CONVOLUTION OF VOLUME MEASURES
ALEX WRIGHT

ABSTRACT. If M7 and My are hypersurfaces in R™ and p1 and pg
are their volume measures, we provide a formula for the absolutely
continuous part h of uq*us. We prove h is continuous off a compact
set of measure zero, and calculate it explicitely if M; and M, are
spheres.

1. INTRODUCTION AND MAIN FORMULA

Every oriented Riemann manifold M is endowed with a natural vol-
ume form dA. In oriented local coordinates x1,--- , x,,

dA = \/det(g;j)dx; - - - dzy,.

See [1], p.257-262 for this and related facts. Corresponding to dA, there
is a natural volume measure y so that [ fdA = [ fdu for continuous
functions f.

In this note, M; and M, will be compact hyper-surfaces in R". A
transversality argument shows that AM; and M, are orientable ([4]);
hence these manifolds possess natural volume measures 1 and po. As
another consequence of orientability, we find that M; and M, possess
ortho-normal vector fields n; and ns.

A differentiable manifold is called real analytic if the transition func-
tions are real analytic, that is, locally expressable as real power series.
Ragozin proved that if M; and M, are real analytic, then p; * ps is
absolutely continuous to Lebesgue measure m ([2], the proof is short).
In this case we say simply that p; * o is absolutely continuous and
write iy * po € LY. If M; and M, are spheres, Ragozin also explicitly
computed the Radon-Nikodym derivative of pq * po.

Our primary result derives a formula for the absolutely continuous
part of pyxpus. If My and M are real analytic, this completely describes
11 * po. We also prove that py * po is continuous off a compact set of
measure zero, and re-derive Ragozin’s formulas regarding spheres.

Define 6 : M; x My — [0, 7) as the angle between nq(x;) and ny(xs),
so sin (w1, 22) = /1 — (n1(z1) - na(x2))2 Let p: My x My — R™ be
the addition map; p(z, z) = x + z. Since M; and M, are compact, the
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set of critical points Cj, of p is compact, and the set of critical values
C, = p(C,) is also compact. By Sard’s Theorem C, has measure zero.

It is important to note that y is a regular value for p if and only if
M, and y — M, are transverse. Hence, for such a y, N, = M; N (y —
M,) is an n — 2 dimensional sub-manifold of R". It can be oriented
by the following convention: dzy,---,0x,_o € T,N, are oriented if
ni(z),ne(y — x),0xy, - - -, 0x,_o are oriented in R™. Thus N, possesses
a natural volume measure iy, .

Theorem 1.1. If f € C.(R" — C,), and
dpis
hy) = [ ——tS
) /Ny sin(0(xq,x2))

fd(ur # pa) = | fhd.

R™ R™
Thus, h is the absolutely continuous part of j1q * ps.

then

Proof. By the Submersion Theorem ([1], p.133), for every = € M; x
M, there are local coordinates x1, - - , T9,_9 near x so that

p(ﬂh, T ,$2n—2) = (ﬁn—l, T ,!EQn—z)-
Let m and my be the projections of M; x My onto M; and My re-
spectively. Let s1,---,s,_1 be local coordinates for M; near m(z),
and let t1,--- ,t,—1 be local coordinates for M near m(x). If x ¢ C,,,
then without loss of generality (reordering the t; if necessary), we may
assume that

span{0dp(x)/0sy,---Op(x)/0Sy—1,0p(x)/0t;} = R".

In the future, considering how M; and M, are embedded in R", we
write, for example, Js; instead of dp/ds;. Now, the collection

381, s ,asn_l,ﬁti,ﬁxl, e ,axn_g

is linearly independent in T, (M; x M;). So, if we consider the map
x v (T, ,Ty_2,t1,81, -+ ,8,-1) , defined on a neighborhood of z,
we see that it has an invertible derivative at . The inverse function
theorem gives that these can serve as local coordinates for some suitably
small neighbourhood of z. Thus we can obtain a neighborhood U, of x

with local coordinates zq,--- ,x,_o,t1,81, -, S,_1 With the following
properties: U, is rectangular in these coordinates; p(z) does not depend
ON Ty, ,Tp_o; mo0s; =s;fori=1,--- n—1;and m(t;) = t;. These

local coordinates will be crucial bellow.
Take f € C.(R™ — C,), supported on a compact set K disjoint from
C,. Take a finite open subcover Uy, --- ,U,, of the U,,x € M; x M,
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for p7!(K). Let ry,--- ,r, be a partition of unity subordinate to this
open subcover ([3], p.40). Now,

Fd(u * ) = /M e+ 2)din(a) % din(e)

R

= 3 e+ ) x dia)

At this point, we restrict out attention to a single coordinate patch
Uk, and use our good local coordinates xy,--- ,2x,_9,t1,81,  * ,Sp_1-
Let gar, 9y, 9an x> 9N, gre be the metric tensor for the manifolds
indicated in the subscripts. We get

