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Abstract. We define fiber bundles and discuss the long exact
sequence of homotopy groups of a fiber bundle, and we give the
Hopf bundles as examples. We also prove the Freudenthal suspen-
sion theorem for spheres. All results are applied immediately to
homotopy groups of spheres.

1. Introduction

The purpose of this note is to give a very basic introduction to the
homotopy groups of spheres, assuming only knowledge of the long exact
sequence of homotopy groups of a pair. For ease of reading, we avoid
all generality which does not apply immediately to homotopy groups
of spheres. The primary reference for this note is Hatcher’s Algebraic

Topology, and we use the notation contained therein. These notes may
be useful to students having read pages 337 to 345 in Hatcher, but
looking for a slightly more gentle introduction to homotopy theory
before continuing their reading in Hatcher.

The higher homotopy groups πk(X, x0) of a space X are generaliza-
tions of the fundamental group π1(X, x0). For k > 1, these groups are
easily seen to be abelian. If A ⊂ X , the relative homotopy groups
πk(X,A, x0) are also defined, and we have the compression criterion:
A map f : (Dn, Sn, s0) → (X,A, x0) represents zero in πk(X,A, x0) if
and only if it is homotopic relSn−1 to a map with image contained in
A. This compression criterion is used to derive the long exact sequence
of homotopy groups of the pair (X,A, x0):

· · · → πn(A, x0)
i∗→ πn(X, x0)

j∗
→ πn(X,A, x0)

∂
→ πn−1(A, x0) →

· · · → π0(X, x0).

In this sequence i and j are the inclusions (A, x0) →֒ (X, x0) and
(X, x0, x0) →֒ (X,A, x0), and ∂ is a sort of restriction operator. Recall
that πk(X,A, x0) is guaranteed to be a group only if k ≥ 2, and is
guaranteed to be abelian only if k ≥ 3. Furthermore, the final terms in
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the exact exact sequence, like π0(X, x0), the set of path connected com-
ponents of X, are not usually groups. However, exactness still makes
sense: the image of each map is the kernel of the next.

We commonly represent maps in πi(X,A, x0) as maps (In, ∂In, Jn−1) →
(X,A, x0), using Hatcher’s definitions In−1 = In−1 × {0} ⊂ In and
Jn−1 = cl(In − In−1).

2. Fiber Bundles

Fiber bundles are a sort of short exact sequence F → E
p
→ B of

spaces, in which the fibers p−1(b) are all homeomorphic to F . F is
called the fiber of the fiber bundle, E the total space, and B the base

space. Formally, a fiber bundle is such a map E
p
→ B, for which B has

an open cover Uα such that p−1(Uα) ≃ Uα × F .
Of course, a projection map B × F → B gives rise to a fiber bundle

F → B × F → B. Perhaps the simplest example of a fiber bundle
that is not of this form is the bundle in which the Mobius strip is the
total space, the fiber is the closed unit interval, and the base space the
circle. Also, every covering space map X → Y is a fiber bundle with a
discrete fiber.

We now proceed to construct a fiber bundle with total space S2n+1,
fiber S1 and base space CP n. View S2n+1 as the set of unit length
vectors in C

n+1, and consider the quotient map q : S2n+1 → CP n given
by the equivalence relation v ∼ λv if |λ| = 1. All the fibers q−1(p) are
circles. Furthermore, CP n = ∪Uk, where Uk = {[v1, · · · , vn+1]|vk 6= 0}.
We have

q−1(Uk) = {v = (v1, · · · , vn+1) ∈ S2n+1 : vk 6= 0}
∼= Uk × S1

so S1 → S2n+1 q
→ CP n is indeed a fiber bundle. Consider in particular

CP 1. As a manifold, it has an atlas of the two charts U1
∼= C and

U2
∼= C with transition map z 7→ 1/z. Now consider the sphere S2 =

{(a, b, c) : a2 + b2 + c2 = 1} ⊂ R
3. If we consider the a, b plane to

be C, then the two charts of S2 given by the stereographic projections
from the poles, have transition map z 7→ 1/z. Hence if we compose one
of the charts with conjugation, we get that the new transition map is
z 7→ 1/z. Thus, CP 1 ∼= S2. So, in particular, we get the fiber bundle
S1 → S3 → S2, often called the Hopf fibration.

