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Abstract. The Teichmüller unipotent flow can be defined con-
cretely on certain moduli spaces of singular flat surfaces by shear-
ing polygonal presentations of the surfaces. Thurston’s earthquake
flow on moduli spaces of hyperbolic surfaces is more mysterious.
Both flows have deep and important connections to other areas of
mathematics.

In this expository survey we give a geometric account of the
main ideas behind Mirzakhani’s theorem relating these two flows.
Our presentation avoids some technical prerequisites that featured
in the original more analytic presentation.
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1. Introduction

Flat geometry. One entry point to Mirzakhani’s work is the SL(2,R)
action on moduli spaces of Abelian or quadratic differentials. Due
to its close connection to Teichmüller theory, applications to topics
such as rational billiards, and deep analogy to Lie group actions on
homogeneous spaces, this action has been extensively studied; see for
example the author’s short survey [Wri16] for an introduction.
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Part of the appeal of this action is that it is easily defined. Abelian
and quadratic differentials can be presented via polygons in R2, with
edges identified in pairs to define a surface with a singular flat metric.
The SL(2,R) action arises quite simply from the usual SL(2,R) ac-
tion on R2, which linearly transforms one polygonal presentation into
another.

Hyperbolic geometry. The other entry point is the earthquake flow
defined on the bundle of measured laminations over a moduli space
of hyperbolic surfaces. This flow is only easy to visualize when the
measured lamination is a closed curve, in which case the result of the
earthquake is obtained by cutting the geodesic representative of the
curve and re-gluing with a twist. More generally, the measured lami-
nation represents the “fault lines” along which a “sliding” or “shearing”
deformation occurs. When the lamination has a fractal structure, in-
finitesimal shearing along each individual “fault line” can combine to
a definite change to the surface.

Although the definition of earthquake flow is less elementary, its
applications and connections are far reaching. Early in its history it
was used prominently by Kerckhoff to resolve the longstanding Nielsen
Realization Problem about mapping class groups [Ker83]. More re-
cently, Mirzakhani and others used it to prove equidistribution results
in the moduli space of hyperbolic surfaces [Mir07,AH21], which are
a crucial tool for example in one of Mirzakhani’s results on counting
geodesics on individual surfaces [Mir16].

Mirzakhani’s bridge between hyperbolic and flat geometry.
Although defined on different spaces and featuring different notions of
geometry, the two flows have similarities. Both involve some notion
of shearing, and both have analogies to unipotent flows on homoge-
neous spaces. Both have strong non-divergence properties, established
simultaneously in a single paper by Minsky and Weiss [MW02]. As
discussed in Section 8, both are Hamiltonian with respect to natural
functions and natural symplectic forms.

The purpose of this survey is to give an expository introduction to
Mirzakhani’s discovery that, in an abstract measurable sense, both
flows are the actually the same. This is the main result of [Mir08].

Theorem 1.1. There is a measurable mapping class group equivariant
conjugacy F between the earthquake flow (λ,X) 7→ (λ,Etλ(X)) on the
bundle ML×Tg of measured laminations over Teichmüller space Tg
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and the Teichmüller unipotent flow action of

ut =

(
1 t
0 1

)
on the bundle QD of nonzero quadratic differentials over Teichmüller
space.

That F is a conjugacy means that the following diagram commutes.

ML×Tg ML×Tg

QD QD

Et

F F

ut

We will later discuss the natural Lebesgue class measure on ML×Tg
and see that it is the pull back of Masur-Veech measure, but for the
moment it suffices to understand that F is Borel-measurable but not
continuous.

Significance and applications. Theorem 1.1 builds a surprising
bridge between the more mysterious world of earthquake flow and the
comparatively well understood Teichmüller unipotent flow. Perhaps
the most important consequence is the following.

Corollary 1.2. Earthquake flow is ergodic.

Proof. It is well known that Teichmüller unipotent flow is ergodic: This
follows from from the Howe-Moore Theorem and the ergodicity of Te-
ichmüller geodesic flow. (See for example the textbook [BM00, Section
III] for an introduction to the Howe-Moore Theorem, which applies here
because both the Teichmüller geodesic and unipotent flows are part of
the SL(2,R) action. See for example the survey [FM14, Section 4]
for the ergodicity of Teichmüller geodesic flow, which was originally
proved independently by Masur and Veech.) �

This ergodicity is a key ingredient in the equidistribution applica-
tions mentioned above.

As McMullen describes in his laudation for Mirzakhani’s field medal,
Theorem 1.1 can be viewed not only as a bridge between flat and hyper-
bolic geometry, but also a bridge across the “holomorphic/symplectic”
divide [McM]. Indeed, quadratic differentials live primarily in the holo-
morphic world, and since the only concise definition of earthquake flow
is as a Hamiltonian flow it is natural to think of earthquakes as living
more in the symplectic world.

Origin and intended audience. This survey is aimed at the many
mathematicians working in dynamics or low dimensional topology who
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may have heard the statement of Theorem 1.1 but are completely un-
familiar with its proof. We include a limited introduction to some of
the necessary background material, in hopes that this will make our
exposition readable to a junior graduate student who is able to get
some assistance from their advisor or from other sources. The reader
should have some familiarity with quadratic differentials, but we have
included enough exposition on earthquake flow that the reader who is
willing to take some things on faith should be able to gain a meaningful
level of understanding of the proof even with no previous exposure to
earthquake flow.

Our goal is to present the main proof in the most elementary and geo-
metric way possible. Only after accomplishing that will we proceed to
discuss the more sophisticated results that give additional understand-
ing and perspective. Most of the background material we present is due
to people other than Mirzakhani, especially Thurston and Bonahon.
However all the material is chosen to allow us to prove and appreciate
Mirzakhani’s result.

Our presentation of the proof of Theorem 1.1 is not exactly the same
as Mirzakhani’s, in that here we do not make use of transverse cocycles
or the symplectomorphism of Bonahon-Sozen [BS01]. See Remark 5.4.

These notes were originally written to accompany lectures at the
2018 summer school on Teichmüller dynamics, mapping class groups
and applications at Grenoble, as well as lectures at the 2018 summer
school on Teichmüller Theory and its Connections to Geometry, Topol-
ogy and Dynamics at the Fields Institute in Toronto.

Updates. Since this survey was written in 2018, the author also
wrote a much comprehensive survey on Mirzakhani’s work aimed at
a broader audience [Wri20]. Additionally, this survey has motivated
further work, and the questions and conjectures proposed in Remarks
5.6 and 5.7 have now been completely resolved [AHW,CF21].

Acknowledgments. I am happy to thank Francisco Arana-Herrera,
Francis Bonahon, Aaron Calderon, Steve Kerckhoff, Jeremy Kahn, and
Kasra Rafi for helpful conversations. I am also grateful to thank Fran-
cisco Arana-Herrera, Dat Nguyen, Weston Ungemach, and Adva Wolf
for attending and offering very helpful feedback on a test run of the
lectures at Stanford the week before Grenoble, and to Yueqiao Wu for
pointing out some corrections.

Some of the figures were created using [Pie]. I thank Yen Duong,
Aaron Fenyes, Subhojoy Gupta, Bruno Martelli, Athanase Papadopou-
los, Guillaume Théret, and Mike Wolf for permission to reproduce fig-
ures from other sources.
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2. Preliminaries

In this section we offer a sketchy introduction to the main objects
in Theorem 1.1. It is included mainly for students coming from flat
geometry, who may have seen measured foliations but may benefit from
an overview of their relation to laminations and an introduction to
earthquakes. Experts should certainly skip this section.

There are many sources for this material, although we have not found
one that presents all the material we need in a way which is both
rigorous and quickly understood. In addition to the references cited
below, learners might be interested in consulting books like [Cal07,
FM12,FLP12,PH92,Thu97].

