems of a certain
kind, namely, for a class of systems transformable into a chain form. Because of its special form,
there is a simple trigonometric control that changes a specific set of coordinates, while the other
coordinates remain unchanged. Tilbury et al. [9] proposed to use trigonometric controls to move the
system to the target state simultaneously along all coordinates for systems with two-dimensional
control. In addition, they showed how polynomial controls can be used to achieve the target. Monaco
and Norman-Cyrot [10] showed that piecewise constant controls provide an exact solution to the
problem of controlling systems in chain form. The technique of chaining the system is described
in [8, 11]. Note that systems in general position and, in particular, the system arising in our problem
of controlling a robot with a trailer cannot be reduced to a chain form, but the nilpotentization
method [12] described below generates a system in a chain form.

In exceptional cases, one can find an exact optimal control law (in the sense of the minimum of
a given cost functional) for control systems. One possible approach to solving the fixed-time optimal
control problem for systems linear in the control is given by the method developed in [13]. It is based
on expanding the control function in a Fourier series and discarding terms above a certain order N .
The solution of the new finite-dimensional problem converges to the solution of the original problem
as N tends to infinity [13]. The solution thus established is said to be nearly optimal. The optimal
control problem can also be solved using invariant geometric methods [6, 14] developed for solving
optimal control problems on Lie groups. A numerical solution of systems simulating various types
of mobile robots on the plane and in space is proposed in [15].
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CONTROL OF A MOBILE ROBOT WITH A TRAILER 75

One class of control systems admitting exact solution is given by nilpotent systems. Recall that
a control system is nilpotent if the Lie brackets of the control vector fields are zero starting from
brackets of certain length. A method for controlling nilpotent systems was presented in [16]. It is
based on the possibility of moving in the direction of an arbitrarily given holonomic curve (a priori
not satisfying the nonholonomic constraint (1)) based on the Baker–Campbell–Hausdorff formula.
This allows one to calculate admissible piecewise constant controls that transfer the nonholonomic
system exactly to the final state.

Belläıche et al. [17] developed a nilpotentization technique and later applied it to a control
problem for nonholonomic systems. The paper [18] shows how to bring any control system to the
canonical form corresponding to the nilpotent approximating system in a special triangular form
that allows seeking trigonometric controls.

The solution of the optimal control problem presented in this paper also relies on the nilpo-
tentization of the original system and is based on constructing an iterative process that solves the
optimal control problem for the approximate system on each iteration. The ultimate control law
is formed by a successive application of the controls found on each iteration. We say that such
a control is suboptimal .

The paper is structured as follows. Section 2 gives the statement of Problem 1, namely, the
optimal control problem for a robot with a trailer without state constraints. In Sec. 3, using Al-
gorithm 1, we establish relationship between Problem 1 and a simpler problem (defined by the
polynomial system (10)), the so-called nilpotent sub-Riemannian problem on the Engel group [19],1

which provides a nonlinear approximation to the original problem. In the Theorem, we describe
the change of coordinates between these problems. A hybrid Algorithm 2 is used for solving the
nilpotent problem. The known optimal solutions are compared with the suboptimal trajectories
found for close boundary points. Section 4 refines the procedure for constructing a suboptimal
(state-unconstrained) solution to Problem 1 in the situation of general position (for remote bound-
ary points) with the help of Algorithm 3. Section 5 deals with the software implementation of the
algorithms presented. We pose Problem 2 (with a constraint on the trailer turning angle) and also
provide several examples of solving this problem with a modified Algorithm 3. Section 6 considers
a special case of the constrained problem, the one of reparking the trailer. To solve this problem,
we developed a dedicated algorithm, which was tested on a regular grid of values for the trailer
angle and the ratio of the robot arm lengths lr and lt. The test results are listed in Table 1. The
definitions of the main terms used in the paper are collected in the Appendix.

2. STATEMENT OF THE OPTIMAL CONTROL PROBLEM

Problem 1 (no constraints). Consider the control system

q̇ = u1X1

(
q
)
+ u2X2

(
q
)
, (2)

q = (x, y, θ, ϕ) ∈M = R
2
x,y × S1

θ × S1
ϕ, (u1,u2) ∈ R

2. (3)

Here q, x, y, θ, ϕ, u1, and u2 by default depend on the time parameter t ∈ [0, t1]; the controls u1

and u2 are real-valued piecewise continuous functions prescribing the linear and angular velocity of
motion of the robot with center at a point (x, y); and the vector fields by the controls have the form

X1(q) =

(
cos θ, sin θ, 0,−sinϕ

lt

)
,

X2(q) =

(
0, 0, 1,− lr cosϕ

lt
− 1

)
.

(4)

1 The multiplication law in the group can be found in [20, Ch. 15].
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76 ARDENTOV, MASHTAKOV

For some given μ > 0, find a curve q(t), t ∈ [0, t1], that has prescribed boundary values

q(0) = q0 = (x0, y0, θ0, ϕ0), q(t1) = q1 = (x1, y1, θ1, ϕ1) (5)

at two points, satisfies system (2)–(5), and minimizes the functional

J =

t1∫
0

√
u2
1(t) + μ2u2

2(t) d t, (6)

where the coefficient μ defines a trade-off between the linear and angular displacements.

Remark 1 . System (2)–(4) has the following symmetry (dilation):

δμ :
(
x, y, θ, ϕ, lt, lr,u1,u2

) �→ (
μx, μy, θ, ϕ, μlt, μlr, μu1,u2

)
.

Therefore, minimizing (6) is equivalent to minimizing the sub-Riemannian length [21]

t1∫
0

√
u2
1(t) + u2

2(t) d t (7)

with recomputed boundary values and robot–trailer coupling parameters.

Remark 2 . The invariance of Problem 1 under translations and rotations in the plane R2
xy allows

fixing q0 = (0, 0, 0, ϕ0) without loss of generality.

