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Abstract. We consider the curve graph in the cases where it is not a Farey

graph, and show that its Gromov boundary is linearly connected. For a fixed
center point c and radius r, we define the sphere of radius r to be the induced

subgraph on the set of vertices of distance r from c. We show that these

spheres are always connected in high enough complexity, and prove a slightly
weaker result for low complexity surfaces.
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1. Introduction

1.1. A glimpse of the broad context. One of the central objects in low-dimensional
topology and geometric group theory is the complex of curves. This finite dimen-
sional simplicial complex was introduced by Harvey as an analogue of the Tits
building for symmetric spaces [Har81]. From its introduction as a tool to under-
stand the boundary structure of Teichmüller space, the scope and utility of its
study broadened in topology [Har86, Har85] and rigidity [Iva97]. Later, work of
Masur and Minsky established that the curve graph itself had tractable geometry,
being a Gromov hyperbolic space [MM99], and work of many authors established
beyond any doubt the curve complex as a key tool for understanding the geome-
try of mapping class groups, Teichmüller spaces, and hyperbolic three manifolds
[MM00, Min06, Raf07, BM08, BKMM12, BCM12, BBF15]. Skipping ahead to the
present, the uses of the curve complex are now too numerous to recall here. Via the
notion of a hierarchically hyperbolic space [BHS17, BHS19, Sis19] as well as other
generalizations and analogies [Bow08, Osi16, Kob18, HM13, BF14a, Bes23, KK14]
the influence of the curve complex has extended to many important spaces and
groups far beyond what might have been expected.

For most purposes outside of algebraic topology it suffices to consider the 1-
skeleton of the curve complex, which is known as the curve graph. Motivated by
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questions on mapping class groups discussed in more detail below, we study here
connections between the fine and coarse geometry of the curve graph, discovering
new results and recovering and strengthening important previous results that had
not been previously understood from the perspective of the curve graph.

1.2. Main results. Let Σ “ Σg,n be a connected surface with genus g and n
punctures. We always assume g and n are such that Σ has a complete, finite
volume hyperbolic metric and that pg, nq ‰ p0, 3q. We define the complexity of Σ
as ξpΣq “ 3g ´ 3 ` n. We say Σ is

‚ exceptional if ξpΣq “ 1, i.e. pg, nq P tp1, 1q, p0, 4qu,

‚ low complexity if ξpΣq “ 2, i.e. pg, nq P tp1, 2q, p0, 5qu,

‚ medium complexity if ξpΣq “ 3, i.e. pg, nq P tp2, 0q, p1, 3q, p0, 6qu,

‚ high complexity if ξpΣq ě 4.

We let CΣ be the curve graph of Σ, and note the exceptional isomorphisms
CΣp1,1q – CΣp0,4q, CΣp1,2q – CΣp0,5q, and CΣp2,0q – CΣp0,6q.

Fix an arbitrary vertex c in CΣ, which we sometimes refer to as the center point.
For r ě 0 integral, we let Sr “ Srpcq be the sphere of radius r in the graph CΣ,
which consists of all the vertices at distance r from c. We say that a subset of
vertices of a graph is connected if the induced subgraph is connected.

Theorem 1.1. For all r, we have the following:

‚ If Σ is high complexity, Sr is connected.

‚ If Σ is medium complexity, Srpcq Y Sr`1pcq is connected.

‚ If Σ is low complexity, Srpcq Y Sr`1pcq Y Sr`2pcq is connected.

We will also address the “sphere at infinity” as follows.

Theorem 1.2. If Σ is non-exceptional, the Gromov boundary of CΣ is linearly
connected.

Here it is implicit that we are using a visual metric on the Gromov boundary.
Recall that a metric space pX, dq is said to be linearly connected if there is a
constant L ą 0 such that for each pair x, y P X there is a compact connected
set in X containing x and y of diameter at most Ldpx, yq. Linear connectivity is
also called bounded turning or LLCp1q, and appears in questions relating to the
existence of quasi-isometrically embedded hyperbolic planes in hyperbolic spaces
[Tuk96, BK05, Mac08, MS20]. In our proof, the compact connected set produced
will be a path from x to y, and as discussed in [Mac08, Section 1], this set can in
general be taken to be an arc (embedded path) from x to y.

1.3. Previous results. In particular, we obtain a fundamentally new proof of the
following result.

Corollary 1.3. If Σ is non-exceptional, the Gromov boundary of CΣ is path con-
nected and locally path connected.

Corollary 1.3 was proven in general by Gabai [Gab09]. Connectivity was proven
previously by Leininger and Schleimer for CΣg,n when g ě 4 or when g ě 2 and n ě

1 [LS09], and path connectivity and local path connectivity were proven previously
by Leininger, Mj, and Schleimer for CΣg,1 when g ě 2 [LMS11]. These results
answer questions of Peter Storm recorded in [KL08a, Question 10] and [Min06,
Section 2].
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As part of their proof of quasi-isometric rigidity of curve complexes, Rafi and
Schleimer used Corollary 1.3 to deduce that the union of a number of consecutive
spheres depending on the hyperbolicity constant is connected [RS11, Proposition
4.1]. Schleimer also proved without using Corollary 1.3 that when g ě 2, comple-
ments of balls in CΣg,1 are connected [Sch11].