Foliations and laminations. In these notes we consider only closed
surfaces of genus g at least 2. A measured foliation is a foliation with
finitely many prong type singularities, with a transverse measure. This
measure assigns a non-negative number to each transverse arc in such
a way that arcs isotopic through transverse arcs with endpoints on the
same leaves have the same measure. A saddle connection of a measured
foliation is an arc of the foliation joining two singularities.

Measured foliations are typically considered to be equivalent if they
differ via isotopy and Whitehead moves, which are moves that collapse
saddle connections to split a higher order prong singularity into lower
order singularities joined by a saddle connection, as in Figure 2.1.

Figure 2.1. Whitehead moves. Picture from [GW17].

Remark 2.1. The typical measured foliation has only 3-pronged sin-
gularities and no saddle connections, and hence does not admit any
Whitehead moves.

The space of measured foliations up to Whitehead moves and isotopy
is denoted MF .

Remark 2.2. A celebrated result of Thurston is that MF is homeo-
morphic to R6g−6. We will not make use of this fact.

A measured geodesic lamination is a closed subset of a hyperbolic
surface foliated by non-intersecting geodesics with a transverse measure
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of full support. See [Kap01, Section 11.6] and [Mir08, Section 8.3]
for the basic properties of measured geodesic laminations.

Remark 2.3. A closed multi-curve is an example of a measured geodesic
lamination. However if you take a “typical” geodesic lamination and
intersect it with a transverse arc, you will get a Cantor set with a
non-atomic measure.

Geodesic laminations
on hyperbolic surfaces

Figure 2.2. A geodesic lamination. Picture from
[Duo], created by Aaron Fenyes. A similar figure ap-
pears in [Fena,Fenb].

If λ is a geodesic lamination on X, the connected components of
X \ λ are called the complementary regions. There are finitely many.
Each is bounded by geodesics. The complementary regions can be
ideal polygons, and can also be surfaces with genus that are bounded
by closed geodesics and/or “crowns” of geodesics meeting in cusps.

Figure 2.3. A possibly complementary region bounded
by a closed geodesic and a “crown”. Picture adapted
from [Gup].

The universal cover of X can be identified with the hyperbolic plane
H. Geodesics in H correspond to unordered pairs of distinct points on
the circle S1 at infinity. Given two different points X, Y of Teichmüller
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space, one obtains an isotopy class of maps from X to Y . Lift such a
map to obtain a map from H = X̃ to H = Ỹ .

One can show that any such map from X to Y is a quasi-isometry,
so the lifted map from H = X̃ to H = Ỹ extends to a homeomorphism
between the circles at infinity. Hence geodesics on X are in correspon-
dence with geodesics on Y , by considering the endpoints of the geodesic
on S1. In this way a measured geodesic lamination for one hyperbolic
metric uniquely determines one for any other hyperbolic metric, and we
can think of measured geodesic laminations as topological rather than
metric objects. Denote the set of all measured geodesic laminations by
ML.

We define a line of a measured foliation to be either a leaf not passing
through a singularity, or any leaf that is a limit of non-singular leaves.
Note that if a line passes through a singularity, it enters and exits
the singularity on adjacent prongs. (Those inclined to think about
quadratic differentials can think of this as having angle π at every
singularity.)

Lemma 2.4. Every line of a measured foliation also determines a pair
of distinct points in S1.

Cartoon of the proof. Consider a simple closed curve that the leaf passes
through infinitely many times but with no unnecessary intersections
that could be removed by an isotopy. The leaf gets “cornered” by lifts
of the simple curve to smaller and smaller regions of H, as seen from a
fixed basepoint, forcing the leaf to converge to the intersection of these
half-spaces, as in Figure 2.4. �

Figure 2.4. The proof of Lemma 2.4. Picture from
[Mar, Figure 8.12].

Remark 2.5. It is not so easy to prove the desired simple closed curve
exists. One possibility is to use a “normal form” for the foliation
[FLP12, Section 6.4].
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Remark 2.6. If the measured foliation is known to arise from a qua-
dratic differential, one can alternatively use the fact that the hyperbolic
and flat metrics are quasi-isometric [Kap01, Section 5.3].

By replacing each line in a measured foliation by the geodesic with
the same endpoints, one obtains an associated measured lamination
[Kap01, p. 251]. This procedure “tightens” each leaf to a geodesic.

Figure 2.5. Each three pronged singularity that does
not lie on any saddle connections gives an ideal triangle
in the associated “tightened” lamination.

Theorem 2.7. The tightening mapMF →ML is a homeomorphism.

I do not know any short proof of this result, but a good reference
on the tightening map and related topics is [Lev83]. One approach
is to build an inverse map using train tracks, but this involves not
only showing that every lamination is carried by a train track, but also
that the measured foliations constructed using different choices of train
track differ by Whitehead moves. See for example [Lei12, Section 5]
for an expository account.

A measured lamination is called maximal if its complementary re-
gions are all ideal triangles. The value of the inverse mapML→MF
on a maximal measured lamination can be visualized by a “collapsing”
procedure. This procedure is perhaps initially somewhat mind bend-
ing, but nonetheless we briefly give the flavor of how it is performed.
One “collapses” or “pinches” each triangle onto a “skeleton” consisting
of three lines, one going towards each cusp of the triangle, meeting in
a central point. This eliminates all the “empty space” not covered by
the lamination, and the result is a foliation.

Remark 2.8. One should compare this collapse map to the map x 7→∫ x
0
dµ for a measure µ on a Cantor set in R. This collapses all the

intervals not included in the Cantor set.

In this way we see that each complementary triangle corresponds to
a three-pronged singularity. This can be easily extended to the case
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when all complementary regions are ideal polygons. One could try to
extend it further to the case where the complementary regions have
genus by extending the lamination to a maximal lamination, but then
one has to show that the measured foliations resulting from different
extensions differ by Whitehead moves, and this is not obvious. The
case when the measure gives positive measure to some closed curves
requires a special argument, since in this case the foliation can’t be
obtained by collapsing.

Intersection number. There is a continuous intersection number
function

i :ML×ML→ R≥0,
which, restricted to weighted simple multi-curves, is the linear exten-
sion of the usual geometric intersection number. One can show that
weighted simple multi-curves are dense inML, so this uniquely deter-
mines i, however there are also easy direct definitions [Bon88]. Since
MF 'ML, we also get an intersection number on MF .

If α ∈ MF and β is a simple curve, i(α, β) is the inf over all ways
of realizing β as a sequence of arcs transverse to α of the sum of the
transverse α measures of these arcs. This can be extended linearly to
the case of β a simple weighted multi-curve, and by continuity to any
β ∈ML.

Remark 2.9. The topology on MF and ML is the weakest topology
for which the function λ 7→ i(λ, γ) is continuous for each simple closed
curve γ.

Quadratic differentials. Define ∆ ⊂MF ×MF by

∆ = {(α, β) : i(α, γ) = 0 = i(β, γ) for some γ ∈MF}.
Note that ∆ contains the diagonal {(α, α)} (just take γ = α), so we

can think of ∆ as a “generalized” or “fat” diagonal.
A quadratic differential q determines two measured foliations, namely

the horizontal one h(q) and the vertical one v(q).

Lemma 2.10. For any q, (h(q), v(q)) /∈ ∆.