Let us calculate the following commutators (Lie brackets):

X3(q) = [X1, X2](q) =

(
sin θ,− cos θ, 0,− lr + lt cosϕ

l2t

)
,

X4(q) =
[
X1, [X1, X2]

]
(q) =

(
0, 0, 0,− lt + lr cosϕ

l3t

)
.

It follows from the Chow–Rashevskii theorem [14] that system (2)–(5) is completely controllable,
because, in view of the original assumption lt > lr ≥ 0, one has

det(X1, X2, X3, X4) = − lt + lr cosϕ

l3t
�= 0. (8)

Problem 1 corresponds to a two-parameter family of sub-Riemannian problems, namely, optimal
control problems with system (2) linear in the control, where the minimum of the sub-Riemannian
length (7) serves as the optimality criterion. Solving any such problem with specific values of the
parameters lr and lt is an open problem. The aim of the present paper is to develop a general
scheme for constructing an approximate solution for the entire family of the problems.

3. SOLUTION OF THE LOCAL PROBLEM

Local approximation to a control system by another, simpler system is widely used in control
theory. For the local approximation one usually takes the linearization of the control system.
However, for systems (2) linear in the control, the linearization gives an approximation that is too
rough. Since the control dimension is smaller than the state dimension, the linearization cannot be
completely controllable. This follows from the Rashevskii–Chow theorem [14].
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CONTROL OF A MOBILE ROBOT WITH A TRAILER 77

In the case of (2)–(4), the linearization has the form

q̇ = u1X
0
1 (q) + u2X

0
2 (q),

X0
1 (q) =

(
1, 0, 0,−sinϕ

0

lt

)
,

X0
2 (q) =

(
0, 0, 1,−1− lr cosϕ

0

lt

)
.

One can readily verify that [X0
1 , X

0
2 ](q) = (0, 0, 0, 0), and therefore, the linearization is uncontrol-

lable.
A natural replacement for the linear approximation is delivered in this case by the nilpo-

tent approximation, the simplest system retaining the complete controllability property. For sys-
tem (2)–(3), the nilpotent approximation is given by a control system of the form

˙̃q = u1X̂1(q̃) + u2X̂2(q̃), q̃ ∈ R
4, (u1,u2) ∈ R

2, (9)

where X̂1, X̂2 are the vector fields of the approximating system (see the Appendix for details).
The nilpotent approximation is constructed based on system (2) written in privileged coordinates

(see Definition 6 in the Appendix) so that the vector fields X̂i of the approximating system define
a nilpotent Lie algebra; i.e., for some N ∈ N one has[

X̂i1 ,
[
X̂i2 , . . . , [X̂iN , X̂iN+1

], . . .
]]
= 0, ∀i1, . . . , iN+1 ∈ {1, 2}.

In particular, commutators of order higher than 3 (N = 3) are zero for system (2)–(4),[
X̂i,

[
X̂j, [X̂1, X̂2]

]]
= 0, ∀i, j ∈ {1, 2}.

Remark 3 . Unlike the linear approximation, the nilpotent approximation preserves such an impor-
tant invariant as the growth vector (see Definition 1 in the Appendix). For system (2)–(3) in general
position the growth vector at a generic point is (2, 3, 4); i.e., the vector fields X1, X2, X3 = [X1, X2]
and X4 = [X1, X3] (or X4 = [X2, X3]) form a basis of the tangent space TqM at each point q ∈M .
In particular, this is the case for the robot–trailer system (2)–(4).

The notion of nilpotent approximation to control systems was introduced for the first time by
Stefani [22] and independently developed by Agrachev and Sarychev [23] and Hermes [24]. In
the present paper, we use the algorithm for calculating the nilpotent approximation proposed by
Belläıche [25], refine it for systems (2)–(3), and supplement it with the transition to a coordinate
system in which the nilpotent approximation has the canonical form (10).

Remark 4 . The tangent space of a sub-Riemannian manifold is a sub-Riemannian manifold itself.
It can be defined as a metric space using Gromov’s definition in [26]. Moreover, it has the algebraic
structure of a nilpotent Lie group. The key observation is that the structure of TqM is similar to
the structure of a real vector space with the group being nilpotent rather than abelian.

3.1. Calculation of the Nilpotent Approximation

The Belläıche method [25] for constructing nilpotent approximation in privileged coordinates is
refined for systems with the growth vector (2, 3, 4) in the following Algorithm 1. This algorithm
derives an explicit expression for the vector fields of the approximating system in the canonical
privileged coordinates that allow seeking an optimal control for the nilpotent approximation.

Algorithm 1 . The change of coordinates τ = Φ ◦ A bringing system (2)–(3) to canonical form is
constructed as follows.
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78 ARDENTOV, MASHTAKOV

1. Calculate the privileged coordinates q̃ in terms of the original coordinates q,

A : q̃ = g(q)− 1

2

(
0, 0, 0, σ1

(
g1(q)

)2
+ 2σ2g1(q)g2(q) + σ3

(
g2(q)

)2)
,

where g(q) = (g1(q), . . . , g4(q)) = Γ−1(q − q0) and Γ is the 4 × 4 matrix with entries Γij

determined by the relation Xj(q
0) =

∑4

i=1 Γij
∂
∂qi
|q0 , all the coefficients σi being calculated

by the formulas

σ1 = X1

(
X1(g4)

)
(q0), σ2 = X1

(
X2(g4)

)
(q0), σ3 = X2

(
X2(g4)

)
(q0).

Under such a change, q0 moves to the origin 0 = (0, 0, 0, 0), and the vector fields Xi are taken
to the fields X̃i = A∗Xi that form a privileged basis.

2. Using the Maclaurin series expansion of the vector fields X̃i(q̃), construct the nilpotent ap-
proximation in the coordinates q̃,

˙̃q = u1X̂1(q̃) + u2X̂2(q̃), q̃ ∈ R
4, (u1,u2) ∈ R

2,

X̂i = X̃1
i (0)∂q̃1 + X̃2

i (0)∂q̃2 +

2∑
k=1

∂X̃3
i

∂q̃k
(0) q̃k∂q̃3

+

(
∂X̃4

i

∂q̃3
(0)q̃3 +

1

2

2∑
k=1

∂2X̃4
i

∂q̃2k
(0)q̃2k +

∂2X̃4
i

∂q̃1∂q̃2
(0)q̃1q̃2

)
∂q̃4 .

