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These are course notes for a one quarter long second year graduate
class at Stanford University taught in Winter 2017.

All of the material presented is classical. For the softer aspects
of Teichmüller theory, our reference was the book of Farb-Margalit
[FM12], and for Teichmüller theory as a whole our comprehensive ref-
erence was the book of Hubbard [Hub06]. We also used Gardiner and
Lakic’s book [GL00] and McMullen’s course notes [McM] as supple-
mental references. For period mappings our reference was the book
[CMSP03]. For Geometric Shafarevich our reference was McMullen’s
survey [McM00].

The author thanks Steve Kerckhoff, Scott Wolpert, and especially
Jeremy Kahn for many helpful conversations.

These are rough notes, hastily compiled, and may contain errors.
Corrections are especially welcome, since these notes will be re-used in
the future.
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1. Different ways to build and deform Riemann surfaces

1.1. Uniformization. A Riemann surface is a topological space with
an atlas of charts to the complex plane C whose translation functions
are biholomorphisms. Any open subset of the Riemann sphere P1 is
Riemann surface, as is the complex torus C/Z[i]. In this course we
will be interested in moduli (parameter) spaces of Riemann surfaces,
especially the space of all Riemann surfaces of fixed genus. Thus, typ-
ically we will restrict to closed connected surfaces, but for context it
helps to start out more generally. Complex analysis starts to turn into
Teichmüller theory with the following theorem and exercise.

Theorem 1.1 (Uniformization). Every simply connected Riemann sur-
face is biholomorphic to C, P1, or the upper half plane

H = {z ∈ C : Re(z) > 0}.

Thus in particular the moduli space of closed genus 0 Riemann sur-
faces is a point.

Exercise 1.2. Two annuli {z : r < |z| < R} and {z : r′ < |z| < R′} are
biholomorphic if and only if R/r = R′/r′. (The case when r = 0 and
R =∞ is an exception, since the punctured plane is not biholomorphic
to the punctured disc.)

Thus, the moduli space of Riemann surfaces that are homeomorphic
to annuli at least contains a copy of (1,∞]; later you will show it is
equal to (1,∞] (if we leave out the punctured plane).

The group of biholomorphic automorphisms of P1 is PSL(2,C), act-
ing via Möbius transformations. The group of biholomorphic auto-
morphisms of C is the affine group, and the group of biholomorphic
automorphisms of H is PSL(2,R). The hyperbolic metric

dx2 + dy2

y2

on H is preserved by PSL(2,R), and in fact PSL(2,R) is the group of
orientation preserving isometries of H.

Lemma 1.3. Every Riemann surface of genus at least 2 has a metric
of constant curvature −1 in its conformal class.

Note, the conformal class of a Riemann surface is the set of all metrics
on the surface that give the same angles between tangent vectors as
the conformal structure. In a holomorphic coordinate dz = dx + idy,
all metrics in the conformal class are of the form eh(dx2 + dy2), where
h is a function.
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Proof. The universal cover of the Riemann surface is H, and the Deck
group acts via orientation preserving biholomorphisms. Hence the Deck
group acts via hyperbolic isometries. �

Exercise 1.4. Prove uniqueness of the hyperbolic metric.

Similarly one may show that every genus 1 Riemann surface has a
(unique) flat metric.

We have shown that every Riemann surface of genus at least 2 is of
the form H/Γ, where Γ ⊂ PSL(2,R) is the Deck group. Varying the
matrix entries of generators of the Deck group, subject to the relation
that holds on the generators, varies the Riemann surface.

A discrete subgroup of PSL(2,R) is called a Fuchsian group.

1.2. Algebraic curves. Consider the zero set of a homogeneous poly-
nomial p in P2. If the polynomial is non-singular, i.e. if the gradient and
the polynomial do not vanish at the same time, the implicit function
theorem gives that the zero set of the polynomial is a closed surface,
and in fact the result is a Riemann surface. More generally, one can
consider systems of equations on Pn.

In the same way that an abstract surface is not the same thing as a
surface embedded in Rn, a Riemann surface is not the same thing as
a Riemann surface cut out by specific polynomials in projective space;
the later is called a (non-singular) algebraic curve.

Now suppose we change (perturb) the coefficients of the polyno-
mial(s) defining the algebraic curve. In general, the Riemann surface
may or may not change, although in some sense one expects it to. In
the same way that an abstract surface can be embedded in Rn many
different ways, a Riemann surface may have many distinct realizations
as an algebraic curve. It is however a basic result in the theory of alge-
braic curves that every Riemann surface can be realized as an algebraic
curve.

Philosophically, the situation can be compared to finite group theory.
If one wishes to understand finite matrix groups, one may divide the
study into two halves: classify all abstract groups, and then classify
the linear representations of groups. For algebraic curves, the abstract
portion is the study of moduli space, and the second portion is called
Brill-Noether theory.

1.3. Covers of P1. Consider a finite degree branched cover of P1.
Branched means that after removing a finite set of points from P1 and
their pre-images, the map is an honest covering map. The points of
the cover where the map is not a local diffeo are called the ramification
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points; their images are called the branch points. At each ramification
point, the map looks locally like z 7→ zk.

Any finite degree branched cover of P1 may be assigned the structure
of a Riemann surface in such a way that the covering map is holomor-
phic. Varying the branch points may or may not change the Riemann
surface, although again one expects it to.

There is a Galois correspondence between finite branched covers of
P1 and finite field extensions of C(z). The correspondence maps a
branched cover to its field of meromorphic functions.

1.4. Hyperbolic hexagons and pants. See [FM12, Proposition 10.4]
for an elegant and soft proof that, for any `1, `2, `3 > 0, there is a unique
hyperbolic hexagon with three non-adjacent sides of lengths `i. Gluing
two such together along the remaining 3 sides gives a hyperbolic pair
of pants with cuff lengths `1, `2, `3. Gluing together pants can give a
hyperbolic surface.

Exercise 1.5. Prove that every closed hyperbolic surface of genus at
least 2 can be obtaining in this way. Hint: You may use that every
curve on a hyperbolic surface can be tightened to a unique geodesic.
You may wish to consider minimal length curves between different cuffs.

The Riemann surface can be varied by changing the lengths of the
cuffs, and changing the way they are glued together.

1.5. Three manifolds. Hyperbolic geometry plays a preeminent role
in the topology of three manifolds; it turns out a great many three man-
ifolds have hyperbolic structures. One may ask then if there is an ana-
logue of Teichmüller theory for hyperbolic three manifolds, that studies
the moduli space of hyperbolic structures on a given three manifold.
Surprisingly, a closed three manifold may have at most one hyperbolic
structure; this is the celebrated Mostow Rigidity Theorem.

Nonetheless, Teichmüller Theory plays a major role in three manifold
theory. For example, the open manifolds given by a surface cross R
admit a large space of hyperbolic structures parameterized by a product
of Teichmüller spaces, and many closed three manifolds can be shown
to have a hyperbolic metric using Teichmüller Theory.

2. Teichmüller space and moduli space

A good source for much of the material in this chapter is [FM12,
Chapters 10, 12].
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2.1. Teichmüller space. Fix an oriented closed surface S of genus g;
this surface is only a topological surface (it isn’t a Riemann surface),
and it is sometimes called the reference surface. Teichmüller space Tg
is defined to be the space pairs (X,φ), where X is a Riemann surface
and φ : S → X is an orientation preserving homeomorphism, up to
to the following equivalence relation: (X1, φ1) ∼ (X2, φ2) if there is a
biholomorphism I : X1 → X2 such that φ2 is homotopic to I ◦ φ1. (At
the moment Tg is a set, but shortly we will endow it with a topology.)

We may write

π1(S) = 〈a1, b1, . . . ag, bg :
∏

[ai, bi] = 1〉.

A point in Teichmüller space can be viewed as a genus g Riemann
surface on which one can refer to the homotopy class of any curve, for
example a1, or a1b2a

−1
3 .

Exercise 2.1. Show that two homeomorphisms between closed sur-
faces are homotopic if and only if they induce the same map on π1.
(Because there is no fixed basepoint on X, the maps on π1 should be
considered up to conjugacy.)

Note: Soon we will see that Teichmüller space is connected. If in
the definition φ were not required to be orientation preserving, then
Teichmüller space would have two connected components.

2.2. Teichmüller space of the torus. Every genus 1 Riemann sur-
face has universal cover C. Indeed, the universal cover must be C or H,
and if it were H then the torus would have a metric of curvature −1,
contradicting Gauss-Bonnet. (Alternative proof: PSL(2,R) does not
contain a discrete subgroup isomorphic to Z2.) The biholomorphisms
of C are the affine maps, and the only affine maps without fixed points
are translations. Therefore we get that the Deck group acts via trans-
lations, and the Riemann surface is of the form C/Λ, where Λ ⊂ C is
a discrete group acting via translations.

Typically for a point in Teichmüller space, we only have a conjugacy
class of isomorphisms from fundamental group of the reference surface
to the fundamental group of the Riemann surface. However, in genus 1
the fundamental group is abelian, so we get a well defined isomorphism.

Proposition 2.2. The map

H→ T1, τ 7→ C/〈1, τ〉,
with the data of the marking given by the isomorphism

π1(S) = Z2 → 〈1, τ〉, (1, 0) 7→ 1, (0, 1) 7→ τ,

is a bijection.
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Proof. We will construct the inverse. Any genus 1 Riemann surface
may be written as C/Λ. Hence any point in T1 may be written as
C/Λ where we have a fixed identification of Z2 with π1 induced by
the marking. It will be important that the marking is orientation
preserving. Assume the standard generators of Z2 are chosen so they
have symplectic pairing (algebraic intersection number) 1. Let the
images of the two generators be ν, τ respectively, so Λ = 〈ν, τ〉. By
scaling and rotating, we may assume ν = 1. Since ν and µ are linearly
independent in R2, we must have that Re(τ) is positive or negative.
Using the fact that the intersection number of ν and µ is 1 and not -1,
one can show that Re(τ) > 0. �

We can define the topology on T1 as the topology of H.
In summary, we have described T1 by giving the representation from

π1 of the torus to the group of biholomorphisms of C, modulo bi-
holomorphisms of C (above this took the form of scaling or rotating
both generators of the lattice). We will now do something similar for
Tg, g > 1.

2.3. The character variety. By uniformizing, a point of Tg, g > 1
gives a map π1(S)→ PSL(2,R).

Exercise 2.3. Prove this map is well defined up to conjugation by an
element of PSL(2,R).

The map π1(S) → PSL(2,R) is discrete (its image has no accumu-
lation points) and faithful (injective). If we quotient H by the image
of any such discrete and faithful map from π1(S) we get a Riemann
surface with fundamental group group π1(S); by the classification of
surfaces it must be a closed surface of genus g.

We begin by considering the set DF (π1(S), PSL(2,R)) of discrete
faithful representations. We then take the quotient by conjugation to
obtain

DF (π1(S), PSL(2,R))/PSL(2,R),

the space of conjugacy classes of discrete faithful representations.
If π1(S) = 〈a1, b1, . . . ag, bg :

∏
[ai, bi] = 1〉, we may consider the

representation variety of all homomorphisms from π1(S) to SL(2,R).
This can be identified with tuples of matrices (A1, B1, . . . , Ag, Bg) sat-
isfying the polynomial equations that they are all determinant 1 and∏

[Ai, Bi] = 1. This has the induced topology as a subset of SL(2,R)2g.
Quotienting by ±1 gives the PSL(2,R) representation variety. The
quotient of this representation variety by conjugation is called the char-
acter variety; it is endowed with the quotient topology, and contains
DF (π1(S), PSL(2,R))/PSL(2,R) as a subset.
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In this way we obtain a topology on Tg, which is a subset of

DF (π1(S), PSL(2,R))/PSL(2,R).

In fact, DF (π1(S), PSL(2,R))/PSL(2,R) has two connected compo-
nents (corresponding to orientation preserving or reversing), and Te-
ichmüller space is one of these two components.

Let γ ∈ π1(S), and X ∈ Tg. Let ρX ∈ DF (π1(S), PSL(2,R)) denote
a corresponding representation. The hyperbolic length of γ is given by

cosh−1(trace(ρX(γ)/2)),

and so hence is a continuous function on Teichmüller space.

2.4. Fenchel-Nielsen coordinates. Any maximal collection of dis-
joint non-isotopic essential simple closed surfaces on a surface contains
3g − 3 curves and divides the surface up into pants. There is a length
parameter for each curve, and a twist parameter. Hence Teichmüller
space is homeomorphic to R3g−3

>0 ×R3g−3 ' R6g−6. In particular, it is a
real manifold of dimension 6g − 6.

To see that the map R3g−3
>0 ×R3g−3 → Tg is continuous, we may con-

struct a continuous map from R3g−3
>0 ×R3g−3 to Hom(π1(S), PSL(2,R))

whose image gives the Fuchsian group defining (uniformizing) the hy-
perbolic surface.

Later we will see that Tg is a complex manifold; at the moment this
may seem unexpected, since PSL(2,R) is not a complex manifold (it
has real dimension 3).

2.5. The mapping class group. The mapping class group MCG(S)
of a surface S is the group π0(Homeo+(S)) of isotopy classes of homeo-
morphisms. An important example of a mapping class is a Dehn twist.

Proposition 2.4. Let S be a torus. The action of a mapping class on
H1(S,Z) ' Z2 gives an isomorphism

σ : MCG(S)→ SL(2,Z).

In higher genus it is unknown if the mapping class group is linear.

Proof. Any homeomorphism of S induces an invertible map

φ∗ : H1(S,Z)→ H1(S,Z).

If it is orientation preserving, its derivative can be shown to be 1 (in-
stead of the only other possibility −1). Homotopic maps induce the
same map on homology, so this gives the map σ([φ]) = φ∗.

The map σ is surjective by considering linear homeomorphisms. It
is injective by K(π, 1) theory (Whitehead’s Theorem). �
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In higher genus the mapping class group does not lift to Homeo+(S).
There is a natural map MCG(S) → Outπ1, which is injective by

K(π, 1) theory. (In particular, this proves the mapping class group is
countable.) The Dehn-Nielsen-Baer Theorem states that the map is
surjective, if one uses the slightly larger extended mapping class group,
which allows orientation reversing homeos.

An important result gives that the mapping class group is virtu-
ally torsion free (it has a finite index subgroup without finite order
elements).

2.6. Moduli space. Moduli spaceMg is the set of Riemann surfaces
of genus g up to biholomorphism. There is a map Tg →Mg given by
forgetting the marking: (X,φ) 7→ X. Moduli space caries the quotient
topology.
MCG(S) acts on Tg by precomposing the marking φ with the inverse

of the mapping class. Two points (X,φ1), (X,φ2) that map to the same
point in MCG(S) differ by the action of the mapping class φ−12 ◦ φ1.
Thus, Mg is the quotient of Tg by MCG(S).