Following his work on path connectivity, Gabai later established higher con-
nectivity results and, extending work of Hensel and Przytycki for pg, nq “ p0, 5q,
proved that boundaries of curve complexes when g “ 0 are homeomorphic to No-
beling spaces [HP11, Gab14]. In light of [Har86, AL13, BBM15], it is possible that
the techniques in Section 6 could provide a starting point for an attempt to reprove
and strengthen such higher connectivity results. We conjecture that Gabai’s higher
connectivity results could be strengthened to linear higher connectivity, which may
be of interest in light work such as [BK02] and may also be compared to work such
as [BD19] and [Bar20].

The boundary of the curve complex is naturally homeomorphic to the space of
ending laminations [Kla22]. Much previous work has taken place in the space of
ending laminations, including the recent work of Chaika and Hensel proving con-
nectivity results for spaces of uniquely ergodic and cobounded laminations [CH19].

1.4. Structure of the proof. In contrast to much of the work above, we work
directly in the curve complex, using the Bounded Geodesic Image Theorem of
Masur-Minsky [MM00], in the spirit of previous work such as the analysis of dead
ends by Birman and Menasco [BM15] and the work of Schleimer cited above [Sch11].
The core approach of this paper might be described briefly as “push paths away
from the center point c”. To accomplish this, sometimes we use (a weaker statement
than) Theorem 1.1 for smaller complexity surfaces, so we induct on the complexity
of the surface. The base case for the induction on complexity is the five times
punctured sphere, where our argument makes use of pentagons and reveals that
some points of Sr might almost be thought of as “closer” to Sr`1 than others.

In medium and high complexity our approach requires that we work with “essen-
tially non-separating curves”, which are curves that are either non-separating or go
around a pair of punctures. We prove a number of basic results on what we call the
essentially non-separating curve graph, which may be useful for other purposes.

1.5. Motivation. Masur and Minsky famously proved that curve complexes are
hyperbolic, and there are now many proofs of this fact [MM99, Aou13, Bow14,
CRS14, HPW15]. Moreover, the curve complex exhibits very strong hyperbolicity
features even beyond its Gromov hyperbolicity. For example, Dowdall, Duchin, and
Masur proved that the “generic” pair of points on Sr are distance exactly 2r apart
[DDM13], and wrote that “In this sense the curve graph is “even more hyperbolic
than a tree.”” (This comment seems tailored to comparison to finite valence trees.
One might also suggest that in this sense the curve graph is comparably hyperbolic
to an infinite valence regular tree.)

Furthermore, most of the spaces closely analogous to curve complexes that arise
in the modern study of hierarchical hyperbolicity are quasi-trees [BHS17, BHS19,
Sis19]. Thus there seems to be great tension between tree-like behaviour and the
connectivity theorems above. This tension is relevant for the elusive and much
studied question of whether convex cocompact surface subgroups of mapping class
groups exist (see for example [FM02, LS14, Mos06, Rei06]). Linear connectivity
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in particular is related to this question since convex co-compact surface subgroups
gives rise to quasi-isometrically embedded hyperbolic planes in the curve complex
[KL08a, Ham05], and proving linear connectivity is, roughly speaking, part way to
establishing the existence of many such planes [Tuk96, Mac08].

The study of the topology of the Gromov boundary of the curve complex is
far from complete; for example its topological dimension is not known in general
[Gab14]. Nonetheless we feel it is worthwhile to draw attention to the rich additional
structure on the boundary. Every nice enough hyperbolic space (including curve
complexes) can be recovered up to quasi-isometry via a cone construction from
its boundary with a visual metric [BS00, Theorem 8.2]. In contrast, the mere
homeomorphism type of the boundary contains vastly less information about the
space. See for example [Bou97] and [Mac12] for infinite families of hyperbolic groups
whose boundaries are the Menger curve but are pairwise non-quasi-isometric to each
other. In some situations, one might even go so far as to say that, far from being
the end goal, the homeomorphism type of the boundary is the vessel that holds
more refined information on the hyperbolic group. We feel that the situation for
the curve complex is even more pronounced, since in addition to metric structure
the boundary supports a rich collection of subsurface projection maps. Linear
connectivity is, to our knowledge, one of the first results on the metric structure of
the boundary, with another notable result being the work of Bestvina and Bromberg
on its capacity dimension [BB19].

1.6. Open questions. Part of the motivation above concerns the following two
questions, which we wish to state explicitly now.

Question 1.4. Do all non-exceptional curve complexes contain quasi-isometrically
embedded hyperbolic planes?

The work of Leininger and Schleimer gives a positive answer in the case of
Σg,1, g ě 2 and surfaces that can be obtained via an appropriate branched cover of
such surfaces [LS14].

Question 1.5. In non-exceptional cases, is the cobounded locus in the boundary of
of CΣ quasi-arc connected?

Motivated by the existence of hierarchy paths and our desire to connect the
study of the boundary to subsurface projections, we also propose the following.

Question 1.6. For each Σ that is non-exceptional, does there exist a D ą 0 such
that every pair of points in the Gromov boundary can be joined by a path in the
Gromov boundary whose projection to the curve complex of each proper subsurface
is an un-parametrized D-quasigeodesic?

We believe a positive answer to these questions would signal a significantly im-
proved understanding of the geometry of the curve complex.

The curve graphs of the exceptional surfaces are both the Farey graph, which,
being a quasi-tree, has hopelessly disconnected spheres. All of the individual spheres
are disconnected in the low complexity case (Corollary 6.12), but our analysis leaves
open the following.