3. Calculate the change of variables Φ : q̃ → q̄ : q̄ = eT4X̄4 ◦ · · · ◦ eT1X̄1(0), where the parame-
ters Ti ≥ 0 are found from the condition q̃ = eT4X̂4 ◦ · · · ◦ eT1X̂1(0), to pass from the privileged
coordinates q̃ to the coordinates q̄ in terms of which the nilpotent approximation has the
canonical form ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

˙̄q1 = u1,

˙̄q2 = u2,

˙̄q3 =
1
2
(q̄1u2 − q̄2u1),

˙̄q4 =
1
2
(q̄21 + q̄22)u2,

q̄ ∈ R
4; (10)

i.e., the vector fields X̄1 and X̄2 have the form

X̄1 =
(
1, 0,− q̄2

2
,
q̄1
2

)
, X̄2 =

(
0, 1, 0,

q̄21 + q̄22
2

)
.

Theorem. For system (2)–(4), the mapping τ has the form

q̄1 = x,

q̄2 = θ,

q̄3 =
1

2
x θ − y,

q̄4 =

(
lt

((
l2r + 2

)
θ3 + 6 θ x

(
x− lr

)
+ 6 y

(
2lr − x

)− 12l2t
(
ϕ− ϕ0 + θ

))
+ sin(ϕ0)

(
−3x(l2rθ2 + 4l2t

)− 6lrl
2
t θ

2 + x3
)

+ cos(ϕ0)
(
lrθ

((
l2r + 2

)
θ2 + 2l2t

(
θ2 − 6

)
+ 9x2

)
+ 12y

(
l2t − lrx

))
+ 3lt cos(2ϕ

0)
(
l2rθ

3 + 2lrθx− 2xy
)
+ 3lt sin(2ϕ

0)
(
−l2rθ2 + lrθ

(
θx+ 2y

)
+ x2

)
− x sin(3ϕ0)

(
x2 − 3l2rθ

2
)
+ lrθ cos(3ϕ

0)
(
l2rθ

2 − 3x2
))/(

12
(
lr cos(ϕ

0) + lt
))

.

(11)
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Proof. Calculate the commutators

X3 =

(
sin θ,− cos θ, 0,− lr + lt cosϕ

l2t

)
, X4 =

(
0, 0, 0,− lt + lr cosϕ

l3t

)
.

Note that by virtue of (8), the system of vector fields X̃i forms a basis at each point. Calculate the
coefficients σi,

σ1 = − lt cosϕ
0 sinϕ0

lt + lr cosϕ0
, σ2 =

lrlt sin
2 ϕ0

lt + lr cosϕ0
, σ3 = lrlt sinϕ

0.

It is well known [28] that two arbitrary nilpotent systems with the growth vector (2, 3, 4) are
diffeomorphic. The change of variables that takes one such system to the other is constructed as
follows. Let X̂1, X̂2 be the vector fields of the first system and X̄1, X̄2, the vector fields of the second
system with the growth vector (2, 3, 4). By computing the commutators X̂3, X̂4 and X̄3, X̄4, one
can construct a diffeomorphism that sends the fields X̂i in a neighborhood of a point q̂0 into the
fields X̄i in a neighborhood of q̄0,

Φ : O(q̂0)→ O(q̄0), Φ∗(X̂i) = X̄i.

Define mappings F and G as the composition of the flows of the vector fields X̂i and X̄i, respectively,
for time Ti,

F (T1, . . . , T4) = eT4X̂4 ◦ · · · ◦ eT1X̂1(q̂0),

G(T1, . . . , T4) = eT4X̄4 ◦ · · · ◦ eT1X̄1(q̄0).

Then the desired diffeomorphism has the form Φ = G ◦ F−1.
Let us apply items 2 and 3 in Algorithm 1 to the point q0 = (0, 0, 0, ϕ0). Straightforward

calculations and elementary simplifications lead to the change of variables (11) for the passage to
the canonical privileged coordinates. �

3.2. Search for the Roots of the Nilpotent Problem

Algorithm 1 allows finding an approximate solution to Problem 1 as a solution to the nilpo-
tent sub-Riemannian problem on the Engel group defined by the optimal control problem for the
differential system (10) in which the cost criterion is the minimum of the sub-Riemannian length
functional (7). This problem has been extensively studied recently [19, 29–32]; its optimal synthesis
is described in [30]. In the general case, the problem reduces to solving a four-dimensional system
of algebraic equations in terms of the Jacobi elliptic functions sn, cn, dn and the elliptic integrals
of the first and second kind (F and E). The left-hand side of this system is determined from
a parametrization of extremal paths defined with the so-called exponential mapping

Exp(u1, u2, k, α) =
(
q̄1(u1, u2, k, α), q̄2(u1, u2, k, α), q̄3(u1, u2, k, α), q̄4(u1, u2, k, α)

)
.

Closed-form expression can be calculated directly from the formulas given in [19]. The right-hand
side of the system is determined by the terminal point q̄(t1) = q̄1 = (q̄11, q̄

1
2, q̄

1
3, q̄

1
4). Moreover, the

dilation symmetry with respect to the parameter α present in the system allows eliminating this
parameter and reducing the system to a three-dimensional one. As a result, to solve the problem in
the general case of q̄11 q̄13 �= 0, one needs to solve a three-dimensional system of the following form:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

q̄2(u1, u2, k, 1)

q̄1(u1, u2, k, 1)
=

q̄12
q̄11

,

q̄3(u1, u2, k, 1)(
q̄1(u1, u2, k, 1)

)2 = q̄13
(q̄11)

2
,

q̄4(u1, u2, k, 1)(
q̄1(u1, u2, k, 1)

)3 = q̄14
(q̄11)

3
.