Proof sketch. Otherwise take a sequence of weighted simple curves γi
converging to the γ showing that (h(q), v(q)) ∈ ∆. Since i(γi, h(q))→
0, there is a sequence of saddle connections representing γi whose
sum of absolute values of x-components is tiny compared to the to-
tal length. (If the holonomy of a saddle connection is x+ iy, we call x
the “x-component” and y the “y-component”.) Using the correspond-
ing statement with horizontal and vertical switched, we can obtain a
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contradiction. (If a curve is represented by a sum of saddle connec-
tions whose sum of x-components is less than C, then the same is true
of the flat geodesic representative. As you “tighten” to get the flat
geodesic representative, the x and y coordinates don’t get bigger. In
fact, both components get monotonically smaller. To make this precise,
you need to define an appropriate tightening procedure. Alternatively,
see [Lei12, Proposition 3.9] for a proof that the flat geodesic gives
intersection number with the horizontal and vertical foliations.) �

Hence we obtain a map from the bundle QD of non-zero quadratic
differentials over Teichmüller space to MF ×MF \∆ given by q 7→
(h(q), v(q)).

Remark 2.11. The intersection number i(h(q), v(q)) is the area of q.

Theorem 2.12. The map q 7→ (h(q), v(q)) determines a homeomor-
phism QD →MF ×MF \∆.

Proof sketch. One can create an inverse map as follows. Given

(h, v) ∈MF ×MF \∆,
tighten each h, v to geodesic laminations, also denoted h, v. Since
(h, v) /∈ ∆, we have that h and v do not share any leaves, and that
each complementary region of h ∪ v is a compact polygon:

• Indeed, if h and v shared a leaf, then a weak star limit of the
Lebesgue measure supported larger and larger segments of this
leaf would give a measured foliation γ with i(h, γ) = 0 = i(v, γ).
• If there is a complementary region that isn’t a polygon, one

could pick a simple curve γ in that region.
• To see that the polygons are compact, i.e. that none of the

vertices are at infinity, requires a bit of extra argument again
using weak star limits.

Collapsing all the connected components of the complement of h∪v,
as well as all connected components of h\v and v\h, defines a quadratic
differential by picking local coordinates z for which Re(z) and Im(z)
locally coincide with the two foliations. Each component gets collapsed
to a single point.

If this collapsing seems too drastic, one should ponder maps from
rectangles on the surface bounded by arcs of the lamination to rectan-
gles in R2, defined as follows: One considers arcs (or isotopy classes of
arcs rel endpoints) from a designated corner to a point in the rectangle,
and take the intersection numbers with the two foliations to get the two
coordinates. This map accomplishes the desired collapsing. For more
details, see [CB88, Proof of Lemma 6.2]. �
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Theorem 2.12 is discussed from different points of view in [GM91,
Section 3] and [Pap86, Section 2].

Earthquakes on surfaces. Consider a simple closed curve α on
an oriented hyperbolic surface X. The right earthquake for time t
about α is the surface Etα(X) obtained by cutting X along the geodesic
representative of α and regluing with a twist to the right by hyperbolic
distance t. The notion of “right” just depends on the orientation of X,
and doesn’t require any orientation of α: Two ants facing each other
across the curve α will each see the other move to the right.

Remark 2.13. Etα determines a flow on Teichmüller space. Since we
are making a continuous change to the metric, the marking can be
transported along the earthquake path. After continuously earthquak-
ing from t = 0 to t = `(α) (the length of α), one arrives back at the
same hyperbolic metric, but with a new marking that differs from the
old marking by a Dehn twist.

Remark 2.14. In appropriate Fenchel-Nielsen coordinates, Etα is a trans-
lation.

One can similarly define earthquakes for any simple weighted curve
α, where the amount of the twist in each curve depends on the measure
of a transverse arc. One then defines the earthquake in an arbitrary
α ∈ ML to be the limit of earthquakes in simple weighted curves αn
that converge to α,

Eα(X) = lim
n→∞

Eαn(X).

We will sketch a proof that this is well-defined, i.e. that the limit
doesn’t depend on the sequence αn of weighted multi-curves converging
to α. Our discussion will take in the universal cover.

Earthquakes on the hyperbolic plane. One can define a measured
lamination on the hyperbolic plane H in the same way as on a surface.
However, H of course doesn’t have any closed curved, so instead we
make the following definition: A discrete measured lamination on H is
a union of disjoint geodesics such that each compact set in H intersects
only finitely many of the geodesics, and such that each geodesic is
endowed with a positive weight (the transverse measure of a small arc
crossing only that geodesic). A key motivating example of a discrete
measured lamination on H is the preimage of a simple weighted curve
on a closed surface.

Let λ be a discrete measured lamination on H, and let w0 ∈ T 1H
be a fixed unit tangent vector. The choice of w0 won’t be important
and so is usually suppressed from the notation. The earthquake in λ
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is defined to be the unique discontinuous map Eλ : H → H which is a
local isometry off λ, fixes w0, and “shears” along each leaf of λ by the
measure of that leaf.

The last part of that definition is rather vague, so we’ll give a more
explicit inductive construction of the earthquake. First, cut out λ, to
get countably many regions of H, each bounded by geodesics. Define
the map to be the identity on the region containing w0. Now, having
already defined the earthquake on a region R, we explain how to define
it for a region R′ that borders R along a geodesic γ in the support of
λ. Let mγ > 0 be the weight of γ in λ. Let IR be the isometry of H
taking R to Eλ(R). Let T be the isometry of H that translates along
IR(γ) by mγ. Then we define

Eλ(R
′) = (T ◦ IR)(R′).

Thus, as in the case of closed surfaces, we arrange for two ants staring
at each other from across different sides of γ to each see the other move
to the right by a distance equal to the weight mγ.

The only reason we require the earthquake to fix a unit tangent
vector is so that it is well defined, avoiding the worry that it might
only be well defined up to certain isometries of H.

Given any lamination in the hyperbolic plane, we define the earth-
quake in this lamination to be the limit of earthquakes in discrete lam-
inations which approximate the given lamination. This should again
be a discontinuous map H→ H that is an isometry off the lamination,
but as in the surface case we need to show it is well defined and doesn’t
depend on the choice of discrete approximates.

The main estimate. We will now sketch a proof that earthquakes are
well-defined on H, following the more detailed treatment in [Ker83,
Section II]. Some readers might choose to skip this.

We require two estimates, which refer to the PSL(2,R) invariant
metric on the unit tangent bundle T 1H. We use Etv to refer to the
time t earthquake in the geodesic through a unit tangent vector v. (A
single geodesic with weight 1 is an example of a discrete lamination, so
the definition above applies in this case.)

Lemma 2.15. For all D,T > 0 there exists K = K(D,T ) such that
for all v, v′, w ∈ T 1H that are pairwise distance at most D apart, and
all t ≤ T , we have

d(Etv(w), w) ≤ Kt

and

d(Etv(w), Etv′(w)) ≤ Ktd(v, v′).
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Figure 2.6. The proof that earthquakes are well-defined.

Both estimates are extremely soft, and use only the fact that a dif-
ferentiable function on a compact set is Lipschitz [Ker83, Lemma 1.2].

Consider two unit tangent vectors w0, w in T 1H that do not lie on the
lamination. We consider two discrete measured laminations λ, λ′ that
both approximate the given measured lamination. We need to show
that the earthquakes corresponding to λ and λ′ that fix w0 do almost
the same thing to w. If we can do this, up to small details we will have
shown that earthquakes are well defined on H.

For each discrete approximation (λ or λ′), there is a finite, totally
ordered set of geodesics separating the basepoints of w0 and w. Only
these geodesics and their measures are relevant to understanding the
effect of the earthquake on w.

Consider the geodesic arc from the basepoint of w0 to the basepoint of
w. Consider also the finite sequence vi (respectively v′i) of unit tangent
vectors based at the intersections of λ (respectively λ′) with this arc
that point along λ (respectively λ′). Let mi (respectively m′i) be the
measure (weight) of the geodesic of λ (respectively λ′) along which vi
(respectively v′i) points.