Question 1.7. In the medium complexity case, are individual spheres always con-
nected? In the low complexity case, are unions of two consecutive spheres always
connected?
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Finally, we note that in the study of OutpFnq, one is interested in the boundary of
the free factor complex FFn, which is known to be path connected and locally path
connected when n ě 18 by [BCH21]. Since versions of our main tool, the Bounded
Geodesic Image Theorem, are available in that context [SS12, BF14b, Tay14], it
would be interesting to see if our methods could be useful for questions such as the
following.

Question 1.8. When is the Gromov boundary of the free factor complex linearly
connected?

After this paper was initially released, it was discovered than an extension of
our analysis can be used to give a positive answer to Question 1.7 [HKSS23], and
our criterion for linear connectivity was improved and applied to fine curve graphs
[LT24].
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Hensel, Jeremy Kahn, John Mackay, Howard Masur, Yair Minsky, Piotr Przytycki,
Kasra Rafi, Saul Schleimer, Alessandro Sisto, and Richard Webb for helpful con-
versations. The author thanks Sayantan Khan for comments on a previous draft.
The author was partially supported by NSF Grants DMS 1856155 and 2142712 and
a Sloan Research Fellowship.

2. Sufficient conditions for connectivity

2.1. Unions of spheres. Theorem 1.1 will be proven with the following sufficient
condition for when unions of some number w of consecutive spheres are connected.
As in the case of the curve graph, here we use the notation Sr “ Srpcq for the
sphere of radius r in a fixed arbitrary graph Γ, and we also use Bρpzq to denote the
set of vertices of distance at most ρ from z. A path means a sequence of vertices
each adjacent to the next.

Lemma 2.1. Let Γ be an arbitrary graph, and let c P Γ be arbitrary. Fix w ą 0.
Suppose that for any r the following hold.

(1) For every z P Srpcq and x, y P Sr`1pcq X B1pzq there exists a path

x “ x0, x1, . . . , xℓ “ y

with
xi P Sr`1 Y ¨ ¨ ¨ Y Sr`w

for 0 ď i ď ℓ.

(2) For every adjacent pair x, y P Sr there exists a path

x “ x0, x1, . . . , xℓ “ y

with
xi P Sr`1 Y ¨ ¨ ¨ Y Sr`w

for 0 ă i ă ℓ.

Then for any r, the union Sr Y ¨ ¨ ¨ Y Sr`w´1 is connected.

No bound is assumed for the length ℓ of the paths. Later, in Proposition 2.2,
we will give a version of this lemma that implies linear connectivity of the Gromov
boundary of a hyperbolic graph, which will require additionally that the paths
above stay close to their endpoints.

For completeness, we provide a proof of the lemma.
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Proof. We prove that Sr Y ¨ ¨ ¨ Y Sr`w´1 is connected by induction on r. The base
case of r “ 0 is trivial, since every vertex can be connected to S0 “ tcu by a
geodesic.

For the inductive step, suppose that Sr Y¨ ¨ ¨YSr`w´1 is known to be connected.
Hence, any pair a, b P Sr`1 Y ¨ ¨ ¨ YSr`w can be joined by a path in Sr Y ¨ ¨ ¨ YSr`w.

For any path P in Sr Y ¨ ¨ ¨ Y Sr`w, let VrpP q denote the number of vertices
on the path in Sr, and let ErpP q denote the number of edges of the path that go
between two vertices of Sr. For any a, b P Sr`1 Y ¨ ¨ ¨ Y Sr`w, let fpa, bq denote the
minimal value of VrpP q ` ErpP q over all paths P from a to b in Sr Y ¨ ¨ ¨ Y Sr`w.
So fpa, bq measures the failure for a and b to lie in the same connected component
of Sr`1 Y ¨ ¨ ¨ Y Sr`w, and our goal is to show that always fpa, bq “ 0.

Suppose in order to find a contradiction that Sr`1 Y ¨ ¨ ¨ YSr`w is not connected,
and pick a, b P Sr`1Y¨ ¨ ¨YSr`w such that fpa, bq is positive but as small as possible.
Consider a path P in Sr Y ¨ ¨ ¨ Y Sr`w with vertices

a “ q0, q1, . . . , qm “ b

for which VrpP q ` ErpP q “ fpa, bq.
First suppose that this path contains a pair qj , qj`1 of consecutive vertices in

Sr. Applying assumption (2) with x “ qj , y “ qj`1, we obtain a path

qj “ x0, x1, . . . , xℓ “ qj`1.

The path P 1 with vertices

q0, q1, . . . , qj , x1, . . . , xℓ´1, qj`1, . . . , qm

has VrpP 1q “ VrpP q and ErpP 1q “ ErpP q ´ 1, giving a contradiction.
Next suppose that the path does not contain a consecutive pair of vertices in

Sr. So, if qj denotes a point on the path in Sr, we know that qj´1, qj`1 P Sr`1.
Applying assumption (1) with x “ qj´1, y “ qj`1, z “ qj , we obtain a path

qj´1 “ x0, x1, . . . , xℓ “ qj`1.

The path P 1 with vertices

q0, q1, . . . , qj´1, x1, . . . , xℓ´1, qj`1, . . . , qm

has VrpP 1q “ VrpP q ´ 1 and ErpP 1q “ ErpP q, giving a contradiction. □

2.2. The Gromov boundary. We now give a sufficient condition for the linear
connectivity of the Gromov boundary of a graph.

Proposition 2.2. Let Γ be a Gromov hyperbolic graph. Suppose that c P Γ, and
that the following hold.