(12)
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Here the desired vector (u1, u2, k) is unique and lies in some subset of the bounded set
(0, π) × (0, 2π) × (0, 1). The appropriate subsets are described in detail in [30]. Various avail-
able numerical methods such as the Newton method and the chord method were used to find the
root (u1, u2, k) of system (12) with a fixed right-hand side. Since system (12) is given by nonele-
mentary functions, one needs initial approximations close to the desired root for the convergence of
the standard methods. Using stochastic methods combined with multistart does not produce the
desired effect. Therefore, we have developed the following algorithm for the approximate solution
of system (12).

Algorithm 2 (hybrid). Consider the system of algebraic equations Q(ν) = Q1, which has a unique
solution ν ∈ Ω ⊂ R

n for each Q1 ∈ Ξ ⊂ R
n. The hybrid algorithm of numerical search for the

solution with a certain accuracy εe > 0 and some constants m1,m2 ∈ N includes the following steps.

1. Define sets Ωj ⊂ Ω, j = 0, 1, each of which consists of a discrete collection of random points νj
i ,

i = 1, . . . ,m1.
2. Choose a point having the least error de(ν) = (Q(ν) − Q1)w(Q(ν) − Q1)T from each set Ωj ,

j = 0, 1, where w ∈ R
n×n is the matrix of weight coefficients. Denote the respective points

by νj = arg min
νj
i ∈Ωj

de(ν
j
i ).

3. On the selected points ν0 and ν1, run the chord method [33] to solve system Q(ν) = Q1. The
calculations result in a point ν2.

4. For i = 1, . . . ,m2 − 1, iteratively run the Newton method [33] for the modified system
Q(ν) = Q1+(m2−i)Q(νi+1)

m2−i+1
with the initial approximation ν = νi+1. The result is a point νi+2,

which is supplied as the initial approximation for the next iteration. After performing m2− 1
iterations, we obtain a point νm2+1. In this case, if the corresponding error is sufficiently small,
de(νm2+1) < εe, then the desired root has been found; i.e., ν = νm2+1 is the approximate so-
lution to the original system Q(ν) = Q1. Otherwise go to step 1 of the algorithm and repeat
all steps over again until the desired accuracy is achieved.

Remark 5 . Algorithm 2 was implemented in the Wolfram Mathematica programming system to
solve system (12) after selecting the diagonal matrix of weight coefficients w = diag

(
q̄11, (q̄

1
1)

2, (q̄11)
3
)
.

The software finds a vector ν = (u1, u2, k). Here two general cases ν ∈ N1∪N2 that define formulas
for the optimal control and for the corresponding curve q̄(t) are possible [19].

3.3. Construction of the Control for the Original Problem

We have thus proposed Algorithm 1, which permits locally reducing Problem 1 to a nilpotent
sub-Riemannian problem on the Engel group. To construct an optimal control in the nilpotent
problem in the general case, Algorithm 2 is used to solve the system of algebraic equations (12).
The resulting root ν = (u1, u2, k) ∈ Nc, c ∈ {1, 2}, determines the desired control as follows:

– Calculate the parameters p1 = F (u1, k), p2 = F (u2, k), and α = q̄1(u1,u2,k,1)|q̄1(u1,u2,k,1)|
q̄11 |q̄11 | , where

F is the normal Legendre elliptic integral of the first kind; the parameter k determines the
modulus of the elliptic integral.

– The parameters t1 and φ0 are determined using the expressions [19]

c = 1 ⇒ t1 =
2p1√|α| , φ0 =

p2 − p1√|α| ,
c = 2 ⇒ t1 =

2kp1√|α| , φ0 =
k(p2 − p1)√|α| .
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– The optimal control is determined by the formulas

c = 1 ⇒
u1 = −2k signα

μ
sn

(√
|α|(φ0 + t), k

)
dn

(√
|α|(φ0 + t), k

)
,

u2 = −signα
(
1− 2dn2

(√|α|(φ0 + t), k
))

;

c = 2 ⇒
u1 = ∓2 signα

μ
sn

(√|α|(φ0 + t)

k
, k

)
cn

(√|α|(φ0 + t)

k
, k

)
,

u2 = −signα
(
1− 2cn2

( √|α|(φ0 + t)

k
, k

))
,

(13)

where the functions sn, cn, and dn are essentially the elliptic sine, the elliptic cosine, and the
delta amplitude.

3.4. Comparison with the Optimal Control

Problem 1 has not been solved in the general case, but there are known optimal (in the sense
of the minimum of functional (7)) controls for parking a robot (without a trailer); see [34–36].
The corresponding sub-Riemannian problem is embedded in Problem 1: having taken the opti-
mal controls (u1(t),u2(t)), t ∈ [0, t1] for the robot (without a trailer) and substituted them into
system (2), one can numerically integrate this system for fixed values of ϕ0, lr, and lt to obtain
a path q(t), t ∈ [0, t1] leading to the point q1 = q(t1). Note that this path will be optimal in
Problem 1 for μ = 1.

This class of optimal trajectories was used for comparison with suboptimal trajectories con-
structed in the present paper by the nilpotent approximation method. To this end, the resulting
values of q1 = (x1, y1, θ1, ϕ1) were substituted into formula (11) to calculate the terminal point q̄1

in the nilpotent problem. Algorithm 2 was used to find the corresponding value of the root ν de-
termining the desired control by formulas (13). Finally, the suboptimal solution to Problem 1 was
calculated by integrating system (2) with the resulting control.

To compare the resulting solutions, let us introduce the following measure of closeness between
the terminal point and a point on the determined suboptimal trajectory:

d
(
q(t), q1

)
:=

((
x(t)− x1

)2
+

(
y(t)− y1

)2
+

(
θ(t)− θ1

)2
+

(
ϕ(t)− ϕ1

)2
+ 4l2r sin

2 θ(t)− θ1

2
+ 4l2t sin

2 ϕ(t)− ϕ1

2

)
.

