BEURLING’S THEOREM
ALEX WRIGHT

ABSTRACT. Hardy spaces are defined, and a proof of Beurling’s
theorem, describing the invariant subsapces of the unilateral shift,
is given.

Recall that on £%(Z) and ¢*(N) respectively we have the bilateral and
unilateral shifts, W and U.
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A closed subspace M of an operator T : H — H is said to be invari-
ant if TM C M and reducing if in addition T(M*) C M*. The uni-
lateral shift has many invariant subspaces; for example span{e,, : n > N},
where e, is the standard basis. The purpose of this note is to describe
all the invariant subspaces of U. Along the way we will also describe
the invariant and reducing subspaces of W.

It is hard to describe all the invariant subspaces of U on £2, so we
move to L?(T) (where T is the unit circle in C). In this context every

€ L?(T) corresponds to a Fourier series Y o0 a,z" and
/ P n=—00
W(f) = W( Z anzn) = Z anzn+1 = sz

That is, the bilateral shift is just M., multiplication by z!

To discuss the unilateral shift in this context, we need the Hardy-
Hilbert space, defined as H* = {f = > > a,2"} C L*(T). Since the
Fourier coefficients of f € H? are in [, the Fourier series of f € H?
converges uniformly to an analytic function on any compact subset of
the open unit disk, D, and we see that f is analytic on ID. Now if
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[ =>",a,z", then
Uf =) ana""" = M.f.
n=0

so we get that the unilateral shift is also just multiplication by z.

Proposition. If T is an operator on H, M is a closed subspace of H,
and Ppy is the projection onto M, then M is invariant for T if and
only if PTPum = TPu, if and only if M=+ is an invariant subspace
of T*. Further, M 1is reducing for T if and only if PT = TPum, if
and only if M is an invariant subspace for both T and T*.

Proof. If M is invariant for T', then for f € H we have TPy f € M
and hence PyTPmf = TPmf; thus PyTPr = TPy Conversely,
if PUTPmf = TPuy, then for f in M we have T'f = TPyf =
PuTPumf =PuTf, and hence Tf € M. Therefore, TM C M and
M is invariant for T. Further, since I — Py, is the projection onto M+
and the identity

T°(I = Pm) = (I = Pm)T*(I = Pa)

is equivalent to PyT* = PuT* P, we see that M is invariant for
T~ iff and only if M is invariant for 7. Finally, if M reduces T, then
TPm = PuTPum = (PuT*Pum)* = (T*Pr)* = PuT, using the facts
that we have just proved. U

It is now easy to see that U has no non-trivial reducing subspaces. If
M C (*(N) is a non-zero reducing subspace for U, and 0 # (a,)5%, €
M, then without loss of generality assume that ag # 0. (Other-
wise shift (a,)2%, to the left some number of times using U*). Then
()2 — UU*((an)iy) = (ap,0,0,---) € M, and so we get ey =
(1/ap)(ap,0,0,---) € M. Thus U"(ey) = e, € M for all n > 0, so
M = (*(N).

In turns out however, that the bilateral shift on L*(T) has a great
many reducing subspaces. To prove this, we will need the following
lemmas.

Lemma (1). M = {M, : ¢ € L>(T)} is a mazimal abelian subalgebra
of B(L?(T)), the bounded linear operators on Hilbert space..

Proof. Suppose that T' € B(L?*(T)) commutes with M. Set ® =T1, 1
being the function on T that is constantly 1. Now if ¢ € L>°(T), then

T¢=T(¢-1)=TMsl = My;T1 = My® = $®.
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So T = Mg, and we need simply to check that & € L*(T). Set
E,={xeT:|®)|>|T|++}. Then
o \?
()
1
> (1Tl + = ) ValEn).

1T\ 1(En)
Thus p(E,) = 0 so p({z : |@(z)| > |[T]]}) = w(UnEn) <32, p(En) =
0. We conclude that ||®||. < ||T]| and ® € L>(T). O

Lemma (2). The commutant {S € B(H) : SM, = M,S} of M, is
L>o(T).