(1) Every point in the Gromov boundary of Γ can be represented by a geodesic
ray starting at c.

(2) Every vertex of Γ is adjacent to point of Γ that is 1 farther from c.

Additionally suppose that there is some D ą 0 such that the following hold for all
r ě 0.

(3) For every z P Srpcq and x, y P Sr`1pcq X B1pzq there exists a path

x “ x0, x1, . . . , xℓ “ y

with

xi P pΓ ´ Brpcqq X BDpxq
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for 0 ď i ď ℓ.
(4) For every adjacent pair x, y P Sr there exists a path

x “ x0, x1, . . . , xℓ “ y

with

xi P pΓ ´ Brpcqq X BDpxq

for 0 ă i ă ℓ.

Then the Gromov boundary of Γ is linearly connected.

This can be compared to [BM91, Proposition 3.2] in the context of hyperbolic
groups. A significant part of the proof is inspired by [MS20, Proof of Proposition
5.2].

Proof. Let R be the set of half-infinite geodesic rays beginning at c. A point of
R can be viewed as a function X : t0, 1, 2, . . .u Ñ Γ with Xpiq P Sipcq and Xpiq
adjacent to Xpi ` 1q.

The first assumption gives that the Gromov boundary is a quotient of R by the
equivalence relation of staying bounded distance apart. The second assumption
gives that every point of Γ lies on an element of R.

We use a visual metric d on the Gromov boundary. Visual metrics have the
property that there exists 0 ă a ă 1 such that for all E sufficiently large there exist
C ą 0 such that if r is the maximal number such that dpXprq, Y prqq ď E, then

p1{Cqar ď dprXs, rY sq ď Car.

Fix E ě 10D, a and C so this estimate holds.
We will say that X,Y P R are r-adjacent if one of the following holds:

(1) Xprq “ Y prq, or
(2) dpXprq, Y prqq “ 1, or
(3) dpXprq, Y pr ` 1qq “ 1, or
(4) dpXpr ` 1q, Y prqq “ 1.

We will say they are at least r-adjacent if they are s-adjacent for some s ě r.
Similarly we will say they are more than r-adjacent if the same holds for some
s ą r. The key lemma is the following.

Lemma 2.3. There exists a constant C0 such that if X and Y are r-adjacent, then
there is a sequence X “ X0, X1, . . . , Xn “ Y such that Xi and Xi`1 are at least
pr ` 1q-adjacent for all i, and

diamptrX0s, rX1s, . . . , rXnsuq ď C0a
r.

Proof. We proceed in cases as follows. In all cases the diameter bound follows
immediately from the properties of the visual metric given above, so we merely
indicate how to construct the desired sequence.

Case 1: Xprq “ Y prq. Assumption (3) from the proposition’s statement with
z “ Xprq “ Y prq gives the existence of a path x0, . . . , xℓ from x0 “ Xpr ` 1q to
xn “ Y pr ` 1q. For 0 ă i ă ℓ, let Xi be any point in R that passes through xi.
Then

X “ X0, X1, . . . , Xℓ “ Y

is the desired path.
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Case 2: dpXprq, Y prqq “ 1. In this case we first apply assumption (4) to get a
path x0, . . . , xℓ from x0 “ Xprq to xℓ “ Y prq, and again let Xi be any point in R
that passes through xi. The geodesic ray X1 can be chosen to pass through Xprq,
and the geodesic ray Xℓ´1 can be chosen to pass through Y prq.

By Case 1, we can find a sequence X “ W0,W1, . . . ,Wk “ X1 and a sequence
Xℓ´1 “ Z0, . . . , Zm “ Y . The concatenation

X “ W0,W1, . . . ,Wk “ X1, X2, . . . , Xℓ´1 “ Z0, . . . , Zm “ Y

is the desired path

Case 3: dpXprq, Y pr`1qq “ 1. Let Z P R be defined by Zpiq “ Xpiq for i ď r and
Zpiq “ Y piq for i ą r. So X and Z are i-adjacent and fall into Case 1, and Z and Y
are pi ` 1q-adjacent. By Case 1, we can find a sequence X “ W0,W1, . . . ,Wk “ Z,
and the concatenation

X “ W0,W1, . . . ,Wk “ Z, Y

is the desired path.

Case 4: dpXpr ` 1q, Y prqq “ 1. This is identical to the previous case. □

Let X0 and Y0 be points of R. Let R be the maximal integer with

dpX0pRq, Y0pRqq ď E.

To prove the proposition, it suffices to build a path from X0 to Y0 of diameter at
most LaR, for some constant L not depending on X0 or Y0, and this is what we
will do.

We will iteratively define functions γr : Ir Ñ R, where

Ir Ă r0, 1s, r “ 0, 1, 2, . . .

is an increasing nested family of finite sets and γr|Iw “ γw for w ă r.
First pick a path x0, x1, . . . , xn from x0 “ X0pRq to xn “ Y0pRq of length n ď E.

Set

I0 “ ti{n : i “ 0, . . . , nu.

Define γ0p0q “ X0 and γ0p1q “ Y0. For 0 ă i ă n, define γ0pi{nq to be any ray in R
passing through xi. Note that γ0pi{nq and γ0ppi`1q{nq are at least pR´Eq-adjacent
for all i, and that

diampγpI0qq ď C1a
R

for a constant C1 not depending on X0 and Y0.
Now, assume we have constructed Ir and γr in such a way that adjacent points

of Ir map under γr to points that are at least pR´E ` rq-adjacent. We will define
Ir`1 and γr`1 piece by piece on each interval of r0, 1s ´ Ir.