In addition, we choose the final time T on the suboptimal trajectory,

T = argmin
t

d
(
q(t), q1

)
. (14)

Remark 6 . When choosing the positive integer parametrization u2
1 + u2

2 ≡ 1 for μ = 1, we
have J = t1 for the optimal solution and J = T for the suboptimal one.

Figures 2–4 give a comparison of the trajectories. The dashed line denotes the optimal solution;
the solid line, the suboptimal one; the grey circumference of small size defines the terminal point q1;
the grey dot corresponds to the original final point on the suboptimal solution; and the black dot
is the q(T ) calculated by formula (14). Figures 2 and 3, with a small time t1 = 2, demonstrate a
rather tight correspondence between the optimal and suboptimal solutions, but, as can be seen from
Fig. 4, such correspondence is violated for a sufficiently large t1, hence the necessity for creating a
global solution algorithm.
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Fig. 2. q1 = (−0.90724;−0.45537;−0.29433;−0.5608), accuracy d
(
q(T ), q1

)
= 0.1025,

for the optimal solution J = 2 (for the suboptimal solution J = 1.975927).

Fig. 3. q1 = (1.21571; 0.831468; 0.387799; 0.119918), accuracy d
(
q(T ), q1

)
= 0.08905,

for the optimal solution J = 2 (for the suboptimal solution J = 2.10794).

Fig. 4. q1 = (−0.18761; 1.74623;−0.178081; 2.12067), accuracy d
(
q(T ), q1

)
= 0.50614,

for the optimal solution J = 4 (for the suboptimal solution J = 3.51347).

4. GENERAL SOLUTION SCHEME: REDUCTION TO A SERIES OF LOCAL PROBLEMS

Based on Algorithm 1, which solves Problem 1 locally, we have developed a global algorithm for
the general case of remote boundary points q0 and q1.
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Algorithm 3 . Consider the control problem (2)–(5) in which the condition that the trajec-
tory q(t) hits the terminal point q(t1) = q1 has been replaced with the condition of entering
some ε-neighborhood of the point q1, d

(
q(t1), q

1
)
< ε.

Let m3 ∈ N be some constant. Then the suboptimal control of the problem under consideration
is constructed as follows.

1. Use Algorithm 1 and calculate the point q̄1 using formula (11) for q = q1. Use Algorithm 2
to find the root ν1 of system (12) and construct the control by formulas (13). Further,
substituting it into system (2)–(5) and, numerically integrating the resulting expressions,
obtain the trajectory q0(t), t ∈ [0, t01], with the initial condition q0(0) = q0.

2. If d0 = d
(
q0(t

0
1), q

1
)
< ε, then the trajectory q0(t), t ∈ [0, t01], delivers an approximate solution

with the desired accuracy. Otherwise, the interval [0, t01] is divided into m3 identical parts
and we successively start the calculation of nilpotent approximations at the points q0

(
it01
m3

)
,

i = 1, . . . ,m3, just as it has been done in the first item for the point q0. Denote the correspond-
ing trajectory for which the initial condition qi(0) = q0

(
it01
m3

)
is satisfied by qi(t), t ∈ [0, ti1], and

the corresponding distances, by di = d
(
qi(t

i
1), q

1
)
. Then we select a number j = arg min

i=0...m3

di,

and the procedure described in this item is now applied to the trajectory qj(t), t ∈ [0, tj1].

Fig. 5. q1 = (−0.18761; 1.74623;−0.178081; 2.12067), accuracy d
(
q(t1), q

1
)
= 0.02739,

for the optimal solution J = 4 (for the suboptimal solution J = 3.9688).

Figure 5 gives an example of refining the solution with Algorithm 3; the black dot on the
trajectory corresponds to some intermediate point qi(0) at which the additional approximation has
been calculated. As is seen from the figure, in this case one extra iteration suffices to produce
an acceptable proximity between the optimal and suboptimal solutions.

5. SOFTWARE IMPLEMENTATION AND EXAMPLES
OF PARKING ALGORITHM OPERATION

We developed software for constructing a suboptimal control for the approximate solution of
Problem 1 based on nilpotent approximation in the Wolfram Mathematica environment. Proceeding
from the input data lr, lt, ϕ0, x1, y1, θ1, ϕ1, ε, the software constructs control functions u1, u2

and the corresponding robot–trailer motion path q(t) issuing from the point q0 = (0, 0, 0, ϕ0) and
arriving in an ε-neighborhood of the point q1 = (x1, y1, θ1, ϕ1).

The parking software was tested for various robot configurations 0 ≤ lr < lt. The results indicate
that in most tests the software constructs a control under which the jackknifing effect [37] occurs,

AUTOMATION AND REMOTE CONTROL Vol. 82 No. 1 2021



84 ARDENTOV, MASHTAKOV

meaning a collision of the robot and the trailer. Such solutions are inadmissible in practice, and
therefore, we additionally considered the following problem, taking this natural restriction on the
trailer turning angle into account.

Problem 2 (with constraints). Consider the robot–trailer system (2)–(4). The following constraint
is given for trailer’s turning angle:

|ϕ(t)| ≤ ϕmax < π. (15)

Find a curve q(t) =
(
x(t), y(t), θ(t), ϕ(t)

)
satisfying the boundary conditions (5) and minimizing

the cost functional (6).

To solve Problem 2, we used the natural modification of Algorithm 3 in which the corresponding
paths qi(t), i = 0, 1, . . ., are constructed on the trimmed interval t ∈ [0, t̃i1], t̃

i
1 ≤ ti1, on which

condition (15) is satisfied. In the software implementation, the parameter μ is considered to be
free and its value is chosen at the start of the program so as to ensure the least error d

(
q0(t

0
1), q

1
)
.

