The Heckscher-Ohlin Model: Features, Flaws, and Fixes

II: What's Not to Like about the H-O Model?

> Alan V. Deardorff University of Michigan

Themes of the 3 Lectures, Again

- The HO Model is largely well behaved in 2 dimensions, even when you include trade costs
- In higher dimensions, it is not so well behaved, especially when you include trade costs
- Various modifications and extensions of the HO model offer some promise of making it behave better

Outline

- Flaws of the HO Model
 - Minor Inconveniences of the 2×2 Model
 - Major Inadequacies in Higher Dimensions
 - Indeterminacy of production and trade
 - Hypersensitivity to Trade Costs
 - Specialization
 - What Would a General Model Look Like?

Minor Inconveniences of the 2×2 Model

- The Prediction of Factor Price Equalization (FPE)
 - Ohlin's belief in "only a tendency toward FPE" is
 - Wrong, in the exact version of the model that we have, but
 - Much easier to believe about the real world
 - But trade costs
 - Suffice to prevent complete FPE
 - Preserve tendency toward FPE in 2x2 Model

Minor Inconveniences of the 2×2 Model

- Transitions among equilibrium types are abrupt
 - I.e., variables vary continuously, but not smoothly (not continuously differentiable)
 - Example: Effects of factor endowments on trade: T_vI

Minor Inconveniences of the 2x2 Model

- Factor Price Insensitivity (Learner and Levinsohn's variation on FPE)
 - Factor prices depend, perhaps strongly, on factor endowments up to the point of diversification, then not at all:

Minor Inconveniences of the 2×2 Model

- Hard to apply to real world data
 - What are the two sectors?
 - Exports and imports?
 - What if they change?
 - Gross or net?
 - Capital- and labor-intensive goods?
 - How do you draw the line?
 - Both are traded both ways
 - What are the two factors?
 - If two countries, second country doesn't match HO assumptions (e.g., factor mobility)
 - Doesn't allow for reality of intra-industry trade

 These minor problems in two dimensions may suggest simply extending the HO Model to more goods, factors, and countries.

- G goods, F factors, C countries

- Immediate problem:
 - -G > F? Production is indeterminate
 - -G = F
 - Implausible
 - Not helpful (too many determinants of trade)
 - G < F
 - Specific factors model
 - Where did the specific factors come from?

- Production Indeterminacy
 - Enough to consider G=3, F=2
 - If prices align so that all three goods <u>can</u> be produced, then infinitely many possible production patterns are possible
 - Implies indeterminacy of trade also
 - World market equilibrium does not resolve this (see Melvin 1968)

3-Good Lerner Diagram: Production Indeterminacy

- Production Indeterminacy
 - Alternative is prices that do <u>not</u> permit all three goods to be produced: Two-Cone HO Model

- Production Indeterminacy
 - Two-cone model is attractive in many ways,
 - but with G>>F, there will be multiple goods in each cone,
 - and indeterminacy persists within cones.

Many-Good Lerner Diagram: Two-Cone Model

Can Trade Costs Help?

- Yes, but they create other problems
- Example 1: Suppose small country, A, trades with rest of world that has
 - More goods than factors
 - FPE
 - No trade costs
 - Then world prices align so that, without trade costs, production is indeterminate
 - Cases:
 - 1. Country A has small trade cost, t, on just one good
 - 2. Country A has equal % t on each good
 - 3. Country A has unequal % t on each good

- Small trade cost on good X causes it to become nontraded.
- With factors X_N then used to satisfy domestic demand,
- diversification cone shrinks

Country A's factor price line must

- Be tangent to green for any good it exports
- Lie inside (or be tangent to) red for any good it imports
- Lie between red and green for nontraded

Country A

- <u>Cannot</u> export middle good (or goods, if there were more)
- <u>Cannot</u> export <u>both</u> extreme goods
- Thus, even a country in the middle of the world's range of factor endowments must export from the extremes Odd!

