Sources and Implications of Comparative Advantage

Alan V. Deardorff

University of Michigan

Ohlin Lectures

• Lecture 1: Defining Comparative Advantage

• Lecture 2:

Sources of Comparative Advantage

Lecture 1: Defining CA

- Simplest model Ricardian 2×2
 - Multiple equivalent definitions
 - Implications
 - Purpose
- Impossibility of achieving that purpose
- Weak general result: correlation
- Complications
 - More goods and/or countries, variable costs, trade costs, intermediate inputs, imperfect competition, increasing returns, distortions
- Other drawbacks of definitions

The Message

- Comparative advantage is not as simple as we think.
- It has
 - Multiple definitions,
 - None of which works as well as we'd like.
- This does *not* mean that the benefits of trade are questioned.

The Simplest Case: 2×2

The Ricardian Model:

- 2 goods: 1, 2
- 2 countries: 1, 2
- 1 factor: L = labor
- Constant costs: $a_g^c =$ labor needed to produce one unit of good g in country c
- Perfect competition

Standard definition of CA in terms of *relative costs*:

A country has comparative advantage in the good whose relative labor cost (compared to the other good) is *lower* than in the other country.

Other interpretations: *Productivity* $(1/a_g^c)$

A country has comparative advantage in the industry where relative productivity (compared to the other industry) is *higher* than in the other country.

Country c_1 has CA in good g_1 , relative to some other good g_2 , compared to another country c_2 , if

(1a)

Other interpretations: *Autarky price* $(\hat{p}_g^c = \hat{w}^c a_g^c)$

A country has comparative advantage in the good whose relative autarky price (compared to the other good) is *lower* than in the other country.

Country c_1 has CA in good g_1 , relative to some other good g_2 , compared to another country c_2 , if $\frac{\hat{p}_{g_1}^{c_1}}{\hat{p}_{g_2}^{c_1}} < \frac{\hat{p}_{g_1}^{c_2}}{\hat{p}_{g_2}^{c_2}}$ (1b)

Other interpretations: *World price* (p_g^w)

A country has comparative advantage in the good whose relative autarky price (compared to the other good) is *lower* than in the world. (Small country only.)

Other interpretations: *Ranking goods* A country has comparative advantage in the good whose autarky price relative to the world price (or other country's price) is *lowest*.

Country c_1 has CA in good g_1 , if $\frac{\hat{p}_{g_1}^{c_1}}{p_{g_1}^{w}} < \frac{\hat{p}_g^{c_1}}{p_g^{w}} \quad \forall g \neq g_1 \quad (1d)$

Implications: 2×2

- Trade, if not distorted, will necessarily entail
 c₁ exporting g₁
 - $-c_2$ exporting g_2 .
- For trade to be beneficial to the two countries, this *must* be the pattern of their trade.
- The size of this total benefit will be larger the more resources (in this case labor) each is able to reallocate into the industry in which it has comparative advantage.

- Thus, CA is both
 - Predictor of the trade pattern
 - Guide to resource allocation
- Note though that trading in accordance with CA is necessary but not sufficient for gains from trade,
 - Thus CA is not a guarantee of gains.

Example

Example: Gainful (Free) Trade

Example: Harmful Trade, Production Subsidies Violating CA

Example: Harmful Trade, Export Subsidies Consistent with CA

Example: Gain from Further Resource Reallocation

Example: Gain from Further Resource Reallocation

What Do We Want?

- A definition of CA that
 - Is general enough to apply without the assumptions of the 2×2 model.
 - Has all of the implications listed above.
 - Uses information that permits *prediction*:
 - Available in autarky, or
 - Independent of policy choices
- We won't find it!