Proposition 2.5. If S has genus 1, the action of MCG(S) = SL(2,Z)
on T1 = H is by the usual action of fractional linear transformations
conjugated by z 7→ −z.

In particular,M1 = H/SL(2,Z), which is called the modular curve.

Proof. We begin with the map

Z2 → 〈1, τ〉, (1, 0) 7→ 1, (0, 1) 7→ τ,

and precompose with the linear map Z2 given by g−1, for

g =

(
a b
c d

)
∈ SL(2,Z).

The composite maps (1, 0) to d− cτ and (0, 1) to −b+ aτ . So the new
point in Teichmüller space obtained is

−a(−τ) + b

c(−τ) + d
.

�

In general, to see that Mg is a nice object, we need the following,
which is [FM12, Theorem 12.2].

Proposition 2.6. The action of the mapping class group on Teichmüller
space is properly discontinuous.
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A group action on a locally compact space is called properly discon-
tinuous if, for every compact set K, there are only finitely many group
elements g such that gK ∩K 6= ∅.

Exercise 2.7. The quotient map by a properly discontinuous free ac-
tion is a covering space map. (Free means that there are no fixed
points.)

The quotient of a manifold by a properly discontinuous action that
may have fixed points is an example of an orbifold; the orbifold we
consider can be thought of as a manifold with “cone points”, each of
which is modeled on the quotient of Rn by the action of a finite group.

Since the mapping class group is virtually torsion free, we can find
a subgroup Γ ⊂ MCG(S) that has no torsion. Since the action on
Tg is proper, the stabilizer of every point must be finite; hence Γ acts
freely on Tg and the quotient Tg/Γ is a manifold. This manifold maps
to moduli space: Tg/Γ 7→ Tg/MCG(S) = Mg. Thus Mg is the best
sort of orbifold, the kind finitely covered by a manifold.

Proof of Proposition. Here we consider Tg as a subset of the character
variety, and MCG(S) as a subset of Out(π1(S)), acting by precompo-
sition on the character variety.

We will use the following fact, which is intuitive but will not be
justified until later in the course: Let K be a compact subset of Tg.
Then for any C > 0 there are only finitely many isotopy classes of
curves that have hyperbolic length at most C somewhere on K.

We will also use the following fact, which won’t be justified at all in
the course: There is a finite set S of isotopy classes of closed curves
such that only the trivial mapping class fixes all of them.

The action of the mapping class group does not change the hyperbolic
metric; it merely remarks the surface. Pick a point (X,φ) ∈ K, and
pick C so that every element of S has length at most C everywhere on
K. Any g ∈ MCG(S) with the property that gK intersects K must
map each element of S to one of the other finitely many other isotopy
classes that have length at most C somewhere on K. If mapping classes
g1, g2 have the same action on S, then g1g

−1
2 must fix each element of

S and hence be the trivial mapping class, so g1 = g2. Since there are
only finitely many maps from S to the finite set of isotopy classes that
have length at most C somewhere on K, this proves that there can be
only finitely many g such that gK intersects K, as desired. �

2.7. Length functions on Tg. We have already commented that length
functions are continuous on Tg. Next, we remark that a point in Te-
ichmüller space is determined by the length spectrum π1(S) → R>0.
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This admits concrete proofs (and in fact it suffices to consider the
lengths of 9g − 9 curves). Since lengths are determined by traces of
elements of the Fuchsian group, it is also an instance of the general
fact that a semisimple representation of any group over a field of char-
acteristic zero is determined by its traces.

In fact, it is a theorem (called marked length spectrum rigidity) that
any negatively curved surface is determined by the lengths of its closed
geodesic: if there is a homomorphism between two such surfaces such
that the geodesics representing corresponding simple closed curves have
the same lengths on each surface, then the two surfaces are isometric.

2.8. Marked points and the universal family over Tg. One may
also consider the Teichmüller space Tg,n of marked Riemann surfaces
with n distinguished points; in this case the reference surface S has
n distinguished points, and the biholomorphisms are required to send
distinguished points to distinguished points. One also calls the distin-
guished points marked points, but this is perhaps confusing since it is
a distinct concept than the marking φ : S → X.

Puncturing the marked points and uniformizing, we find that the
punctured surface has a complete hyperbolic metric; the punctures cor-
respond to cusps of the metric. There are Fenchel-Nielsen coordinates,
the only difference being that in addition to regular pants one must
use degenerate pants, which are spheres with 2 boundary components
and one puncture (cusp) or 1 boundary component and two punctures
(cusps). One gets that Tg,n is homeomorphic to R6g−6+2n.

The forgetful map Tg,1 → Tg is called the universal family (or curve)
over T . The fiber over a point (X,φ) is a copy of X.
Tg is what is called a fine moduli space. This means in particular

that any family of marked Riemann surfaces over a base B can be
obtained as the pull back of the universal family via a map B → Tg.

Exercise 2.8. Prove this when B = S1.

The mapping class group MCG(S) acts on the universal curve by
remarking, and we get a map Tg,1/MCG(S) → Tg/MCG(S) = Mg.
One wishes the fibers of this map were surfaces homeomorphic to S,
however this isn’t entirely true. Indeed, for a point of Tg that has a
non-trivial stabilizer in MCG(S), the stabilizer will act on the fiber of
the universal curve, and the quotient of the fiber by this action will be
an orbifold surface of lower genus.

Moreover, one can show that Mg is not a fine moduli space. For
example, let X be a Riemann surface with an automorphism f : X →
X. Consider the bundle X × [0, 1], and then glue together the two
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ends X ×{0} and X ×{1} via f . This is a non-trivial bundle over S1.
Compare this to the trivial bundle S1 × X. Both give the same map
S1 →Mg, but they are different bundles!

In general, moduli spaces of objects that may have automorphisms
are not fine moduli spaces. The reason Tg is a fine moduli space is that
a marked Riemann surface may not have an automorphism preserving
the marking.

3. The Deligne-Mumford compactification of moduli space

3.1. The collar lemma. The following is [FM12, Lemma 13.5]; a
proof can be found there.

Lemma 3.1. Let γ be a simple closed geodesic on a hyperbolic surface.
Then the set of points of distance at most

sinh−1
(

1

sinh(`(γ)/2)

)
from γ is an embedded annulus, where `(γ) is the length of γ.

When ` = `(γ) is small, the above expression is comparable to
− log(`). In particular, the size of the collar goes to infinity as the
length of the geodesic goes to zero.

Corollary 3.2. There exists a constant δ > 0 such that on any hyper-
bolic surface, any two distinct closed simple geodesics of length at most
δ are disjoint.

The corollary also applies for non-simple geodesics. The constant is
called the Margulis constant.

The collar lemma is a special improvement over the following general
theorems.

• Let X be a manifold of bounded non-positive curvature. Then
there exists constants C, ε > 0 such that for any discrete sub-
group Γ of the isometries of X, and any x ∈ X, the group
generated by the set

{γ ∈ Γ : d(x, γx) < ε}

contains a subgroup of index at most C that is nilpotent.
• If G is a semisimple Lie group then there is a neighbourhood
U of the identity (called a Zassenhaus neighbourhood) and a
C > 0 such that any discrete subgroup generated by elements
of U contains a nilpotent subgroup of index at most C.
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3.2. Mumford’s compactness criterion and the Bers constant.
Our goal is to give a generalization of Mahler’s compactness criterion
[FM12, Theorem 12.7], which says that the subset ofM1 represented
by unit area flat tori without a closed geodesic of length less than any
ε > 0 is compact. In other words, the only way to degenerate a unit
area flat torus is to create a short curve. The corresponding statement
for Mg, g > 1 is

Theorem 3.3. The subset M≥ε
g of Mg consisting of surfaces without

any closed geodesics of length less than ε is compact.

The area of a ball of radius r in H is exponential in r. An area argu-
ment using Gauss-Bonnet gives that every genus g hyperbolic surface
has a closed geodesic of length O(log(g)). In fact, it is know that this
O(log(g)) is optimal. In particular, as the genus gets big, there are
“fat” surfaces where all closed geodesics are long.

To establish the theorem we need the following more refined estimate,
which is proved in [FM12, Prop 12.8].

Proposition 3.4. For each g > 1, there is a constant Lg such that any
X ∈ Mg has a pants decomposition where the length of each cuff is at
most Lg.

The optimal Lg is called the Bers constant. It is known that Lg ≤
21(g − 1), and conjectured that it is O(

√
g).

The proposition, together with the fact that there are only finitely
many pants decompositions up to the action of the mapping class
group, implies the theorem.

3.3. Deligne-Mumford. Isometries of H can be classified as follows.
Consider g ∈ PSL(2,R), not the identity.

• If | trace(g)| < 2, then g has a unique fixed point in H and is
called elliptic. Elliptic elements are conjugate to elements of
SO(2).
• If | trace(g)| = 2, then g is called parabolic and is conjugate to
z 7→ z + 1.
• If | trace(g)| > 2, then g is called hyperbolic and is conjugate

to z 7→ λz, in which case the trace is λ
1
2 + λ−

1
2 .

If Γ ⊂ PSL(2,R) uniformizes a compact surface H/Γ, then it con-
sists entirely of hyperbolics. The hyperbolic z 7→ λz corresponds to a
geodesic of length log λ. (The axis, which in this case is the imaginary
line, projects to the geodesic.) If the length of the geodesic goes to 0,
then λ→ 1 and the trace goes to 2.
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The loop around a cusp gives parabolic. Hence, we see intuitively
that as a length goes to zero, the corresponding element of the Fuchsian
group becomes parabolic, and the collar neighborhood converges to a
cusp. For a more precise discussion, see [Wol10, Section 1.6].

Let T g be the augmented Teichüller space; it is obtained, for every
possible pants decomposition, by formally adding in points where any
subset of the cuffs lengths are zero and the corresponding twist param-
eter becomes undefined. Augmented Teichüller space is not compact; it
is a bordification (partial compactification) of Teichmüller space. The
points of T g may be considered to be nodal Riemann surfaces, marked
by a map which is allowed to collapse curves to nodes.

We define the Deligne-Mumford compactificationMg to be the quo-
tient of augmented Teichmüller space by the mapping class group. Its
points consist of unmarked nodal Riemann surfaces (the nodes are the
cusps). It is compact, essentially by finiteness of the Bers constant and
the fact that there are only finitely many pants decompositions up to
the action of the mapping class group.

Combining pairs of length and twist coordinates in polar coordinates
showsMg is a smooth orbifold. It is naturally stratified; the codimen-
sion one boundary strata parameterize surface with one pinched curve;
there are 1 + bg

2
c of them.

Mg has only one end, meaning that for any compact set, there is
exactly one unbounded component of the complement. We haven’t put
any metric onMg yet, but you should think of it is being finite volume,
but cross sections of the cusps have diameter going to infinity.

4. Jacobians, Hodge structures, and the period mapping

The source for this is the excellent first chapter of [CMSP03].

4.1. The case of genus 1. An Abelian differential on a Riemann sur-
face is a differential one form with coefficients in the complex numbers
that can locally be written as f(z)dz, where z is a holomorphic local
coordinate and f is holomorphic.

Exercise 4.1. Show any Abelian differential is closed.

When we gave the isomorphism T1 ' H, we implicitly used the
Abelian differentials (holomorphic 1-forms) ω = dz on the torus X =
C/〈1, τ〉. The parameter τ is the period (integral) of dz. More specifi-
cally, if α and β are a fixed symplectic basis of homology (coming from
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the marking surface), we have

τ =

∫
β
ω∫

α
ω
.

The one forms ω and ω are directly seen to be closed, linearly inde-
pendent one forms, and hence span H1(X,C). It is also easy to see
that any other holomorphic one form ω′ on the torus is a multiple of
ω; otherwise ω′/ω would be a non-constant holomorphic function.

Hence we that the space of holomorphic one forms H1,0(X) is a line
in the two dimensional space H1(X,C). Using the marking, we may
fix an isomorphism H1(X,C) = C2 = span(α∗, β∗). Here (α∗, β∗) is the
dual basis to (α, β). Normalizing ω as above we have ω = α∗ + τβ∗.
Thus we see that τ measures the slope of the line H1,0(X) in C2.

The map from a marked torus to τ is called the period mapping.
We have already proven it to be injective, but it is good to pause
and appreciate that the Hodge theoretic information of the position of
H1,0(X) inside H1(X,C) determines the Riemann surface.

4.2. Higher genus and Siegel upper half space. For any closed
Riemann surface, either Hodge theory or Riemann-Roch gives that
H1(X,C) = H1,0(X)⊕H0,1(X).

Exercise 4.2. Compute an explicit basis of Abelian differentials for
the Riemann surface given by y2 =

∏2g−2
i=1 (z − zi).

To understand how the Hodge structure varies we wish to understand
how the g dimensional space H1,0(X) varies inside the 2g dimensional
space H1(X,C). Before we do this, we should understand in more
detail why the period mapping in genus 1 has image H instead of P1.

To start, recall that for any symplectic vector space with a symplectic
basis α1, β1, . . . , αg, βg the symplectic pairing on the dual vector space
is given by

〈v, w〉 =

g∑
i=1

v(αi)w(βj)− v(βi)w(αj).

You can check this on the standard basis of the dual, for example
〈α∗i , β∗j 〉 = δij.

Lemma 4.3. The dual of the standard symplectic form on H1(X,R)
is given by

〈v, w〉 =

∫
v ∧ w.
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For any abelian differential ω, we have that i
2
ω ∧ ω is a positive

multiple of z = dxdy, in local coordinates x+ iy. So, for the torus, we
get

i

2

(∫
α1

ω

∫
β1

ω −
∫
β1

ω

∫
α1

ω

)
> 0.

If we normalize so
∫
α1
ω = 1 (the inequality implies

∫
α1
ω 6= 0) we get∫

β1
ω1 ∈ H.

The above inequality in particular implies there is no Abelian differ-
ential all of whose αi periods are zero. Hence it is possible to pick a
basis ω1, . . . , ωg of H1,0(X) so that

∫
αi
ωj = δij. The matrix

τ =

(∫
βi

ωj

)
is called the period matrix of X. It depends only on the choice of
symplectic basis αi, βi for H1.

Note that the space H1,0(X) is the graph of the period matrix map-
ping the span of the α∗i to the span of the β∗i ; given a one form with
specified αi periods, the period matrix gives the βj periods.

The inequality above gives that imaginary part of the period matrix
is positive definite. Using

∫
ωi ∧ ωj = 0 gives that it is symmetric.