There are also fiber bundles S3 → S4n+3 → HP n and S7 → S8n+7 →
OP n given by the quaternions and the octonians. In particular, in the
case n = 1, we have fiber bundles S3 → S7 → S4 and S7 → S15 → S8,
which are also often called Hopf fibrations. It is know that there are
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no other fiber bundles in which the fiber, base space, and total space
are all spheres.

The long exact sequence takes a nicer form for pairs (F,E) coming
from a fiber bundle. But before we can prove this, we need to discuss
some technical details.

A map p : E → B is said to have the lift extension property for
(X,A) if every map f : X → B lifts to a map g : X → E extending
a given lift g : A → E. The lift extension properties for the pair
(Dn×I,Dn×{0}∪∂Dn×I) will be particularly useful to us. Note that
the lift extension property for the pairs (Dn×I,Dn×{0}∪∂Dn×I) and
(Dn× I,Dn ×{0}) are equivalent, since these pairs are homeomorphic.
This common property is know as the homotopy extension property
for disks when it is true for all n.

Proposition. A fiber bundle F → E
p
→ B has the homotopy extension

property for disks.

Proof. The disk Dn is homeomorphic to the cube In. Let H : In ×
I → B be the map whose lift G : In × 0 ∪ ∂In × I → E we wish
to extend. Choose an open cover {Uα} of B with homeomorphisms
hα : p−1(Uα) → Uα × F . By dividing In into small cubes C, and
partitioning I into small intervals Ij = [tj, tj+1], we may assume each
product C × Ij is mapped into a single Uα by H. We can assume by
induction on j that G has already been constructed on C × [0, tj], and
we can further assume, by induction on n, that G has been defined on
∂C × [tj, tj+1] for each C. Thus it suffices to construct the lift on each
such C× [tj, tj+1]. We have thus reduced the problem to the case where
no subdivision is necessary, and H(In × I) is contained in a single Uα.

To summarize, we have a map H : In × I → Uα, and we want to
lift it to a map G : In × I → h−1

α (Uα) = Uα × F . We are given a
map G : In × {0} ∪ ∂In × I → E that this map must extend. Now
we choose a retract R : In × I → In × {0} ∪ ∂In × I, and we define
G(x) = (H(x), G(R(x))). This is the desired lift of H. �

Theorem. Suppose p : E → B has the homotopy lifting property for

disks. Choose a base point b0 ∈ B and x0 ∈ F = p−1(b0). Then the

map p∗ : πn(E,F, x0) → πn(B, b0, b0) = πn(B, b0) is an isomorphism.

Hence if B is path connected, there is a long exact sequence

· · · → πn(F, x0) → πn(E, x0)
p∗
→ πn(B, b0) → πn−1(F, x0) →

· · · → π0(E, x0).

In particular, by the preceding proposition, a fiber bundle with path
connected base space has this long exact sequence.
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Proof. First we prove that p∗ is onto. Represent an element of πn(B, b0)
by a map f : (In, ∂In) → (B, b0). The constant map to x0 provides a
lift of f to E over the subspace Jn−1 ⊂ In, so the homotopy extension
property for Dn−1 (not Dn) extends this to a lift g : In → E, and
this lift satisfies g(∂In) ⊂ F since f(∂In) = b0. Then g represents an
element of πn(E,F, x0) with p∗([g]) = [f ] since pg = f .

Injectivity of p∗ is similar. Given g0, g1 : (In, ∂In, Jn−1) → (E,F, x0)
such that p ∗ ([g0]) = p ∗ ([g1]), let g : In × I, ∂In × I) → (B, b0) be
a homotopy from pg0 to pg1. We have a partial lift G given by g0 on
In × {0}, g1 on In × {1} and the constant map x0 on Jn−1 × I. The
homotopy lifting property for Dn extends this to a lift G : In × I → E,
giving a homotopy gt : (In, ∂In, Jn−1) → (E,F, x0) from g0 to g1. So
p∗ is infective.

For the last statement of the theorem we plug πn(B, b0) ∼= πn(E,F, x0)
in the long exact sequence for the pair (E,F ). �

If we consider the fiber bundle Z → R → S1 given by the covering
space map R → S1, the long exact sequence gives that πk(S

1) = 0 for
all k > 1. This fact can also be deduced from the lifting criterion of
covering space theory. Using this fact, if we consider the Hopf bundle
S1 → S3 → S2, we get πk(S

3) = πk(S
2) for k ≥ 2. We will soon prove

that π3(S
3) = Z, so this will give π3(S

2) = Z, a very surprising result!
We also get that π2(S

2) = Z providing that π1(S
2) = π2(S

3) = 0. This
detail will be proved in the next section.