171X,

2 > | T'xE,

2 = || PxE,

Proof. If S € B(H) commutes with M., then it commutes with M.
whenever p(z) is a polynomial. Now if ¢ € L*(T), then we can pick

polynomials p,(z) such that p,(z) — ¢ in the L? norm. It then follows
that M, .)(f) — ¢f for all f € L*(T). Now

Thus S commutes with L>°(T), so by the preceding lemma, f € L>*(T).
U

Corollary. The reducing subspaces of the bilateral shift are L*(E) =
{f e L*T): f(x) =0ifx ¢ E} for E C T measurable.

Proof. 1t is easy to check that those subspaces are invariant under
multiplication by W = M, and W* = M,-1, hence they are reducible.
Conversely, if M is a reducing subspace of W, then Py M, = M, Py,
so by Lemma 2, Py = M, for some ¢ € L>(T). Since Py = P3y,
we get ¢? = ¢, so ¢ is zero or one almost everywhere. Now M =
PuL*(T) = ¢L*(T) = L*(E), where E = {z € T : ¢(z) = 1}. O

Theorem. The non-reducing invariant subspaces of the bilateral shift
are of the form ¢H?, for |¢p| =1 a.e.

Proof. If |¢| = 1 a.e. then My is an isometry, so My(H?) = ¢H? is
indeed a closed subspace. Furthermore, W = M, commutes with Mg,
so WMyH? = MyWH? C MyH?; thus ¢H? is indeed is invariant. Note
¢ € ¢H?, but W*¢ = 2719 ¢ ¢H? since 27! ¢ H?; thus ¢H? is not
reducing.

Conversely, suppose that M is an invariant, non-reducing subspace
of W. Since W is non reducing, WM = W*M cannot be a subspace
of M, so we get that WM C M. Choose ¢ € MEW M, with ||¢] = 1.
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W is unitary, so ¢ L W"¢ for all n > 1. Thus for n > 1,

=—/¢ z"dz——/|gb 22 ds.

Taking conjugates gives this identity for n negative as well. Thus, |¢|
must be a constant, and since ||¢|| = 1, in fact |¢| =1 a.e..

We claim that M © WM = span ¢. Indeed, the above shows that
every function in M & W M is of constant norm. So if v € M &S WM
and A € C, then ¢ — A\ has constant norm. It is easy to pick A so
that ¢ — A will be very small on a set of positive measure, and hence
¢ — M\, having constant norm, will always be very small. Since v is
arbitrarily close to span ¢, we in fact get ¢ € span ¢.

W is unitary, so W"(span ¢) = W*(MEWM) = W MoW" M.
Thus, from the decomposition M = (span¢) & WM, we get the de-
composition M = (span ¢) @ (span W) @ - - - @ (span W"¢) & W" M.
Thus since W"¢ = 2"¢, we get that M = ¢H? & N,5oW" M. Since
Np>oW" M = {0} (this is true for any subset M of Hilbert space), we
get that M = ¢H>. O

Note that this also shows that every non-reducing invariant subspace
of W is cyclic: It is generated by the vector ¢, that is, the subspace is
span Uy,>o W™.

Proposition. ¢H? = H? if and only if there is a constant ¢ of mod-
ulus 1 such that ¢ = ci.

Proof. Say ¢H? = H>. Then ¢ = f1v), fa¢ = 1, for some fi, fo € H2.
It is easily seen that f; = fy. Since the only analytic functions with
analytic conjugate are constants, we get that f; and f, are constants.

O

We define an inner function to be a ¢ € H? with |¢| = 1 a.e., and
we immediately get Beurling’s theorem.

Theorem (Beurling). The non-zero invariant subspaces of the unilat-
eral shift on H? are just ¢H?, where ¢ is an inner function.

In particular, note that the invariant subspaces of U on 2 observed
earlier, {(a,)%, : a, = 0 for n < N} correspond to ¢ = zV.

The structure of inner functions is know in detail. In particular, they
are all know to have a certain rather complicated form, and in terms
of this form is is know when ¢H? C ¢yH2. That is, the whole lattice
structure of the invariant subspaces of the unilateral shift is known!
The interested reader can find a detailed treatment of this material in

Martinez-Avendano and Rosenthal’s book, [3].
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