Impossibility of Strong CA

- Example: Assume...
 - -4 goods:

Steel, input to Autos Wool, input to Cloth $(1 \text{ unit} \rightarrow 1 \text{ unit, each})$

- 2 countries of equal size
- Demands for autos and cloth: equal expenditure shares

Direct	Goods				
unit labor	W A C S				
requirements	Wool	Autos	Cloth	Steel	
Country 1	1	2	3	4	
Country 2	4	3	2	1	

Direct+Indirect	Final Goods		
unit labor	А	С	
requirements	Autos	Cloth	
Country 1	2+4=6	3+1=4	
Country 2	3+1=4	2+4=6	

If all goods are traded without cost

Direct	Goods				
unit labor	W A C S				
requirements	Wool	Autos	Cloth	Steel	
Country 1	1	2	3	4	
Country 2	4	3	2	1	

Results:

- Country 1 exports autos (and wool)
- Country 2 exports cloth (and steel)

If only final goods are traded

Direct+Indirect	Final Goods		
unit labor	А	С	
requirements	Autos	Cloth	
Country 1	2+4=6	3+1=4	
Country 2	3+1=4	2+4=6	

Results:

- Country 1 exports cloth
- Country 2 exports autos

• Results of Example: Summary

– If all goods are traded without cost

- Country 1 exports autos
- Country 2 exports cloth
- If steel and wool are not traded
 - Country 1 exports cloth
 - Country 2 exports autos
- Thus, trade in autos and cloth reverse if steel and wool are not traded.

- **Implication:** *Any* definition of CA that predicts trade correctly in one case will be wrong in the other.
 - Unless the definition itself takes account of trade costs.

What Can Be Said?

• Autarky prices do "explain" the pattern of trade, in the very weak sense of a correlation:

The correlation across goods between autarky prices and net exports must be negative.

• Thus on average, an economy tends to export goods with low autarky prices and import goods with high autarky prices.

- Formally, let:
 - $-\hat{p}^{c}$ be vector of country *c*'s autarky prices of all goods and p^{w} a vector of world prices in a trading equilibrium.
 - $-T^c$ be vector of country *c*'s net exports (+ if export, if import).
- Deardorff (1980) and Dixit-Norman (1980) show: if country *c*'s trade is nontrivial,

i.e. if
$$(\hat{p}^{c} - p^{w})T^{c} \neq 0, *$$

then

$$\hat{p}^c T^c < 0$$

*Not exactly.

 $\hat{n}^c T^c < 0$

That is,

- The value of a country's trade, at autarky prices is negative; or
- The autarky value of the country's imports is greater than the value of its exports; or
- On average, the goods that the country exports had lower prices, in autarky, than the goods that it imports.

• 1. $\operatorname{cor}_{g}(\hat{p}_{g}^{c} / p_{g}^{w}, p_{g}^{w}T_{g}^{c}) < 0$

• 1.
$$\operatorname{cor}_{g}(\hat{p}_{g}^{c} / p_{g}^{w}, p_{g}^{w}T_{g}^{c}) < 0$$

• 2.
$$\operatorname{cor}_{g}(\hat{p}_{g}^{c} / \overline{\hat{p}}^{c} - p_{g}^{w} / \overline{p}^{w}, T_{g}^{c}) < 0$$

where
$$\overline{p} = \sum_{g=1}^{G} p_g / G$$

• 1.
$$\operatorname{cor}_{g}(\hat{p}_{g}^{c} / p_{g}^{w}, p_{g}^{w}T_{g}^{c}) < 0$$

• 2.
$$\operatorname{cor}_{g}(\hat{p}_{g}^{c} / \overline{\hat{p}}^{c} - p_{g}^{w} / \overline{p}^{w}, T_{g}^{c}) < 0$$

• 3. With 2 countries: $\operatorname{cor}_{g}(\hat{p}_{g}^{1}/\bar{p}^{1}-\hat{p}_{g}^{2}/\bar{p}^{2},T_{g}^{1}) < 0$

where
$$\overline{p} = \sum_{g=1}^{G} p_g / G$$

• 1.
$$\operatorname{cor}_{g}(\hat{p}_{g}^{c} / p_{g}^{w}, p_{g}^{w}T_{g}^{c}) < 0$$

• 2.
$$\operatorname{cor}_{g}(\hat{p}_{g}^{c} / \overline{\hat{p}}^{c} - p_{g}^{w} / \overline{p}^{w}, T_{g}^{c}) < 0$$

- 3. With 2 countries: $\operatorname{cor}_{g}(\hat{p}_{g}^{1} / \overline{\hat{p}}^{1} \hat{p}_{g}^{2} / \overline{\hat{p}}^{2}, T_{g}^{1}) < 0$
- 4. With many countries: $\operatorname{cor}_{g,c}(\hat{p}_g^c, T_g^c) < 0$

where
$$\overline{p} = \sum_{g=1}^{G} p_g / G$$

- Thus, for predicting the pattern of trade on average,
 - autarky prices compared to either
 - world prices with trade, or
 - other autarky prices
 - work well.