We now qualitatively outline a quantitative argument in [Ker83].
Let us divide the arc in to small chunks (subintervals). Using the
first estimate above, we can reduce to the case that the two discrete
measures give exactly the same mass to each chunk. This is because
they must give almost the same mass to each chunk, and getting rid
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Figure 2.7. The proof that earthquakes are well-
defined. The vi are in red, and the v′i in blue. On each
chunk of the arc from w0 to w, they are replaced with a
single unit tangent vector rk shown in purple.

of a tiny bit of mass won’t change the effect of the earthquake on w
much.

On each chunk, we replace all the vi in that chunk with a single
vector close to all of them, and we earthquake in that vector with
the corresponding amount of mass. The estimates above show that
the collective effect of all of these changes is small, so this gives that
the difference of the two earthquakes applied to w is small. Hence, the
earthquakes in λ and λ′ do almost the same thing to w. So earthquakes
are well defined.

Equivariance (back to surfaces). If the measured lamination is
invariant by a Fuchsian group, the earthquake map will be equivari-
ant by a representation of this Fuchsian group, whose image will be
a new Fuchsian group. This new Fuchsian group can be seen as the
earthquake of the first Fuchsian group.

We end by being more explicit about how to get the Fuchsian group
representing Eλ(H/Γ) from Γ. Pick a w0 ∈ T1H not on λ̃. For each
γ ∈ Γ, we consider the earthquake that fixes w0, and pick ρ(γ) such
that the image of γ(w0) under this earthquake is ρ(γ)w0. This is easily
seen to be a homomorphism, and we define Eλ(H/Γ) = H/ρ(Γ). The
homomorphism ρ directly defines a marking on H/ρ(Γ) from a marking
on H/Γ, so we get that earthquakes are well-defined on Teichmüller
space.

3. Horocyclic foliations

A very important construction, which Thurston introduced in [Thu],
explains how, given a hyperbolic surface X and a certain lamination λ,
we can construct a measured foliation on X. Here λ should be maximal,
i.e., all the complementary regions should be triangles. (Some people
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call this “complete” instead of “maximal”). But λ need not support a
measure.

The construction begins by defining the foliation on each comple-
mentary triangle using horocycles based at each ideal vertex. This
gives a foliation of the triangle minus a piece in the center, which can
be collapsed to become a three pronged singularity without affecting
the foliation along the edges of the triangle. The foliation naturally

Figure 3.1. A picture from [PT08] of the horocyclic
foliation of a triangle.

carries a transverse measure in which the measure assigned to the set
of leaves passing through a segment of an edge of the triangle is the
length of that segment.

Figure 3.2. A picture from [Mar] of the horocyclic
foliation of a triangle.

In this way we can foliate most of X, but the foliation is not yet
defined on the vast majority of leaves of λ which do not bound com-
plementary regions. However, the partial foliation defined thus far can
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be checked to be Lipschitz, and hence the associated line field extends
continuously to a line field that can be integrated because it is Lips-
chitz. (One can work with vector fields if desired instead of line fields,
for example by working locally.) This gives a map

Fλ : Tg →MF(λ),

where MF(λ) is the set of measured foliations µ transverse to λ, i.e.
for which (λ, µ) /∈ ∆. (Because λ, µ are literally transverse, there is an
associated quadratic differential whose horizontal and vertical foliations
are λ and µ, and this implies that (λ, µ) /∈ ∆ as discussed above. But
one could also just define ∆ to be the set of pairs not associated to a
quadratic differential.)

Our goal in this section is to sketch a proof the following result
of Thurston, compare to [Thu, Proposition 4.1]. You can choose to
accept this theorem as a black box and skip to the next section now.

Theorem 3.1. Fλ is a homeomorphism

Often this homeomorphism is followed with a certain mapMF(λ) ↪→
R6g−6 and the result is called shear coordinates for Teichmüller space
[Bon96], however we may refer to Fλ itself as shear coordinates.

To prove Theorem 3.1, we will explicitely build the inverse of Fλ. We
will build explicitely a hyperbolic surface X whose horocyclic foliation
is µ, for any µ ∈MF(λ).

Imagine we already had such an X with µ = Fλ(X). Then we can

lift λ to λ̃ ⊂ H. If X = H/Γ, then λ̃ is invariant under Γ. The idea of

the proof is to construct λ̃ just from the data of µ.
To do this it helps to better understand λ̃, assuming µ = Fλ(X). It

is this understanding that will allow us to define λ̃ in the case when µ
is arbitrary. Let µ̃ denote the preimage of µ in H.

Consider two triangles T1 and T2 that are complementary regions for
λ̃. Suppose there is a segment A of µ̃ that goes from an edge of T1 to
an edge of T2, as in Figure 3.3. Consider unit vectors v1 and v2 that
are based at the start and end points of A and are tangent to the edges
of the triangles. We want to compute the Möbius transformation S,
which we view as a two-by-two matrix, that maps v1 to v2.

This Möbius transformation, together with the “shear”, allows us to
recover the position of T2 relative to T1. That is, there is a one pa-
rameter family of locations for a triangle T2 with an edge generated by
v2, and we call this parameter the shear. The shear can be determined
by comparing the distances from the singular leaf in each of the two
triangles, as in Figure 3.4.
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Figure 3.3

Figure 3.4. The position of T2 relative to T1: Knowing
an edge of T2 gives a one parameter family of possibilities
for T2. To determine T2, we also need to use the shear,
which is the signed length of the red segment. The two
half rays in black are orthogeodesics.

Let I be the set of triangles in H that are crossed by the segment A.
Note that I is a countable totally ordered set, but the order is not a
well-order. For each i ∈ I, define v+i and v−i to be the vectors tangent
to the edges of the corresponding triangle at the intersection of the
edges and A, as in Figure 3.5.
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Figure 3.5. The definition of v+i and v−i .

Figure 3.6. Thurston’s illustration from [Thu] of how

A crosses λ̃. Its intersection with each triangle corre-
sponds to either a stable or unstable horocycle, accord-
ing to whether the third side of the triangle is to the left
or to the right of A.

Let Si be the Möbius transformation taking v−i to v+i . We now wish
to show that

S =
∏
i∈I

Si.

That is, the Möbius transformation moving the vector across infinitely
many triangles is the product of the Möbius transformation moving
the vector across each of these triangles. We need a definition to even
make sense of what such an infinite product should mean.

Definition 3.2. Let I be a countable totally ordered set, and let Si, i ∈
I be elements of a fixed Banach algebra. Then we say that

∏
i∈I Si is
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well-defined and equal to S if, for any increasing chain

I0 ⊂ I1 ⊂ I2 ⊂ · · · ⊂ I

of finite sets that exhausts I, we have limk→∞
∏

i∈Ik Si = S.

The only Banach algebra we will use is the algebra of 2 by 2 matrices,
and the only result we will use is the following.

Lemma 3.3. For elements si of any Banach algebra indexed by a
countable totally ordered set, if

∑
‖si‖ < ∞, then

∏
(1 + si) is well-

defined.

Proof. Note that for elements s1, . . . , sn of a Banach algebra, and 1 ≤
m ≤ n, we have

‖(1 + s1) · · · (1 + sn)− (1 + s1) · · · (1 + sm−1)(1 + sm+1) · · · (1 + sn)‖

≤ ‖sm‖
n∏
i=1

(1 + ‖si‖).

In the context at hand, the assumption gives that
∏

(1 + ‖si‖) is
bounded by some constant C, so we get that the effect of removing
or adding a term sn is at most C‖sn‖. �

To apply this lemma, we need to show the two-by-two matrices
(Möbius transformations) Si that we will use are close enough to the
identity.

Lemma 3.4. For the Si arising as above from λ̃ and A, if we set
si = Si−1, then

∑
‖si‖ <∞. (Here 1 denotes the two-by-two identity

matrix.)