Nottingham II

The Source of Indeterminacy

- Production and trade indeterminacy requires
 - More goods than factors (G>F)
 - Also, a country's factor prices must be such that there are more goods than factors that it <u>both</u>
 - Produces, and
 - Trades
- In the example (Case 2.) that is not possible
- See the possible factor prices below

- X: Exported
- Y: Not produced (imported)
- Z: Not produced (imported)

- X: Exported
- Y: Produced & imported
- Z: Not produced (imported)

- X: Exported
- Y: Not traded
- Z: Not produced (imported)

- X: Exported
- Y: Not traded
- Z: Produced & imported

- X: Not traded
- Y: Not traded
- Z: Not traded

The Source of Indeterminacy

- Can indeterminacy arise with G>F and trade costs?
- Yes, but it requires trade costs and prices to align perfectly
 - This makes the indeterminacy itself "unlikely"
 - But it also implies that production and trade are "hypersensitive" to trade costs
- See Example, Case 3.

Trade cost is smaller for Y than for Z

- X: Exported
- Y: Produced and imported
- Z: Produced and Imported

Production is indeterminate:

 With endowment E⁰, production of Y or Z can be zero

But <u>now</u>, a slight change in trade cost of any good can force output of either Y or Z to zero

Examples:

Rise in t_z forces import of Z to zero

Fall in t_z forces import of Y to zero

- This is just one example of how both production and trade in the HO model are very sensitive to trade costs:
 - Taking the model literally, an "epsilon" change in trade costs can cause positive trade and/or production to appear or disappear
 - Behavior is discontinuous in trade costs
 - I call this "hypersensitivity"

- Causes of hypersensitivity that I'm aware of
 - Indeterminacy with G > F
 - Product homogeneity: Nobody cares with whom they trade, except for trade costs
 See Example 2

- Example 2:
 - F=2, G=2, C=3
 - Country A is small compared to both B and C
 - B and C have zero trade costs between them
 - A has trade costs with both B and C,
 - but these may be different

Nottingham II

- Case 1:
 - B and C identical, thus same autarky prices
 - A is capital abundant compared to B and C, so A has comparative advantage in X
 - A will trade based on 2x2 HO model, exporting X and importing Y
 - With whom A trades depends on trade costs
- Let
 - $T_{\rm IJK}$ be net export of good I from country J to country K, and
 - t_{IJK} be iceberg transport cost for that trade flow

Nottingham II

Effects of Increasing t_{XAB}, Case 1.

• A's trade flows with B and C both change discontinuously at $t_{XAB}=t_{XAC}$ T_{XAC}

Nottingham II

t_{XAC}

34

 t_{XAB}

t_{XAB}

- Case 2:
 - If B and C have different factor endowments, but still no trade cost between them, then
 - A's comparative advantage depends on its autarky price relative to B and C's free trade price
 - Again, who it trades with depends discontinuously on its bilateral trade costs
 - (But having these trade costs differ is a bit weird, given the zero trade cost between them)

- Case 3:
 - If B and C have different factor endowments, and trade costs between them, then
 - A's comparative advantage can depend on its factor endowments relative to just B or C, depending on which it is closest to ("Local Comparative Advantage")
 - Here the response of trade (that is, of what A trades as well as with whom) to trade costs does <u>not</u> seem to be hypersensitive

- With multiple countries, HO Model with trade costs predicts relatively <u>few</u> bilateral trade flows
- This cannot be seen in the 2x2x2 model, where so few are possible
- As number of countries grows, number of <u>possible</u> bilateral trade flows grows with square of C. Maximum number of <u>equilibrium</u> trade flows (except with zero probability) grows only with C.

• Argument

- Suppose first that all factor prices and all trade costs are arbitrary (random)
- Factor prices
 - Determine production costs in each country
 - And together with trade costs determine prices of exports to each other country
- In equilibrium each country
 - Imports each good only from the <u>one</u> lowest cost other country (countries tie only with zero probability)
 - Or does not import a good at all, buying only from itself

Nottingham II

- Argument (cont.)
 - Maximum equilibrium trade flows would be one for each good and country, except for lowest-cost country which would not import
 - Let R be the number of good/country-pair
 "routes" along which trade will take place
 - With arbitrary factor prices R will be at most $R_1 = G(C-1)$