Generality of Correlation Result

- Holds with
 - Any numbers of goods, countries, and factors
 - Variable costs
 - Trade costs, natural and/or artificial
 - Intermediate inputs

Generality of Correlation Result

- Also holds with (see Deardorff 1994)
 - Unbalanced trade
 - Over time, or
 - If preferences homothetic
 - Lumpy countries
- But it does *not* hold with distortions
 - Except under implausibly restrictive conditions

Weakness of Correlation Result

- Does *not* predict direction of trade in any particular good.
 - However, does (as in 2-good case) limit outcomes to ½ of those possible (i.e., it excludes all those for which cor>0).
- In example above, does *not* tell us pattern of trade in autos and cloth.
 - Both outcomes, with inputs tradable and not tradable, display negative correlation.
 - To see this...

Example: Autarky Prices

Autarky Prices	Goods			
(at wage = 1)	W	А	С	S
Country 1	1	4+2=6	1+3=4	4
Country 2	4	1+3=4	4+2=6	1

Assume: $L^1 = L^2 = 120$

Example: Final Tradable

Production	Goods			
$(L^1 = L^2 = 120)$	W	А	С	S
Country 1	30		30	
Country 2		30		30
Trade				
Country 1		-15	15	
Country 2		15	-15	

$$\hat{p}^{1}T^{1} = (6)(-15) + (4)(15) = -30 < 0$$

Example: All Tradable

Production	Goods				
$(L^1 = L^2 = 120)$	W A C S				
Country 1	40	40			
Country 2			40	40	
Trade					
Country 1	40	20	-20	-40	
Country 2	-40	-20	20	40	

 $\hat{p}^{1}T^{1} = (1)(40) + (6)(20) + (4)(-20) + (4)(-40) = -80 < 0$

Connection with Gains from Trade

- Proof of correlation first proves gains from trade (consumption with trade is revealed preferred to consumption in autarky), and from that and WARP derives correlation.
- That is: If there are gains from trade Then $\hat{p}^c T^c < 0$
- In other words, in order for there to be gains from trade, trade must be negatively correlated with autarky prices.

Additional Weakness of Correlation Result

- Provides virtually no guide to resource reallocation.
- No answer to question,
 "In what do we have comparative advantage?"

Next Steps

- Return to Ricardian Model and work outward from there, relaxing one assumption at a time.
- Examine possible definitions of CA for their usefulness.
- Seek alternative definitions, less general than correlation, but perhaps more useful.

- Assumptions to relax:
 - -2 goods, 2 countries

 - Constant costs
 One factor
 Heckscher-Ohlin Model

 - No intermediate inputs
 - No trade costs
 - Perfect competition
 - Constant returns to scale
 - No distortions

- Relative Costs (Domestic vs. Foreign)
 Not well defined if costs are variable.
 - Autarky relative costs well defined, but
 - Fails if high-cost inputs are tradable

- Relative Productivities (Domestic vs. Foreign)
 - Labor productivity ignores other factors.
 - In HO Model, K-abundant country may have high relative labor productivity in L-intensive sector
 - Total factor productivity (TFP)
 - May differ, but matter less than factor endowments.

- Relative Autarky Prices (Domestic vs. Foreign)
 - Equal autarky marginal costs with perfect competition: Same failure if high-price inputs are tradable.
 - With imperfect competition, prices don't reflect costs.

- Relative Autarky Prices vs. World Prices
 - Same drawbacks as above.
 - Large country: world prices endogenous
 - World prices may be distorted by policy
 - Examples: foreign subsidies
 - Does this matter?
 - More on this in next lecture

- Ranking Goods
 - Ranking must be based on one of above criteria, sharing their drawbacks
 - No known guarantee that sector with greatest
 CA is special
 - May be small
 - Need not lead to greatest trade or gains from trade

Conclusions

- CA is an important *idea*.
- CA may be of limited usefulness as a tool.
- At best, we may have to use different definitions of CA for different purposes and in different contexts.