Suppose pa, bq is an interval of r0, 1s ´ Ir. So we have assumed that γrpaq and
γrpbq are at least pR´E`rq-adjacent. If these two points are more than pR´E`rq-
adjacent, we set

Ir`1 X pa, bq “ tpa ` bq{2u

and γr`1ppa ` bq{2q “ γrpaq. Otherwise they are pR ´ E ` rq-adjacent, and we use
Lemma 2.3 to produce a path γrpaq “ X0, X1, . . . , Xn “ γrpbq. We set

Ir`1 X pa, bq “ ta ` ipb ´ aq{n : i “ 1, . . . , n ´ 1u,

and define γr`1pa` ipb´ aq{nq “ Xi. (The n here is not the same as the n above.)
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Set I “ YIr, and let γ be the extension of the γr to I. Tautologically we get

diampγpIqq ď diampγpI0qq ` 2
8
ÿ

r“1

max
xPIr

min
yPIr´1

dpγpxq, γpyqq.

Given the bounds previously obtained, this becomes

diampγpIqq ď C1a
R ` 2

8
ÿ

r“1

C0a
R´E`r,

which is bounded by a constant times aR. Since taking closure doesn’t change the
diameter of the set, we get the same diameter bound for the closure γpIq.

A similar estimate shows that if pa, bq is a component of r0, 1s´Ir then diampγpIqX

ra, bsq has diameter at most a constant times ar. This implies that γ is uniformly
continuous as follows. Let ϵ ą 0. Find N such that if pa, bq is a component of
r0, 1s ´ IN then diampγpIq X ra, bsq ď ϵ{2. Let δ be smaller than the largest interval
of r0, 1s ´ IN . If x, y P I have |x ´ y| ă δ, then we can find z P IN within δ of both
x and y, and we conclude that

dpγpxq, γpyqq ď dpγpxq, γpzqq ` dpγpzq, γpyqq ď ϵ{2 ` ϵ{2 “ ϵ.

Since γ is uniformly continuous on I it extends to a continuous function on
I “ r0, 1s. So γpIq is connected, giving the result. □

3. The essentially non-separating curve graph

The purpose of this section is to define a class of curves (and pairs of disjoint
curves) called “essentially non-separating”, which for our purposes will be just as
good as non-separating curves, and to justify our later claims that we can arrange
for various curves to be essentially non-separating. Our motivation for looking at
essentially non-separating curves can be seen by looking ahead to Section 4.

3.1. Definitions. Our main interest is punctured surfaces, but since cutting curves
leads to surfaces with boundary, the following definition will be helpful.

Definition 3.1. A cut surface is a connected surface of finite genus with a finite
number of punctures and boundary components, together with a pairing of a subset
of the boundary components1, such that the surface admits a hyperbolic metric
where the punctures are cusps and the boundary consists of geodesics, and the
surface is not a pants.

A cut surface has type ph,m, p, uq if it has genus h, m punctures, 2p paired
boundary components, and u unpaired boundary components.

Throughout this section, Υ “ Υh,m,p,u will denote a cut surface of type ph,m, p, uq.
The condition that Υ is not pants excludes the cases when h “ 0 and m`2p`u “ 3.
The reader should have in mind that Υ is a component of the complement of a
multi-curve on a surface Σ with no boundary components.

Definition 3.2. Let Υ̂ denote the surface of genus h ` p with m cusps and u
boundary components obtained by gluing each of the p pairs. A multi-curve on Υ
is called eventually non-separating if it does not separate Υ̂.

1A pairing of a set is an equivalence relation where all equivalence classes have size two. The
equivalence classes are called pairs. The boundary components in the subset with the equivalence

relation are called paired, and the other boundary components are called unpaired.
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Definition 3.3. A periphery of Υ is one of the punctures or boundary components.

Definition 3.4. A curve on Υ is called a pants curve if it bounds a genus 0
subsurface with no boundary components and two punctures.

Definition 3.5. A curve α P CΥ will be called essentially non-separating if it is
either eventually non-separating or a pants curve.

Definition 3.6. A multi-curve α Y β with two non-isotopic components will be
called essentially non-separating if α and β are essentially non-separating, and
either

(1) α Y β is eventually non-separating, or
(2) at least one of α or β is a pants curve, or
(3) or αYβ bounds a genus zero subsurface with no boundary components and

1 puncture.

Definition 3.7. The essentially non-separating curve graph C0Υ is the subgraph
of CΥ whose vertices are essentially non-separating, with an edge from α to β if
α Y β is essentially non-separating.

3.2. Non-emptiness and 1-density. Our first result on the essentially non-separating
curve graph concerns its non-emptiness.

Lemma 3.8. Suppose h ą 0 or h “ 0 and either m ě 2 or p ě 1. Then C0Υ ‰ H.

For the proof, one should keep in mind that Υ has been assumed not to be a
pants.

Proof. If h ą 0 then C0Υ has non-separating curves.
If h “ 0 and m ě 2, C0Υ has pants curves.
If h “ 0 and p ě 1, C0Υ contains separating but eventually non-separating

curves. □

Lemma 3.9. Suppose that Υ is a subsurface of another cut surface Υ1, and as-
sume that each pair of boundary components of Υ are either a pair of boundary
components of Υ1 or bound an annulus in Υ1. Then C0Υ is a subgraph of C0Υ1.