4.3. Siegel upper half space. If we pick a different symplectic basis
for H1, how does the period matrix change? The new symplectic basis
(β′1, . . . , β

′
g, α

′
1, . . . , α

′
g) may be given from the old basis (β1, . . . , βg, α1, . . . , αg)

via a symplectic matrix g ∈ Sp(2g), and we may write

g =

(
A B
C D

)
.

We wish to compute the matrix τ ′ that computes the β′i periods from
the α′i periods, in terms of the matrix τ that computes the βi periods
from the αi periods. We assume

∫
αi
ωj = δij. Then the α′i periods are

Cτ +D and the β′ periods are Aτ +B. Hence

τ ′ = (Aτ +B)(Cτ +D)−1.

The space Hg of g by g symmetric matrices with positive definite
imaginary part is a homogeneous space for the action of Sp(2g,R).

4.4. Jacobians and the Torelli theorem. We obtain a mapMg →
Hg/Sp(2g,Z). To understand this map, we define the Jacobian of a
Riemann surface X to be the complex torus

Jac(X) = H1,0(X)∗/H1(X,Z)
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plus the data of the symplectic form on H1(X,Z) = H1(Jac(X),Z).
Note that H1,0(X)∗ ' H1(X,R) as real vector spaces, but H1,0(X)∗

carries a complex structure, whereas H1(X,R) does not. Without this
complex structure, the Jacobian would depend only on the homeomor-
phism type of the Riemann surface.

If the period matrix of a Riemann surface is τ , then the Jacobian is
Cg/(Zg + τZg). The mapping

τ 7→ Cg/(Zg + τZg)

shows that the period mapping covers the map X 7→ Jac(X).
The Torelli Theorem shows that X 7→ Jac(X) is injective. The map

is branched over the hyperelliptic locus. It extends to the set of full
geometric genus Riemann surfaces, and it is proper on this locus.

The complex dimension of Siegel upper half space is 1+2+ · · ·+g =
(g + 1)g/2. Hence the real dimension is 6 = 6g − 6 for g = 2 and
12 = 6g − 6 for g = 3. However starting in genus 4, the dimension
of Siegel upper half space is larger than that of Mg. Determining the
image is the notoriously difficult Schottky problem.

5. Quasiconformal maps

Given a map f from a subset of C to C, how may we measure its
failure to be holomorphic? The obvious answer is fz = (fx + ify)/2,
because this quantity is zero if and only if f is holomorphic. However,
given that multiplication by a scalar is holomorphic, we may not want
to say that 2f is more or less holomorphic than f . Consider instead
µ = fz/fz, which is called the complex dilatation of f .

To determine what geometric information µ encodes, consider the
derivative of f at a point p, which is a linear map from R2 → R2. (We
write R2 instead of C to emphasize that, if f is not holomorphic, this
map is only real linear.) It takes the circle eiθ in the tangent space to
p to the ellipse

fz(p)e
iθ + fz(p)e

−iθ = fz(p)(e
iθ + µ(p)e−iθ).

This achieves its maximum absolute value of |fz(p)|(1 + |µ(p)|) at θ =
arg(µ(p))/2. The minimum value is |fz(p)|(1 − |µ(p)|). Hence, the
direction of greatest stretch is arg(µ(p))/2, and the ratio of major to
minor axis of the image ellipse is

Kf (p) =
1 + |µ(p)|
1− |µ(p)|

.
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This is called the dilatation of f at p. The dilatation of f is defined to
be

sup
p
Kf (p) =

1 + ‖µ‖∞
1− ‖µ‖∞

.

A map f is called K-quasiconformal if Kf < ∞ and it is in the
Sobolev space W 1,2. (In this generality, the supremum in the definition
of Kf (p) should be replaced with an essential supremum.)

It requires a fair bit of work, but it can be shown that the compo-
sition of a K1-quasiconformal map and a K2-quasiconformal is K1K2-
quasiconformal, and that a 1 quasiconformal map is conformal. We
will require only quasiconformal maps that are homeomorphisms and
are differentiable outside of a discrete set of points. In this case the
first fact is easy: an infinitesimal ellipse first gets mapped to an ellipse
contained between two circles of radii K1R and R. Each of these circles
is mapped to an ellipse contained in between circles of radii K1K2RR

′

and K1RR
′ (for the first) and K2RR

′ and RR′ (for the second). Hence
the original circle gets mapped to an ellipse contained between circles
of radii K1K2RR

′ and RR′.
One can also see that inverse of a K-qc map is K-qc.
The fact that a continuous 1-qc map that is differentiable outside a

discrete set of points is holomorphic follows directly from the remov-
able singularity theorem, since it must be holomorphic wherever it is
differentiable.

One of the miracles of quasiconformal maps, which we will not use,
is that the set of K-qc maps is closed under uniform limits. This is
reminiscent of the fact that the set of holomorphic functions are closed
under uniform limits.

The function p 7→ µ(p) is called the Beltrami differential of f . We
will now see how the Beltrami differential changes when we make a
holomorphic change of coordinate in the domain. That is, we will
suppose z = z(w) is a holomorphic function of w, and compute the
Beltrami differential in terms of the coordinate w. Write dz/dw = eiφr

Recall the direction of greatest stretch is arg(µ(p))/2. Hence, in the
w coordinate, the new direction of greatest stretch is

arg(µ(p))/2− φ = (arg(µ)− 2φ)/2.

The new ratio of major to minor axes is the same, so, noting that

dz

dw

/
dz

dw
= e−2iφ,
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we see that the Beltrami differential in the new coordinate w is given
by

µ(z(w)))
dz

dw

/
dz

dw
.

That is, Beltrami differentials are naturally (−1, 1) forms, i.e. tensors
of type dz

dz
.

Postcomposing f with a holomorphic function does not change the
Beltrami differential.

Theorem 5.1 (Measurable Riemann Mapping Theorem). If ‖µ‖∞ < 1
there exists a unique quasiconformal homeo fµ : P1 → P1 that fixes
0, 1,∞ whose complex dilatation is given by µ almost everywhere.

Moreover, fµ is smooth wherever µ is, and fµ varies complex ana-
lytically with respect to µ.

For a proof, see [Hub06, Theorem 4.6.1]. The existence of fµ when
µ is analytic is not too hard and was shown by Gauss. The general
theorem can be viewed as the 1D case of the Newlander-Nirenberg
theorem.

A glimpse of the (co)tangent space to Teichmüller space. Kodaira-
Spencer deformation theory predicts that the infinitesimal deforma-
tions of a complex manifold be given by the first Cech cohomology
group with coefficients in the sheaf Θ of holomorphic vector fields.
The idea is to specify on each overlap of charts a holomorphic vector
field indicating how the two charts should be moved with respect to
each other; infinitesimally, the new gluing map should be the old going
map composed with an infinitesimal amount of the flow.

By Serre duality,

H1(X,Θ)∗ = H0(X,K −Θ) = H0(X, 2K) = Q(X),

where Q(X) is the space of holomorphic quadratic differentials on X.
This suggests that Q(X) is the cotangent space to Teichmüller space.
Later we will verify this, and that the tangent space is equal to the Bel-
trami differentials modulo the Beltrami differentials that pair trivially
with all quadratic differentials.

6. The Teichmüller metric

The reference for this section is [FM12, Chapter 11].
The Teichmüller distance between two points of Teichmuller space

(X,φ), (Y, ψ) is defined to be

d(X, Y ) =
1

2
logK,
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where K is the infimum of the dilatations of all quasiconformal maps
from X to Y which are differentiable outside a finite number of points
and commute up to homotopy with the marking maps. Later we will
show the infimum is uniquely realized and d(X, Y ) = 0 iff X = Y . We
begin with a special case.

Whether or not to include the factor of 1
2

is a matter of personal
preference. Not including it makes the Teichmüller metric equal to the
Kobayashi metric, and including it makes the formula for infinitesimal
Teichmüller (co-)metric particularly nice.

Theorem 6.1 (Grötzsche’s problem). If f : [0, a]× [0, 1]→ [0, Ka]×
[0, 1] is smooth outside a finite number of points and takes horizontal
(resp. vertical) edges to horizontal (resp. vertical) edges, then

Kf ≥ K

with equality iff f is affine.

Proof. Integrating the inequality

Ka ≤
∫ a

0

|fx(x, y)|dx

over y ∈ [0, 1] and squaring gives

K2a2 ≤
(∫
|fx(x, y)|dA

)2

.

Now, let m and M be the min and max of |df(v)| at a fixed point
(x, y), where v runs over unit tangent vectors. Then Kf = M/m and
Jac(f) = mM by definition, where Jac denotes the determinant of
the derivative. Hence we get |fx(x, y)|2 ≤ Kf Jac(f). Using Cauchy-
Schwarz,

K2a2 ≤
(∫ √

Kf (x, y)
√

Jac(f)(x, y)dA

)2

≤
(∫

Kf (x, y)dA

)(∫
Jac(f)(x, y)dA

)
≤ (Kfa)(Ka).

To see uniqueness, note that for the first inequality to be equality, f
must take horizontal lines to horizontal lines. For the second inequality
to be equality, the horizontal direction must be the direction of maxi-
mal stretch everywhere. For the Cauchy-Schwarz to be an inequality,
Jac(f)/Kf = m2 must be constant. From the final inequality, Kf must
be constant, so M must be constant. Since the direction of max and
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min stretch are orthogonal, we get that f has constant derivative, and
hence must be affine. �

We now wish to generalize this, to claim that for two points in Te-
ichmüller space there is a unique map that stretches and contracts a
constant amount everywhere that achieves the infimum in the definition
of the Teichmüller distance.

For the torus, it is clear what the candidate maps should be: since the
mapping class group is SL(2,Z), each mapping class is represented by
a linear map. However, higher genus surfaces do not admit foliations,
so it isn’t even possible to continuously define the direction of maximal
stretch.

For this purpose, consider a quadratic differential q, which is a section
of the square of the holomorphic cotangent bundle of the Riemann
surface. More concretely, in a local coordinate z it can be written as
q = f(z)(dz)2 for f holomorphic, and in a different local coordinate
w = w(z) it can be written as

q = f(z(w))z′(w)2(dw)2.

Every quadratic differential can be written in local coordinates as
either (dz)2 or zkdz. For example, if q = f(w)(dw)2, and f(0) 6= 0,

the correct local coordinate near 0 is z =
∫ z
0

√
f(w)dw. Then dz =√

f(w)dw by the fundamental theorem of calculus, and so (dz)2 = q.
Compare to [Wri15, Section 1] (which covers the closely related case
of Abelian differentials) for more details.

A Teichmüller mapping is defined as a map that stretches the hor-
izontal direction of a quadratic differential by a constant factor

√
K

and contracts the vertical by a constant factor 1/
√
K.

Theorem 6.2 (Teichmüller’s Uniqueness Theorem). Let h : X → Y
be a Teichmüller map. If f : X → Y is quasiconformal and homotopic
to h, then

Kf ≥ Kh

and equality holds if and only if f = h (in genus 1, f = g up to
translations).

The proof will be identical to Grötzsche’s problem, once we do some
work to establish an analogue of the first inequality.

Lemma 6.3. Let h be a homeomorphism of a compact geodesic metric
space. Then there exists a constant M ≥ 0 such that for any geodesic
arc α, the length of h(α) is at least the length of α minus M .
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Proof. One may take M to be twice the maximum distance travelled
by any point under an isotopy from α to the identity. �

Lemma 6.4. Let h : X → Y be a Teichmüller mapping with quadratic
differential q and dilatation K. Let f be any homeo that is homotopic
to h and is smooth outside a finite number of points. Then the average
horizontal stretch of f is at least

√
K:∫

|fx|dA ≥
√
K Area(q).

Note that if the dilatation is K, the horizontal stretch factor is
√
K.

Proof. Define δ : X × R≥0 → R≥0 by

δ(p, L) =

∫ L

−L
|fx|dx,

which is the length f(αp,L), where αp,L is the horizontal arc of length
2L centered at p. Here fx is a vector (the directional derivative of f)
and |fx| is its norm.

The Teichmüller map takes αp,L to an arc of length 2L
√
K. The

previous lemma thus gives that δp,L ≥ 2L
√
K −M . Hence∫

δp,LdA ≥ (2L
√
K −M) Area(q).

On the other hand, ∫
δp,LdA = 2L

∫
|fx|dA.

Dividing by 2L and taking L→∞ gives the result. �

The proof of Teichmüller’s Uniqueness Theorem is now identical to
Grötzsche’s problem.

Theorem 6.5. For every homeo f : X → Y between Riemann sur-
faces, there is exists a Teichmüller mapping f : X → Y homotopic to
f .

We need a the following corollary of the Measurable Riemann Map-
ping Theorem.

Corollary 6.6. If µ is a Beltrami differential on a Riemann surface
X, and ‖µ‖∞ < 1, then there is a quasiconformal map from X to
a Riemann surface Y with complex dilatation µ. Moreover, Y varies
continuously with µ

The techniques in the proof will be important later in the course.
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Proof of Corollary. Lift µ to a Beltrami differential µ̃ = b(z)dz/dz on
H. Extend it to a measurable Beltrami differential µ̃ext on C by setting
µ̃ext = b(z)dz/dz if z is on the lower half plane. (µ̃ext is undefined on
R, which has measure zero.) This is the same thing as reflecting the
ellipse field in the R axis.

Let f : P1 → P1 be the function produced by the Measurable Rie-
mann Mapping Theorem with complex dilation µ̃ext.

Claim 1: f(R) = R. Indeed, z 7→ f(z) also has complex dilation µ̃ext
and fixes 0, 1,∞, so we must have f(z) = f(z) for all z.

Now, let Γ be the group of Deck transformations, so X = H/Γ.

Claim 2: There is representation ρ : Γ → PSL(2,R) such that
f(γz) = ρ(γ)f(z). Indeed, for γ ∈ Γ, the function z 7→ f(γz) also
has complex dilation µ̃ext, so it is equal to γ′ ◦ f for a unique Möbius
transformation γ′ ∈ PSL(2,C). It is easy to see this gives a represen-
tation ρ : Γ → PSL(2,C). The fact that f(R) = R implies that the
image of ρ is in PSL(2,R).

Claim 3: ρ is discrete and faithful. Indeed, f induces a homeomor-
phisms between the topological space H/Γ and the topological space
H/ρ(Γ).

Now f induces a map from X = H/Γ to Y = H/ρ(Γ). �

Proof of Theorem. Recall that the space QD(X) of quadratic differen-
tials on X has complex dimension 3g − 3. There is a norm on QD(X)
given by

‖q‖ =

∫
|q|,

which can be thought of as the area of the polygons defining q. Let
QD1(X) denote the open unit ball.