Figures 6–8 present several examples of parking with the software developed. The black dashed
line indicates the initial robot position; the required final position is designated with solid black
color; the black line corresponds to the robot motion path constructed with the software; the grey
dashed line denotes some intermediate states of the robot with a trailer along the constructed
trajectory (including the terminal state). Note that Problem 1 still remains open, and the existing
methods for solving the control problem (2)–(5) do not take into account the optimality criterion (6).
A comparison of the determined parking paths with the trajectories obtained by other methods
requires separate consideration. The known methods [37, 38] for solving the control problem (2)–(5)
are mainly aimed at allowance for the phase constraints in the plane (x, y), which often determine
the desired trajectory. Namely, in the plane (x, y) one seeks the so-called holonomic trajectory
connecting the boundary value (5) with no allowance for nonholonomic constraints represented by
the differential system (2). Then a collection of intermediate values is isolated on the holonomic
trajectory and a nonholonomic trajectory connecting pairwise close intermediate values is sought
with the help of various local methods. In general position, such an approach leads to a solution
with a large scale of maneuver.

Next, consider the special case of Problem 2 in which the initial and final robot positions coincide.

6. TESTING TRAILER REPARKING ALGORITHM

Based on the general parking algorithm, we developed a dedicated algorithm for trailer repark-
ing, i.e., for parking under the condition x1 = y1 = θ1 = 0. The final point for the nilpotent
approximation of reparking is calculated in the canonical form using the formula

q̄1 =

(
0, 0, 0,

l3t (ϕ
1 − ϕ0)

lt + lr cosϕ1

)
.

Fig. 6. Example of parking.
On the left: (lt, lr) = (10, 4), x1 = 1, y1 = 4, θ1 = ϕ1 = ϕ0 = 0, ϕmax =

π

2
with μ = 0.15 and d

(
q(t1), q

1
)
= 0.061644.

On the right: (lt, lr) = (10, 2), x1 = −26, θ1 = π, y1 = ϕ1 = ϕ0 = 0, ϕmax =
3π

4
with μ = 0.05 and d

(
q(t1), q

1
)
= 0.0264575.
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Fig. 7. Example of parking.

On the left: (lt, lr) = (6, 3), x1 = −11, y1 = 4, θ1 =
π

2
, ϕ1 = −π

3
, ϕ0 =

π

6
, ϕmax =

3π

4
with μ = 0.5 and d

(
q(t1), q

1
)
= 0.057446.

On the right: (lt, lr) = (9, 2), x1 = 3, y1 = −5, θ1 = π/2, ϕ1 =
π

12
, ϕ0 =

π

3
, ϕmax =

3π

4
with μ = 0.512 and d

(
q(t1), q

1
)
= 0.046904.

Fig. 8. Example of parking: (lt, lr) = (10, 1), x1 = −35, y1 = 13, θ1 =
2π

3
, ϕ1 = 0, ϕ0 =

π

6
, ϕmax =

3π

4
with μ = 0.5 and d

(
q(t1), q

1
)
= 0.042426.

This case is of interest in view of the fact that, for a nilpotent problem, each point of such a form
is hit by a one-parameter family of optimal trajectories (as opposed to the situation of general
position, in which there exists only a unique optimal solution)—an eight-curve shaped elastica
(Bernoulli’s lemniscate). Along with the variation in the parameter μ, in this case we have a two-
parameter family of nilpotent approximations among which one can find a solution that sufficiently
precisely transfers the original system from the initial position to the final one and satisfies the
state constraint (15). A solution to this problem is found with Algorithm 3 in the form of the
trajectory q0(t) without considering the trajectories qi(t), i = 1, . . . ,m3.

Note that by selecting the scale we can arbitrarily fix the value of lt > 0 without loss of generality.
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In the Wolfram Mathematica software system, we developed a program that constructs a repark-
ing problem solution q(t), t ∈ [0, t1] with accuracy d

(
q(t1), q

1
)
< 1/10 and with the additional

condition
max
t∈[0,t1]

|ϕ(t)| − ϕmax < 1/10

on the maximum trailer angle. The program for seeking a suitable solution makes use of the standard
functions ParametricNDSolveValue and FindMinimum of the software system.

We considered the following collection of tests. Let lt = 10 and lr = 0, 1/2, 1, 3/2, . . . , 5. Set the
maximum angle ϕmax = 3π/4 as well as the trailer’s angle mesh

ϕ0, ϕ1 ∈ Φ = {πi/12 | i ∈ {−6, . . . , 6}} , ϕ0 �= ϕ1.

Denote the trajectory that the software constructs based on the parameters lr, ϕ0, and ϕ1 by

q(lr,ϕ0,ϕ1)(t), t ∈ [0, t1].
(Formally, the value of t1 also depends on lr, ϕ0, and ϕ1; this will be meant in the sequel).

Let us determine the maximum error

dΦ(lr) = max
ϕ0,ϕ1∈Φ

d
(
q(lr,ϕ0,ϕ1)(t1), q

1
)
,

as well as the maximum deviation from the maximum angle

maxΦ(lr) = max
ϕ0,ϕ1∈Φ

( max
t∈[0,t1]

|ϕ(lr,ϕ0,ϕ1)(t)| − ϕmax),

where ϕ(lr,ϕ0,ϕ1)(t) is the corresponding component of the trajectory q(lr,ϕ0,ϕ1)(t).
Table 1 lists the results of testing in the form of maximum error and maximum deviation

from ϕmax.

Table 1. Testing trailer reparking

lr 0 1/2 1 3/2 2 5/2 3 7/2 4 9/2 5

dΦ 0.027 0.028 0.027 0.03 0.078 0.03 0.026 0.03 0.038 0.071 0.058

maxΦ 0 0 0 0 0 0 0 0 0.059 0.085 0.038

The tests have shown that for any lt > 2lr and ϕ0, ϕ1 ∈ [−π/2, π/2] there exists a nilpotent
approximation that allows transferring the robot with coupling (lt, lr) from the state (0, 0, 0, ϕ0)
into the state (0, 0, 0, ϕ1) with an error dΦ(lr) < 1/10 and with the maximum absolute value of
trailer’s turning angle 3π/4 + 1/10. For specific values of (lt, lr) calculated from the actual robot
model, one can develop a more precise specialized reparking algorithm.

