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1. Intoduction

A fixed point of a function f from a set X into itself is a point x0

satisfying f(x0) = x0.
Theorems which establish the existence of fixed points are very useful

in analysis. One of the most famous is due to Brouwer. Let
Dn = {x ∈ R : |x| ≤ 1}.

Theorem (Brouwer’s Fixed Point Theorem.). Every continuous func-

tion f : Dn → Dn has a fixed point.

The purpose of this note is to provide a proof of Brouwer’s Fixed
Point Theorem for n = 2 using a combinatorial result know as Sperner’s
Lemma, and to explore both Sperner’s Lemma and Brouwer’s Fixed
Point Theorem. We begin by examining the case where n = 1.

Proof for n = 1. We have f : [−1, 1] → [−1, 1]. Define g(x) = x−f(x).
Then g(1) ≥ 0 and g(−1) ≤ 0 so by the Intermediate Value Theorem
there must be a point x0 so that g(x0) = 0. We then have f(x0) =
x0. �

Definition. A fixed point domain is a set G ⊂ R
n such that every

continuous function from G to itself has a fixed point.

So Brouwer’s Fixed Point Theorem asserts that each Dn, n ≥ 1, is a
fixed point domain.

On the other hand, Dn less a point, [0, 1]∪ [2, 3] and R are not fixed
point domains. (It is easy to construct appropriate functions with no
fixed point for these sets.) The fact that Dn is compact is important
in Brouwer’s Fixed Point Theorem.

However, if G is a fixed point domain, and f : G → H is a continuous
bijection with a continuous inverse, then H is a fixed point domain.

Proof. If g : H → H is continuous, so is f−1 ◦ g ◦ f . As this is a
continuous function from G to G, it has a fixed point x0. Now (f−1 ◦
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g◦f)(x0) = x0, so g(f(x0)) = f(x0), which means f(x0) is a fixed point
of g. �

This means that being a fixed point domain is a topological property.
Specifically, Brouwer’s Fixed Point Theorem for n = 2 is now equivalent
to showing that every continuous function from a triangle to itself has
a fixed point because there is a continuous bijection with a continuous
inverse from the circle to a triangle.

2. Sperner’s Lemma

A triangulation of a triangle is a subdivision of the triangle into small
triangles. The small triangles are called baby triangles, and the corners
of the triangles are called vertices. The additional condition that each
edge between two vertices is part of at most two triangles is necessary.

A Sperner Labeling is a labeling of a triangulation of a triangle with
the numbers 1,2 and 3 such that

(1) The three corners are labeled 1, 2 and 3.
(2) Every vertex on the line connected vertex i and vertex j is

labeled i or j.

Lemma (Sperner’s Lemma). Every Sperner Labeling contains a baby

triangle labeled 1-2-3.

Sperner’s Lemma generalizes to n dimensions, were it says that every
coloring triangulation of a hyper tetrahedron into n + 1 colours must
have an baby hyper tetrahedron that is labeled with all n + 1 labels.
The proof that follows in fact generalizes to n dimensions too. For
details, see [4].

Proof. First, we need the simple fact that the number of 1-2 edges on
the outside of the triangle is odd. To see this, label each edge segment
on the boundary line between corners 1 and 2 by the difference of the
Sperner labels at each end. Then 1-2 edges are labeled ±1, while the
1-1 and 2-2 edges are labeled 0. Observe that the sum of the labels
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equals the difference between the corners, which is 1. Thus the number
of edges labeled ±1 is odd.

We now view the triangle as a house. Each baby triangle is a room,
and each 1-2 edge is a door. We consider a path through the triangle
starting from outside the triangle. Note that such a path can only end
by leaving the triangle again, or by entering a 1-2-3 triangle. Note
also that once the entrance is chosen, the path is uniquely determined
because no triangle can have three 1-2 edges. This also means that no
two paths can meet in a single triangle.

Consider all such paths. A path which ends by exiting the triangle
determines a pair of 1-2 edges. Such paths account for an even number
of 1-2 edges on the boundary. Since the number of 1-2 edges is odd,
there must be at least one 1-2 edge whose path terminates in a 1-2-3
triangle.

�

Lemma (Stronger form of Sperner). Without loss of generality, sup-

pose that the outside triangle in a Sperner labeling is labeled 1-2-3 in

clockwise order. Let A be the number of baby 1-2-3 triangles oriented

in the clockwise direction, and let B be the number of such triangles

oriented in the counter clockwise direction. Then A − B = 1.

Note that if we prove this, we have that A+B, which is total number
of baby 1-2-3 triangles, is odd, and thus greater than 0.

The last proof of Sperner’s Lemma can be modified to show this
stronger result. The interested reader should try to make this modifi-
cation.

This result is included in addition to the last proof of Sperner’s
Lemma because the proofs are beautiful, insightful, and significantly
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different. This next proof is from [2]. For yet another beautiful proof
that generalizes easily to a higher dimensions, see [3, p.38].

Proof. We will label each edge in the triangulation. If an edge has a
triangle on either side, it will get two labels, one for each baby triangle
it is part of. If we have a baby triangle, and two of its vertices (in
clockwise direction) are labeled i and j, the label of the edge is 0 if
i = j mod 3, 1 if j = i + 1 mod 3, and -1 if if j = i − 1 mod 3.

We make three important observations.

(1) The inside edge labeling of a baby triangle sum to 3 if the
triangle is 1-2-3 clockwise, -3 if it is 1-2-3 counterclockwise, and
0 otherwise.