For q ∈ QD1(X), set

K =
1 + ‖q‖
1− ‖q‖

.

We can define a map Ω : QD1(X)→ Tg by constructing the Teichmuller
mapping from X with quadratic differential Q and horizontal stretch
factor K. We need to show Ω is surjective.

This follows by invariance of domain from two claims: (1) that it is
continuous and (2) that it is proper.

The second claim follows from the continuity of the distance from X
function on Teichmüller space. (To see this continuity, note that if Γ
and Γ′ are nearby discrete faithful representations, then they have fun-
damental domains that are almost equal, and it is possible to construct
a quasiconformal map from one to the other with small dilatation.) To
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show properness, we need to show that the preimage of a compact set
is compact. Since distance from X is continuous, the compact set is
contained in a closed ball about X, and hence its preimage is contained
in a closed ball in QD1(X), which is compact.

The first claim follows from the continuity statement in the corollary
above by noting that the Beltrami differential ‖q‖ q

q
of the Teichmüller

map varies continuously with k.
To see that the Beltrami differential is ‖q‖ q

q
, it suffices to assume

q = (dz)2. �

Corollary 6.7. The Teichmüller metric is a metric, rather than just
a pseudo-metric.

Proof. For any two distinct points of Teichmüller space, there is a Te-
ichmüller mapping between them. If the horizontal stretch factor is√
K, then the Teichmüller distance is log(K). If K = 1, the Te-

ichmüller mapping is a biholomorphism. �

Corollary 6.8. There is a unique geodesic through any two points of
Tg.
Proof. The Teichmüller existence theorem gives one. To show it is
unique, pick some point Z such that d(X, Y ) = d(X,Z) +d(Z, Y ). Let
f, g be the Teichmüller maps X → Z and Z → Y respectively. It must
be that g ◦ f is a Teichmüller map with dilatation the product of the
dilatations of f and g, so the terminal quadratic differential of f must
be equal to the initial quadratic differential of g. �

Proposition 6.9. The bijection H → T1 is an isometry from the hy-
perbolic metric to half the Teichmüller metric.

Proof. The bundle of quadratic differentials above T1 is isomorphic to
to the space of lattices in C, not up to rescaling or rotation. SL(2,R)
acts transitively on the unit area locus via its usual linear action on
R2, so we obtain a map from SL(2,R) to the space of lattices given by
g 7→ g〈1, i〉. This map covers the bijection H = SL(2,R)/SO(2)→ T1.
(Actually this is bit tricky to get right, but it’s not worth dwelling
on. Technically the map which sends g−1(i, i) to the affine action of g
times the square torus doesn’t quite cover our old bijection H to T1,
but rather that bijection composed with τ 7→ −τ . This is assuming we
want the action by “instructions” discussed below to be a right action,
so isometries can be a left action.)

Note, the action of SL(2,R) on marked lattices that we are consid-
ering does not correspond to Möbius transformations. One action is
on the right and one is on the left. Some times people say one action
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is by isometries, and the other is via “instructions” (such as geodesic
flow, horocycle flow, etc).

Every matrix g ∈ SL(2,R) can be written as g = k1gtk2, where

gt =

(
et/2 0
0 e−t/2

)
,

and k1, k2 ∈ SO(2).
SL(2,R) is isomorphic to the unit tangent bundle of H. The group

SO(2) acts via rotation unit tangent vectors, and gt acts via geodesic
flow by time t. Hence the hyperbolic distance between p and k1gtk2 is t.
The linear action on lattices is a Teichmüller mapping with dilatation
et, and so the Teichmüller distance is t/2. �

Remark 6.10. In general, the metric topology is the same as the previ-
ous topologies. We have already sketched why the Teichmüller distance
is continuous for the previous topologies. Now it suffices to show that
any neighbourhood of a point for the previous topologies contains a Te-
ichmüller ball. This follows from the fact that Ω is a homeomorphism.

We conclude this chapter with a result that can be used to complete
our proof that the action of MCG on Tg is properly discontinuous
(Proposition 2.6).

Lemma 6.11 (Wolpert’s Lemma). If X1, X2 are hyperbolic surfaces
and φ : X1 → X2 is K quasiconformal, then

`X1(γ)

K
≤ `X2(γ) ≤ K`X1(γ).

Proof. By passing to covers, it suffices to assume X1 and X2 are annuli,
and γ generates the fundamental group. We can write Xi as the strip
R× (0, π) ⊂ C modulo z 7→ z + mi, and φ lifts to an equivariant map
between these strips. The proof of Grötzsche gives m1/K ≤ m2 ≤
Km1. The proof is completed by noting that mi is the hyperbolic
length. (The map z → exp(z) maps the strip to the upper half plane,
intertwining the action of z 7→ z +m with the action of z 7→ emz.) �

7. Extremal length

The material in this section will not be used in other sections but is
beautiful, important, and fairly easy to digest.

Suppose that Γ is a collection of rectifiable curves on a Riemann
surface. The extremal length of Γ is defined as

EL(Γ) = sup
ρ

Lρ(Γ)2

Aρ
,
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where ρ ranges over all metrics in the given conformal class, Aρ is the
area of the metric, and Lρ(Γ) is the minimal ρ length of a curve in Γ.

Note that the fraction in the definition doesn’t change if ρ is scaled,
and that despite the name extremal length is better thought of as a
squared length.

Lemma 7.1. Consider the rectangle R = (0, w) × (0, h), and let Γ
denote the set of all curves that go from the left edge to the right edge.
Then

EL(Γ) = w/h.

Proof. Taking ρ to be the standard Euclidean metric we have Lρ(Γ) =
w and Aρ = wl, so we conclude EL(Γ) ≥ w/h. (It is a general feature of
the definition that obtaining lower bounds for extremal length is often
easy.)

Now consider the standard metric scaled by ρ, where ρ : R→ [0,∞]
is an arbitrary Borel measurable function. Let ` = Lρ(Γ). Note for any
0 ≤ y ≤ h we have

` ≤
∫ w

0

ρ(t+ iy)dt,

hence

`h ≤
∫ h

0

∫ w

0

ρ(t+ iy)dtdy.

Now Cauchy-Schwarz with functions ρ and 1 gives(∫ h

0

∫ w

0

ρ(t+ iy)dtdy

)2

≤ wh

∫ h

0

∫ w

0

ρ(t+ iy)2dtdy = whAρ.

Hence (`h)2 ≤ whAρ, so `2/Aρ ≤ w/h as desired. �

Similarly, one gets the following. See wikipedia for details.

Lemma 7.2. Consider an annulus of modulus m. If Γ is the set of
all curves from one side of the annulus to the other, we get that the
extremal length across the annulus is m. If instead Γ is instead the set
of all closed curves that go around the annulus once, we get that the
extremal length around the annulus is 1/m.

Annuli are especially important since they suffice to give the hyper-
bolic length of any curve on any Riemann surface; associated to that
curve there is a cover of the Riemann surface, and the hyperbolic length
of the curve is one over the modulus of that annulus.

Here is an example of how one can use extremal length to give infor-
mation on moduli. Consider a cylinder of circumference one and width
m. Its modulus is then m. Suppose one makes a cut from each end,
and now the largest sub cylinder of the cut cylinder has width w.
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Exercise 7.3. The modulus m′ of the cut cylinder satisfies w ≤ m′ ≤
w + 1. Hint: For one direction, use the fact that holomorphic maps
contract. For the other direction, use the metric which is equal to the
Euclidean metric within usual distance 1

2
of the sub-cylinder, and 0

elsewhere.

Next consider a closed Riemann surface. We will refer to the ex-
tremal length of a simple closed curve, by which we mean the extremal
length of the collection Γ of all such curves in the same isotopy class.

Theorem 7.4 (Existence and uniqueness of Strebel differentials.). For
any closed curve on any Riemann surface there exists a unique holo-
morphic quadratic differential q that consists entirely of a horizontal
cylinder, such that the core curve of this cylinder is isotopic to the
given curve. The extremal length of the curve is equal to one over the
modulus of the cylinder.

In his thesis, Kerckhoff proved the following.

Theorem 7.5. The Teichmüller distance between two Riemann sur-
faces X, Y is equal to

sup
α

log

(√
ELX(α)√
ELY (α)

)
,

where α ranges over all simple closed curves, and ELX(α) denotes the
extremal length of α on X.

8. Nielsen-Thurston classification of mapping classes

The source for this section is [FM12, Chapter 13].

Genus 1. Every nonidentity element of SL(2,R) is either elliptic,
parabolic, or hyperelliptic, according to wether it fixes a point in H, a
single point in ∂H, or a pair of points on ∂H. These cases correspond
to having absolute value of trace less than 2, equal to 2, or greater than
2, respectively.

The mapping class group in genus 1 is SL(2,Z), and it acts on T1 = H
via Möbius transformations. Suppose A ∈ SL(2,Z).

• If A is elliptic, it fixes a point in H. Since the action is properly
discontinuous, it must be finite order.
• If A is parabolic, its eigenvalues are ±1 and equal, and A fixes

a line in R2 with rational slope. Hence A fixes the image of this
line on R2/Z2. The image of the line is a simple closed curve,
since the slope was rational.
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• If A is hyperbolic, it acts on R2/Z2 via a Teichmüller mapping,
which in this case is called an Anosov map.

Periodic mapping classes. We begin by studying finite order (peri-
odic) mapping classes.

Lemma 8.1. No nontrivial isometry of a closed hyperbolic surface is
isotopic to the identity.

Proof. An isometry that is isotopic to the identity lifts to an isometry
of H that acts as the identity on the boundary. �

Corollary 8.2. The isometry group of a closed hyperbolic surface is
finite.

In fact, it has size at most 84(g − 1), but we will not prove or need
this.

Proof. It is easy to see that it is compact, and the previous lemma gives
that it is discrete. See [FM12, Proposition 7.7] for details. �

Lemma 8.3. The stabilizer of a point (X,φ) ∈ Tg, g > 1 is isomorphic
to Isom(X).

Proof. Let ψ be in the stabilizer. Then then there is a biholomorphism
from (X,φ) to (X,φ ◦ ψ−1), which can be viewed as an isometry of X
isotopic to φ ◦ ψ−1φ−1. This biholomorphism is unique by a previous
lemma. The map sending ψ to this biholomorphism is an isomorphism
from the stabilizer to Isom(X). �

Lemma 8.4. Every finite order element of the mapping class group
has a fixed point in Tg.

In fact, Kerckhoff proved that every finite order subgroup has a fixed
point, solving Nielsen’s realization problem.

Proof. Suppose f has order n. We induct on the number of prime
factors of n, counting multiplicity.

Because finite groups cannot have finite dimensional K(π, 1)’s, it
follows that fn/p has a fixed point for some prime factor p of n. If
n = p, this establishes the base case. Otherwise, the fix point set of
fn/p is isomorphic to the Teichmüller space of the quotient orbifold.
Considering the action of f on this smaller Teichmüller space, which
must have order at most n/p, produces a fixed point by induction. �

The classification. A mapping class is called reducible if it fixes some
simple multi-curve. It is called pseudo-Anosov if it is represented by a
Teichmüller map with the same initial and terminal Riemann surface
and quadratic differentials.
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Theorem 8.5. Every mapping class is periodic, reducible, or pseudo-
Anosov.

A pseudo-Anosov mapping class cannot be reducible. In some sense
most mapping classes are pseudo-Anosov.

Pseudo-Anosovs are dynamically complicated: for any two curves
α, β the intersection number i(fn(α), β) grows exponentially. (More-
over, fn(α) starts to look like the horizontal foliation of the quadratic
differential.)

Every mapping class has a finite power which fixes some subsurfaces
of the surface, and is either the identity or a pseudo-Anosov on each
subsurface, and also may perform some Dehn twists on the boundaries
of the subsurfaces.

Proof. Every mapping class f acts as an isometry on Teichmüller space.
Let

τ(f) = inf
X∈Tg

d(X, f(X))

denote the translation distance of f .
If τ = 0 and is realized, we have already proven f is periodic. We

will show that if τ is not realized than f is reducible, and if τ > 0 is
realized then f is pseudo-Anosov.

First suppose τ is not realized, and suppose (Xi, φi) ∈ Tg be such
that d((Xi, φi), f(Xi, φi))→ τ .

Claim 1: Xi →∞ in Mg.
Otherwise, we may find some hi in the mapping class group so that

(Xi, φi ◦ h−1i ) converges to some point (X,φ). It is easy to see that
hifh

−1
i moves (Xi, φi ◦ h−1i ) by only slightly more than τ , and hence

also for (X,φ). (The distance moved minus τ goes to zero with i.) Since
the action is properly discontinuous, this implies hifh

−1
i is eventually

constant (after passing to a subsequence) and hence that the distance
from (X,φ) to hifh

−1
i (X,φ) is eventually equal to τ . Hence the distance

between h−1i (X,φ) and fh−1i (X,φ) is eventually equal to τ , so τ is
actually realized.

Claim 2: f is reducible.
By Mumford’s compactness criterion, the length of the shortest hy-

perbolic geodesic on Xi goes to zero. We may fix K > 0 so that there is
a K-quasi-conformal map from (Xi, φi) to f(Xi, φi) for all i. (Indeed,
for i large enough the Teichmuller distance from (Xi, φi) to f(Xi, φi) is
at most τ + 1, so we can take K = exp(τ + 1).) Let δ > 0 be such that
no two hyperbolic curves of length less than δ can cross. Eventually
Xi has at least one curve αi of length less than δ/K3g−3. The orbit
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f j(αi), k = 0, . . . 3g − 3 consists of curves of length at most δ, hence
two of them must be equal.

We now move on to the case where τ > 0 is realized, say d(X, f(X)) =
τ . Let γ be the Teichmüller geodesic through X and f(X).

Claim 3: f(γ) = γ.
First consider Y on the segment of γ fromX to f(X). Since d(X, Y )+

d(Y, f(X)) = d(X, f(X)) and since d(f(X), f(Y )) = d(X, Y ), it is easy
to see that d(Y, f(Y )) = d(X, f(X)) = τ . Considering the Teichmüller
mappings shows f(Y ) ∈ γ. We conclude that f(γ) = γ.

Claim 4: The initial and terminal quadratic differentials for f on X
are equal.

This follows from the fact that

d(f 2(X), X) = d(f(X), X) + d(f 2(X), f(X)),

which follows from the fact that γ is preserved. �

It is true that the axis γ is unique, but this does not follow from
the above proof. The above proof is due to Bers; one can see unique-
ness from a prior proof due to Thurston, which is sketched in [FM12,
Chapter 15].

