
CONVOLUTION OF VOLUME MEASURES

ALEX WRIGHT

Abstract. If M1 and M2 are hypersurfaces in Rn and µ1 and µ2

are their volume measures, we provide a formula for the absolutely
continuous part h of µ1∗µ2. We prove h is continuous off a compact
set of measure zero, and calculate it explicitely if M1 and M2 are
spheres.

1. Introduction and Main Formula

Every oriented Riemann manifold M is endowed with a natural vol-
ume form dA. In oriented local coordinates x1, · · · , xn,

dA =
√

det(gij)dx1 · · · dxn.

See [1], p.257-262 for this and related facts. Corresponding to dA, there
is a natural volume measure µ so that

∫
fdA =

∫
fdµ for continuous

functions f .
In this note, M1 and M2 will be compact hyper-surfaces in Rn. A

transversality argument shows that M1 and M2 are orientable ([4]);
hence these manifolds possess natural volume measures µ1 and µ2. As
another consequence of orientability, we find that M1 and M2 possess
ortho-normal vector fields n1 and n2.

A differentiable manifold is called real analytic if the transition func-
tions are real analytic, that is, locally expressable as real power series.
Ragozin proved that if M1 and M2 are real analytic, then µ1 ∗ µ2 is
absolutely continuous to Lebesgue measure m ([2], the proof is short).
In this case we say simply that µ1 ∗ µ2 is absolutely continuous and
write µ1 ∗ µ2 ∈ L1. If M1 and M2 are spheres, Ragozin also explicitly
computed the Radon-Nikodym derivative of µ1 ∗ µ2.

Our primary result derives a formula for the absolutely continuous
part of µ1∗µ2. If M1 and M2 are real analytic, this completely describes
µ1 ∗ µ2. We also prove that µ1 ∗ µ2 is continuous off a compact set of
measure zero, and re-derive Ragozin’s formulas regarding spheres.

Define θ : M1×M2 → [0, π) as the angle between n1(x1) and n2(x2),

so sin θ(x1, x2) =
√

1− (n1(x1) · n2(x2))2. Let p : M1 ×M2 → Rn be
the addition map; p(x, z) = x + z. Since M1 and M2 are compact, the
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set of critical points Cp of p is compact, and the set of critical values
Cv := p(Cp) is also compact. By Sard’s Theorem Cv has measure zero.

It is important to note that y is a regular value for p if and only if
M1 and y −M2 are transverse. Hence, for such a y, Ny = M1 ∩ (y −
M2) is an n − 2 dimensional sub-manifold of Rn. It can be oriented
by the following convention: ∂x1, · · · , ∂xn−2 ∈ TxNy are oriented if
n1(x), n2(y− x), ∂x1, · · · , ∂xn−2 are oriented in Rn. Thus Ny possesses
a natural volume measure µNy .

Theorem 1.1. If f ∈ Cc(Rn − Cv), and

h(y) =

∫

Ny

dµSy

sin(θ(x1, x2))
,

then ∫

Rn

fd(µ1 ∗ µ2) =

∫

Rn

fhd.

Thus, h is the absolutely continuous part of µ1 ∗ µ2.

Proof. By the Submersion Theorem ([1], p.133), for every x ∈ M1 ×
M2 there are local coordinates x1, · · · , x2n−2 near x so that

p(x1, · · · , x2n−2) = (xn−1, · · · , x2n−2).

Let π1 and π2 be the projections of M1 × M2 onto M1 and M2 re-
spectively. Let s1, · · · , sn−1 be local coordinates for M1 near π1(x),
and let t1, · · · , tn−1 be local coordinates for M2 near π1(x). If x /∈ Cp,
then without loss of generality (reordering the ti if necessary), we may
assume that

span{∂p(x)/∂s1, · · · ∂p(x)/∂sn−1, ∂p(x)/∂t1} = Rn.

