
NOTES ON FILIP’S PROOF THAT ORBIT CLOSURES
ARE ALGEBRAIC

ALEX WRIGHT

These are my personal notes on the work of Filip. Reader beware:
I may have introduced misleading or incorrect statements while trying
to summarize Filip’s argument. Corrections welcome.

1. Context

Previous results. The setting for Filip’s work was as follows. Every
known orbit closure was a locus of pairs (X,ω) defined by conditions
of the following two types.

• Jac(X) has certain endomorphisms (projection to a factor, real
multiplication on a factor) with ω as an eigenform.
• The difference of two zeros of ω is torsion in (a factor of) Jac(X).

One should expect any loci cut out by such algebro-geometric condi-
tions to be a variety by basic reasons, and indeed to prove orbit closures
are varieties Filip explains that it suffices to show that they are cut out
by such conditions. (Filip expands the list slightly.)

By two deep theorems of Möller, every closed orbit is known to be
described by such conditions, which you might think would give hope
that verifying a similar result for all orbit closures might be possible.
But on the other hand, Möller’s proof concerning torsion, although
short, is only accessible to those with a truly formidable background
in algebraic geometry, and it is not even clear what the statement
of a generalization of this result to all orbit closures would look like.
And perhaps most importantly, Möller’s work in fact used that closed
orbits are varieties! (Smillie’s Theorem gives that closed orbits are line
bundles over algebraic curves.)

Linear equations coming from algebraic geometry. Eskin-Mirzakhani-
Mohammadi recently showed that all orbit closures are defined by linear
equations in period coordinates. Both conditions above imply linear
equations on the period coordinates of ω.



2 WRIGHT

Each endomorphism of Jac(X) gives a mapA : H1(X,Z)→ H1(X,Z).
If ω is an eigenform for this endomorphism with eigenvalue r, then∫

A(γ)

ω = r

∫
γ

ω

for all γ ∈ H1(X,Z). If the orbit closure consists of surfaces with such
an endomorphism, then these linear equations are some of the linear
equations, guaranteed by Eskin-Mirzakhani-Mohammadi, that define
the orbit closure in period coordinates.

The condition that a map A : H1(X,Z) → H1(X,Z) gives an endo-
morphism of the Jacobian is that its real linear extension to an endo-
morphism of H1(X,R) is in fact complex linear. The complex structure
comes from the real linear isomorphism H1(X,R) ' H1,0(X)∗. This
complex structure varies with X in a complicated way, which can be
recorded with the period mapping and reflects the variation of Hodge
structure. Given that the linear equations defining an orbit closure
only involve a single line in H1,0(X) (the one spanned by ω), there
is no obvious reason to expect that the linear equations defining an
orbit closure would have anything whatsoever to do with this complex
structure. (The exception is genus two, where due to the smallness of
the space, McMullen observed that certain endomorphism stabilizing
a complex line are automatically complex linear.)

If p and q are points on X, and p−q is torsion in Jac(X), this exactly
means that for any path γp,q from p to q, there is a rational homology
class γ ∈ H1(X,Q) such that∫

γp,q

η =

∫
γ

η

for all η ∈ H1,0(X). Thus, taking η = ω, we see that the torsion condi-
tion does imply a linear equations on periods, but again we should be
surprised to see the linear equations guaranteed by Eskin-Mirzakhani-
Mohammadi arise in this why, since these equations should really only
have to do with ω, and not the other holomorphic one-forms η on X.

Nonetheless, for closed orbits, Möller’s work shows that all the linear
equations on absolute periods come from endomorphisms, and all the
linear equations relating relative to absolute periods come from torsion.
In sum, for closed orbits, all the linear equations defining the orbit
(closure) arise form endomorphisms and torsion. Again we emphasize
that this would constitute a proof that closed orbits are varieties, except
that in fact Möller’s work in fact uses as an input that closed orbits
are varieties.
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Deligne semi-simplicity and endomorphisms of the Jacobian.
LetM be an orbit closure of translation surfaces, and let H1 denote the
flat vector bundle overM whose fiber over (X,ω) is H1(X,C). There is
closely related bundle H1

rel with fibers H1(X,Σ,C), and a natural map
p : H1

rel → H1. The tangent bundle T (M) of M is naturally a flat
subbundle of H1

rel, and hence p(T (M)) is a flat subbundle of H1. Let
k(M) be the affine field of definition of M, i.e., the smallest subfield
of R so that M can be cut by linear equations in period coordinates
with coefficients in R. The author showed that p(T (M)) is defined
over k(M), and that there is a decomposition of flat bundles

H1 =
⊕
ι

p(T (M))ι ⊕ E,

where the ι are the different field embeddings k(M)→ C, the p(T (M))ι

are “Galois conjugates” to p(T (M)), and E is some unknown flat bun-
dle. (A consequence of Filip’s work is that all the field embeddings of
k(M) have image in R, i.e., k(M) is totally real.)

