
BEURLING’S THEOREM

ALEX WRIGHT

Abstract. Hardy spaces are defined, and a proof of Beurling’s
theorem, describing the invariant subsapces of the unilateral shift,
is given.

Recall that on `2(Z) and `2(N) respectively we have the bilateral and
unilateral shifts, W and U .

W ((· · · , a−1, a0, a1, a2, · · · )) = (· · · , a−2, a−1, a0, a1, · · · )
W ∗((· · · , a−1, a0, a1, a2, · · · )) = (· · · , a−0, a1, a2, a3, · · · )
U((a0, a1, a2, · · · )) = (0, a0, a2, · · · )
U∗((a0, a1, a2, · · · )) = (a1, a2, a3, · · · )

A closed subspaceM of an operator T : H → H is said to be invari-
ant if TM⊂M and reducing if in addition T (M⊥) ⊂M⊥. The uni-

lateral shift has many invariant subspaces; for example span{en : n ≥ N},
where en is the standard basis. The purpose of this note is to describe
all the invariant subspaces of U . Along the way we will also describe
the invariant and reducing subspaces of W .

It is hard to describe all the invariant subspaces of U on `2, so we
move to L2(T) (where T is the unit circle in C). In this context every
f ∈ L2(T) corresponds to a Fourier series

∑∞
n=−∞ anz

n and

W (f) = W (
∞∑

n=−∞

anz
n) =

∞∑
n=−∞

anz
n+1 = Mzf.

That is, the bilateral shift is just Mz, multiplication by z!
To discuss the unilateral shift in this context, we need the Hardy-

Hilbert space, defined as H2 = {f =
∑∞

n=0 anz
n} ⊂ L2(T). Since the

Fourier coefficients of f ∈ H2 are in l2, the Fourier series of f ∈ H2

converges uniformly to an analytic function on any compact subset of
the open unit disk, D, and we see that f is analytic on D. Now if

Date: April 2008.
This note has been prepared as a final project for PMATH 810, An Introduction

to Banach Algebras and Operator Theory, taught by Haydar Radjavi.
1



2 ALEX WRIGHT

f =
∑∞

n=0 anz
n, then

Uf =
∞∑
n=0

anz
n+1 = Mzf,

so we get that the unilateral shift is also just multiplication by z.

Proposition. If T is an operator on H,M is a closed subspace of H,
and PM is the projection onto M, then M is invariant for T if and
only if PMTPM = TPM, if and only if M⊥ is an invariant subspace
of T ∗. Further, M is reducing for T if and only if PMT = TPM, if
and only if M is an invariant subspace for both T and T ∗.

Proof. If M is invariant for T , then for f ∈ H we have TPMf ∈ M
and hence PMTPMf = TPMf ; thus PMTPM = TPM. Conversely,
if PMTPMf = TPM, then for f in M we have Tf = TPMf =
PMTPMf = PMTf , and hence Tf ∈ M . Therefore, TM ⊂ M and
M is invariant for T . Further, since I−PM is the projection ontoM⊥

and the identity

T ∗(I − PM) = (I − PM)T ∗(I − PM)

is equivalent to PMT ∗ = PMT ∗PM, we see that M⊥ is invariant for
T ∗ iff and only if M is invariant for T . Finally, if M reduces T , then
TPM = PMTPM = (PMT ∗PM)∗ = (T ∗PM)∗ = PMT , using the facts
that we have just proved. �

It is now easy to see that U has no non-trivial reducing subspaces. If
M ⊂ `2(N) is a non-zero reducing subspace for U , and 0 6= (an)∞n=0 ∈
M, then without loss of generality assume that a0 6= 0. (Other-
wise shift (an)∞n=0 to the left some number of times using U∗). Then
(an)∞n=0 − UU∗((an)∞n=0) = (a0, 0, 0, · · · ) ∈ M , and so we get e0 =
(1/a0)(a0, 0, 0, · · · ) ∈ M. Thus Un(e0) = en ∈ M for all n ≥ 0, so
M = `2(N).

In turns out however, that the bilateral shift on L2(T) has a great
many reducing subspaces. To prove this, we will need the following
lemmas.

Lemma (1). M = {Mφ : φ ∈ L∞(T)} is a maximal abelian subalgebra
of B(L2(T)), the bounded linear operators on Hilbert space..

Proof. Suppose that T ∈ B(L2(T)) commutes with M. Set Φ = T1, 1
being the function on T that is constantly 1. Now if φ ∈ L∞(T), then

Tφ = T (φ · 1) = TMφ1 = MφT1 = MφΦ = φΦ.
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So T = MΦ, and we need simply to check that Φ ∈ L∞(T). Set
En = {x ∈ T : |Φ(x)| ≥ ‖T‖+ 1

n
}. Then

‖T‖
√
µ(En) = ‖T‖‖χEn‖2 ≥ ‖TχEn‖2 = ‖ΦχEn‖2 =

(∫
En

Φ2dµ

) 1
2

≥
(
‖T‖+

1

n

)√
µ(En).