If α P C0Υ and β P C0Υ1 and β does not cut Υ and is not a boundary component
of Υ, then there is an edge in C0Υ1 from α to β.

Here we assume that each puncture of Υ is a puncture of Υ1, and as always we
assume that the boundary components of Υ are essential in Υ1.

Proof. The first claim follows direction from the definitions, after noting that an
eventually non-separating multi-curve in Υ is also eventually non-separating in Υ1.

The second claim is by definition if either α or β is a pants curve. So it suffices
to note that if both α and β are essentially non-separating then so is α Y β. That
follows from the fact that if Σ is a connected surface and U is a connected subsurface
of Σ, and γ is a non-separating curve on U , then γ is non-separating on Σ, applied
to Σ “ Υ̂1 ´ β and U “ Υ̂ and γ “ α. □

Lemma 3.10. Suppose either h ě 1 or suppose h “ 0 and one of the following
hold:

(1) m ě 3, or
(2) p ě 2 and m ` 2p ` u ě 5, or
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(3) p “ 1 and m “ 2 and u “ 0.

Then C0Υ is 1-dense in CΥ.

By definition 1-dense means that every vertex in CΥ is either in C0Υ or adjacent
to a vertex in C0Υ.

Proof. Take α P CΥ not in C0Υ. So α is not eventually non-separating and is not
a pants curve.

Υ ´ α has two components. If h ě 1, one of these has positive genus, and so
there is a non-separating curve disjoint from α. So assume h “ 0.

If there is a pair of punctures on one side of α, then α is disjoint from the loop
around that pair. So assume m ď 2, and that there is at most 1 puncture on each
side of α.

If p ě 2 and m ` 2p ` u ě 5, there is a paired curve on one component that
also has another periphery that is not the other half of the pair. A loop around the
paired curve and this periphery gives an eventually non-separating curve.

The previous argument also works if p “ 1,m “ 2, u “ 0, since there is a
puncture on each side. □

3.3. Connectivity. We now turn to the connectivity of C0Υ, where we break up
the work into a number of lemmas. The first few concern the case h ě 1.

Lemma 3.11. There exists C depending only on Υ such that the following holds.
Suppose α, β P CΥ are non-separating. Then there is a sequence

α “ x0, x1, . . . , xk “ β

of non-separating curves, all of which are within distance C of a geodesic from α
to β in CΥ, such that:

(1) if h ě 2, then xi is disjoint from xi`1 for all i, and moreover xi Y xi`1 is
non-separating, and

(2) if h “ 1, then the intersection number of xi and xi`1 is equal to 1 for all i.

Proof sketch. We start by noting that if x, y are disjoint non-separating curves on a
surface of genus at least 2, then either xY y is non-separating, or there is a curve z
disjoint from both x and y such that both xYz and zYy are jointly non-separating.
(To prove this, suppose that xYy is separating. One component has positive genus,
and we pick z to be non-separating on that component.) This observation implies
that in the h ě 2 case it suffices to find a path where all the xi are non-separating,
without worrying that the xi Y xi`1 are non-separating, since one can then modify
such a path by inserting curves between each pair xi, xi`1 as required to get the
result.

We also note that if x and y are disjoint non-separating curves on a torus, then
there is a curve z that is non-separating and intersects each of x and y once. Thus
we get that in the torus case, it similarly suffices to find a sequence where the
intersection number between xi and xi`1 is at most 1.

Let PΥ be the pants complex of Υ. Let Pα be a pants decomposition containing
the curve α, and let Pβ be a pants decomposition containing the curve β. We will
use the following fact: There is a path

Pα “ P0, P1, . . . , Pℓ “ Pβ



12 ALEX WRIGHT

in the pants complex such that each curve of each Pi is bounded distance from the
geodesic from α to β.

Let ni be a non-separating curve in Pi. Pick n0 “ α and nℓ “ β. By definition
of the pants complex, we have that that either ni and ni`1 are disjoint, or intersect
once and fill a one-holed torus, or intersect twice and fill a four-holed sphere.

First suppose h ě 2. For each i for which ni and ni`1 fill a one-holed torus, let
ri be a non-separating curve in the complement of that torus, and replace ni, ni`1

in the sequence with ni, ri, ni`1.
For each i for which ni and ni`1 fill a four-holed sphere S0,4, note that since the

ni are non-separating, at least one of the 4 boundary components of S0,4 must be
non-separating. Let ri be a non-separating boundary component of S0,4 and again
replace ni, ni`1 in the sequence with ni, ri, ni`1. This concludes the h ě 2 case.

In the h “ 1 case, it suffices to consider the pairs ni, ni`1 that fill a S0,4. In that
case, again we see that at least one boundary component z must be non-separating,
and we can replace ni, ni`1 with ni, z, ni`1 in the sequence. □

Lemma 3.12. If h ě 2, then C0Υ is connected.
Moreover, there exists C such that any two vertices of C0Υ can be joined by a

path in C0Υ that stays within C of a CΥ geodesic between the two points.

Proof. We first note that every curve in C0Υ either is non-separating or is adjacent
in C0Υ to a non-separating curve. This follows since a separating curve divides the
surface into two components, at least one of which must have positive genus. So,
it suffices to show that any two non-separating curves x, y P C0Υ can be connected
to each other. That follows from 3.11. □

Lemma 3.13. Suppose h “ 1 and one of the following hold:

(1) m ě 2,
(2) p ě 1 and m ` 2p ` u ě 3.