- Argument (cont.)
 - But factor prices are <u>not</u> arbitrary: they adjust to achieve equilibrium
 - Suppose that they adjust,
 - Not to achieve equilibrium in factor markets,
 - But to achieve the largest number of possible equilibrium active trade routes
 - That would require equating export prices (production cost plus trade cost) of additional countries in destination countries
 - For each trade route that is not active with arbitrary factor prices, adjustment now seeks an equation of its export price with the price that is active

Nottingham II

- Argument (cont.)
 - There are only F factors and C countries, so only FC factor prices to achieve such equalities (one of which must be invariant as numeraire)
 - Thus number of additional trade routes that can be activated by adjusting factor prices (except by zeroprobability coincidence) is FC- 1
 - Result is a new upper limit on the active trade routes:

 $R_2 = G(C - 1) + FC - 1$

Nottingham II

- Argument (cont.)
 - In the HO Model factor prices adjust for a different purpose, but they can't achieve more active trade routes than this. Thus the number of active trade routes in the HO Model, R_{HO}, is

$$R_{HO} = R_2 = G(C - 1) + FC - 1$$

Nottingham II

- Argument (cont.)
 - The number of <u>possible</u> trade routes that exist includes every good between every pair of countries:

$$R_{MAX1} = GC(C-1)$$

- Excluding cross-hauling, it is

$$R_{MAX2} = GC(C-1)/2$$

 Excluding intra-industry trade (as the HO Model does), the number depends on how many countries export, and how many import, each good. If half do each for each good, this is

$$R_{MAX3} = GC^2/4$$

- Note that all of these rise with C^2

Nottingham II

- Argument (cont.)
 - Using the larger of these limits, the fraction of possible trade routes that will be active in the HO Model with positive trade costs is

$$\frac{R_{HO}}{R_{MAX}}? \frac{G(C?1)?FC?1}{GC(C?1)}? \frac{1}{C}? \frac{F?(1/C)}{G(C?1)}$$

- This clearly goes to zero as C rises, unless F rises as fast as GC
 - With, say, 1000 goods, 148 countries (the WTO), and even Leamer's 9 factors, this fraction is approximately 1/148=0.007 (less than 1%)

Nottingham II

• Argument (cont.)

- The argument is really about how many sources of supply there will be, and thus could be redone to include domestic supply.
 - Obviously we can't predict that little will be supplied domestically, since high enough trade costs could lead to autarky
 - But the same kind of argument does suggest that the more that countries buy abroad, the less they will buy at home.

- Factors: f = 1,...,F
- Goods: g = 1,...,G
- Countries: c = 1,...,C
- S_{gc} = Supply of g by c
- D_{gc} = Demand for g by c
- $T_{gcc'}$ = Net export of g by c to c'
- $t_{gcc'} = (1+iceberg)$ trade cost for g from c to c'
- P_{gc} = Price of g in c
- w_{fc} = Price of f in c
- E_{fc} = Endowment of f in c

- The HO Model provides a structure for determining
 - For a small country, c: S_c , D_c , T_c , P_c , and w_c given E_c , t_c , and P_{-c} (where $-c=\{c'?c\}$)
 - For the world: S, D, T, P, and w given E and t
- My concerns are that this structure
 - Fails to determine all the variables uniquely and/or implies fractions of goods produced or trade routes utilized that are (unrealistically?) low
 - Has a solution that is hypersensitive to t (and perhaps also to E in the presence of t)

• Ideally, the HO model would yield solutions

$$S_{gc} ? S_{gc}(E_{c}, E_{-c}, t_{c}, t_{-c})$$

$$T_{gcc'} ? T_{gcc'}(E_{c}, E_{-c}, t_{c}, t_{-c})$$

$$w_{fcc'} ? w_{fcc'}(E_{c}, E_{-c}, t_{c}, t_{-c})$$

- that
 - are single valued
 - display the main theorems of the HO model in at least some weak form
 - vary continuously and perhaps smoothly with their arguments
 - have empirically plausible fractions of S_{qc} >0 and $T_{qcc'}$ >0

Nottingham II

 The examples I've examined here suggest that this will not be possible under standard HO assumptions, especially if G>F and C>2.