Thus µ(En) = 0 so µ({x : |Φ(x)| > ‖T‖}) = µ(∪nEn) ≤
∑

n µ(En) =
0. We conclude that ‖Φ‖∞ ≤ ‖T‖ and Φ ∈ L∞(T). �

Lemma (2). The commutant {S ∈ B(H) : SMz = MzS} of Mz is
L∞(T).

Proof. If S ∈ B(H) commutes with Mz, then it commutes with Mp(z)

whenever p(z) is a polynomial. Now if φ ∈ L∞(T), then we can pick
polynomials pn(z) such that pn(z)→ φ in the L2 norm. It then follows
that Mpn(z)(f)→ φf for all f ∈ L2(T). Now

MφSf = lim
n→∞

Mpn(z)Sf = lim
n→∞

SMpn(z)f = SMφf.

Thus S commutes with L∞(T), so by the preceding lemma, f ∈ L∞(T).
�

Corollary. The reducing subspaces of the bilateral shift are L2(E) =
{f ∈ L2(T) : f(x) = 0 if x /∈ E} for E ⊂ T measurable.

Proof. It is easy to check that those subspaces are invariant under
multiplication by W = Mz and W ∗ = Mz−1 , hence they are reducible.
Conversely, if M is a reducing subspace of W , then PMMz = MzPM,
so by Lemma 2, PM = Mφ for some φ ∈ L∞(T). Since PM = P2

M,
we get φ2 = φ, so φ is zero or one almost everywhere. Now M =
PML2(T) = φL2(T) = L2(E), where E = {x ∈ T : φ(x) = 1}. �

Theorem. The non-reducing invariant subspaces of the bilateral shift
are of the form φH2, for |φ| = 1 a.e.

Proof. If |φ| = 1 a.e. then Mφ is an isometry, so Mφ(H2) = φH2 is
indeed a closed subspace. Furthermore, W = Mz commutes with Mφ,
so WMφH2 = MφWH2 ⊂MφH2; thus φH2 is indeed is invariant. Note
φ ∈ φH2, but W ∗φ = z−1φ /∈ φH2 since z−1 /∈ H2; thus φH2 is not
reducing.

Conversely, suppose that M is an invariant, non-reducing subspace
of W . Since W is non reducing, W−1M = W ∗M cannot be a subspace
ofM, so we get that WM (M. Choose φ ∈M	WM, with ‖φ‖ = 1.
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W is unitary, so φ ⊥ W nφ for all n ≥ 1. Thus for n ≥ 1,

0 =
1

2π

∫
T
φ(z)φ(z)zndz =

1

2π

∫
T
|φ(z)|2z−ndz.

Taking conjugates gives this identity for n negative as well. Thus, |φ|
must be a constant, and since ‖φ‖ = 1, in fact |φ| = 1 a.e..

We claim that M	WM = spanφ. Indeed, the above shows that
every function inM	WM is of constant norm. So if ψ ∈M	WM
and λ ∈ C, then φ − λψ has constant norm. It is easy to pick λ so
that φ− λψ will be very small on a set of positive measure, and hence
φ − λψ, having constant norm, will always be very small. Since ψ is
arbitrarily close to spanφ, we in fact get ψ ∈ spanφ.
W is unitary, so W n(spanφ) = W n(M	WM) = W nM	W n+1M.

Thus, from the decomposition M = (spanφ) ⊕WM, we get the de-
composition M = (spanφ)⊕ (spanWφ)⊕ · · · ⊕ (spanW nφ)⊕W nM.
Thus since W nφ = znφ, we get that M = φH2 ⊕ ∩n≥0W

nM. Since
∩n≥0W

nM = {0} (this is true for any subset M of Hilbert space), we
get that M = φH2. �

Note that this also shows that every non-reducing invariant subspace
of W is cyclic: It is generated by the vector φ, that is, the subspace is
span ∪n≥0 W

n.

Proposition. φH2 = ψH2 if and only if there is a constant c of mod-
ulus 1 such that φ = cψ.

Proof. Say φH2 = ψH2. Then φ = f1ψ, f2φ = ψ, for some f1, f2 ∈ H2.
It is easily seen that f1 = f2. Since the only analytic functions with
analytic conjugate are constants, we get that f1 and f2 are constants.

�

We define an inner function to be a φ ∈ H2 with |φ| = 1 a.e., and
we immediately get Beurling’s theorem.

Theorem (Beurling). The non-zero invariant subspaces of the unilat-
eral shift on H2 are just φH2, where φ is an inner function.

In particular, note that the invariant subspaces of U on `2 observed
earlier, {(an)∞n=0 : an = 0 for n < N} correspond to φ = zN .

The structure of inner functions is know in detail. In particular, they
are all know to have a certain rather complicated form, and in terms
of this form is is know when φH2 ⊂ ψH2. That is, the whole lattice
structure of the invariant subspaces of the unilateral shift is known!
The interested reader can find a detailed treatment of this material in
Martinez-Avendano and Rosenthal’s book, [3].
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