There are many ways to construct examples of pseudo-Anosovs.

(1) Branched covers of a torus with an Anosov diffeo that fixes the
branch points. In particular, square-tiled surfaces.

(2) The Thurston-Veech construction.
(3) Penner’s construction: If {αi} and {βj} are multi-curves that

fill the surface, then any product of positive powers of the Dehn
twists in the αi and negative powers of the Dehn twists in the
βj will give a pseudo-Anosov.

9. Teichmüller space is a bounded domain

9.1. The Schwarzian derivative. We follow the exposition in [Hub06,
Chapter 6.3]. The following is [Hub06, Exercise 2.3.2].

Lemma 9.1. Let X and Y be manifolds, and let x ∈ X, y ∈ Y be
points. Let f, g : X → Y be Ck maps with f(x) = g(x) = y. Then if in
any local coordinates near x all partial derivatives of order at most k−1
vanish, then this is true in any local coordinates. Moreover, the partials
of f − g of order k provide a well-defined linear map Symk(TxX) →
TyY .

Proof of first claim of lemma. It is equivalent to say that, putting Rie-
mannian metrics on X and Y , the distance from f(x+ x′) to g(x+ x′)
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is o(|x′|k−1). (Any two Riemannian metrics are locally bilipshitz.) The
result follows because change of coordinate maps are bilipshitz.

If we wish only to check that the fact does not depend on coordinates
in X, we can compose the (k − 1)-st multivariable Taylor polynomials
for the change of coordinate chart at f − g. (If we change coordinates
in Y , then f − g is not well defined.) �

Note that Tx0 can be identified with first order differential operators.
By the mixed partials theorem, these commute with each other. In local
coordinates, the map is given by applying any homogeneous degree k
polynomial in the partial derivatives to f − g.

As a first example, it is constructive to consider k = 1. Then
Symk(Tx0X) = Tx0X, and the well defined linear map is just the usual
derivative.

As a second example, consider Y = R, k = 2. In this case a map
from Sym2(TxX) to R is an element of Sym2(T ∗xX), i.e. a symmetric
bilinear form on TxX. This is nothing other than the Hessian, and the
above lemma recovers the fact, used frequently in Morse Theory, that
the Hessian is well defined up to conjugacy (independent of coordinate
chart) at a critical point.

Let X = Y = R and k = 2, and h is a function with h(0) = h′(0) =
0. We illustrate the computation showing that h′′(0) is an element
of Sym2(T ∗0R) ⊗ T0R. First consider a change of coordinates on X;
this corresponds to precomposing h with a function φ : R → R with
φ(0) = 0. Then (h ◦ φ)′ = (h′ ◦ φ) · φ′ and

(h ◦ φ)′′ = ((h′′ ◦ φ) · φ′) · φ′ + (h′ ◦ φ) · φ′′.

So we get (h ◦ φ)′′(0) = h′′(0)φ′(0)2.
Next consider a change of coordinates on Y ; this corresponds to post-

composing h with ψ−1, where ψ : R → R is the new local coordinate
for Y . Then (ψ−1 ◦ h)′ = ((ψ−1)′ ◦ h) · h′ and

(ψ−1 ◦ h)′′ = (((ψ−1)′′ ◦ h) · h′) · h′ + ((ψ−1)′ ◦ h) · h′′.

So we get (ψ−1 ◦ h)′′(0) = h′′(0)/ψ′(0).
As a third example, consider X = Y = R and k = 3. In this case

Sym3(R) = R, and a linear map from Symk(R)→ R corresponds to a
cubic map R to R, i.e. a map T such that T (λv) = λ3T (v).

We now wish the define the Schwarzian derivative S{f, g} which
for holomorphic functions f, g measures how far g ◦ f−1 is from being
a Möbius transformation. For each z, there exists a unique Möbius
transformation A such that f and A ◦ g have the same value and first
and second derivatives. (Later we will compute A explicitely.)
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Then the leading term D3(f − A ◦ g)(z) is naturally a cubic map

TzU → Tf(z)P1.

We may compose this with the inverse of Df(z) to get a cubic map
TzU → TzU .

We now use the fact that if V is a one dimensional vector space,
quadratic maps V → C are in bijection to cubic maps V → V , via

α 7→ (w 7→ α(w)w).

(Both spaces of maps are 1 dimensional vector spaces.) Thus

Df(z)−1 ◦D3(f − A ◦ g)(z)

is naturally a quadratic form on TzU , i.e. a quadratic differential. We
define this to be S{f, g}.

Lemma 9.2. Let U ⊂ C. If f : U → C is analytic with non-vanishing
derivative, then

S{f, z} =

(
f ′′′

f ′
− 3

2

(
f ′′

f ′

)2
)

(dz)2.

Proof. Assume z = 0 and f(z) = 0, and write

f(z) = a1z +
a2
2
z2 +

a3
6
z3 + · · · .

The Möbius transformation that best approximates f is

αz

1 + βz
= αz − αβz2 + αβ2z3 + · · · ,

where α = a1 and β = − a2
2a1

. The third derivative of f(z)− A(z) is

6

(
a3
6
− a22

4a1

)
.

Composing with (Df)−1, i.e. dividing by a1, gives

a3
a1
− 3a22

2a21
.

�

Lemma 9.3. Let U ⊂ C be connected and f : U → C. Denote S(f) =
S{f, z}. Then

(1) S(f) = 0 if and only if f is the restriction of a Möbius trans-
formation to U .

(2) S(f ◦ g) = g∗(S(f)) + S(g).
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The second condition is called the cocycle condition. There are sim-
pler cocycles that you may know better. For example the log derivative
log(f ′) satisfies

log((f ◦ g)′) = log(f ′ ◦ g) + log(g′) = g∗(log(f ′)) + log(g′)

and kills translations. The nonlinearity N(f) = (log(f ′))′dz satisfies
the same cocycle condition and kills complex linear maps.

Proof. That S(f) = 0 when f is a Möbius transformation follows either
from the definition or from direct computation.

We can write

S(f)/(dz)2 =

(
f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2

.

Therefore if S(f) = 0 then y = f ′′/f ′ satisfies the separable ODE
y′ = y2/2. This can be solved explicitely to show f is a Möbius trans-
formation.

The cocycle condition follows from direct computation. �

Corollary 9.4. If S(f) = S(g), then f = A ◦ g for some Möbius
transformation A.

Proof. From the cocycle condition and the assumption we get

S(f ◦ g−1) = (g−1)∗(S(f)) + S(g−1) = (g−1)∗(S(g)) + S(g−1).

Applying the cocycle condition to g ◦ g−1 = 1 we get

0 = (g−1)∗(S(g)) + S(g−1),

which gives S(f ◦ g−1) = 0. �

Lemma 9.5. For any holomorphic quadratic differential q, there are
solutions to S(f) = q. The solutions are meromorphic, and unique if
the value and first two derivatives are specified at some point.

Proof. Say q = q(z)(dz)2. If w1, w2 are two solutions to the linear
equation w′′ + q

2
w = 0, then if f = w1/w2 direct computation shows

S(f) = q. �

Another nice formula, which we will not use, is

S(f) = 6 lim
w→z

∂2

∂w∂z
log

f(w)− f(z)

w − z
.

This can be used to obtain bounds for how much f distorts cross ratios,
in terms of S(f) [GL00, page 127].
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9.2. Complex projective structures. A complex projective struc-
ture is an atlas of charts with transition maps in PGL(2,C). There is a
natural forgetful map from complex projective structures to Riemann
surfaces, where you remember the holomorphic structure but forget
the complex projective structure. Uniformization shows this map is
surjective: every Riemann surface has a complex projective structure
where the transition maps are actually in PGL(2,R). But there are
many other weird complex projective structures.

Given a complex projective structure on X, there is a natural holo-
morphic map from H = X̃ to P1, which is well defined up postcompo-
sition with Möbius transformations. This map, called the developing
map, can be obtained by analytically continuing any chart. (Note that
given two charts that overlap, the second can be adjusted by a Möbius
transformation so they agree on the overlap. It is crucial that H is
simply connected for the developing map to be well defined.)

For any γ ∈ π1(X), and any developing map f , then f ◦ γ is another
developing map. Since the developing map is unique up to Möbius
transformations, we have f ◦γ = Aγ◦f for some Möbius transformation
Aγ. The map

γ 7→ Aγ

is called the holonomy map. It is more concretely understood by ana-
lytically continuing a chart along the γ on X and comparing the new
chart to the original.

For Fuchsian complex projective structures, i.e. those coming from
uniformization, the developing map is a Möbius transformation, and
X may be recovered from the holonomy by quotienting. However,
for general complex projective structures, the holonomy map can have
dense image, and the holonomy map fails to determine the complex
projective structure.

Lemma 9.6. There is a bijection from complex projective structures to
representations π1(X)→ PSL(2,C) together with holomorphic immer-
sions H→ P1 that are equivariant for the given representation, modulo
a simultaneous action by Möbius transformations. The bijection sends
each complex projective structure to its holonomy representation and
developing map.

Proof. It suffices to build the inverse. For any small open subset of X,
lift it to H, and take the image under f ; this will be a chart. We then
need to see that different charts agree up to Möbius transformations,
but this is basically by definition. �
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Proposition 9.7. The set of marked complex projective structures is
an affine bundle over Tg with fiber QD(X) over X.

Proof. Given two complex projective structures, one can take the Schwarzian
derivative of a chart from one with respect to a chart from the other.

�

9.3. From B(X) to QD(X∗). Let B(X) denote Beltrami differentials
onX of norm less than 1, and letQD(X∗) denote quadratic differentials
on the complex conjugate Riemann surface. Given µ ∈ B(X), lift it to
µ̃ on H, and extend that to a Beltrami differential µ̂ on P1 by setting it
to be zero on the lower half plane. Let fµ denote the function given by
the measurable Riemann mapping theorem with complex dilatation µ̂.
As in the proof of Corollary 6.6, since µ is invariant under Γ = π1(X),
we get that fµ is equivariant with respect to some representation ρ of
Γ. Note that f(H) is invariant under ρ(Γ) and has quotient Yµ given by
the Riemann surface in Corollary 6.6. Note also that f(L) is invariant
under ρ(Γ) and has quotient X∗. (Here L denotes the lower half plane.)
We say that ρ(Γ) simultaneously uniformizes Yµ and X (or X∗).

By taking the Schwarzian derivative of f |L we get a quadratic differ-
ential on X∗.

The map from B(X) to QD(X∗) is a complex analytic map. (For ba-
sics on complex analytic maps between Banach spaces, see for example
[Hub06, Appendix 5].)

9.4. The Bers embedding. Let fµ (note the subscript instead of a
superscript) be the map f : X → Yµ given by extending µ̃ to the lower
half plane via reflection.

Lemma 9.8. (fµ)|R is equal to (fν)|R up to Möbius transformations if
and only if Yν = Yµ.

Proof. We have Yµ = H/Γµ, where Γµ = fµΓf−1µ . Any isometry of
H, and hence any Fuchsian group, is determined by its action on the
boundary. The action of Γµ on the boundary is by definition the con-
jugate by (fµ)|R of the action of Γ. �

The following is [GL00, page 133].

Lemma 9.9. The following are equivalent.

(1) (fµ)|R = (fν)|R.
(2) (fµ)|R = (f ν)|R.
(3) (fµ)|L = (f ν)|L.

Proof. 2 implies 1: Let gµ be the conformal map from fµ(H) to H
normalized to fix 0, 1,∞. Then gµ◦fµ has the same Beltrami coefficient
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as fµ, maps H to itself, and fixes 0, 1,∞, so we must have fµ = gµ ◦fµ.
If (fµ)|R = (f ν)|R then we get fµ(H) = f ν(H), and hence gν = gµ.

1 implies 2: Define h(z) by

h(z) = g−1ν ◦ gµ
in fµ(H) and

h(z) = f ν ◦ (fµ)−1

elsewhere. By assumption we have gµ◦fµ = gν ◦f ν on R, so we get that
h(z) is continuous. Now, h is conformal on the complement of f(R),
and so hence must be conformal everywhere. (This uses that f(R) is
analytically removable for any quasi-conformal map f , a fact which
we have not proved but is part of the basic theory of quasiconformal
maps.) Since h is a holomorphic bijection of C fixing 0, 1 we conclude
that it is the identity.

3 implies 2: This is immediate, since the fµ etc are homeos, and so
in particular are continuous.

2 implies 3: This follows from the fact that holomorphic functions
are determined by their boundary values (when the boundary values
exist). (That is, apply the max modulus principle to (fµ)|L − (f ν)|L
and its negation.)

�

Corollary 9.10. Y ν = Y µ if and only if S(fµ|L) = S(f ν |L).

Proof. First assume Y ν = Y µ. Then fµ and fν agree on R, so it follows
from the previous lemma.

Next assume S(fµ|L) = S(f ν |L). Then fµ|L and f ν |L agree up to a
Möbius transformation. Since they both fix 0, 1,∞ we must actually
have fµ|L = f ν |L �

The Bers embedding is the map Tg → QD(X∗). There is one Bers
embedding for each X ∈ Tg. We now wish to understand what happens
when we change X to X ′. In doing so, we will show that Tg has a
complex structure, and that the Bers embedding is a biholomorphism
onto its image.

Lemma 9.11. If fµ = fρ ◦ fλ, then

ρ =

(
µ− λ
1− λµ

(fλ)z

(fλ)z

)
◦ f−1λ .

We omit this computation, which can be viewed purely as a com-
putation with linear maps R2 → R2. We will use only that ρ is a
holomorphic function of µ.
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Theorem 9.12. Tg has a well defined complex structure for which every
Bers embedding is a biholomorphism to a domain in C3g−3.

Proof. First we claim that any X ∈ Tg has a neighbourhood UX with a
section UX → B(X) that is a one sided inverse to µ 7→ Yµ. This follows
from the fact that the derivative of B(X) to QD(X∗) is surjective at
µ = 0, a fact which we will prove shortly in the proof of Theorem 9.14.
Thus we can take a 3g − 3 dimensional complex subspace of B(X)
where the derivative is invertible at µ = 0, and by the inverse function
theorem this maps onto a neighbourhood of 0 in QD(X∗). One can
also explicitly construct the section (see Theorem 9.16).

Next we claim that the overlap maps UX to UX′ are holomorphic. In-
deed, they are the composition of the holomorphic section , the change
of basepoint map from B(X) to B(X ′), and the holomorphic map
B(X ′)→ QD((X ′)∗).