In general, if we have a bundle F → E → B such that the inclusion
F →֒ E is null-homotopic, we get that in the long exact sequence the
map πi(F ) → πi(E) is 0, since it is induced by the inclusion F → E.
So the long exact sequence breaks into short exact sequences

0 → πi(E) → πi(B) → πi−1(F ) → 0.

Furthermore, above we have an isomorphism πn(E,F, x0) → πi(B, b0).
Restricting this to a map πn(E, x0, x0) → πi(B, b0) shows that our
exact sequence is in fact split

0 → πi(E) ⇄ πi(B) → πi−1(F ) → 0.

Hence we get isomorphisms πi(B) = πi(E) ⊕ πi−1(F ). Applying this
to the Hopf bundles S3 → S7 → S4 and S7 → S15 → S8 give isomor-
phisms πi(S

4) = πi(S
7) ⊕ πi−1(S

3) and πi(S
8) = πi(S

15) ⊕ πi−1(S
7).

3. Major Theorems

In this section we will require two difficult technical lemmas. The
first is used in the proof of the second.
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Lemma. Let f : In → Z be a map, where Z is obtained from a subspace

W by attaching a cell ek. Then f is homotopic rel f−1(W ) to a map

f1 for which there is a simplex ∆k ⊂ ek with f−1

1 (∆k) a union, possibly

empty, of finitely many convex polyhedra, on each of which f1 is the

restriction of a linear surjection R
n → R

k.

Corollary. πi(S
n) = 0 for i < n.

Proof of Corollary. In the preceding lemma, set W = w0 to be a point,
so Z = Sn is W with a cell en attached. Represent an element of
πi(S

n, w0) by a map f : (I i, δI i) → (Z,w0). We then find ∆n ∈ Z
and f1 ≃ f as above. Since there are no linear surjections from R

i to
R

n, f−1

1 (∆n) = ∅. It is now easy to homotope f1 away from ∆n to the
constant map, showing that [f ] = 0 in πi(S

n). �

Proof of Lemma. Identifying ek with R
k, let B1, B2 ⊂ ek be the closed

balls of radius 1 and 2 centered at the origin. By uniform continuity,
we can subdivide In into small cubes so that the image of each cube
has diameter less that 1/2. Let K1 be the union of all cubes meeting
B1, and let K2 be the union of all cubes meeting K1, so that f−1(B1) ⊂
K1 ⊂ K2 ⊂ f−1(B2).

We can find a subdivision of the cubes in K2 that is a simplicial
complex. Let g : K2 → ek = Rk be the map that equals f on all vertices
in that subdivision and is linear on each simplex. Let φ : K2 → [0, 1]
be any map with φ(K1) = 1 and φ(∂K2) = 0. We wish to homotope
f to be g on K1, but such a homotopy would need to change K2 as
well, in order to preserve continuity. It would also be ideal if such a
homotopy was constant on ∂K2, so that we can extend it to all of Z.
So we define a homotopy ft : K2 → ek to be ft = (1 − tφ)f + tφg. We
check that f0 = f , f1|K1 = g, and ft is constant on ∂K2.

After our homotopy, it is possible that some points of K2 −K1 map
into B1. This is a problem, because we want the pre-image of a simplex
in B1 to be contained in K1, where f1 is linear on simplices. Points in
the complement of K2 are no problem, since f1 = f there, so they map
to points outside of B1. For points of K2 − K1, we consider a simplex
of the subdivision containing that point. That simplex is mapped by
f into a ball of radius 1/2. Since that ball is convex, that simplex is
also mapped into that ball by f1. Thus, K2 −K1 cannot map into the
ball B 1

2

of radius 1/2. Now, we pick any ∆k ∈ B 1

2

. The pre-image

f1(∆
k) ⊂ K1 is the union of its intersections with simplices σ of K1,

and each intersection is a convex polyhedron since it is the intersection
of σ with the convex polyhedron L−1

σ (∆k), where Lσ : R
n → R

k is the
linear map restricting to f1 on σ. To finish the proof it therefore suffices
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to choose ∆k to be disjoint from the images of all the non-surjective
Lσ’s, which is certainly possible since these images consist of finitely
many hyperplanes of dimension less that k. �

This lemma is in fact strikingly powerful. It is used, in Hatcher,
to prove the Cellular Approximation Theorem, which stats that a map
f : X → Y between CW complexes is homotopic to a map which caries
the k skeleton of X into the k skeleton of Y for all k. Such a map,
where f(Xk) ⊂ Y k for all k, is called cellular.