Proof. Each Si can be realized as a time one stable or unstable horo-
cycle flow matrix conjugated by geodesic flow, as in Figure 3.7. The
basic computation(

e−t/2 0
0 et/2

)(
1 1
0 1

)(
et/2 0
0 e−t/2

)
=

(
1 0
0 1

)
+

(
0 e−t

0 0

)
shows that the si are small whenever the amount of geodesic flow used
in the conjugation is large.

We partition all the crossings of our leaf segment A into finitely many
subsets according to which “spike”, or corner of a triangle, they cross,
see Figure 3.8. Then we show that the sum of the ‖si‖ for each spike
is bounded by a geometric progression, because the distance along the
spike between neighboring crossings is always bounded below. �

We now have the desired fact.
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Figure 3.7. Si can be written as geodesic flow along
one orange segment, then horocycle flow for time one,
and then geodesic flow backwards along the second or-
ange segment.

Figure 3.8. A schematic of the intersections of an arc
of the foliation with a spike.

Lemma 3.5. S =
∏

i∈I Si.

Proof. Left to the reader as an exercise. (The hardest parts have been
done above for you!) �

Now, so far we’ve discussed the relative position of two triangles T1
and T2 which are joined by an arc A of the transverse foliation. Figure
3.9 shows that not all pairs of triangles are joined by such an arc A.
The discussion may be clarified then by the following exercise.

Exercise 3.6. For any two triangles T, T ′ of λ̃ there is a sequence of
triangles T = T0, T1, . . . , Tn = T ′ of λ̃ such that Ti lies in between Ti−1
and Ti+1, and there is an arc of µ̃ from each triangle to the next.

Now we have reached the point where we understand λ̃ and µ̃ quite
well, when µ = Fλ(X). In fact, we understand it so well that, from the

position of one triangle of λ̃, we can exactly determine the positions
of all the others using the Möbius transformations S and the shears.
The reader may check their understanding so far by completing the
following exercise.
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Figure 3.9. T3 is hidden from T1, in that no leaf of the
foliation intersects both T3 and T1.

Exercise 3.7. Convince yourself that the above discussion amounts to
a proof that Fλ is one-to-one.

Proof of Theorem 3.1. Now we will see that the Möbius transforma-
tions S and the shears can be defined for arbitrary µ ∈ MF(λ). In

this way we will define λ̃ ⊂ H, find it is invariant under a group Γ, and
find Fλ(H/Γ) = µ, building the inverse for Fλ as desired.

To start, we use the fact that, given any µ ∈MF(λ), one can isotope
µ to be actually transverse to λ, and each singularity of µ is then in
a well-defined complementary triangle of λ independent of the isotopy.
(The singularities of µ and the complementary triangles of λ must be
in bijection to each other, because they are both in bijection to the
zeros of the associated quadratic differential. Formally speaking, one
should write down a more rigorous proof.)

Even without X, there is a topological version of λ̃ and µ̃, defined
up to isotopy on the universal cover of the topological surface. They
are transverse.

First, we remark that the shears are obviously defined only in terms
of topological data. Indeed, the shear is the transverse measure of the
red segment in Figure 3.4. The key point is that whenever we took
a hyperbolic length along an arc of a geodesic in λ̃, this was also the
transverse measure assigned by µ̃, because by definition the transverse
measure for the horocycle foliation comes from hyperbolic length on
the edges of each triangle.

Next, we recall that each Si was defined as a conjugate of a time
one horocycle flow. The amount of geodesic flow we conjugate by is
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again a transverse measure assigned by µ̃, so we can define the Si from
µ alone. We also check that Lemma 3.4 applies for arbitrary µ, so we
can define the infinite products S.

Now, we can think of placing one triangle T of λ̃ on H in an arbitrary
way. (This arbitrary choice reflects the fact that everything is only
defined up to Möbius transformations.) From this triangle, we can
determine where we should put every triangle connected to T by a
transverse arc, by using S(v1) and the shear. Continuing in this way

we can determine where we should put every triangle of λ̃. We can
obtain the rest of λ̃ as the closure of the set of edges.

Since the construction arises from objects on the surface, the result-
ing configuration of triangles in H is invariant under a representation
of this surface group into PSL(2,R). More specifically, for γ in π1 of
the topological surface on which µ is defined, we may consider a pair
of triangles T1, T2 = γ(T1) in the universal cover. The above discussion
computes a Möbius transformation ρ(γ) taking T1 to T2. If Γ is the
image of ρ, then we get that Fλ(H/Γ) = µ as desired. (Note that Γ is
discrete because it stabilizes a non-trivial lamination.) This concludes
our proof that Fλ is a homeomorphism. �

Remark 3.8. Because of group invariance, we can consider the shear to
be defined for any two triangles on X joined by a transverse arc of the
foliation.

Remark 3.9. If desired one could extend the shear by additivity to all
pairs of triangles. For example, in Figure 3.9, the shear is defined for T1
and T2, and also for T2 and T3, and we can define the shear between T1
and T3 to the sum of the shears from T1 to T2 and from T2 to T3. This
additivity makes it appropriate to refer to the shearing as a cocycle.

4. The Fundamental Lemma on Earthquakes

We’ve discussed the shear between two triangles joined by an arc A:
one follows the singular leaf from one triangle, and looks at where it
lands on another triangle, and take the transverse measure, or equiva-
lently hyperbolic length, of the arc of the boundary geodesic from that
landing point to the center point. The fundamental engine of Mirza-
khani’s isomorphism is how this shear changes when you earthquake in
λ. It is implicit that λ is maximal.

Lemma 4.1. Denote by ShearX(T1, T2) the shear for two triangles
joined by an arc A of the horocyclic foliation on the hyperbolic sur-
face X. Then

ShearEtλ(X)(T1, T2) = ShearX(T1, T2) + tλ(A),
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where λ(A) denotes the transverse measure of A and t is sufficiently
small.

In other words, “the change in shear is equal to the transverse mea-
sure.” Mirzakhani cites [Bon96] for this fact, but it can be seen quite
easily as follows.

The restriction that t be small is absolutely not required, but it is
sufficient for our purposes, and allows us to avoid thinking about, for
example, the situation where T2 and T1 are not joined by an arc of the
horocyclic foliation on Etλ(X).

Before reading the proof, the reader may first want to do the follow-
ing warm up exercise.

Exercise 4.2. Let T1 and T2 be triangles in H that share an edge
γ. How does the shear change after moving one of the triangles by a
hyperbolic isometry with axis γ and translation distance t?

Proof of Lemma 4.1. Without loss of generality take t = 1.
T1 and T2 are separated by infinitely many leaves of λ̃. As discussed

in the definition of earthquakes, we can understand how T2 is moved by
the earthquake Eλ (assuming T1 is fixed, i.e. relative to T1) by approx-
imating the measured lamination between T1 and T2 by a discrete one.
So we do this, picking a discrete lamination consisting of a finite subset
of the leaves of λ that bound triangles. It doesn’t matter to us if this is
done in a group equivariant way, since we are just approximating the
earthquake in H. (Indeed the experts may note that it can’t be done in
a group equivariant way. The quotient would be a discrete lamination,
and hence must consist of closed leaves, but λ has no closed leaves.)

If we earthquake along a leaf γ of λ̃ between T1 and T2 by an amount
t, this changes the shear between T1 and T2 by exactly t, basically by
definition. Indeed, the earthquake applies the hyperbolic isometry that
translates along γ to the half plane Hγ on the T2 side of γ. This moves λ̃
by this isometry on Hγ, and hence it translates the transverse horocyclic
foliation on Hγ. Hence, each arc of the transverse horocyclic foliation
in Hγ with an endpoint on γ is translated so that the new endpoint is
t farther along on γ.