Then C0Υ is connected.
Moreover, there exists C such that any two vertices of C0Υ can be joined by a

path in C0Υ that stays within C of a CΥ geodesic between the two points.

Proof. First note that every curve in C0Υ is equal to or adjacent in C0Υ to a non-
separating curve. This follows since the complement of a separating curve must
have a component that has genus 1, and that component has a non-separating
curve. So, it suffices to show that any two non-separating curves x, y P C0Υ can be
connected to each other.

Let x “ x0, x1, . . . , xℓ “ y be the path produced by Lemma 3.11. Note that
Υ ´ pxi Y xi`1q is connected for all i.

For each i, let yi be a pants curve disjoint from xi Y xi`1 (if m ě 2) or a loop
around one paired boundary component and another boundary component that
isn’t paired to the first (if p ě 1 and m ` 2p ` u ě 3). Then

x0, y0, x1, y1, x2, y1, . . . , xd

is a path in C0Υ. □

We now turn to techniques that will work when h “ 0. For any subset G of
the peripheries of Υ, let CGΥ be the set of curves in CΥ that bound a genus 0
surface containing two peripheries, both of which are in G. Thus CGΥ corresponds
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naturally to the simple arcs joining two different elements of G. Note that CGΥ is
empty if |G| ă 2.

Lemma 3.14. There exists C depending only on Υ such that the following is true
for any subset G of the peripheries. Suppose α, β P CGΥ. Then there is a sequence

α “ x0, x1, . . . , xℓ “ β

of curves in CGΥ, such that for all i the arcs corresponding to xi and xi`1 are
disjoint except possibly at their endpoints, and such that each xi lies within C of
the geodesic from α to β.

The proof of Lemma 3.14 is contained in [HPW15]. The condition that the arcs
are disjoint except possibly at their endpoints can be rephrased by saying that one
of the following is true for all i:

(1) xi and xi`1 are disjoint,
(2) exactly one periphery enclosed by xi is also enclosed by xi`1, and xi and

xi`1 have intersection number 2, or
(3) xi and xi`1 enclose the same peripheries and xi and xi`1 have intersection

number 4.

Lemma 3.15. Suppose h “ 0 and one of the following hold:

(1) p ` m ě 5, or
(2) p “ 4 and u ě 1 and m “ 0.

Then C0Υ is connected.
Moreover, there exists C such that any two vertices of C0Υ can be joined by a

path in C0Υ that stays within C of a CΥ geodesic between the two points.

While we have not claimed that any of the sufficient conditions in this section
are nescessary, we wish to emphasize that Lemma 3.15 in particular is likely not
sharp.

Proof. If p ` m ě 5, let G be a set of peripheries containing one of each pair,
together with all punctures. If m “ 0, p “ 4, u ě 1, let G be a set containing one
of each pair and exactly one unpaired boundary. In all cases |G| ě 5, CGΥ Ă C0Υ,
and there is an edge in C0Υ between any two disjoint curves in CGΥ.

Sublemma 3.16. Every curve in C0Υ is equal to or adjacent in C0Υ to an element
of CGΥ.

Proof. Consider a curve α P C0Υ´CGΥ. Since pants curves are in CGΥ, α must be
eventually non-separating. Since |G| ě 5, one side of α has at least three elements
in G.

Suppose only a single pair W is separated by α. (This means α is “only barely”
eventually non-separating.) One side of α has at least three elements of G, so we
can find a loop β around two elements of G, neither of which is W . The curve α is
adjacent to β in C0Υ.

Finally suppose that more than one pair is separated by α. Again since one side
of α has at least 3 elements of G, we can pick β P CGΥ adjacent to α in C0Υ. □

Sublemma 3.17. Suppose α, β P CGΥ are not disjoint but correspond to arcs
which are disjoint except possibly at their endpoints. Then there is a curve γ P CGΥ
disjoint from both α and β.
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Proof. First suppose that α and β have intersection number 4. In this case they
fill an annulus containing two elements of G. Since |G| ´ 2 ě 3, one side of this
annulus contains at least 2 elements of G, and we can pick γ to be a loop around
two such elements of G.

Next suppose that α and β have intersection number 2. In this case they fill a
disc containing three elements of G. The complement of this disc contains at least
two elements of G, and we can pick γ to be a loop around two such elements of
G. □

The result now follows easily from Lemma 3.14 and the sublemmas. □

4. The Bounded Geodesic Image Theorem

We start by recalling the main tool for our analysis, the Bounded Geodesic Image
Theorem of Masur and Minsky [MM00].

Theorem 4.1. For every connected surface U , there exists a constant M such that
if V is a subsurface of U , and a, b P CU , and

dV pa, bq ą M,

then every geodesic from a to b contains a curve which does not cut V .

Whenever we discuss a subsurface V of a surface U , we assume that every com-
ponent of the boundary BV is essential and non-peripheral in U . The quantity
dV pa, bq denotes the distance in CV between the subsurface projections to V of a
and b. One says that a curve cuts V if it cannot be isotoped outside of V .

It is known that the constant M can be taken to be independent of U [Web15];
we do not require that, but for notational simplicity we will assume we have fixed
a constant M that works for all U .

In Section 3, we gave a number of definitions in the context of cut surfaces. For
clarity, we now restate special cases of two of these definitions in the more typical
context of surfaces with at most finitely many punctures.

Definition 4.2. A simple curve on a surface is called a pants curve if it bounds
a genus 0 surface containing exactly two punctures. A curve is called essentially
non-separating if it is non-separating or a pants curve.