In the future, considering how M1 and M2 are embedded in Rn, we
write, for example, ∂si instead of ∂p/∂si. Now, the collection

∂s1, · · · , ∂sn−1, ∂ti, ∂x1, · · · , ∂xn−2

is linearly independent in Tx(M1 × M2). So, if we consider the map
x 7→ (x1, · · · , xn−2, t1, s1, · · · , sn−1) , defined on a neighborhood of x,
we see that it has an invertible derivative at x. The inverse function
theorem gives that these can serve as local coordinates for some suitably
small neighbourhood of x. Thus we can obtain a neighborhood Ux of x
with local coordinates x1, · · · , xn−2, t1, s1, · · · , sn−1 with the following
properties: Ux is rectangular in these coordinates; p(x) does not depend
on x1, · · · , xn−2; π1◦si = si for i = 1, · · · , n−1; and π2(t1) = t1. These
local coordinates will be crucial bellow.

Take f ∈ Cc(Rn − Cv), supported on a compact set K disjoint from
Cv. Take a finite open subcover U1, · · · , Um of the Ux, x ∈ M1 × M2
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for p−1(K). Let r1, · · · , rm be a partition of unity subordinate to this
open subcover ([3], p.40). Now,

∫

Rn

fd(µ1 ∗ µ2) =

∫

M1×M2

f(x + z)dµ1(x)× dµ2(z)

=
∑

k

∫

M1×M2

rk(x, z)f(x + z)dµ1(x)× dµ2(z)

At this point, we restrict out attention to a single coordinate patch
Uk, and use our good local coordinates x1, · · · , xn−2, t1, s1, · · · , sn−1.
Let gM1 , gM2 , gM1×M2 , gNy , gRn be the metric tensor for the manifolds
indicated in the subscripts. We get

∫

Uk

rk · (f ◦ p) ·
√

det(gM1×M2)dx1 · · · dxn−2dt1ds1 · · · dsn−1.

To compute
√

det gM1×M2 we define a 2n by n−1 matrix J , whose top
block J1 is the Jacobian of π1 ◦ p with respect to the local coordinates
of M1 and the standard coordinates of Rn, and whose bottom block J2

is similarly the Jacobian of π2 ◦ p. We have g = JJ t. If the first n− 1
columns of J represent the si coordinates, then fact that π1 ◦ si = si

gives that J is block upper triangular. Thus

det gM1×M2 = det JJ t = det(J1J
t
1) det(J2J

t
2) = det gM1 det gM2

where gM1 is expressed in local coordinates ∂s1, · · · , ∂sn−1 and gM2 is
expressed in the local coordinates π2x1, · · · , π2xn−2, t1.

So, the integral above becomes
∫

Uk

rkp
√

det gM1

√
det gM2dx1 · · · dxn−2ds1 · · · dsn−1dt1.

We have that t1, s1, · · · , sn−1 serve as local coordinates near p(x),
and that ([1], Lemma 10.38)

√
gRn(s1, · · · , sn−1, t1) = 〈n1(π1(x)), ∂t1〉√gM1

where we write gRn(s1, · · · , sn−1, t1) to stress the use of the non-standard
local coordinates for Rn.

Recall that Ny = M1∩(y−M2) is an n−2 dimensional oriented sub-
manifold of Rn. It is also an oriented sub-manifold of co-dimensions 1
in y −M2. Thus Ny possesses an orthonormal vector field ny(x) as a
sub-manifold of y −M2. We have

√
gM2 = 〈ny(y − π2(x)), ∂t1〉√gNy .
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Hence, the integral above is∫

Uk

rk · (f ◦ p) · 〈ny(y − π2(x)), ∂t1〉
〈n1(π1(x)), ∂t1〉 · dANydARn .

We can write ∂t1 = vy + v⊥y , where vy ∈ Tπ2(x)Ny, and 〈v⊥y , vy〉 = 0. So

〈ny(y − π2(x)), ∂t1〉
〈n1(π1(x)), ∂t1〉 =

〈ny(y − π2(x)), v⊥y 〉
〈n1(π1(x)), v⊥y 〉

=
‖v⊥y ‖

‖v⊥y ‖ cos ϕ

where ϕ is the angle between v⊥y and n1(π1(x)). We now draw a picture
and find that ϕ = θ(x) + π/2.