Similarly if we earthquake along finitely many leaves of λ with mea-
sures ti, the shear changes by precisely

∑
ti. So, taking a limit, we see

that the shear between T1 and T2 changes by an amount equal to the
transverse λ measure of a transverse arc starting in T1 and ending in
T2. �

Remark 4.3. It may seem strange that the “Fundamental Lemma”,
as we have named it, does not apply to arbitrary earthquakes, but
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only to earthquakes in maximal laminations. However any lamination
can be extended, in many ways, to a maximal lamination, and the
Fundamental Lemma applies to a measured maximal lamination even
if the measure doesn’t have full support. Recall that the horocyclic
foliation, which we use to define shear, doesn’t even depend on or
require a measure on λ.

5. Mirzakhani’s isomorphism

We now turn to the proof of Theorem 1.1. We begin by specifying
full measure sets on which we will build the desired conjugacy F .

Let QD0 denote the locus of quadratic differentials over Teichmüller
space that don’t have any horizontal saddle connections and that have
only simple zeros. Recall that a quadratic differential with simple zeros
has 4g − 4 zeros.

Remark 5.1. This condition is equivalent to the horizontal lamination
being maximal. This can be checked in more than one way. For ex-
ample, you can note that each simple zero without a horizontal saddle
connection gives a complementary triangle, and 4g − 4 times the area
of the triangle is the area of the surface, so there is no room for any
other complementary regions.

Let ML0 denote the locus of measured foliations that are maximal.
We will build a mapping class group equivariant measurable isomor-
phism F from ML0×Tg to QD0 that conjugates earthquake flow to
unipotent flow. The map sends (λ,X) to the quadratic differential with
foliations (λ, Fλ(X)),

F (λ,X) = q(λ, Fλ(X)).

Here Fλ(X) continues to denote the horocyclic foliation of X. This
map is is only measurable, but its restriction to each slice {λ}×Tg is a
homeomorphism onto the set of quadratic differentials with horizontal
lamination λ by Theorem 3.1. It follows that F is a bijection from
ML0×Tg to QD0.

It remains only to show that the image of the earthquake flow path
(λ,Etλ(X)) is a unipotent flow path. We begin by discussing Te-
ichmüller unipotent flow, which is of course characterized by how it
changes period coordinates. But first we present a lemma that will al-
low us to restrict from arbitrary periods to special saddle connections.

Lemma 5.2. Every isotopy class of path joining singularities of a qua-
dratic differential can be realized by a sequence of paths that start at one
singularity, travel in the horizontal direction, then travel in the vertical
direction and end at a singularity.
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Proof. It suffices to prove this for saddle connections. This can be done
by growing rectangles: Look at the rectangle from one endpoint to a
point on the saddle connection nearby, and grow this rectangle until it
hits a singularity. Continue in this way as in Figure 5.1. �

Figure 5.1. The proof of Lemma 5.2.

Corollary 5.3. Suppose qt is a path of quadratic differentials. Suppose
that for every t0 and every path γ on qt0 as in the lemma, the period
xt + iyt of γ satisfies

d

dt

∣∣∣∣
t=t0

xt = yt0 , and
d

dt

∣∣∣∣
t=t0

yt = 0.

Then qt is an orbit of Teichmüller unipotent flow.

Proof. It suffices to recall that(
1 t
0 1

)(
x
y

)
=

(
x+ ty
y

)
(5.0.1)

and that a function with constant derivative is linear. �

Observe that the y component of the period of γ is given by the
transverse measure of γ for the horizontal measured foliation, see Figure
5.2. The intuition of the proof of Theorem 1.1 is to think of each
singularity of q as corresponding to a complementary triangle for a
lamination, and to think of the x component of a period of such a
γ as the shear between the two corresponding triangles. We offer the
following chart to summarize this intuition, before beginning the formal
proof.
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Figure 5.2. The y component is given by the horizontal
foliation.

earthquake flow ←→ horocycle flow

λ ←→ horizontal foliation

Fλ(X) ←→ vertical foliation

(λ, Fλ(X)) ←→ quadratic differential

triangle ←→ singularity

shear ←→ x-component of a period

Fundamental Lemma ←→ equation (5.0.1)

Proof of Theorem 1.1. We wish to show that

q(λ, Fλ(Etλ(X)))

is a horocycle flow path using Corollary 5.3. We will consider a moment
in time t0, which without loss of generality is t0 = 0, and show that
for each path γ as above, the derivative of the period of γ satisfies
Corollary 5.3.

We’ve already done most of the work to see this. Indeed, the path
γ corresponds to a path in X or X̃ = H joining two triangles. If the
period of γ is (xt, yt), then we see that xt is the transverse measure
of γ given by the vertical foliation, and similarly for yt. So yt = λ(γ)
is constant. And the derivative of xt is equal to yt = λ(γ) by the
Fundamental Lemma.

Hence Corollary 5.3 gives that

q(λ, Fλ(Etλ(X))) = F (λ,Etλ(X))

is an earthquake path as desired. We already known that F is a home-
omorphism from ML0×Tg to QD0, so this concludes the proof. �

Remark 5.4. In [Mir08], Mirzakhani factors the map Fλ through a
subset H+(λ) of the space H(λ,R) of transverse cocycles on λ. There
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Figure 5.3. This picture isn’t geometrically accurate,
but it gives an idea of how to think of γ as it lies on
H = X̃. The horizontal lines are leaves of λ̃, and the
vertical lines are leaves of the horocyclic foliation.

is a map

Iλ :ML(λ)→ H+(λ)

that records the shearing data as a transverse cocycle. Mirzakhani
considers a map

Gλ : Tg → H+(λ)

satisfying Fλ = I−1λ ◦ Gλ. The map Gλ is a symplectomorphism by
[BS01], and using the fact the earthquake flow is Hamiltonian Mirza-
khani concludes that Gλ conjugates Etλ with a natural linear flow on
H+(λ). Mirzakhani also notes that if q(λ, µt) is a horocycle flow path,
then Iλ(µt) is an orbit of the same linear flow on H+(λ). From this she
concludes that F conjugates earthquake flow to horocycle flow. The
proof we have presented thus differs from [Mir08] in that we do not
factor through the intermediary H+(λ) and we use the Fundamental
Lemma, rather than the Hamiltonian nature of the flows and [BS01],
to establish the conjugacy.

Remark 5.5. I conjecture that the semi-conjugacy is continuous on
ML0×Tg. For example, if you take a sequence of maximal lamina-
tions λn that converge to some λ that is also maximal, then for each
fixed X the horocyclic foliation on X for λn should converge to that of
λ.
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But the semi-conjugacy cannot be extended continuously to even to
the locus where λ has a single quadrilateral and the rest of the comple-
mentary regions are triangles. The reason is that such λ are limits of
maximal laminations in two different ways, essentially corresponding
to the two different ways to turn the quadrilateral into two triangles.
These two choices give two different horocyclic foliations. Note that

Figure 5.4. The proof that F cannot be extended to a
continuous map.

this situation arises if you approximate a quadratic differential with
a saddle with nearby quadratic differentials where that saddle can ei-
ther slope slightly up or slightly down. (This comment is necessary
because you can’t just add one geodesic to the quadrilateral and get a
lamination with a transverse measure of full support.)

In general, for each λ, there is possibly a finite or infinite number of
ways to fill in λ to a maximal lamination (without a measure of full sup-
port), and each of these different maximal extensions gives a different
horocyclic foliation that will serve as the vertical measured foliation for
a quadratic differential. Perhaps one can think that Mirzakhani’s map
as being multivalued off of ML0 and the multiple values correspond
to all these choices of maximal extension. Similarly if one wanted to
compute Fλ when λ isn’t maximal, one could do it by extending λ to
be maximal in a number of ways, so one can also think of the inverse
of F as being multi-valued.

