
THE CREMONA GROUP: LECTURE 1

Birational maps of Pn. A birational map from Pn to Pn is specified
by an (n + 1)-tuple (f0, . . . , fn) of homogeneous polynomials of the
same degree, which can be assumed to not have any common factor.
The map

[z0, . . . , zn] 7→ [f0(z0, . . . , zn), . . . , fn(z0, . . . , zn)]

is defined on the locus where at least one fi is nonzero. Since the fi
don’t have any common factor, this indeterminacy locus has codimen-
sion at least 2.

Alternatively, a birational map from Pn to Pn is specified by an n-
tuple of of elements of rational functions Fi ∈ C(Z1, . . . , Zn). To go
from the (n + 1)-tuple of polynomials to the n-tuple of rational func-
tions, replace (f0, ..., fn) with (f1/f0, f2/f0, ..., fn/f0) evaluated at z0 =
1. In the opposite direction, given (F1, ..., Fn), consider (1, F1, ..., Fn)
evaluated at Zi = zi/z0 and then clear denominators.

Most birational maps from Pn to itself defined by polynomials fi of
degree d have topological degree dn (the generic point has dn preim-
ages). However, many have topological degree 1 and are hence invert-
ible. An invertible birational map is called a birational automorphism,
and the group of all such is the Cremona group of Pn,

Cr(n) = Aut(C(Z1, . . . , Zn)).

An element of the Cremona group f such that both f and f−1 have
empty indeterminacy locus is called biregular.

The Cremona group contains the group of biregular automorphisms
Aut(Pn) = PGL(n + 1,C) (see Hartshorne 7.1.1 for a proof of this
equality). When n = 1 we have Cr(1) = PGL(2,C), but when n = 2
already the Cremona group is dramatically larger than PGL(3,C). For
example, it contains the group Aut(C2) of polynomial automorphisms
of C2, which contains

(Z1, Z2) 7→ (Z1 + p(Z2), Z2)

for all polynomials p. In particular, Cr(2) is not finite dimensional.
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The standard quadratic involution. An important example is the
map σ defined by

[z0, z1, z2] 7→ [1/z0, 1/z1, 1/z2] = [z1z2, z0z2, z0z1].

It collapses the lines z0 = 0, z1 = 0, z2 = 0 to the points [1, 0, 0], [0, 1, 0], [0, 0, 1]
respectively. σ is defined away from the three points [1, 0, 0], [0, 1, 0], [0, 0, 1],
but we may compute

lim
t→0

σ([1, tz1, tz2]) = lim
t→0

[t2z1z2, tz2, tz1]

= [0, z2, z1].

These features are representative of general birational maps: they may
fail to be injective, and their indeterminacy can be resolved with blow
ups. The exceptional set is given by the Jacobian of the determinant;
this set is contracted to a smaller dimensional variety, and away from
this set the map is a local isomorphism.

Monomial maps. Another example of a birational map of P2 is given
by

(Z1, Z2) 7→ (Z2
1Z2, Z1Z2),

which has inverse

(Z1, Z2) 7→ (Z1Z
−1
2 , Z−11 Z2

2).

In fact there is a group homomorphism GL(n,Z)→ Cr(n). For n = 2
this maps a 2 by 2 matrix (aij) to

(Z1, Z2) 7→ (Za11
1 Za21

2 , Za12
1 Za22

2 ).

This action is obtained from the usual linear action on Cn by exponen-
tiation. Indeed, if Zi = exp(Qi), then the action on the Qi is the usual
linear action.

One can rephrase this discussion as follows. Set C∗ = C \ {0}, and
note (C∗)n ⊂ Pn. The group of biregular automorphisms of (C∗)n con-
tains GL(n,Z), and since (C∗)n is birational to Pn this gives a subgroup
of Cr(n).

Monomial automorphisms preserve the locus where |Zi| = 1 for all i.
This is an n real dimensional torus. If the monomial map is given by
A ∈ GL(n,Z), then the action on this torus is the usual linear action
of A on Rn/Zn. If A has an eigenvalue of absolute value greater than
1, the dynamics of this action is very chaotic.

Degree. The degree of the map

[z0, . . . , zn] 7→ [f0(z0, . . . , zn), . . . , fn(z0, . . . , zn)]
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is given by the common degree of the fi, as always assuming the fi have
no common factor. Note this algebraic degree is usually bigger than 1,
even though the generic point in P2 will have a unique preimage.

The image under a degree d map of a line P1 ⊂ Pn will by a curve
(an algebraic variety of complex dimension 1). For example, the image
of z0 = z1 + z2 under the standard quadratic involution

[z0, z1, z2] 7→ [z1z2, z0z2, z0z1]

is defined by (z1 − z0)(z2 − z0) = z20 .
The degree of this curve, for generic P1 ⊂ Pn, is the degree of the

rational map. The fact that a birational automorphism can send lines
to curves of arbitrarily high degree is another indication that birational
automorphisms can have complicated dynamics. The degree of the
square of a map is not always the square of the degree, as is clear for
σ since the square is the identity.

Algebraic structure. The set of (f0, . . . , fn) giving birational auto-
morphisms of degree at most d is a quasi-projective variety. The set
of birational maps of degree exactly d can be given the structure of
an algebraic variety, but Blanc-Furter recently prove that the set of
birational maps of degree at most d cannot.

The Cremona group has a Zariski topology, but is not an algebraic
variety of infinite dimension.