Suppose it was known that M was a quasi-projective variety. Then
a theorem of Deligne would say that the above decomposition of flat
bundles is compatible with the Hodge deposition, i.e. that each sum-
mand is the sum of its intersections with H1,0(X) and H0,1(X) at each
point (X,ω) ∈M. Furthermore, for each r ∈ k(M), one then obtains
an endomorphism on Jac(X) whose linear action on H1(X,C) is given
by multiplication by the scalar ι(r) on p(T (M))ι, and multiplication
by 0 on E. (Actually, these are in general only in End(Jac(X)) ⊗ Q,
and are in End(Jac(X)) when r is in some order in k(M). That is, in
general one gets an action on H1(X,Q) by k(M), and there is an order
in k(M) which preserves the integer lattice.)

The key step in Deligne’s proof is the following result of Schmid.

Theorem 1.1 (Theorem of the fixed part). Suppose that W is a Vari-
ation of Hodge Structure (VHS) over a quasi-projective variety, and
suppose that φ is a flat global section of W . Then the (p, q) parts of φ
are again flat.

Recall that a VHS of weight n is a flat bundle W with a direct sum
decomposition into subbundles W p,q with p + q = n, subject to some
elementary conditions, such as the requirement that

⊕
p≤p0 Wp,n−p be

a holomorphic subbundle of W for all p0.
The theorem of the fixed part is proved in the following way. Using

Hodge norm, one cooks up a function which measures the failure of
some specific (p, q) part to be flat. Using computations of a differential-
geometric nature, one shows that this function is subharmonic, and that
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if it is constant then the given (p, q) part is actually flat. Using the
structure at infinity of quasi-projective varieties one shows this function
is bounded. Since bounded subharmonic functions on quasi-projective
varieties are constant, one concludes the result.

2. Filip’s proof of semi-simplicity

The first step in Filip’s work is to prove Deligne’s semi-simplicity
result for orbit closures. Since we do not yet know that orbit closures
are varieties, we may not simply invoke Deligne’s work. Instead the
idea is to mimic the proof of Deligne’s result, using the dynamics of
the GL(2,R)-action to compensate for the fact that we do know ahead
of time that the base is a variety. We will begin by proving the Theorem
of the Fixed Part. That is, we will assume that we have a global flat
section φ, and prove that its (p, q) parts are also flat.

The necessary differential-geometric calculations can be nicely black-
boxed.

Theorem 2.1 (Black Box). Suppose that φ is a holomorphic section
of a VHS over an orbit closure M. Suppose the VHS has weight n,
and 0 ≤ q ≤ n, and that φn−q

′,q′ = 0 for q′ > q.
Then log ‖φn−q,q‖ is subharmonic, and if is constant, then φn−q,q is

flat.

Here ‖ · ‖ is the Hodge norm. Note that when the base is C, and
the VHS is weight 0 and dimension 1, this recovers the fact that if
φ : C → C is a holomorphic function, then log |φ(z)| is subharmonic,
and if log |φ(z)| is constant, then φ(z) is constant.

A version of the Black Box is used in the standard proof of Schmid’s
Theorem of the Fixed Part, but with ‖φn−q,q‖ instead of log ‖φn−q,q‖.

The only two VHS that will be needed in the proof of algebraicity
are H1 and End(H1). The Hodge decomposition of End(H1) is into the
(1,−1) endomorphisms, which map H0,1 to H1,0 and annihilate H1,0,
the (0, 0) endomorphisms, which preserve both H1,0 and H0,1, and the
(−1, 1) endomorphisms, which map H1,0 to H0,1 and annihilate H0,1.

Define

gt =

(
et 0
0 e−t

)
and rθ =

(
cos θ sin θ
− sin θ cos θ

)
.