Thus we get ∫

Uk

rk · (f ◦ p)

sin(θ(x))
dANydARn .

Since we assumed that the Uk are rectangular we can use Fubini’s
Theorem to integrate first over the Ny coordinates and then over Rn.
Then, summing over the k we get the formula as desired.

2. Surface measures on Spheres

Let Sn−1 ∈ Rn be the n − 1 dimensional unit sphere, and let its
volume be Vn−1. Let µr be the volume measure on rSn−1 In [2], Ragozin
computed h the Radon-Nikodym derivative of µr ∗µt (r, t > 0). We are
able to compute h using our formula and the fact that θ is constand on
the Ny for spheres. Our results agree (check constant!!) with Ragozin’s
up to a constant depending on r and t, which is due to the fact that
Ragozin uses measures normalized to have mass 1.

It is clear (from our formula, or more basic facts) that h(y) depends
only on ‖y‖, and that h(y) is zero unless ‖y‖ ∈ (|r − t|, r + t). So,
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given y of appropriate norm, we draw a picture to aid our calculations,
where the botton is the origian and the top is y. (Note: ‖x‖ should
read ‖y‖!!)

Let A be the area of this triangle. Heron’s formula yields

A =
1

4

√
(r + t + ‖y‖)(r + t− ‖y‖)(‖y‖ − r + t)(‖y‖+ r − t)

=
1

4

√
((r + t)2 − ‖y‖2)(‖y‖2 − (r − t)2).

Now, A = ‖y‖R/2 gives

R =

√
((r + t)2 − ‖y‖2)(‖y‖2 − (r − t)2)

2‖y‖
and A = rt sin θ gives

1

sin θ
=

2rt

R‖y‖ .

To compute h(y) we integrate the constant 1/ sin θ over an n − 2
dimensional sphere of radius R. Hence,

h(y) =
Vn−2R

n−2

sin θ

=
2rtVn−2R

n−2

R‖y‖

=
2rtVn−2

‖y‖

(√
((r + t)2 − ‖y‖2)(‖y‖2 − (r − t)2)

2‖y‖

)n−3

=
rtVn−2((r + t)2 − ‖y‖2)

n−3
2 (‖y‖2 − (r − t)2)

n−3
2

2n−4‖y‖n−2

As Ragozin pointed out, we obtain the following as a corroloary.

Corollary 2.1. If n ≥ 3 and r 6= t, µr ∗ µt ∈ Cc(Rn), and µ2
r ∈ Lp for

all p < n. Also, for n = 2, µr ∗ µt ∈ Lp for all p < 2.
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Ragozin used this result to find examples of singular measures on
Rn, n ≥ 3 whose convolution square is in Cc(Rn).

Guess: if µ2
M is never in Cc(Rn) if M is a manifold. To be investi-

gated.

3. Continuity Property

We now prove that h always has a certain ammount of continuity.

Theorem 3.1. h is continuous at each point of Rn − Cv.

Proof. Take y ∈ Rn − Cv. For each x ∈ Ny, we have the coordinate
patch Ux as above. We can take a finite subcover U1, · · · , Um of Ny,
with each Ui centered at a point in Ny. So if V is an open ball contained
in ∩ip(Ui) ∩ (Rn − Cv) and U = p−1(V ) we get that that U ' Ny × V
through the diffeomorphism x 7→ π(x), p(x), where π comes from the
projection in each of the Ui onto the coordinates x1, · · · , xn−2. The
function

√
gM1×M2/ sin θ(x1, · · · , xn−2, y1) is continuous everywhere on

U ' Ny × V . Now in the U ' Ny coordinates, if y1 ∈ V

h(y1) =

∫

y1×Ny

√
gM1×M2

sin θ(x1, · · · , xn−2, y1)
dx1 · · · dxn−2.

As y1 → y, the inside of this integral converes uniformly to its value at
y, since pointwise convergence of continuous functions to a continuous
function on a compact set gives uniform convergence. Thus result
follows from the fact that integrals can be interchanged with uniform
limits of continuous functions.
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