History. Favre describes the history of the Cremona group in three
periods.

• 1860-1920: The Cremona group is studied by Cremona, Noether,
De Jonquières, Castelnuovo, Enriques, etc, and is one of the
central objects in algebraic geometry. One of the highlights
of this period is Noether’s theorem that Cr(2) is generated by
PGL(3,C) and the standard involution σ. (By contrast, Cr(n)
with n > 2 cannot be generated by finitely many algebraic fam-
ilies of rational maps. In particular, it cannot be generated by
elements of bounded degree.)
• 1930-1990: A presentation for the Cremona group is obtained.

A key problem is the classification of finite subgroups. (This
has now been accomplished for Cr(2), but it is still unknown
if every finite group is a subgroup of Cr(4)!) The study of the
iteration of a birational map begins to be studied.
• 1990-present: Understand Cr(2) by understanding its finitely

generated subgroups.
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Analogy to algebraic groups. The very first question one should ask
about Cr(n) is whether it is an algebraic group. The answer is negative:
It is infinite dimensional, and is not even an infinite dimensional variety.
However, its algebraic subgroups, such as PGL(n + 1,C), are much
studied. The maximal dimensional abelian algebraic subgroups are all
conjugate to the diagonal matrices ∆n ⊂ PGL(n+ 1,C).

∆n is invariant under conjugation by monomial transformations. De-
spite the fact that it is not literally true, Cr(n) might be thought of
as a linear algebraic group with maximal torus ∆n and Weyl group
GL(n,Z).

One oddity is that there are abelian algebraic subgroups that are
maximal under inclusion but have dimension less than n.

Perhaps finitely generated subgroups of Cr(n) behave like finitely
generated subgroups of linear groups? The most famous restriction on
such groups is the Tits Alternative.

Theorem A. Every finitely generated subgroup of a linear group ei-
ther contains a non-abelian free subgroup, or has a finite index solvable
subgroup.

Analogy to diffeomorphism groups. It is natural to guess that
Cr(n) might share some properties with the group of all C∞ diffeomor-
phisms of Pn. A key property of such groups is the following result of
Thurston from the 1970s.

Theorem B. The group of diffeomorphisms isotopic to the identity of
a compact manifold is simple.

Many of our favorite linear algebraic groups, such as SL(n,C), are
also simple groups.

The Zimmer program studies homomorphisms from lattices in higher
rank Lie groups (for example SL(n,Z), n > 2) into diffeomorphism
groups. This is also an active area of study when the diffeomorphism
groups are replaced by Cremona groups.

Analogy to mapping class groups. The mapping class group can
be defined as the group Out(π1(Σg)) of outer automorphisms of the
fundamental group of a closed surface. For any finitely generated group
G, there is a short exact sequence

1→ Inn(G)→ Aut(G)→ Out(G)→ 1.

If G has trivial center, we have Inn(G) = G. Let X(G, n) denote the
character variety of homomorphisms G→ GL(n,C) up to conjugation
by GL(n,C). The group Out(G) acts on the affine variety X(G, n) by
automorphisms.



THE CREMONA GROUP 5

This setup can be used to show that every mapping class group is a
subgroup of the group of birational transformations of some variety.

The mapping class group can also be defined as the group of isotopy
classes of surface diffeomorphisms, and one of the key results is the
Nielsen-Thurston classification.

Theorem C. Every element of the mapping class group is either pseudo-
Anosov, reducible, or finite order.

The generic mapping class is pseudo-Anosov, and iteration of pseudo-
Anosovs distorts geometric objects like loops on the surface exponen-
tially quickly. The other cases are characterized by preserving some
geometric structure, and iteration causes less distortion.

Mapping class groups satisfy the Tits Alternative.

Overview of results. To what extent does Cr(n) behave similarly to
the above related classes of groups? Surprisingly, much more is true of
Cr(2) than Cr(n) with n > 2.

A recent Annals paper of Cantat gives

Theorem A'. Every finitely generated subgroup of Cr(2) either con-
tains a non-abelian free subgroup, or has a finite index solvable sub-
group.

Blanc and Zimmerman show

Theorem B'. Cr(n) has no closed normal subgroups.

However, a recent Acta paper of Cantat and Lamy shows

Theorem B''. Cr(2) has many normal subgroups.

The Nielsen-Thurston classification is related to the classification
of isometries of hyperbolic space. Each such isometry is either loxo-
dromic, parabolic, or elliptic. These correspond to a mapping class
being pseudo-Anosov, reducible, or finite order. One can define loxo-
dromic, parabolic, or elliptic for elements of Cr(2), and show

Theorem C'. Every element of Cr(2) is either loxodromic, parabolic,
or elliptic.

Most interesting is that the these cases can be characterized by the
degree growth of iterates, a measurement of how quickly the map dis-
torts geometric objects. Elliptic implies finite order, and loxodromic
implies that a geometric structure (a fibration) is preserved.

Some of these theorems are proven using an action of Cr(2) on an
infinite dimensional hyperbolic space, which is somewhat analogous to
the action of the mapping class group on Teichmüller space. Hyperbolic
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spaces arise from real vector spaces with non-degenerate bilinear forms
of signature (1, n− 1). In the Hodge decomposition, the (1, 1) part of
the cohomology of a complex surface always has a bilinear form (cup
product) that is of degree (1, n− 1).