Lemma 2.2. Suppose f is a subharmonic function on M invariant
under rθ. Suppose f does not grow too fast, in that f(gt(X,ω)) is
O(ect) for some 0 < c < 1, where the implied constant can be taken to
be uniform on compact sets. Then f is constant.
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This exact lemma does not appear in Filip’s work; we are choosing to
prove the subharmonic functions are constant in a different way than
Filip did. This way requires a hard fact about translation surfaces and
Filip’s doesn’t, but we find this way easier to remember. Furthremore,
Filip’s approach requires a linear growth bound and an “almost sure
sub-linear growth bound”, whereas the approach we give here just needs
not too fast exponential growth. This weakened assumption doesn’t
seem to make anything easier, but helps to understand what is truly
required for the proof of algebraicity.

Proof. The fact is that there exists a compact subset K ofM such the
sets

B(T ) = {(X,ω) ∈M : gtrθ(X,ω) /∈ K for all θ and 0 ≤ t ≤ T}

have measure O(e−c
′T ) for all 0 < c′ < 1. (This statement is closely

related to Athreya’s thesis, and it appears in Avila-Gouezel-Yoccoz as
Theorem 2.15.)

The growth bound gives that on B(T − 1)−B(T ), the function f is
at most O(ecT ). If we choose c′ > c, we have that

∑∞
T=1 e

−c′T ecT <∞,
so this gives that f is in L1.

Now, the value of f at any point (X,ω) is at most the average value
over the disk

{gtrθ(X,ω), 0 ≤ θ ≤ 2π, 0 ≤ t ≤ T}.

For almost every (X,ω) ∈ M, as T → ∞, these disks equidistribute,
so we see that the value of f at (X,ω) is at most the average value of
f onM. We conclude that f is constant. (In fact this equidistribution
is true for all (X,ω) ∈M by E-M-M. But for almost every (X,ω) it is
much easier, and follows just from ergodicity of gt.) �

Note that for the VHS we are interested in, ‖φ(rθ(X,ω))‖ = ‖φ(X,ω)‖.
Work of Forni gives the following growth bound.

‖φ(gt(X,ω))‖ ≤ et‖φ((X,ω))‖.

Thus we get a much better than necessary growth bound on log of
Hodge norm (after taking logs, we get linear growth, and we need
only not too fast exponential). The Black Box, used repeatedly after
subtracting off the parts that we already know are flat, now shows the
the theorem of the fixed part.

We will not give the general proof of the semi-simplicity result using
the theorem of the fixed part. Rather, in the next section we will derive
a particular case, which is sufficient for algebraicity and gives the idea
of the general result.
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3. The equations on absolute periods and endomorphisms

Now return to the decomposition

H1 =
⊕
ι

p(T (M))ι ⊕ E,

and let φ ∈ End(H1) denote the projection onto one of the factors.
Using the previous section, we see that the (1,−1), (0, 0) and (−1, 1)
parts of φ are also flat sections.

Flat sections of End(H1) are the same as endomorphisms of End(H1(X,Σ))
that commute with monodromy, so using irreducibility of monodromy
and the Schur Lemma we see that each φp,q must be a scalar on each
p(T (M))ι. Hence only one of φ1,−1, φ0,0, φ1,−1 is non-zero on our cho-
sen factor p(T (M))ι (since scalar multiplication on this factor can’t be
simultaneous of two different (p, q) types). It must be φ0,0, since both
φ1,−1 and φ1,−1 are nilpotent. Hence φ = φ0,0. By definition, (0, 0)
endomorphisms send H1,0 to itself and send H0,1 to itself. Hence we
get that

p(T (M))ι = φ(H1,0) + φ(H0,1) = p(T (M))ι ∩H1,0 + p(T (M))ι ∩H0,1

as desired. This shows that the splitting of H1 is compatible with
the Hodge structure, which in turns shows that we have the desired
endomorphisms of Jacobians.

Note, the endomorphisms we have produced do not necessarily all
come from real multiplication on a factor of Jac(X) in the strictest
sense. Projection onto

⊕
ι p(T (M))ι gives one endomorphism and a

corresponding factor of the Jacobian, and we have also produced an
action of k(M) on

⊕
ι p(T (M))ι by endomorphisms. When k(M) has

degree smaller than the dimension of
⊕

ι p(T (M))ι, classically speak-
ing this action would not be called real multiplication, because the
eigenspaces for the endomorphisms will have dimension greater than
one.

4. The equations on rel

The above endomorphisms are easily seen to give all linear equa-
tions satisfied by absolute periods on M. In particular, if there are
no equations on rel, i.e., if ker(p) ⊂ T (M), the above suffices to prove
algebraicity.