Now that we have proven this lemma, we can prove a weak version
of excision for homotopy groups, which in turn allows us to prove the
Freudenthal Suspension Theorem for spheres. It is called excision be-
cause it relates the homotopy groups of a subspace to those of the entire
space.

Lemma (Weak Excision Lemma). Let C be a simplicial complex, let X
be C with two m+1 cells e1, e2 attached, and let A = C∪e1, B = C∪e2.

The map πi(A,C) → πi(X,B) induced by inclusion is an isomorphism

for i < 2n and a surjection for i = 2n.

Proof of Weak Excision Lemma. To show surjectivity of πi(A,C) →
πi(X,B) we start with a map f : (I i, ∂I i, J i−1) → (X,B, x0). By the
preceding lemma, we can homotope f and find ∆1 ⊂ e1 and ∆2 ⊂ e2

so that f−1(∆1) and f−1(∆2) are finite unions of convex polyhedra, on
each of which f is the restriction of a linear surjection from R

i onto
R

n+1.
Claim: If i ≤ 2n, then there exists points p1 ∈ ∆1, p2 ∈ ∆2, and a

map φ : In−1 → [0, 1) such that

(a) f−1(p2) lies below the graph of φ in I i−1 × I = I i.
(b) f−1(p1) lies above the graph of φ.
(c) φ = 0 on ∂In−1.

Given this, let ft be a homotopy of f excising the region under
the graph of φ by restricting f to the region above the graph of tφ for
0 ≤ t ≤ 1. By (b), ft(I

i−1) is disjoint from p1 for all t, and by (a), f1(I
i)

is disjoint from p2. This allows us to push f1 off of e2 by homotoping
away from p2. The resulting map, obtained from f through homotopies
of the form ft : (I i, ∂I i, J i−1) → (X,B, x0), is in πi(A,C). Thus the
image of this element of πi(A,C) gives [f ] ∈ πi(X,B) and surjectivity
is proved.

Now we prove the claim. For any p2 ∈ ∆2, f−1(p2) is a finite union
of convex polyhedra of dimension less than or equal to i− n− 1, since
f is the restriction of a linear surjection R

i → R
n+1 on each of these

polyhedra. Thus, if π : I i−1 × I → I i−1 is the canonical projection,
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T = π−1πf−1(∆2) is a finite union of convex polyhedra of dimension
less than or equal to i−n. Since linear maps cannot increase dimension,
f(T ) ∩∆1 is a finite union of convex polyhedra of dimension less than
or equal to i − n. Thus if n + 1 > i − n, there is a point p1 ∈ ∆1

not in f(T ). This point p1 has f−1(p1) ∩ T = ∅. Hence we can pick a
neighbourhood U of π(f−1(p2)) in In−1 disjoint from π(f−1(p1)). Thus
there exists φ : I i−1 → [0, 1) having support in U , with f−1(p2) lying
under the graph of φ. This verifies the claim, and so finishes the proof
of surjectivity.

For injectivity the argument is very similar. Suppose we have two
maps f0, f1 : (I i, ∂I i, J i−1) → (A,C, x0) representing elements of πi(A,C, x0)
having the same image in πi(X,B, x0). Thus there is a homotopy from
f0 to f1 in the form of a map F : (I i, ∂I i, J i−1)×[0, 1] → (X,B, x0). Af-
ter a preliminary deformation, as before, we can find p1 ∈ ∆1, p2 ∈ ∆2

and construct a function φ : I i × I → [0, 1) separating F−1(p2) from
the set F−1(p1) as before. Thus allows us to excise F−1(p2) from the
domain of F , from which is follows that f0 and f1 represent the same
element of πi(A,C, x0). Since I i × I now plays the role of I i, the di-
mension i is replaced by i + 1 and the dimension restriction becomes
i < 2n. �

One of the most elegant applications of this Excision Lemma is the
following theorem, which talks about suspension. The cone of a space
X is CX = X × [0, 1]/(X × {0}). All cones CX are contractible to
their tip, X × {0}. The suspension of a space X is

ΣX = (X × [0, 1])/(X × {0} ∪ X × {1}).