(2) If an edge participates in two triangles, then its label in one will
be the negative of its label in the other.

(3) If we consider the sum of the inside edge labels of a polygon
composed of baby triangles, we get the sum of the sums of the
inside edge labels of the baby triangles.

The sum of the edges of the big triangle is 3, because each side
contributes 1 in total. Since this is also equal to the sum of the sums
of the inside edge labels of all the baby triangles, we get

3A − 3B = 3

�
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3. Barycentric Coordinates

Barycentric coordinates express a point in a triangle as a weighted
average of the three vertices. Barycentric coordinates are thus always
ordered triples (each weight is one number) that add up to 1.

For example, if the triangle is (0, 0), (0, 1), (1, 0), the Barycentric
coordinates of the three vertices are (1, 0, 0), (0, 1, 0) and (0, 0, 1) re-
spectively. In this example, the Barycentric coordinates of the point
(1

4
, 1

4
) would be (1

2
, 1

4
, 1

4
).

Barycentric coordinates always exist, because a triangle can be thought
of as the convex hull its vertices.

4. Brouwer’s Fixed Point Theorem

Theorem (Brouwer’s Fixed Point Theorem for n = 2). Every contin-

uous function from a triangle to itself has a fixed point.

Although we will not prove Brouwer for n > 2, it is worth noting
that both Sperner’s Lemma and the techniques of this proof generalize
to higher dimensions. The proof that follows is from [1].

Proof. Let f be a continuous function from a triangle T into itself. We
will write (a, b, c) 7→ (a′, b′, c′) is f(a, b, c) = (a′, b′, c′) in Barycentric
coordinates.

We will label each point in the triangle as follows. Suppose (a, b, c) 7→
(a′, b′, c′).

• If a′ < a, we label (a, b, c) 1.
• If a′ ≥ a, but b′ < b we label (a, b, c) 2.
• If a′ ≥ a and b′ ≥ b, but c′ < c and we label (a, b, c) 3.

If we cannot label the point (a, b, c), then a′ ≥ a, b′ ≥ b and c′ ≥ c so
a = a′, b = b′, c = c′ and the point is a fixed point. For the remainder
of the proof, we assume that any point we need can be labeled; if not,
it is fixed, and we are done.

What we are intuitively doing with this labeling is picking a corner
the point does not move closer to. We will eventually get a sequence
of small 1-2-3 triangles converging to a point. If this point was not
a fixed point, the continuity of f would suggest that as our triangles
approach the point, all the corners would have the same labeling. This
will be formalized as follows. First, we need to show that this labeling
is in fact a Sperner labeling.

If we look at the corners, we note

• If (1, 0, 0) 7→ (a, b, c), a < 1 unless this is a fixed point, so this
corner gets label 1.
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• If (0, 1, 0) 7→ (a, b, c) then a ≥ 0 but b < 1 (unless this is a fixed
point), so this corner gets label 2.

• Similarly, (0, 0, 1) gets label 3.

If we look at a point (a, b, 0) on the line connecting (1, 0, 0) and
(0, 1, 0), we see that if (a, b, 0) 7→ (c, d, e) then c < a or b < d, so the
label is 1 or 2. If not, we have c ≥ a, b ≥ d so c = a, d = b and e = 0
and the point is a fixed point.

Similarly, we can show that the points on the line connecting (0, 1, 0)
and (0, 0, 1) get labels 2 or 3, and the points on the line connecting
(0, 0, 1) and (1, 0, 0) get labels 3 or 1. Thus if we label a triangulation
in this manner we get a Sperner labeling.

We now consider a sequence of triangulations with diameter going
to 0. (The diameter of a triangulation is defined to be the maximum
distance between adjacent vertices in a triangulation.) Each of these
triangulations have at least one baby 1-2-3 triangle. Suppose these
triangles have vertices

(xn,1, yn,1, zn,1)

(xn,2, yn,2, zn,2)

(xn,3, yn,1, zn,3)

with labels 1, 2 and 3 respectively. Here the n indicates that the
triangle is from the nth triangulation in the sequence of triangulations
with diameter going to 0.

We now use the Bolzano-Weierstrass Theorem so find a convergent
subsequence

(xnk,i, ynk,i, znk,i) → (x, y, z)

for 1 ≤ i ≤ 3. We can do this for all three sequences at once be-
cause they are the corners of triangles whose diameters tend to 0. If
we wanted to avoid the Bolzano-Weierstrass Theorem, an alternate
approach is to use sub-triangulations and find nested 1-2-3 triangles.

Now if

(xnk,i, ynk,i, znk,i) 7→ (x′

nk ,i, y
′

nk,i, z
′

nk,i)

and

(x, y, z) 7→ (x′, y′, z′)

we have (by the Sperner labeling)

x′

nk ,1 ≤ xnk ,1

so by continuity

x′ ≤ x

Similarly, y′ ≤ y and z′ ≤ z so (x, y, z) is a fixed point. �
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5. Closing Remarks

We have now proved a topological result using a combinatorial lemma
about triangles! However, the student of algebraic topology may not
be so surprised, because the topological proof of Brouwer’s Fixed Point
Theorem, and indeed a large part of algebraic topology, relies on a
triangulating spaces. This result seems to be fundamentally connected
with triangles.

Brouwer’s Fixed Point Theorem is used in game theory to prove the
existence of certain equilibrium, the theory of differential equations and
other diverse areas.
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