This shows that there is a well defined complex structure on Tg. To
conclude we comment that the Bers embedding is biholomorphic onto
its image. Indeed, since it is injective and open, it suffices to show it
is holomorphic. Fix the basepoint X. To show the Bers embedding is
holomorphic at X ′, observe that it is the composition of a section UX′

to B(X ′), together with the change of basepoint map B(X ′)→ B(X)
and the map B(X) to QD(X∗). �

9.5. The tangent space to Teichmüller space. We now compute
the kernel of the derivative of the map from Beltrami differentials on X
to QD(X∗). The quotient of B(X) by this kernel is thus the tangent
space to Tg at X.

Lemma 9.13. Suppose f(z, t) is holomorphic in z and differentiable
in t. We think of this as a family of holomorphic functions indexed by
time. Suppose f(z, 0) = z. Then

∂

∂t

∣∣∣
t=0
S(f) = f ′′′t ,

where subscript denotes the t partial and prime denotes the z partial.

Proof. Compute

∂

∂t

(
f ′′′

f ′
− 3

2

(
f ′′

f ′

)2
)

=
f ′′′t f

′ − f ′′′f ′t
(f ′)2

− 3

2
· 2 · f

′′

f ′
· ∂
∂t

(
f ′′

f ′

)
and evaluate at t = 0 using f ′(0) = 1, f ′′(0) = 0, f ′′′(0) = 0. �

Theorem 9.14. The kernel of the derivative of the Bers embedding is
the Beltrami differentials that pair trivially with all holomorphic qua-
dratic differentials.
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Proof. We begin by showing that if a Beltrami differential µ is trivial,
then it pairs trivially with QD(X). Write

f tµ(z) = z + tv(z) + o(t),

so ∂ of the vector field v(z)/dz is equal to µ.
Note that since f tµ fixes 0, 1,∞ we have that the vector field v(z)/dz

is zero at 0, 1,∞. Since f tµ is holomorphic in the lower half plane,
we have v′′′(z) = 0 in the lower half plane. Hence v is quadratic on
the lower half plane, and hence extends continuously to a quadratic
function on R.

Since the quadratic vector field v|R∂x has three zeros (at 0, 1,∞), it
must be zero. (Using a coordinate u = 1/x, one gets du = −dx/x2,
so ∂x = −u2∂u. The condition that v|R∂x has a zero at infinity is
equivalent to v|R actually being linear rather than quadratic.) Now,
consider γ(v/dz), where γ ∈ Γ. This is again a solution to ∂γ(v/dz) =
µ, and again we have γ(v/dz)|R = 0. Since any two solutions to the
∂ equation differ by a holomorphic function, and since a holomorphic
function cannot vanish on R, we get that v/dz is Γ invariant, and hence
descends to a vector field V on X.

We get that µ = ∂(V ) on X. The product rule (applied in local
coordinates if desired) gives that

∂(qV ) = ∂(q)V + q∂(V ).

Since qV is differential form of type dz, we have that d(qV ) = ∂(qV ),
so ∫

∂(qV ) = 0.

We get ∫
µq =

∫
(∂V )q = −

∫
V (∂q) = 0,

since q is holomorphic.
This shows that the space of trivial Beltrami differentials is contained

in QD(X)⊥. Now, QD(X)⊥ has real codimension 6g−6. (The pairing
is non-degenerate, since q/|q| pairs non-trivially with q.) The space of
trivial differentials cannot be smaller than QD(X)⊥, since the quotient
of all Beltrami differentials by the trivial ones has real dimension at
most 6g − 6. �

We also now give a direct argument that if a Beltrami differential µ
pairs trivially with QD(X), then it is trivial.

The first observation is that µ̃ pairs trivially with any finite area
quadratic differential on H. Indeed, averaging a finite area quadratic
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differential over the Deck group Γ produces a “locally finite area” qua-
dratic differential on H, which descends to a quadratic differential on
X = H/Γ.

Now, the first derivative of S(fµt) is given by (fµt)′′′t . By mixed par-
tials, we can take the t derivative first and then the three z derivatives.
We may write

f tµ(z) = z + tv(z) +O(t2),

where v(z) ∂
∂z

is a vector field with ∂v = µ. This equation is often
called the “infinitesimal Beltrami equation.” Its solutions are unique
only up to the addition of a holomorphic vector field. However, since
all holomorphic vector fields on P1 are quadratic, this ambiguity will
turn out not to matter.

The solution we pick is

v(z) =
1

π

∫
µ(w)

(z − w)
|dw|2.

(See [Hub06, Proposition A6.4.1] for a reminder that 1/(πz) is a
fundamental solution to the ∂ equation. We will only be interested
in z ∈ L, keeping in mind that µ is supported on H.) Technically
we should probably check that v is summable over Γ; this is because

µ = µ(z)dz/dz, where µ(z)y2 is bounded, and
∫ (dw)2

y2(z−w) has finite area.

Taking the t derivative gives

1

π

∫
µ(w)

(z − w)
|dw|2

and then taking the three z derivatives gives

6

π

∫
H

µ(w)

(w − z)4
|dw|2.

This is the pairing of µ with a finite area quadratic differential. (Note
(dz)2/(w − z)4 is not finite area on C, but it is on H, where µ is
supported. This is because we only take the Schwarzian at z ∈ L.) So
we get that this derivative is 0. We have accomplished our claim.

9.6. Supping up the Bers embedding. The following shows the
image of the Bers embedding is contained in the ball of radius 3

2
. For

a proof see [Hub06, Theorem 6.3.9].

Theorem 9.15 (Nehari). If f : H→ C is injective, then

‖S(f)‖∞ <
3

2
.
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Like the Koebe quarter theorem, this follows easily from the area
theorem (see the wikipedia entry for the Koebe quarter theorem). One
can also use the area theorem to get a growth bound on injective func-
tions from the disc to C with f(0) = 0, f ′(0) = 1; Montel’s Theorem
then gives compactness of the space of such functions, which gives the
weaker result that ‖S(f)‖∞ is universally bounded by some constant.

The following shows the image contains a ball of radius 1
2
, which is

[Hub06, Theorem 6.3.10].

Theorem 9.16 (Ahlfors-Weill). Let q = q(z)(dz)2 be a quadratic dif-
ferential on H with ‖q‖∞ < 1

2
. Set µ = 2y2q(z)dz

dz
if z ∈ H and µ = 0

on L. Then S(fµ) = q. Moreover if q is equivariant with respect to
some Fuchsian group, then so is µ.

9.7. The Teichmüller metric is Finsler. The following discussion
comes from [McM, page 54]. For a more rigorous treatment, see Sec-
tion 6.6 in [Hub06].

If K(f) denotes the real dilatation, then

1

2
log(K(ftµ)) =

1

2
log

1 + t‖µ‖∞
1− t‖µ‖∞

= t‖µ‖∞ + o(t2).

Minimizing over all µ in the same equivalence class gives that the
Teichmüller metric is the quotient metric. The Teichmüller cometric is
thus L1 norm on quadratic differentials, given by

‖q‖ =

∫
|q| = Area(q).

Indeed, the dual of the space V of measurable quadratic differentials
with the L1 norm is the space of measurable Beltrami differentials with
the L∞ norm. If W is the space of holomorphic quadratic differentials,
then the tangent space to Teichmuller space is V ∗/W⊥. A general fact
in functional analysis says that V ∗/W⊥ is isometric to W ∗, which gives
the result.

9.8. Isometries of Tg. Consider the map X → PQD(X) given by
mapping each point x of X to the line of quadratic differentials on X
that vanish to the highest possible order at x. (This order depends on
x.) One can show that the this map is analytic and injective, and that
the metric on the unit ball of QD(X) is less differential at points of
the image than any other points.

This leads to Royden’s Theorem, which says that the group biholo-
morphic isometries of Tg is the mapping class group. (Later we will
see that a biholomorphism must automatically be an isometry.) See
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[Hub06, Section 7.4] for details. The proof is slightly different when
g = 2.

10. The Weil-Petersson Kähler structure

In this section we define the symplectic form ω on moduli space and
calculate it in Fenchel-Nielsen coordinates, following [Wol10]. It is
important for a number of reasons, including because ω/π2 generates
H2 of the mapping class group (we will not prove this), and because it
relates the hyperbolic geometry of individual Riemann surfaces to the
geometry of moduli space.

10.1. The symplectic form. Recall that the space of quadratic dif-
ferentials is the cotangent space to moduli space. The Weil-Petersson
cometric on the space of quadratic differentials is the hermitian product

〈q1, q2〉 =

∫
q1q2(ds

2)−1,

where ds2 is the hyperbolic area form. The dual metric on the tangent
space to moduli space is a hermitian h metric called the WP hermitian
product. The associated Riemannian metric Reh is called the WP
metric, and the associated 2-form ω = − Imh is the WP symplectic
form. The 2-form associated to any hermitian metric is always non-
degenerate, but we will need to prove ω is closed in order to know that
it is symplectic.

If q is a quadratic differential, then q(ds2)−1 is a Beltrami differential.
So the map q 7→ q(ds2)−1 gives a map from the cotangent space to the
tangent space of moduli space. As always, there is a pairing between
tangent and cotangent vectors; recall that for moduli space the pairing
of a Beltrami differential µ and a quadratic differential q is

∫
µq.

The WP hermitian product of two quadratic differentials q1 and q2
is equal to the pairing of q1 with q2(ds

2)−1. For any finite dimensional
vector space with a hermitian product, there is an anti-linear map to
the dual (or predual) given by v 7→ 〈·, v〉; we see that this map from
quadratic differentials to the tangent space is given by q 7→ q(ds2)−1.
By definition, for any finite dimensional vector space this map sends
the hermitian product to the complex conjugate of the dual hermitian
product. Hence we get that the WP hermitian product of two Beltrami
differentials of the form µi = qi(ds

2)−1 is given by

〈µ1, µ2〉 =

∫
µ1µ2ds2.
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Remark 10.1. Beltrami differentials of the form q(ds2)−1 are called har-
monic Beltrami differentials. The above shows that every tangent vec-
tor to moduli space can be represented by a harmonic beltrami differ-
ential. (The map q 7→ q(ds2)−1 must be injective because q(ds2)−1 has
nontrivial pairing with the quadratic differential q.)

Remark 10.2. It is a fact that for any two Beltrami differentials µ1, µ2,
there are equivalent Beltrami differentials µ′1, µ

′
2 with disjoint support.

This shows that the above formula is not true when the Beltrami dif-
ferentials are not harmonic.

10.2. Gardiner’s formula. Since we wish to arrive at a formula for
the symplectic form in terms of differentials of geodesic lengths, we
will need to understand the differential of the hyperbolic length of a
curve as the Riemann surface changes in the direction of some Beltrami
differential µ. We will use a dot over a variable to denote derivative
with respect to the time variable t. In this subsection we prove the
following result, which is [Wol10, Cor 2.6].

Theorem 10.3 (Gardiner’s formula). Let Xt be a family of Riemann
surfaces with quasi-conformal maps ft : X0 → Xt with Beltrami differ-
entials µt, and assume µ̇0 = µ.

Let `t denote the hyperbolic length of a fixed closed curve, and let F
denote the cover of X0 corresponding to the subgroup of the fundamental
group generated by this curve. This cover is conformal to a unique
cylinder of height π; let q denote the quadratic differential giving the
Euclidean metric on this cylinder. Then

˙̀
0 =

2

π
Re

∫
F
µq.

Here we use µ to denote both the Beltrami differential on X0 and its
lift to F .

Although stated in more complicated way, Gardiner’s formula merely
reflects the fact that the modulus of a cylinder under an infinitesimal
quasi-conformal map changes according to how efficiently the beltrami
differential pairs with the natural quadratic differential on the cylinder.

Gardiner’s formula becomes more explicit if we assume that X0 =
H/Γ and that the closed geodesic in question is the image of the imag-
inary axis in H. In this case F can be replaced with the fundamental
domain

D = {z ∈ H : 1 < |z| < e`}.
Noting that log(D) = {x + iy : 0 < x < `, 0 < y < π}, we get that
q is the pull back of (dz)2 via z 7→ log z, so q = (dz/z)2. Gardiner’s
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formula becomes

˙̀
0 =

2

π
Re

∫
D
µ

(
dz

z

)2

.

Gardiner’s formula is the statement that the differential d` of geo-
desic length, which is a cotangent vector to moduli space, is equal to

the quadratic differential 2
π

(
dz
z

)2
.

Proof of Gardiner’s formula. The maps ft induce maps ht of the strip
{z ∈ H : Im(z) < π}. These maps satisfy ht(z + `0) = h(z) + `t. For
any 0 < y < π and any t, we get

`t = Re (ht(`0 + iy)− ht(iy)) = Re

∫ `0

0

d

dx
ht(x+ iy)dx.

The maps ft preserve the boundary of the strip, so it follows that

0 = Im
d

dt
(ht(x+ iπ)− ht(x)) = Im

∫ π

0

d2

dtdy
ht(x+ iy)dy.

Now, taking an equality that is true for any x and averaging it, we get

d

dt
`t = Re

∫ `0

0

d2

dtdx
ht(x+ iy)dx

=
1

π
Re

∫ π

0

∫ `0

0

d2

dtdx
ht(x+ iy)dxdy.

Adding zero (times i/π) to this we get

d

dt
`t =

1

π
Re

∫ π

0

∫ `0

0

d

dt

(
d

dx
ht(x+ iy) + i

d

dy
ht(x+ iy)

)
dxdy.

=
2

π
Re

∫ π

0

∫ `0

0

d

dt

(
∂

∂z
ht

)
dxdy.

Now we use ∂
∂z
ft(z) = µt

∂
∂z
ft(z), where µt is the Beltrami differential

of ft, to get
d

dt

(
∂

∂z
ht

) ∣∣∣
t=0

= µ̇0.

(This can also be seen using a first order expansion ft(z) = z+tv+o(t),
and computing that µ̇0 = ∂

∂z
v. First take the t derivative, to get v. Then

take the ∂
∂z

derivative.) Since µ̇0 = µ by definition, this gives

d

dt
`0 =

2

π
Re

∫
D
µ.

�
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10.3. Twist-length duality. For a simple closed geodesic α on a Rie-
mann surface of finite type, let `α denote its hyperbolic length, and let
tα be the vector field on Teichmüller space that generates the Fenchel-
Nielsen twist about α; flowing for time t in this vector field increases
the α twist parameter in Fenchel-Nielson coordinates by t. In this
subsection we prove the following result, which is [Wol10, Theorem
3.3].

Theorem 10.4 (Twist-length duality). If J is the complex structure
(multiplication by i) of Teichmüller space, and ω is the WP symplectic
form, then

2tα = J grad `α.

Equivalently,

2ω(·, tα) = d`α.

Twist-length duality shows that the Hamiltonian flow of geodesic
length is the twist.