/ re - (f op) - v det(gan xan)dry - - - dx,_odtydsy -+ - ds, 1.
Uk

To compute \/det gar, xar, We define a 2n by n—1 matrix J, whose top
block J; is the Jacobian of 7 o p with respect to the local coordinates
of M, and the standard coordinates of R, and whose bottom block .J5
is similarly the Jacobian of 7y o p. We have g = JJ!. If the first n — 1
columns of J represent the s; coordinates, then fact that 7 o s; = s;
gives that J is block upper triangular. Thus

det gur, xar, = det JJ' = det(JyJ}) det(JoJ5) = det gay, det g,

where gy, is expressed in local coordinates 0sy,--- ,0s,-1 and gy, is
expressed in the local coordinates moxq, - -+ , mox,_o, t1.
So, the integral above becomes

/ rkp\/det g, \/det grpdxy - - dzy,_odsy - - - dS,—1dt.
Uk

We have that ¢, s, -+ ,$,-1 serve as local coordinates near p(z),
and that ([1], Lemma 10.38)

Vrn (51, su1, 1) = (na(mi(x)), 0t1)\/Gnr,

where we write ggn (1, , Sn_1, t1) to stress the use of the non-standard
local coordinates for R™.

Recall that N, = M; N (y— M>) is an n— 2 dimensional oriented sub-
manifold of R™. It is also an oriented sub-manifold of co-dimensions 1
in y — M,. Thus N, possesses an orthonormal vector field n,(x) as a
sub-manifold of y — M. We have

9, = (ny(y — ma(x)), Ot1)\/gn,-
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Hence, the integral above is

o (nly - (@), o) n
/;/% (Fop) - LTS Ay dige.

We can write 0t = v, + v, where v, € Tp,(z) N, and (v, v,) = 0. So
(ny(y — ma(2)),0t) _ (ny(y — mo(@)),vy)
(n1(m1(2)), 0t) (n(mi (), vy)
oy |

[[v[| cos

where ¢ is the angle between v, and ny(m(z)). We now draw a picture
and find that ¢ = 6(z) + 7/2.

Tl

y — M

o

Thus we get

/ e OP) A g,
v, sin(0(x))

Since we assumed that the Uy are rectangular we can use Fubini’s
Theorem to integrate first over the IV, coordinates and then over R".
Then, summing over the k we get the formula as desired.

2. SURFACE MEASURES ON SPHERES

Let S,,_1 € R™ be the n — 1 dimensional unit sphere, and let its
volume be V,,_;. Let p, be the volume measure on rS,,_; In [2], Ragozin
computed h the Radon-Nikodym derivative of p,. % p; (r,¢ > 0). We are
able to compute h using our formula and the fact that 6 is constand on
the N, for spheres. Our results agree (check constant!!) with Ragozin’s
up to a constant depending on r and ¢, which is due to the fact that
Ragozin uses measures normalized to have mass 1.

It is clear (from our formula, or more basic facts) that h(y) depends
only on |ly||, and that h(y) is zero unless ||y|| € (|r — t|,» +t). So,
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given y of appropriate norm, we draw a picture to aid our calculations,
where the botton is the origian and the top is y. (Note: ||z|| should
read [|y||!)

R

T Bl

r

Let A be the area of this triangle. Heron’s formula yields

A = VO = Wl =+ O+ =0
o (G (e )]
Now, A = [[y||R/2 gives
o VO =PIl = = 87)

2[ly
and A = rtsinf gives
2t
sind Ryl

To compute h(y) we integrate the constant 1/sin6 over an n — 2
dimensional sphere of radius R. Hence,

Vn_2Rn—2
h S
) sin @
2tV R
Rlly|l
2 2 2 7\ "
_ 2tV (V02— [ly[A Uyl — (r — 1))
[yl 2|yl
_ rtVao((r+1)? — IylI%) %" (Jylf* = (r — )?)*F"
22

As Ragozin pointed out, we obtain the following as a corroloary.

Corollary 2.1. Ifn > 3 and r # t, u, * iy € C.(R™), and p? € L, for
all p <n. Also, forn =2, p, * uy € Ly, for all p < 2.
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Ragozin used this result to find examples of singular measures on
R™ n > 3 whose convolution square is in C.(R").

Guess: if p3; is never in C.(R") if M is a manifold. To be investi-
gated.

3. CONTINUITY PROPERTY
We now prove that h always has a certain ammount of continuity.
Theorem 3.1. h is continuous at each point of R™ — C,.

Proof. Take y € R" — C,. For each x € N, we have the coordinate
patch U, as above. We can take a finite subcover Uy,--- ,U,, of N,
with each U; centered at a point in V,. So if V' is an open ball contained
in Np(U;) N (R* — C,) and U = p~ (V) we get that that U ~ N, x V
through the diffeomorphism x +— 7(x),p(z), where m comes from the

projection in each of the U; onto the coordinates x1,--- ,z,_2. The
function \/gar, <xar,/sinf(xy, - -+, x,_2,91) is continuous everywhere on

U~ N, xV. Now in the U ~ N, coordinates, if y; € V'

h(y1) :/ S
y1 X Ny Sin9(x1, Tt 7xn—27y1)

As y; — vy, the inside of this integral converes uniformly to its value at
Yy, since pointwise convergence of continuous functions to a continuous
function on a compact set gives uniform convergence. Thus result
follows from the fact that integrals can be interchanged with uniform
limits of continuous functions. n

d$1 cee dZL‘n_Q.
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