Alternatively, one could consider earthquake flow on MLext×Tg,
whereMLext consists of all pairs of a measured lamination plus an ex-
tension of its support to a maximal lamination, and we use the topology
that requires convergence of both the measured lamination and the
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maximal unmeasured extension. This flow should map continuously
onto both earthquake flow and Teichmüller unipotent flow.

Remark 5.6. I don’t know how to show that there couldn’t be some
(totally different) continuous conjugacy between earthquake flow and
Teichmüller unipotent flow. This seems like an interesting open prob-
lem.

Remark 5.7. Consider a partition κ of 4g − 4. Consider the subset
I(κ) ⊂ ML×Tg where the complementary regions of the maximal
measured lamination are all symmetric ideal hyperbolic polygons, with
the number of polygons with a given number of edges given by κ. (You
view κ as a partition of the area divided by π.) Minus the symmetry
assumption, this would be just a condition on the measured lamination,
and not the point of Teichmüller space. The symmetry condition says
that there is a hyperbolic isometry that cyclically permutes the ideal
vertices.

One can’t even extend F to this locus. However, I conjecture that
there is a different F that is a conjugacy from I(κ) to the stratum Q(κ)
of quadratic differentials. To be more precise, the image of F would be
the locus with no horizontal saddle connections in that stratum. This
map would use the horocyclic foliation that is defined for symmetric
ideal polygons.

Remark 5.8. There is a notion of hyperbolic length of geodesic lam-
inations. The hyperbolic length of λ on X ∈ Tg, is i(λ, Fλ(X))). If
you’d like you can take this as a definition. It makes sense because the
transverse measure for Fλ(X) corresponds to arc-length along λ.

It follows that the semi-conjugacy is such that if λ has hyperbolic
length ` on X, then the resulting quadratic differential has area `. A
fancy way of putting this is to say λ has extremal length ` on the image
Riemann surface. (Don’t worry if you don’t know what that means.)

Remark 5.9. Mirzakhani’s map F simultaneously conjugates Thurston’s
stretch map flow [Thu] to the action of(

1 0
0 es

)
on QD. This is because Thurston’s stretch map flow is simply scalar
multiplication in shear coordinates.

Remark 5.10. I conjecture that F maps co-bounded sets to co-bounded
sets. Co-bounded means contained in a compact set after you quotient
by the action of the mapping class group. This is related to the fact
that the set of maximal unmeasured laminations on a given (unmarked)
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hyperbolic surface should be compact. So given any non-maximal lami-
nation, there should be a compact set of ways to extend it to a maximal
lamination, and these should correspond to the possible limiting values
of F . Similarly for F−1.

6. Invariant measures

There is a natural measure called Thurston measure µTh onML. It
is basically the same thing as Masur-Veech measure. Most laminations
are not orientable, but can be made so by passing to a double cover,
after which they give a cohomology class. For nearby laminations, you
can pass to a common (branched) double cover, so they give cohomol-
ogy classes in the same vector space. Thurston measure is Lebesgue
measure in this vector space. (Actually the vector space is the −1
eigenspace of the double cover.)

As discussed, QD is equal to ML×ML\∆. It isn’t hard to show
that the Masur-Veech measure (not just on the unit area locus) is equal
to the restriction of µTh×µTh to the complement of ∆. Indeed, Masur-
Veech measure also arises from taking cohomology classes on the double
cover where the foliation becomes orientable.

A basic fact that we will discuss in the next section is that earth-
quakes are Hamiltonian flows. A corollary is the following.

Theorem 6.1. The action of Etλ on Tg leaves invariant the Weil-
Petersson measure µWP

Recall that the Weil-Petersson is nothing other than the standard
Lebesgue measure in Fenchel-Nielsen coordinates.

Corollary 6.2. For any measure ν onML, the earthquake flow leaves
the measure ν×µWP on ML×Tg invariant. In particular, µTh×µWP

is both invariant under earthquake flow and the action of the mapping
class group.

Recall from Remark 5.8 that one can take the hyperbolic length of
a lamination. It isn’t hard to show that this length `X(λ) is invariant
under earthquake flow in λ. For example, when you earthquake in a
simple closed curve, the hyperbolic length of that curve doesn’t change.
So earthquake flow preserves each level set ML` for the hyperbolic
length of λ.

If one wishes an invariant measure on the set ML1×Tg where the
measured lamination has length 1, one does the same thing as for
Masur-Veech measure. Namely, over a point X ∈ Tg, the measure
used onML1 gives a subset ofML1 the Thurston measure of its cone
in ML. (The cone on a set consists of anything in the set times any
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number in [0, 1].) This gives a mapping class group and earthquake
flow invariant measure on ML1×Tg.

Similarly one gets invariant measures on any other level setML`×Tg
for the length function. The measure of ML`×Tg is equal to `6g−6

times the measure ofML1×Tg (the measure is finite after quotienting
by the mapping class group).

The measure on ML`×Tg must map to a measure on QD`, the set
of area ` quadratic differentials. The image measure is Lebesgue class
and invariant under horocycle flow, so using ergodicity of horocycle
flow it must be a multiple of Masur-Veech. (The first point should be
true since both mapsML×Tg →ML×MF and QD →ML×MF
are pretty nice and understandable maps. For example, if you change
λ a bit then Fλ(X) only changes a bit. For a formal proof, one likely
has to look at Bonahon’s papers.)

The isomorphism is also a conjugacy for rescaling the λ and rescaling
the horizontal foliation of the quadratic differential. The measure of
QD` is also equal to `6g−6 times the measure of QD1, so we get the
multiple is independent of `. Hence µTh × µWP maps to cµTh × µTh
for some c > 0, and so F ∗λ (µTh) = cµWP . In fact, Bonahon-Sozen gave
a more explicit proof of this, before Mirzakhani’s isomorphism, that
computes that c = 1 and handles the symplectic forms rather than just
their associated volume forms [BS01].

Theorem 6.3. F ∗λ (µTh) = µWP .

Their proof was discovered using the case when λ contains a pair of
pants (which doesn’t fit into our setting, since such λ don’t have fully
supported transverse measures) and the magic formula of Wolpert.

Corollary 6.4. The Masur-Veech volume of the principal stratum of
quadratic differentials is∫

X∈Mg

µTh(BX(1))dµWP ,

where BX(1) is the unit ball in ML of lamination of length at most 1
on X.

This corollary is [Mir08, Theorem 1.4].

Proof sketch. Using Fubini, the integral is the µWP ×µTh measure of a
fundamental domain for the mapping class group on

{(X,λ) ∈ Tg ×ML : `X(λ) ≤ 1}.
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Using that F ∗λ (µTh) = µWP , this is equal to the µTh × µTh measure of
a fundamental domain for the mapping class group on

{(h, v) ∈ML×ML\∆ : i(h, v) ≤ 1},
which is the Masur-Veech volume of the principal stratum. �

7. Laminations containing a pants decomposition

We now consider the case of maximal lamination λ that contains a
pants decomposition P , i.e. a maximal set of disjoint curves. Such
λ are seemingly irrelevant for the discussion above, because they are
not in the locus where Mirzakhani’s semi-conjugacy is defined. Indeed,
because such λ can’t have a fully supported transverse measure, they
can’t arise as the horizontal lamination of a quadratic differential. But
the map Fλ is defined for any λ maximal, and considering this case will
provide insight.

We can glue together two topological ideal triangles, i.e. triangles
minus their vertices, to get a sphere minus three points, as in Figure
7.1.

Figure 7.1. A sphere minus three points can be ob-
tained by gluing two triangles minus their vertices.