The moral strategy of the proof is to first show these statements for
the Teichmüller space of the annulus. However, the Teichmüller space
of the annulus is one real dimensional, and hence its tangent space
admits neither a complex structure or a symplectic form. Hence we
take some care with the statements.

As above, instead of working with the annulus F = H/〈z → e`z〉
we may apply log and work in the strip {z ∈ H : Im(z) < π}. In
the annulus, there is a unique closed geodesic, which we call α. Using
coordinates z = x+ iy, the hyperbolic metric in the strip is

(dx)2 + (dy)2

sin(y)2
.

Lemma 10.5. Let φ : [0, π] → [0, 1] be any C1 monotone function
that is 0 at 0 and 1 and π, with a decay condition on φ′ at 0 and π.
Consider the Beltrami differential

µφ =
i

2
φ′(y)

in the annulus. Let µ̃φ be the sum over cosets of 〈α〉 in π1(X) of the lift
of µφ to H, so µ̃φ is π1(X) invariant. Then the corresponding Beltrami
on X represents the infinitesimal twist in α.

Proof. We prove this in two steps.

Step 1: We first show this is true when φ′(y) is supported very close
to π/2, so µφ is supported very close to the geodesic α.
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Consider the family of maps fε(z) = z + εφ(Im z), which preserves
the y coordinate. The Beltrami of this map is

ε∂φ(Im z)

1 + ε∂φ(Im z)
=

εi/2φ′(y)

1− εi/2φ′(y)
.

So the corresponding infinitesimal Beltrami for this family of maps at
ε = 0 is µφ.

Consider the effect of fε on a geodesic orthogonal to α, i.e. a vertical
line. The image is homotopic rel endpoints to a vertical path to α,
followed by a segment of α of Euclidian length ε, followed by a vertical
path to the other side of the strip. Along α, the Euclidian metric is
equal to the hyperbolic metric, so this segment of α also has hyperbolic
length ε.

Suppose that φ′(y) is supported close enough to π/2 that µφ is sup-
ported on a collar neighbourhood of α. Using that disjoint collars are
disjoint, it is easy to sum over cosets, and see that the corresponding
Beltrami differential on X is supported on a collar, the Beltrami cor-
responding to ε changes the twist by exactly ε. Taking ε to 0 gives the
result.

Step 2: Now, we show different choices of φ give equivalent Beltramis
on X.

The decay condition is so that the preimage can be summed over
cosets and the sum converges absolutely. (This is a technical point
that can be avoided for our purposes, but we discuss it anyways.) In
the strip, the line y = ε is about − log(ε) hyperbolic distance away
from α. At most er geodesics in the orbit of α intersect any ball of
radius r in H. So, we want 1/ε times φ′(ε) to go to 0; so the decay
condition is just that φ′ = 0 at the endpoints.

To start, given φ1, φ2, we will construct a vector field v(y)/dz whose
∂ derivative is µφ1 − µφ2 . This is the solution to

i

2
v′ = φ′1 − φ′2,

so this is trivial to do, and v has the same decay condition.
Next, we can lift and sum over cosets to show that the Beltramis on

X are ∂ of a vector field on X. As in the proof of Theorem 9.14, this
shows that these two Beltramis on X are equivalent. �

Lemma 10.6. There is a choice of φ such that 2µ̃φ represents i grad `α.

Proof. Suppose that µ` is a Beltrami differential realizing i grad `α. The
definition (grad f, ·) = df(·) says that µ` is a Beltrami differential such
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that taking inner product with µ` has the same effect as pairing with
d`.

Gardiner’s formula says that d` is integration against the pull back
of the real part of 2

π
times the flat metric (dz)2 on the strip. The inner

product is

(µ1, µ2) = Re

∫
µ1µ2ds

2 =
1

2
Re

∫
µ1µ2ds

2.

Hence we see that grad ` is represented by the sum over cosets of the
pull back of 2

π
(dz)2/ds2 to H.

On the strip,

ds2 =
(dx)2 + (dy)2

sin(y)2

and hence
2

π
(dz)2/ds2 =

2

π
sin(y)2dzdz.

So, comparing to µφ = i
2
φ′(y) we wish to choose

φ(y) =
2

π

∫ y

0

sin(y)2.

This φ has that φ(π) = 1, and gives the result. (It seems like a miracle
that φ(π) = 1, but if this isn’t the case we’d still have nice formulas,
just scaled by a constant.) �

The theorem follows immediately from the previous two lemmas.

10.4. The symplectic form is closed. This follows either by di-
rect but unsatisfying calculation, or by constructing a one form on
Teichmüller space whose exterior derivative is ω. The later uses “quasi-
fuchsian reciprocity”, a symmetry statement about the Bers embedding
based at different points.

10.5. The symplectic form in Fenchel-Nielsen coordinates. In
this subsection we prove the following result, which is [Wol10, Theo-
rem 3.14].

Theorem 10.7. In Fenchel-Nielsen coordinates the WP symplectic
form is

2ω =
∑

d`i ∧ dτi.

Proof. The first claim is that

2ω

(
∂

∂`i
,
∂

∂τj

)
= δi,j.
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This follows from twist-length duality, which gives that the expression
is d`j(`i).

Each pair of pants has an orientation reversing isometry that sends
each cuff to itself; it is given by exchanging the two hexagons. Taking a
pants decomposition and adjusting the twist parameters gives a surface
with an orientation reversing isometry ρ that maps each pants to itself.
Note that since the symplectic form is invariant under twists, this does
not change the coefficients of ω in Fenchel-Nielsen coordinates. (This
uses that ω is closed, and that twists are Hamiltonian flows.)

The mapping class of ρ acts on Teichmüller space anti-holomorphically.
Since it acts via remarking the surfaces, it preserves the WP metric g.
Since it reverses the complex structure, this gives that ρ∗(ω) = −ω,
since ω(u, v) = g(u, iv).

Now, d`i is invariant under ρ, and dτ is odd with respect to ρ. Hence
the coefficients of dτidτj and d`id`j are zero. �

11. Kobayashi hyperbolicity

Introduction. The Kobayashi (pseudo)metric on a complex manifold
M is the largest (pseudo)-metric such that holomorphic maps from H
to M are distance non-increasing. The key property of the Kobayashi
metric is that holomorphic maps between complex manifolds M and
N are always distance non-increasing with respect to the Kobayashi
(pseudo)metrics on these M and N .

Example 11.1. The Kobayashi metric on C is 0. For any space that
contains an holomorphically embedded copy of C, the Kobayashi metric
is not an honest metric (there are distinct points distance zero from
each other).

Brody’s Theorem asserts the converse. Spaces on which the Kobayashi
metric is a metric are called Kobayashi hyperbolic.

Example 11.2. The Schwarz-Lemma gives that the Kobayashi metric
on H is the hyperbolic metric.

Example 11.3. On a product, d((x1, y1), (x2, y2)) ≥ max(d(x1, x2), d(y1, y2)).
For the product of discs, this is an equality.

Example 11.4. On the open unit ball in Cn, the Kobayashi metric is
the complex hyperbolic metric.

The Kobayashi metric is always Finsler (this is not obvious, but you
can take it to be the definition for many purposes), with unit ball{

1

2
γ′(0)

}
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where γ runs over all holomorphic map from the disc into the manifold
sending 0 to the given point.

Lemma 11.5. Let B be the unit ball of some Banach space. Then the
unit ball for the infinitesimal Kobayashi metric on T0B is 1

2
B.

Proof. It is clear that the unit ball contains 1
2
B, by looking at the maps

λ 7→ λe for any e of norm 1. Conversely, for any e of norm 1, then
by Hahn-Banach there is a linear functional of norm one sending e to
1. Thus λe 7→ λ under this linear functional. By the distance non-
increasing property, the image of the unit ball under this map must be
contained in the unit ball for the hyperbolic plane. �

Holomorphic motions. The reference for this subsection is [Hub06,
Section 5.2], which contains complete proofs.

A holomorphic motion of a subset X ⊂ P1 indexed by the complex
disc ∆ is a function φ : ∆×X → P1 such that

(1) φ(0, x) = x,
(2) t 7→ φ(t, x) is holomorphic for each fixed x,
(3) x 7→ φ(t, x) is injective for each fixed t.

The λ-Lemma of Mane-Sad-Sullivan shows that φ must be continu-
ous, and moreover x 7→ φ(t, x) must be “quasi-conformal”. (One must
use a different definition of quasi-conformal, since X is not assumed to
be open.)

Theorem 11.6 (Slodkowski). Any holomorphic motion of X ⊂ P1

extends to a holomorphic motion of P1.

Surprisingly, it is not even clear that a holomorphic motion of n
points can be extended to one of n+1 points – this key case is sometimes
called the “holomorphic axiom of choice”.

The Teichmüller metric. Because of the existence of Teichmüller
discs, it is clear that the Teichmüller metric is greater than or equal to
the Kobayashi metric. Because of the Bers embedding, it is clear that
Tg is Kobayashi hyperbolic.

Theorem 11.7 (Royden). The Teichmüller metric is the Kobayashi
metric.

Corollary 11.8. Every biholomorphism of Tg is an isometry for the
Teichmüller metric.

Lemma 11.9. Every holomorphic map from a disc to Tg can be lifted
to a map to the Beltrami differentials on a fixed Riemann surface X.
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Proof of Theorem assuming Lemma. It suffices to show that any holo-
morphic ∆ → Tg is distance non-increasing. We will do this infinites-
imally: we wish to show that the Kobayashi unit ball is contained in
the unit ball for the Teichmüller metric. This follows from the lifting:
the derivative of ∆ at 0 must be contained in the unit ball for the Te-
ichmüller (i.e. L∞) norm on Beltrami differentials. (This shows that
the derivative at 0, which is an equivalence class of Beltrami differ-
entials, has a representative in the unit ball for the L∞ metric. The
Teichmüller metric is the inf of the L∞ norms of all Beltrami differen-
tials in the equivalence class, so hence the Teichmuller norm must be
at least as small as the L∞ norm of the derivative of the lift.) �

Proof of Lemma. Let ∆ → Tg be holomorphic. Fix X ∈ Tg. Compos-
ing with the Bers embedding, we get qλ ∈ QD(X∗) for all λ ∈ ∆. Let
Fλ : L → C be the unique holomorphic map with S(Fλ) = qλ that
fixes 0, 1,∞. We may view F as a holomorphic motion of the lower
half plane union R. By Slodkowski’s Theorem, we can extend it to a
holomorphic motion of P1.

Define µλ to be the complex dilatation of Fλ. Using an equivariant
version of Slodkowski’s theorem, we get that µλ is equivariant.

The map from Beltrami differentials to Tg, if we view Tg as a subset of
QD(X∗) via the Bers embedding, is just taking Schwarzian derivative
on the lower half plane (after extending by 0). Thus evidently µλ maps
to qλ and we have our desired section. �

12. Geometric Shafarevich and Mordell

The sources for this section are [McM00], [McM, Section 10] and
notes from lectures of Benson Farb which are not publicly available.
(These are not original sources: they are all expository.)

Statements. A family of Riemann surfaces over a base B is defined to
be a holomorphic map E → B of complex manifolds whose fibers are
all smooth Riemann surfaces. This induces a map B → Mg. In fact
it is almost but not quite equivalent to giving such a map, and we can
safely ignore the difference. (For the experts: one option is to declare
that we are interested in families of Riemann surfaces with a level 3
structure.) We assume B is connected, and say that the family is truly
varying if the map to Mg is nonconstant. Every non truly varying
family is trivial (a product) after a pulling back the family along a
finite cover B′ → B. (This is because the group of automorphisms of
a higher genus Riemann surface is finite.)
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Theorem 12.1 (Geometric Shafarevich). For each compact Riemann
surface B, and each g > 1, there are only finitely many truly varying
families of genus g Riemann surfaces over B.

This is equivalent to saying there are only finitely many non-constant
holomorphic maps B →Mg, and this is the perspective that we take.

Remark 12.2. The Lefschetz Hyperplane Theorem and Geometric Shafer-
vich for one dimensional bases B imply Geometric Shafarevich for a
higher dimensional base.

Remark 12.3. Since Teichmüller space is a bounded domain, there are
no truly varying families when B is genus 0 or 1.

Remark 12.4. One can also allow B and the fibers to have finitely many
punctures. Allowing the base to have punctures is more significant and
more useful; it allows analysis of families over a compact base with
some singular fibers, since these fibers can just be removed. Our proof
will be only for the case when the base does not have punctures.

The case of B compact is due to Parshin in 1968, and the case with
punctures is due to Arakelov in 1971.

Theorem 12.5 (Geometric Mordell). Each family E → B has only
finitely many holomorphic sections B → E.

For example, perhaps g = 2, and the 6 Weierstrass points can be
consistently labelled over the family. (This is always true up to a finite
cover.) Then this gives six sections.

Remark 12.6. Using the “Parshin trick” (taking branched covers) one
sees that Geometric Shafarevich implies Geometric Mordell (see [McM00]).

Analogy between function fields and number fields. Covers
B → P1 are in bijection with finite extensions of C(z); one maps B to
its field of rational functions C(B), viewed as a finite extension of the
rational functions C(z) of P1.

A curve defined over K = C(B) can be viewed as a family over B
of curves defined over B. Indeed, we can view such a curve as the
set in P2(K) of solutions to a polynomial equation (planar case). One
can then consider the subset of E = P2(C) × B that satisfy the same
equation (viewing elements of K as functions on B), and we have a
natural projection E → B. This gives a family of curves over B.

In particular, there is a bijection between holomorphic families over
B and smooth projective curves over C(B). There is also a bijection
between holomorphic sections of a family and C(B) rational points.
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The non-geometric Mordell conjecture, now know as Faltings’ Theo-
rem, says that a higher genus curve defined over a number field K has
only finitely many K rational points (and also L rational points, for
any finite extension L of K).

The non-geometric Shafarevich conjecture, also proven by Faltings,
says that there are only finitely many isomorphism classes of Abelian
varieties of fixed dimension and fixed polarization degree over a fixed
number field K with good reduction outside of a given finite set of
points.

The proof, assuming a black box. We wish to show that there
are only finitely many non-constant holomorphic maps f : B → Mg.
We lift this to a map D→ Tg which is equivariant for the monodromy
representation. We view Tg as a bounded domain via the Bers embed-
ding. Fatou’s theorem (see wikipedia) says that boundary values exist
for almost every direction in the disc, and that they can computed via
any sequence contained in a wedge (i.e., any sequence approaching the
boundary point non-tangentially).

The proof uses the following fact. For almost every boundary value
q of f , and any sequence Xn ∈ Tg converging to q, we have

(1) `α(Xn)→∞ for all simple closed curves α and
(2) if dTeich(Xn, Yn) is bounded, then Yn → q.