There is a known solution [34–36] of the sub-Riemannian problem describing the optimal control
of a robot without a trailer. The corresponding sub-Riemannian length provides a lower bound for
the sub-Riemannian length (7) in the problem considered in the present paper. At the same time,
the case of reparking permits one to describe the upper bound for the sub-Riemannian length (7),
a fact that will help in the future analysis of the problem in hand.

7. CONCLUSIONS

In the present paper, we have considered the problem of controlling a mobile robot with a trailer
moving on a plane. The following main new results have been produced:

– An algorithm is proposed for constructing a nilpotent approximation for the “robot–trailer”
system in the canonical coordinates (Algorithm 1).
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– The change of variables that leads the nilpotent approximation to the canonical form (the
Theorem) has been found in closed form; in this case, the change of optimal control by the
nilpotent approximation to the robot–trailer system is reduced to the nilpotent problem on
the Engel group.

– A hybrid algorithm and software for constructing a solution to the system of algebraic equa-
tions that determine the optimal control in the nilpotent sub-Riemannian problem on the
Engel group have been developed (Algorithm 2).

– An algorithm and software for globally solving the problem of parking a robot with a trailer
with no constraints on the state variables have been developed (Algorithm 3).

– Based on the algorithms developed, a dedicated algorithm and reparking software have been
created that solve a particular case of the problem and take into account the state constraint
on the trailer turning angle.

The optimal control in the nilpotent sub-Riemannian problem is sought using Algorithm 2 for
solving the system of three equations depending on elliptic integrals of the first and second kind.
It should be noted that when introducing state constraints on the trailer angle, there can be cases
where the global Algorithm 3 modified for solving the constrained Problem 2 requires too many
iterations. To overcome this difficulty, it looks promising to develop an algorithm that uses nilpotent
approximation in the sub-Riemannian case only for trailer reparking: first, the robot with the trailer
is transferred to the final position while disregarding the trailer and when moving only forward (for
example, along the path of Dubins’ car, consisting of a combination of circular arcs and straight-line
segments [39], or along the Euler elastica [40]), and then the trailer is transferred into the required
position using the reparking algorithm. In the future, we plan to compare the proposed algorithms
according to the criterion (6) and test the developed software for controlling a real model of a robot
in the framework of solving Problem 2 with a constraint on trailer’s turning angle based on the
specific model of the robot.

In this paper, it is meant that the robot has a capability of setting an arbitrary velocity of
tug wheels and, accordingly, its linear and angular velocity. The mathematical model allowing for
a constraint on the velocities of robot’s wheels naturally leads to the notion of a sub-Finsler structure
on M . The corresponding sub-Finsler problem is by definition given by system (2)–(5) with the
minimization of time t1 → min (or the length of the path on the plane (x, y)) and restriction of
control to some convex set (u1,u2) ∈ Ω ⊂ R

2 [41]. Note that the considered Problem 1 is equivalent
to a sub-Finsler problem for Ω = Ωμ := {(u1,u2) ∈ R

2 | u2
1 + μ2u2

2 ≤ 1}. In the sub-Finsler case,
the set Ω is determined based on the particular model, for example, the case where Ω is a convex
polygon (quadrangle) represents an important subclass of sub-Finsler problems in which the optimal
control is, as a rule, piecewise constant.

To conclude with, note that the proposed Algorithm 1 and the Theorem can be used not only
for approximating sub-Riemannian problems, i.e., problems with no constraints on control and with
the minimization of the sub-Riemannian length (7), but also for a more general class of sub-Finsler
problems.

APPENDIX

Let M be a smooth manifold of dimension dimM = n.
Denote by TqM the tangent space to M at a point q ∈M .
Suppose that on M we are given a family F = {X1, X2} of two smooth vector fields X1, X2 ∈

Vec (M) satisfying the full rank conditions

Lieq F = TqM, ∀q ∈M,
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where Lieq F denotes the Lie algebra generated by the system F at the point q,

Lieq F = span (X1(q), X2(q), [X1, X2](q), . . . , [Xi, [. . . , [X1, X2] . . .]](q) | Xi ∈ F) .

Here the brackets designate the commutator (Lie bracket) of vector fields,

[X1, X2](q) =
d

dt

∣∣∣
t=0

(
e−

√
tX2 ◦ e−

√
tX1 ◦ e

√
tX2 ◦ e

√
tX1(q)

)
∈ Vec(M),

where etXi(q) stands for the flow of the vector field Xi ∈ Vec (M) from the point q ∈ M in time t,
i.e., the solution of the Cauchy problem γ̇(t) = Xi(γ(t)), γ(0) = q.

By Ls(q), s ∈ N, we denote the vector spaces generated by the values of the Lie brackets of the
fields X1, X2 of length ≤ s at the point q (the fields Xi themselves are brackets of length 1):

L1(q) = span
(
X1(q), X2(q)

)
,

L2(q) = span
(
L1(q) + [L1,L1](q)

)
,

. . . . . . . . . . . . . . .

Ls(q) = span
(
Ls−1(q) + [L1,Ls−1](q)

)
.

The full rank condition guarantees that for any point q ∈M there exists a least integer r = r(q)
such that dimLr(q) = n. In other words, the system F defines a distribution in the tangent space
with the flag

L1(q) ⊆ L2(q) ⊆ · · · ⊆ Lr−1(q) ⊂ Lr(q) = TqM. (A.1)

Definition 1. A growth vector of the system F at a point q is the vector(
dimL1(q), . . . , dimLr(q)

)
.

Fix the dimension dimM = 4 and consider the control system

q̇ = u1X1

(
q
)
+ u2X2

(
q
)
, (A.2)

where the trajectory q = q(t) ∈ M , t ≥ 0, is a piecewise smooth curve, the controls u1, u2 are
real-valued piecewise continuous functions, and the smooth vector fields X1, X2 ∈ Vec (M) form
a system with growth vector (2, 3, 4),

span(X1(q), X2(q), [X1, X2](q), [X1, [X1, X2]](q)) = TqM, ∀q ∈M.