The remaining equations are of the form
∫
γ
ω = 0, where now γ ∈

H1(X,Σ,k(M)). There is a natural homomorphism

c : H1(X,Σ,k(M))→ k(M)s−1,
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where s = |Σ|. Here c stands for “count”, and indeed this homomor-
phism merely sums the coefficients of relative cycles that start and end
at different points of Σ. (According to taste, one might prefer to define
the codomain of c to be k(M)s, and note that the image is contained
in the set where the sum of the coordinates is 0.) This map can also
be thought of as the quotient map to H1(X,Σ,k(M))/H1(X,k(M)).
Note that, passing to a finite cover where points of Σ are marked, the
map c is globally defined over all of M.

We will assume that c(γ) 6= 0, since otherwise γ is in fact an absolute
homology class, and we have already taken care of equations coming
from absolute homology classes.

For each γ, there is a γ′ ∈ H1(X,Σ,C) such that c(γ) = c(γ′)
and

∫
γ′
η = 0 for all holomorphic one forms η ∈ H1,0(X). This γ

is unique up to adding something in the annihilator of H1,0(X) inside
of H1(X,C).

The difference γ − γ′ is an absolute homology class. Define

π : H1(X,C)→ Ann(H0,1) ∩ p(T (M)∗

as follows. First, project to the “dual” of p(T (M)), which is a flat
subbundle of H1(X,C). Next, using the decomposition of this into the
annihilator of p(T (M))1,0 plus the annihilator of p(T (M))0,1, project
to the second coordinate.

We now claim that π(γ−γ′) depends only on c(γ), and hence gives a
global section. Indeed, first note that γ is well defined given c(γ), up to
the additional of absolute homology classes orthogonal to the “dual” of
p(T (M)). Next note that γ′ is well defined given γ, up to the addition
of an absolute homology class in the annihilator of H1,0(X), and there
are no absolute homology classes that annihilate both H0,1(X) and
H1,0(X).
π(γ − γ′) is not in fact holomorphic when viewed as a section of the

bundle H1, but it is when viewed as a section of p(T (M)∗/Ann(H1,0).
This is because it can be computed as follows. Define Ann(H1,0)Σ to be
the bundle of relative homology classes which integrate to zero against
all holomorphic one forms, and continue to let Ann(H1,0) denote the
bundle of absolute homology classes which integrate to zero against all
holomorphic one forms.

Consider H1(X,Σ,C) modulo Ann(H1,0)Σ. Note Ann(H1,0)Σ and
Ann(H1,0) vary holomorphically, because H1,0 varies holomorphically.
Note also that H1(X,C)/Ann(H1,0) and H1(X,Σ,C)/Ann(H1,0)Σ are
isomorphic. Thus, first we take the image of γ in

H1(X,Σ,C)/Ann(H1,0)Σ = H1(X,C)/Ann(H1,0).
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Then we project to the “dual” of p(T (M)) viewed in this space. (Be-
cause the direct sum decomposition of H1 respects the Hodge structure,
we get a corresponding direct sum decomposition ofH1(X,C)/Ann(H1,0).)
The result is the image of π(γ − γ′) in p(T (M))∗/Ann(H1,0), and it is
now holomorphic by construction.

This holomorphicity in p(T (M)∗/Ann(H1,0) is in fact good enough
for the Black Box. (In fact, had we stated the Black Box differently,
this would have been explicitly allowed, but instead we opted to start
with a simpler statement.)

In the next section we will explain the key step in showing log ‖π(γ−
γ′)‖ satisfies an appropriate growth bound along gt orbits. Hence this
subharmonic function is constant and π(γ−γ′) is in fact flat. But there
are no flat sections of p(T (M))∗, so we get that γ = γ′ as functionals
on p(T (M))1,0. Hence γ annihilates p(T (M))1,0. In other words, the
same equation that hold for ω actually holds for all holomorphic one
forms in p(T (M))1,0!

Similarly, for each field embedding ι, Filip considers a section ob-
tained from the Galois conjugate ι(γ) of γ, and finds that this Galois
conjugate equation holds for all holomorphic one forms in (p(T (M))ι)1,0.

If γ is rational, we conclude that∫
γ

η = 0 for all η ∈

(⊕
ι

p(T (M))ι

)1,0

.