This is also just two cones C−X,C+X glued together. The suspension
of a circle is two normal cones glued together, and is thus homeomor-
phic to the sphere. In general it is easy to see that the suspension of
Sn is Sn+1. Also, given a map f : X → Y , there is a corresponding
map Σf : ΣX → ΣY that maps the two end points of ΣX to those of
ΣY and is simply equal to f on each slice X × {x0}, 0 < x0 < 1.

Corollary (Freudenthal Suspension Theorem). The suspension map

πi(S
n) → πi+1(S

n+1) is an isomorphism for i < 2n−1 and a surjection

for i = 2n − 1. Consequently, πn+k(S
n) does not depend on n for

n ≥ k + 2.

Proof. We apply the Weak Excision Lemma with C = Sn, A = C−Sn, B =
C+Sn and X = ΣSn = C−Sn ∪ C+Sn = Sn+1. This gives that the in-
clusion map

πi(C
−Sn, Sn) → πi(S

n+1, C+Sn)
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is an isomorphism for i < 2n and a surjection for i = 2n. Now, since
cones are contractible, the long exact sequence of the pairs (C−Sn, Sn)
and (Sn+1, C+Sn) gives πi(C

−Sn, Sn) = πi−1(S
n) and πi(S

n+1, C+Sn) =
πi(S

n+1). Thus we have

πi−1(S
n) ∼= πi(C

−Sn, Sn) → πi(S
n+1, C+Sn) ∼= πi(S

n+1)

and it remains only to see that this map is the suspension map. This
is left as an exercise to the reader, as it is easily explained but tricky
to write out.

From this point, we see that πn+k(S
n) = πn+1+k(S

n+1) if n + k <
2n−1, ie if n ≥ k+2, so πn+k(S

n) does not depend on n if n ≥ k+2. �

The groups πn+k(S
n) for n ≥ k + 2, often denoted πs

k, are called
the stable homotopy groups of spheres, and it is often said that their
computation is the largest open problem in algebraic topology.

Corollary. πn(Sn) = Z. Furthermore, the map πn(Sn) → Z : [f ] 7→
deg f given by mapping degree is an isomorphism.

Proof. Earlier we computed π2(S
2) = Z using the long exact sequence

of the Hopf bundle. The previous corollary gives that in the sequence
of suspension maps

π1(S
1) → π2(S

2) → π3(S
3) → · · ·

the first map is surjective, and the rest are isomorphisms. Since the
first map as a surjective map Z → Z, it is an isomorphism. Now, the
map deg : S1 → Z is an isomorphism. π1(S

1) = {[z 7→ zk]}, so we
must have that πn(Sn) is the set of suspensions of these maps z → zk.
The suspensions all have degree k, so we get that deg : πn(Sn) → Z is
an isomorphism. �

4. Conclusion

We have computed

• πi(S
1) = 0 when i > 1

• πn(Zn) = Z

• π3(S
2) = Z

• πi(S
2) = πi(S

3) for i ≥ 3
• Given the Hopf bundles, S3 → S7 → S4 and S7 → S15 → S8,

πi(S
4) = πi(S

7) ⊕ πi−1(S
3) and πi(S

8) = πi(S
15) ⊕ πi−1(S

7).

All the groups we have computed have been either 0 or Z. This pattern
does not continue, as we can see in this table, taken from Hatcher’s
Algebraic Topology.
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It was once hoped that πi(S
n) = 0 for i > n, and in fact the first

counterexample to this was the Hopf fibration, discovered by Heinz
Hopf in 1931. Out of this counterexample was born a giant, complex,
and mysterious problem: the calculation of the homotopy groups of
spheres. Serre prove that πi(S

n) is finite for i > n except for π4k−1(S
2k),

which is a direct sum of Z with finite group. Hence these groups are
determined by their p components, where p is prime, that is, the sub-
groups of elements with order pk for some k. Hence, much modern
research focuses on the p components of the stable homotopy groups
of spheres. The primary tool in these computations are spectral se-
quences, a complex way of organising large amounts of algebraic infor-
mation.
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