Next, for system (A.2) we will describe the construction of the nilpotent approximation—in
a certain sense, the simplest system with the growth vector (2, 3, 4)—whose trajectories locally
approximate the trajectories of the original system. Saying “the simplest,” we mean the following
property: the vector fields of the approximate system form a nilpotent Lie algebra in which all
Lie brackets are zeros starting from the third order. Such an approximate system is the easiest to
construct in special coordinates describing the motion of the system in the directions of the kernel
vector fields and their commutators, the so-called privileged coordinates. Before describing the
construction itself, we introduce some definitions; see [27] for details.

Definition 2. A change of coordinates for system (A.2) is a diffeomorphism σ : M → M :
q �→ σ(q). The differential of this change will be denoted by σ∗ : TqM → Tσ(q)M : Xi �→ σ∗(Xi),
i = 1, . . . , 4.

Definition 3. For system (A.2), the order of the differential operator X at the point q0 is
the minimum number s ∈ N such that for any function σ having the order p = min

{
p ∈ N |
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Xk1
. . . Xkp

(σ)(q0) = 0, kj ∈ {1, 2}
}
, all derivatives of order s + p along the fields X1, X2 of X(σ)

are zero at this point,
Xk1

. . . Xks+p
X(σ)(q0) = 0, kj ∈ {1, 2}.

Definition 4. The system of local coordinates q̃ = (q̃1, . . . , q̃4) onM with the center at a point q0,
defined by the change

(
q̃1(q), . . . , q̃4(q)

)
=

(
σ1(q), . . . , σ4(q)

)
, is said to be linearly adapted at the

point q0 if the differentials d q̃1, . . . , d q̃4 form a basis of T ∗
q0M adapted to the flag {0} = L0(q0) ⊂

L1(q0) ⊂ L2(q0) ⊂ L3(q0); i.e., Li(q0) = span( ∂
∂q̃1
|q0 , . . . , ∂

∂q̃i
|q0), i = 1, 2, 3. In this case, the

order of the coordinate q̃i at the point q0 is the minimum number p ∈ N such that all derivatives
of order p along the fields Xkj

of σi are zero at this point, Xk1
. . . Xkp

(σi)(q
0) = 0, kj ∈ {1, 2},

where Xkj
(f) = 〈∇f,Xkj

〉 denotes the derivative of the function f in the direction of the field Xkj
,

the operation 〈, 〉 is the inner product, and ∇ is the operation of taking the gradient.

Definition 5. For system (A.2) written in linearly adapted coordinates q̃, the weight of the
coordinate q̃i is the least number ωi ∈ N such that Lωi(q0) does not vanish identically.

Definition 6. The system of local coordinates q̃ = (q̃1, . . . , q̃4) centered at a point q0 is called
privileged for system (A.2) if

– (q̃1, . . . , q̃4) are linearly adapted at the point q0.
– The order of the coordinate q̃i at the point q0 equals the weight ωi.

Now that we have all the definitions needed, let us describe the construction of the nilpotent
approximation. The nilpotent approximation for system (A.2) is constructed in the space R4 in the
following manner:

1. System (A.2) is written in the privileged coordinates q̃,

˙̃q = u1X1(q̃) + u2X2(q̃), q̃ ∈M, (u1,u2) ∈ R
2. (A.3)

2. The vector fields Xi(q̃) are expanded in a Maclaurin series with the subsequent grouping of
terms of the same order,

Xi(q̃) = X
(−1)
i (q̃) +X

(0)
i (q̃) +X

(1)
i (q̃) +X

(2)
i (q̃) + . . . .

3. Terms starting with the zero order are dropped, and the remaining terms of order −1 form the
kernel vector fields X̂i(q̃) = X

(−1)
i (q̃) of the approximate system—the nilpotent approximation

˙̂q = u1X̂1(q̂) + u2X̂2(q̂), q̂ ∈ R
4, (u1,u2) ∈ R

2. (A.4)

The nilpotent approximation (A.4) for the original system (A.3) possesses the following key
properties:

1. All commutators of order ≥ 3 of the vector fields X̂1, X̂2 are zero.
2. The growth vector of system (A.4) is (2, 3, 4).
3. Under the controls u1(t) and u2(t), the trajectory q̂(t) of system (A.4) locally (for small t > 0)

approximates the trajectory q̃(t) of system (A.3).

Chapter 8 of Montgomery’s book [21] explains the relation between the original system and its
nilpotentization (nilpotent approximation): it is given by the Gromov–Mitchell theorem (8.4.1).
An estimate of the proximity of paths is given in Sec. 8.7. More details on the construction of the
nilpotent approximation can be found in Belläıche’s monograph [25]. Section 7 deals with estimates
on distances; in particular, see Assertion 7.29 on the closeness of the trajectories of the original and
approximating systems.
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Remark 7 . In the general case of dimM = n, for the original q̃(t) = (q̃1(t), ..., q̃n(t)) and the
approximating trajectory q̂(t) = (q̂1(t), ..., q̂n(t)) in privileged coordinates issuing from one point,
one has the local estimate |q̃i(t) − q̂i(t)| ≤ Ctwi+1, where C is a constant and wi is the weight of
the coordinate q̃i (the degree of nonholonomity in the direction q̃i, which is calculated as the least
depth of the flag of the distribution (A.1) that does not set to zero the ith direction).

In the present paper, for the trajectories q̃(t) and q̂(t) of systems (A.3) and (A.4), one has the
estimate

|q̃i(t)− q̂i(t)| ≤ Ctwi+1, w = (1, 1, 2, 3),

where C is a constant defined by the form of the vector fields Xi and the initial point q0.
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25. Belläıche, A., The tangent space in sub-Riemannian geometry, in Sub-Riemannian Geometry , Basel:
Birkhäuser, 1996, pp. 1–78.

26. Gromov, M., Lafontaine, J., and Pansu, P., Structures métriques pour les variétés riemanniennes, in
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