The second point is very intuitive (for example this is obvious if Tg is
replaced with H2). The first point is a bit more mysterious, although
it is perhaps reasonable that most ways of degenerating a marked Rie-
mann surface should increase the lengths of all curves (keeping in mind
that the boundary of the D-M bordification is smaller dimensional).
(One example of such a sequence is given by precomposing the mark-
ing of a fixed point X1 with powers of a pseudo-Anosov.) The proof
of this fact uses that boundary points in the Bers embedding can be
interpreted as Kleinian groups, and most of these Kleinian groups that
occur on the boundary are “totally degenerate”. We will revisit this
after completing the proof of Geometric Shafarevich assuming the fact.

Lemma 12.7. The monodromy π1(B)→MCG does not fix any curve.

Proof. Otherwise, the hyperbolic length of this curve would be a well
defined continuous function on the compact space B. This contradicts
the first item above. �

Lemma 12.8. For any B and any b0 ∈ B, there is a compact subset K
of Mg such that for any non-constant holomorphic map f : B →Mg

we have f(b0) ∈ K.
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Proof. Fix L > 0 so that π1(B, b0) can be generated by loops of length
less than L. By the defining feature of the Kobayashi metric, these
loops all map to loops of Kobayashi length at most L in Mg based at
f(b0). Recall Wolpert’s lemma, which says that if X1, X2 are hyperbolic

surfaces and φ : X1 → X2 is eL quasiconformal, then
`X1

(γ)

eL
≤ `X2(γ) ≤

eL`X1(γ).
Recall also that Royden’s theorem that the Kobayashi metric is the

Teichmuller metric. So, the monodromy of the chosen generators of
π1(B, b0) can change hyperbolic lengths by at most a fixed factor eL.

Now, let ε be the Margulis constant (so no two curves of length ≤ ε
can cross), and suppose in order to find a contradiction that f(b0) has
a curve of hyperbolic length less than ε/(eL)3g−2.

Let α1, α2, . . . , α3g−3, α3g−2 be the shortest 3g−2 simple closed curves
on f(b0) in order of increasing length. Since the length of α1 is less than
ε/(eL)3g−2, we get that

`αi+1
> eL`αi

for some i. We then get that the set of curves {α1, . . . , αi} must be
permuted by the generators of π1(B) and hence by π1(B). Passing to
a finite cover of B we can assume that each curve is invariant under
π1(B), which contradicts the previous lemma. �

Lemma 12.9. The boundary values of f are determined by the mon-
odromy representation. (i.e., for two different f with the same mon-
odromy, the boundary values, which are only defined a.e. on S1, agree
a.e..)

Proof. Every z ∈ S1 = ∂D is the non-tangential limit of an orbit γnz0,
γn ∈ π1(B). So we get that the boundary value (defined for a.e. z ∈ S1)
is given by

lim
n→∞

f(γnz0) = f∗(γn)f(z0),

where f∗(γn) is the monodromy of γn.
Suppose that h is another map B →Mg, and we continue to abuse

notation by also using h to denote a lift of h to D→ Tg. Then we have

d(f(γnz0), h(γnz0)) = d(f∗(γn)f(z0), h∗(γn)h(z0)) = d(f(z0), h(z0))

since the mapping class group acts via isometries. It follows from the
second point of the fact that the two sequences f(γnz0) and h(γnz0)
converge to the same point in the boundary of the Bers embedding. �

Corollary 12.10. f is determined by the monodromy representation.

Proof. Two holomorphic functions from D to a bounded domain whose
boundary values are equal a.e. must be equal. �
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Proof of Geometric Shafarevich. First we claim that for any L > 0 and
any compact set K ⊂ Mg, only finitely many mapping classes can
be realized by loops of Teichmüller length less than eL based in K.
Indeed, such loops must remain in a fixed compact part of Mg. Any
loop into a fixed compact part can be isotoped to be simplicial (for
some subdivision of the compact part into tiny simplices) with at most
a bounded multiplicative and additive length increase, which gives the
result.

Now, given a map B →Mg, b0 maps to a compact set. (If you are
worried about basepoint issues, we can isotope B a bit so b0 maps to a
vertex is the simplicial triangulation, and there are only finitely many
vertices.) Now, each generator of π1(B) maps to paths of bounded
length, and there are only finitely many mapping classes realized by
such paths. Hence there are only finitely many choices of where to send
each generator of π1(B), and we get that there are only finitely many
possible monodromy presentations. �

The black box. We now revisit the two point fact that we used
above: For almost every boundary value q of f , and any sequence
Xn ∈ Tg converging to q, we have

(1) `α(Xn)→∞ for all simple closed curves α and
(2) if dTeich(Xn, Yn) is bounded, then Yn → q.

To do this, we must study the boundary of the Bers embedding.

Lemma 12.11. Let qn be in the image of the Bers embedding, and
suppose qn → q. Let fn be injective holomorphic functions on the lower
half plane with S(fn) = qn, normalized (using postcomposition with a
Möbius transformation) so fn(−i) = −i and f ′n(−i) = 1. Then fn
converges to an injective holomorphic function f , well defined up to
Möbius transformations, with S(f) = q.

(Without adding additional normalization, different subsequences
can converge to different functions, but they differ by a Möbius trans-
formation.)

Proof. By the Koebe distortion theorem, the sequence fn is pre-compact.
Let f be any limit. Then S(f) = q, since the derivatives of f converge.

There is a unique solution to S(f) = q up to Möbius transformations.
f is injective since the limit of injective holomorphic functions is

either injective or constant. f cannot be a constant since f ′(−i) =
1. �

Lemma 12.12. Let q be in the boundary of the Bers embedding based
at X = H/Γ, and let f be the function produced by the previous
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lemma. Then f is equivariant with respect to a homomorphism ρ :
Γ→ PSL(2,C).

The map ρ is injective and has discrete image, and f(L)/ρ(Γ) = X.
Furthermore, the map q 7→ ρ(Γ) is a continuous and injective map

to the conjugacy classes of discrete faithful representations of Γ into
PSL(2,R).

Proof. The equivariance comes from the fact that q is Γ invariant, so
if g ∈ Γ, then f precomposed with g is again a solution to S(f) = q.
There is a unique solution up to postcomposition by Möbius transfor-
mations, so it must be that f ◦ g = ρ(g) ◦ f .

Since f is injective, this forces ρ to be injective and to have discrete
image. f induces a biholomorphism from X = H/Γ to f(L)/ρ(Γ).

Continuity follows because solutions to S(f) = q vary continuously.
(The proof of injectivity is missing.) �

A limit point in the Bers embedding is called totally degenerate if
the domain of discontinuity of ρ(Γ) is f(L) (rather than a larger set,
containing f(L) as another connected component) and ρ(Γ) contains
no parabolics. (Later we will see the first condition follows from the
second.)

Lemma 12.13. If q is totally degenerate, then f(L) is dense. Hence,
for every ε > 0 there is an N > 0 such that for n > N , the complement
of fn(L) does not contain an ε ball (for some fixed nice metric on P1).

Proof. The limit set of a discrete subgroup of PSL(2,C) is the set of
accumulation points of an orbit of the group. As long as the group
is “non-elementary”, it is the smallest closed invariant subset of the
boundary, and the action on its complement is properly discontinuous.

The boundary of f(L) is a closed set invariant under ρ(Γ), hence it
is equal to the limit set of ρ(Γ). If f(L) is not dense, then there must
be another component of the domain of discontinuity. �

Lemma 12.14. Suppose Xn → q and q is totally degenerate. Then
`α(Xn)→∞ for every curve α.

Proof. Xn may be presented as the complement of the closure of fn(L)
modulo the action of Γn. Let γn ∈ Γn be a representative of α. We
assume γn → γ. Assume that the fixed points of γ are z1 and z2.
Suppose that z1 and z2.

Pick a circle around z1 such that this circle together with its image
under f together give an annulus between z1 and z2. Say the Euclidean
distance between these circles is d > 0.
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Then, since the ratio of the hyperbolic and euclidean metrics goes to
infinity as distance to the boundary goes to zero (uniformly in the do-
main!), we get that the inf rn of the ratio of the hyperbolic to Euclidean
metrics on the complement of the closure of fn(L) goes to infinity. Since
the translation length of γn is approximately at least drn, this gives the
result. �

Theorem 12.15. If Γ is a limit point in the Bers embedding, then if
Γ has no parabolics it is totally degenerate.

Comments on the proof. This follows directly from the next more gen-
eral theorem.

However, it is good to consider the intuition. A point in the image of
the Bers embedding gives a group ΓX,Y ⊂ PSL(2,C) that acts on P1.
The limit set is a circle, which divides P1 into two topological discs Ω1

and Ω2. In our previous notation, the limit set is fµ(R), and Ωi are fµ

of the upper and lower half planes, and the group ΓX,Y is the conjugate
of the Fuchsian group Γ by fµ. Here µ arises as the dilatation of a map
from X to Y , and we have Ω1/ΓX,Y = X∗ and Ω2/ΓX,Y = Y .

Moving ΓX,Y to the boundary of the Bers embedding should have the
result of degenerating Ω2/ΓX,Y = Y , whereas Ω1/ΓX,Y = X∗ remains a
constant. Hence, we expect to get a limit Kleinian group Γ′ with a set
Ω1 on which it acts discontinuously with Ω1/Γ

′ = X∗. The question
is, do we expect any other domain of discontinuity? If there was such
another component Ω2, we might expect Ω2/Γ

′ to be some degeneration
of Y . But every degeneration of Y has cusps, so then Γ′ would have to
have a parabolic. �

The following is [McM, Theorem 10.14].

Theorem 12.16. Let Γ be a discrete subgroup of PSL(2,C) isomor-
phic to the fundamental group of a surface of genus g > 1, and assume
Γ has no parabolics. Then either

(1) the domain of discontinuity Ω consists of two connected con-
nected components, and Γ is not in the boundary of the Bers
embedding, or

(2) Ω is connected, or
(3) the limit set Λ is all of P1.

Proof. We proceed in a number of steps, some of which use quite non-
trivial theorems, which we will take as black boxes, but which are
intuitive.

Step 1: Λ is connected. Otherwise, a general theorem (Stalling’s
Theorem) on boundaries of groups says that Γ would be a free product,
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and this is not the case. (Actually it would have to be either a free
product amalgamated over a finite subgroup, or an HNN extension.)
(I am not sure how easily this can be justified, if at all, but it may be
helpful to think that the boundary of the abstract group Γ is a circle,
and one expects the limit set of Γ ⊂ PSL(2,C) to be the continuous
image of that boundary circle.)

(Note that it may be tempting to think that in our setup above
the limit set is obviously connected because it is the boundary of the
topologically embedded disc f(L). However, there are topologically
embedded discs whose boundaries are not connected: for example, take
a disc, and identify four disjoint intervals in pairs, and embed the result
in the plane.)

Step 2: Ω has 0, 1 or 2 connected components. The Alhfors’
Finiteness Theorem states that, for any finitely generated Kleinian
group Γ, we have that Ω/Γ has only finitely many connected com-
ponents, each of which must be a surface of finite type (finite genus
and finitely many punctures). (The idea of the proof is that the de-
formation space of Γ should be the Teichmüller space of Ω/Γ. (For
example, in many situations where Ω = P1, Mostow rigidity says the
deformation space is trivial.) But since Γ is finitely generated, the
deformation space, viewed as a subset of the character variety, is ob-
viously finite dimensional. Hence Ω/Γ must have finitely dimensional
Teichmüller space.)

By the first step, each component Ω′ of Ω is a topological disc. Pass-
ing to a finite index subgroup of Γ, assume each is fixed by Γ. (Note
Λ and hence Ω are unchanged by passing to finite index subgroups.)
Note H3/Γ is a three manifold with finitely many ends, each of which
is a closed surface which maps π1 isomorphically onto Γ.

If there are at least two ends, pick two. Since their fundamental
groups both map isomorphically to the fundamental group of the am-
bient three manifold, there is an homotopy between two ends (because
everything is a K(π, 1) here, homotopy classes of maps of spaces corre-
spond to maps of fundamental groups). Hence H3/Γ has at most two
ends. (The homotopy sweeps out a compact set whose complement is
contained in the two given ends, so there are at most two ends.)

Step 3: The zero or one component cases. If Ω has zero com-
ponents it is empty, so Λ = P1. If Ω has one component this means
exactly that Ω is connected.
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Step 4: The two component case. It is a general fact that any
such group Γ is “quasifuchsian” [McM, Theorem 7.22] and hence in
the image of the Bers embedding. �

To see that almost every limit point is totally degenerate, it now
suffices to show the following.

Proposition 12.17. The limit points of a holomorphic map D → Tg
almost surely have no parabolics.

Proof. Otherwise, there is a positive measure set where some specific
γ ∈ Γ is a parabolic, i.e. has trace 2. The trace of γ defines a holo-
morphic function on the set of quadratic differentials (which maps to
subgroups of PSL(2,C) via holonomy of the complex projective struc-
ture). It is a general fact (Privalov’s uniqueness theorem for analytic
functions) that if a holomorphic function on the disc is constant on
a set of positive measure of boundary points, then it is the constant
holomorphic function. This implies that the trace of γ must be 2 even
on the interior of the Bers embedding, which is a contradiction. �

The final step to establish the black box is to show the following.

Proposition 12.18. Suppose Xn → q and q is totally degenerate. If
Yn is bounded distance to Xn, then Yn → q.

Proof. Otherwise, we can pass to a subsequence and assume that Yn →
q′ 6= q.

Since Yn and Xn are K q.c., there is a K q.c. map from Γbasepoint,Xn

and Γbasepoint,Yn . Indeed, consider a map from basepoint to Xn with
Beltrami differential µ, and let ν be the Beltrami differential of the
composition of that map with the K q.c. map form Xn to Yn. Up to
Möbius transformation, f ν can constructed by composing with fµ by
the function with the dilatation of Xn → Yn on fµ(H) and conformal of
fµ(L). Then with these normalizations, fµ composed (f ν)−1 is K q.c.
and we conjugate Γbasepoint,Xn by this map to get Γbasepoint,Yn . (Note
the space of K-q.c. maps is compact, so there is a limit K q.c. map
also.)

Then Sullivan rigidity states that the two limit groups are equal.
Then we must also comment that the limiting groups being equal im-
plies that the points in the Bers embedding are equal, which again
follows since monodromy determines f |R. �

Remark 12.19. There is also an approach to Geometric Shafarevich
using harmonic maps and the WP metric, see the nice survey “Har-
monic mappings and moduli spaces of Riemann surfaces” the references
therein.
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