Let us consider gluing together two ideal hyperbolic triangles along
isometries of their edges. We’ll glue in the same pattern, so we know
that the result will topologically be a sphere minus three points, which
topologically is the same thing as a sphere minus three discs. The result
will have a hyperbolic metric, but this metric might be incomplete.
There are three parameters, the three shears, that we’ll denote s1, s2, s3.
Each shear is the distance between “center points” of edges that are
glued together, in the usual way.

If you follow the horospherical foliation around a puncture, passing
through both triangles, you arrive further out along the edge of the
triangle by an amount equal to the sum of the shears, say |s1 +s2|. See
Figure 7.2. You can then complete this horospherical path to a loop
by traveling this |s1 + s2| along the geodesic. As you slide this path
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Figure 7.2. Here the shears are shown in red, and have
opposite signs. The left and right geodesics are glued by
a hyperbolic isometry that takes the basepoint of the
blue arrow to its tip.

farther out along the cusps of the triangles, the distance traveled in the
horospherical part of this loop goes to zero, so this loop seems to be
converging to a geodesic of length |s1 + s2|.

Lemma 7.1. The completion of the surface obtained by gluing together
two triangles as above is a pair of pants with boundary geodesics of
length |s1 + s2|, |s2 + s3|, |s3 + s1|. If any of these three quantities are
zero, you instead get a cusp.

For a very careful and clear proof, which proceeds using the devel-
oping map rather than the informal heuristic we have suggested, see
[Mar, Section 7.4].

Figure 7.3. Each cusp of each triangle spirals towards
one of the three boundary curves of the pants. Image
from [Mar, Figure 7.20].

Remark 7.2. As we linearly interpolate between (s1, s2, s3) and (−s1,−s2,−s3),
at the halfway point (0, 0, 0) each boundary component will reach zero
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length and become a cusp. On one side of the interpolation the trian-
gles will spiral towards the boundary component in one direction, and
on the other side they will spiral in the other direction.

Return to the situation of a maximal lamination λ containing a pants
decomposition P . The si above are some of the shear coordinates for Tg.
One also requires shear coordinates for small arcs A passing through a
boundary of a pants. This shear coordinate is directly seen to be similar
to a Fenchel-Nielsen twist parameter, in that if we do a Fenchel-Nielsen
twist by ε, the shear changes by ε.

The Fenchel-Nielsen twist is presumably not the exact same thing
as the shear of the arc A, even up to a constant. This is because
Fenchel-Nielsen twist parameters are usually defined by considering
orthogeodesics from another boundary of the pants. The shear is re-
lated to where the central leaves of the horocyclic foliation lands on
the cuff. The shear for A should be a function of the Fenchel-Nielsen
twist parameter of that curve, and the 5 length parameters for the 2
pants that share this cuff. In this way one can at least see that the
map from Fenchel-Nielsen twist parameters to the shear parameters
preserves volume, because its derivative can be written as an upper
triangular matrix with ones on the diagonal.

8. Hamiltonian flows

In fact, both the Thurston and Weil-Petersson volume forms arise
from symplectic forms. (Although it is a little tricky to talk about sym-
plectic forms since ML doesn’t have a natural differential structure.)
Bonahon-Sozen actually showed that the map from Tg to MLλ is a
symplectomorphism. The earthquake flow on Tg is the Hamiltonian
flow for the length of λ, and the unipotent flow on quadratic differ-
entials with horizontal foliation λ is the Hamiltonian flow of the area
function.

Consider a specific µ, and let X̂ denote the double cover associated
to qλ,µ. We can associate λ and µ to cohomology classes λ̂ and µ̂, and
the area function A is given by

A(η) = 〈λ̂, η〉.

We now claim that the Hamiltonian vector field is λ̂. To show this, we
compute

(dA)η(ξ) =
d

dt

∣∣∣∣
t=0

〈λ̂, η + tξ〉

= 〈λ̂, ξ〉.
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This exactly shows that unipotent flow is Hamiltonian.

9. The linear structure on MLα
If α is maximal, then all foliations µ ∈ MLα have singularities in

correspondence to the triangular regions of α. Hence one can pass
consistently to a double cover where µ̂ gives a cohomology class [µ̂].
This maps MLα to a vector space.

Lemma 9.1. The map µ 7→ [µ̂] is injective.

Proof. This is equivalent to the statement that if you know the horizon-
tal foliation of an Abelian differential (up to Whitehead moves), and
you know the relative cohomology class of the vertical foliation, then
you can recover the Abelian differential. (Actually µ̂ lives in the −1
eigenspace of the cohomology of the double cover, which is isomorphic
to the −1 eigenspace of the relative cohomology.) The proof is that
knowing the horizontal foliation allows you to determine the IET giv-
ing the first return map to any vertical segment, and the cohomology
class gives the sizes of the rectangles in an associated zippered rectangle
decomposition. See [MW14]. �

Remark 9.2. This can be interpreted as saying that, passing to the
appropriate Teichmüller space, a single period coordinate chart suf-
fices for the slice of any stratum where the horizontal foliation is held
constant.

In fact one can see that the image is a convex polyhedral cone. Typ-
ically (ex if α is uniquely ergodic) this cone is a half space.

Alternatively, one can parameterizeMLα by transverse distributions
or transverse cocycles, and in this way see that MLα has a natural
linear structure [Bon96]. Any two points in MLα can be joined by a
straight line, and the resulting path in Tg is called a cataclysm or shear
map. It differs from an earthquake in that earthquakes always shear in
one direction (right or left), and that earthquakes can be continued for
all time, whereas cataclysm paths can cease to be well-defined in finite
time.

10. Other results on earthquakes

Thurston proved that, given any two points in Tg, there is a unique
earthquake path between them [Thu86]. Kerckhoff proved that hyper-
bolic length functions are convex along earthquake (and even cataclysm
paths [The]). This was famously used by Kerckhoff to solve the Nielsen
realization problem [Ker83].
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Mathematics, vol. 183, Birkhäuser Boston, Inc., Boston, MA, 2001.

[Ker83] Steven P. Kerckhoff, The Nielsen realization problem, Ann. of Math. (2)
117 (1983), no. 2, 235–265.

[Lei12] Christopher J. Leininger, Degenerations of hyperbolic structures on sur-
faces, Geometry, topology and dynamics of character varieties, Lect. Notes
Ser. Inst. Math. Sci. Natl. Univ. Singap., vol. 23, World Sci. Publ., Hack-
ensack, NJ, 2012, pp. 95–138.

[Lev83] Gilbert Levitt, Foliations and laminations on hyperbolic surfaces, Topol-
ogy 22 (1983), no. 2, 119–135.

[Mar] Bruno Martelli, An introduction to geometric topology, arXiv:1610.02592
(2016).

[McM] Curtis McMullen, The work of Maryam Mirzakhani, https:

//people.math.harvard.edu/~ctm/papers/home/text/papers/

icm14/icm14.pdf.
[Mir07] Maryam Mirzakhani, Random hyperbolic surfaces and measured lamina-

tions, In the tradition of Ahlfors-Bers. IV, Contemp. Math., vol. 432,
Amer. Math. Soc., Providence, RI, 2007, pp. 179–198.

[Mir08] , Ergodic theory of the earthquake flow, Int. Math. Res. Not. IMRN
(2008), no. 3, Art. ID rnm116, 39.

[Mir16] , Counting mapping class group orbits on hyperbolic surfaces, arXiv
preprint arXiv:1601.03342 (2016).

[MW02] Yair Minsky and Barak Weiss, Nondivergence of horocyclic flows on moduli
space, J. Reine Angew. Math. 552 (2002), 131–177.

[MW14] , Cohomology classes represented by measured foliations, and

Mahler’s question for interval exchanges, Ann. Sci. Éc. Norm. Supér. (4)
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