If c(γ) = np1 − np2, this exactly says that p1 − p2 is n-torsion in this
factor of the Jacobian. If c(γ) =

∑
aipi where pi are the points in Σ

and ai ∈ Q, this exactly says that
∑
aipi is zero in the corresponding

factor of the Jacobian, which is just another kind of torsion relation.
Now, suppose that c(γ) =

∑s
i=1 aipi where the ai ∈ k(M). (This is

the most general case that needs to be considered, because the linear
equations defining T (M) are defined over k(M).) Since the ai sum to
zero, this can be rewritten as

∑s
i=2 ai(pi − p1). Pick γi to be a path

from pi to p0. Write

γ =
∑

aiγi − α,

where α ∈ H1(X,k(M)). Note that α can be assumed to be in the
“dual” of p(T (M)), since the Galois conjugates of the dual of p(T (M))
annihilate p(T (M)). Now, define α′ to be the sum of α and its Galois
conjugates, so α is rational, and note that α and α′ in fact define the
same linear functional on p(T (M)). Thus∑

ai

∫
γi

ω =

∫
α′
ω
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is one of the equations defining T (M). Now, using the above work, we
see that this equation holds for all holomorphic one forms in p(T (M)1,0,
and that the Galois conjugate equations hold for all holomorphic one
forms in (p(T (M)ι)1,0. Multiplying by an integer, we can assume that
α′ is integral, and this gives that

∑
ai(pi − p1) is zero in the factor of

the Jacobian corresponding to
⊕

p(T (M)ι. Here the ai ∈ k(M) act on
the Jacobian via endomorphisms, and for each i we have that pi − p1

gives a point in the Jacobian in the usual way.
This condition on

∑
ai(pi − p1) can be thought of as a “twisted

torsion” condition, i.e., it is similar to the usual torsion condition, but
“twisted” by the use of the endomorphisms ai. This is an algebraic
condition, and concludes the proof of algebraicity.

One final remark is that when ker(p)∩T (M) = {0}, as is the case for
Teichmüller curves, we can consider c(γ) = pi − p1 one at a time, and
so all the ai are rational (actually 0 or 1) and we get honest torsion,
rather than twisted torsion.

5. Growth bounds for relative homology

For the previous section to work, it suffices to show the following:
for any compact set K ⊂M, there are constants C > 0 and 0 < c < 1
such that

log ‖P (gt(α))‖ ≤ C + ect.

Here P is the projection from relative homology to absolute homology
whose kernel is the annihilator of the space of harmonic 1 forms. We
will in fact show the desired inequality without the log and for some
c > 0.

First idea. Consider the norm on relative homology given by picking a
constant norm on the quotient H1(X,Σ)/H1(X), and letting the norm
of a relative homology class α be equal to the Hodge norm of P (α) plus
the norm of its image in H1(X,Σ)/H1(X). This is called relative Hodge
norm, and we will denote it ‖α‖relHodge. By construction, ‖α‖relHodge ≥
‖P (α)‖, so it is be sufficient to bound the growth of ‖gt(α)‖relHodge.
However, the required growth bounds on relative Hodge norm are not
known.

Second idea. Eskin-Mirzakhani-Mohammadi gave a definition of
modified Hodge norm ‖β‖mod on absolute homology. As in the first
idea, gives rise to a relative version ‖α‖relmod on relative homology .

This norm grows at most exponentially on gt orbits, but ‖β‖mod
is not an upper bound for ‖β‖, and hence ‖α‖relmod is not an upper
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bound for ‖P (α)‖. (Modified Hodge norm does dominant Hodge norm
on cohomology, but this does not hold true for homology.)

Final idea. The failure of ‖α‖mod to be an upper bound for ‖α‖ is
mild in comparison to the very weak bounds that we need. Namely, if

r(X,ω) = sup
‖α‖
‖α‖mod

,

then r(X,ω) itself grows at most exponential along gt orbits. That is,
r(gt(X,ω)) ≤ ec

′tr(X,ω) for some c′. This is simply a consequence of
the fact that both modified and usual Hodge norm can increase and
decay at most by an exponential factor along gt orbits (see Lemma 7.5
in EMM). Thus,

‖P (gt(α))‖ ≤ r(gt(X,ω))‖P (gt(α))‖relmod
≤ r(gt(X,ω))‖gt(α)‖relmod

grows at most exponentially, since each of the two factors grows at
most exponentially.

Concluding remark. The final idea shows that relative Hodge norm
grows exponentially, in that if (X,ω) is in a compact set K, then there
are constants C, c > 0 so that

‖gt(α)‖relHodge ≤ Cect.

Here C is related to the max of r(X,ω) over K. (But c does not depend
on K.)

In the first idea, we said that growth bonds for relative Hodge norm
are not known. By this we meant that is it unknown if there is a
constant c > 0 so that ‖gt(α)‖relHodge ≤ ect‖α‖relHodge, for all (X,ω) in
the stratum. The arguments in “final idea” do not resolve this question.