One can rephrase the definition by saying that a pants curve is one whose comple-
ment contains at most one non-pants component. Following [Sch11, BM15, KL08b,
Man13], we record the following corollary of Theorem 4.1.

Corollary 4.3. Assume Σ is non-exceptional. Every a P Sr XCΣ that is essentially
non-separating is adjacent to a vertex of Sr`1. Moreover, that vertex can be taken
to be essentially non-separating.

We include a proof since it inspired our analysis and we will rely frequently on
the techniques it uses.

Proof of Corollary 4.3. Note that the assumptions give that either Σ ´ a is con-
nected, or its complement consists of a three times punctured sphere and one other
component. In the first case, set V “ Σ ´ a, and in the second set V to be the
component of Σ ´ a that is not a three times punctured sphere. Note that V has
infinite diameter curve complex.
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Consider any b P CV for which dV pb, cq ą M . Theorem 4.1 gives that any
geodesic from b to c must contain a curve that fails to cut V . The only curve that
fails to cut V is a itself, so we see that any geodesic from b to c must pass through
a. Since a and b are adjacent, this implies that b P Sr`1.

Lemma 3.10 allows us to choose b to be essentially non-separating. □

Remark 4.4. Our use of the Bounded Geodesic Image Theorem could be avoided, by
replacing assumptions like dV pb, cq ą M with assumptions like dV pb, cq ą Cdpb, cq
and using that subsurface projections are coarse Lipschitz; compare to [Sch11,
Lemma 2.2]. (Here C is the Lipschitz constant.)

5. The key propositions

In this section we state two key propositions, which will be proven in the next
two sections, and apply them to obtain Theorem 1.1 and Theorem 1.2.

5.1. The five times punctured sphere. The first of our key propositions is the
following.

Proposition 5.1. In CΣ0,5, for any c and any r the following hold.

(1) For every z P Sr and x, y P Sr`1 X B1pzq there exists a path

x “ x0, x1, . . . , xℓ “ y

with

xi P pSr`1 Y Sr`2 Y Sr`3q X B6pzq

for 0 ď i ď ℓ.

(2) For every adjacent pair x, y P Sr there exists a path

x “ x0, x1, x2, x3, x4 “ y

with

xi P Sr`1 Y Sr`2

for 0 ă i ă 4.

Proposition 5.1 implies the low complexity cases of Theorem 1.1 as follows.

Proof Theorem 1.1 in the cases pg, nq P tp0, 5q, p1, 2qu. Since CΣ0,5 and CΣ1,2 are
isomorphic, it suffices to prove the result for CΣ0,5. The result follows using Lemma
2.1. □

5.2. A subgraph avoiding dead ends. In the higher complexity case, for tech-
nical reasons including the existence of dead ends [BM15], we found it convenient
to phrase many of our arguments in a rather specific subgraph of the curve graph.
For c P CΣg,n, define the subgraph CcΣg,n of CΣg,n as follows.

‚ A vertex α P CΣg,n will belong to CcΣg,n if it is essentially non-separating
or if α “ c.

‚ If α, β are vertices of CcΣg,n that are joined by an edge in CΣg,n, we join
them by an edge in CcΣg,n if either dpc, αq ‰ dpc, βq or if Σg,n ´ pα Y βq

has at most one component that is not a three times punctured sphere.

Thus, the vertices of CcΣg,n are tcu union the vertices of the essentially non-
separating curve graph C0Σg,n, and disjoint curves are joined by an edge if they
have different distances to c or if they are joined by an edge in C0Σg,n.
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Lemma 5.2. Every a P Sr can be joined to c by a geodesic c “ x0, x1, . . . , xr “ a
where all xi, i ă r are in CcΣ.

Note that Lemma 5.2 implies that Sc
r “ CcΣ X Sr is the sphere of radius r with

center c in the graph CcΣ.

Proof. Let c “ x0, x1, . . . , xr “ a be a geodesic from c to a with the minimal
possible number of xi not in CcΣ. Suppose in order to find a contradiction that
some xj , 0 ă j ă r is not in CcΣ.

Let F be the subsurface filled by xj´1 and xj`1, so F is connected. If some
component of Σ ´ F has at least two punctures, let γ be a loop in Σ ´ F around
two punctures. Otherwise, let γ be a non-separating curve in a component of Σ´F .

Replacing xj with γ gives a contradiction to the fact that the geodesic was chosen
to have the minimum number possible of vertices not in CcΣ. □

To account for the difference between Sr and Sc
r , we have the following.

Lemma 5.3. Assume Σ is not exceptional or low complexity. For all a P Sr not
in CcΣ there exists a1 P Sr X CcΣ adjacent to a.

Proof. By Lemma 5.2 there exists b P Sr´1 X CcΣ adjacent to a. Suppose that a
is not in CcΣ, so Σ ´ a has two components, neither of which are a three times
punctured sphere.

Let U be the component of Σ ´ a not containing b. Let a1 P CcΣ be a curve in
CU for which dU pa1, cq ą M , which can be found using Lemma 3.10.

By Theorem 4.1, every geodesic from a1 to c must contain some curve e that fails
to cut U . This e must be disjoint from (or equal to) a since it fails to cut U and
a is on the boundary of U . If this e has distance less than r ´ 1 to c, that would
imply that a had distance at most r ´ 1 to c, a contradiction. So e has distance at
least r ´ 1 to c, and hence a1 has distance at least r to c. Since a1 is disjoint from
b P Sr´1 the distance from a1 to c is at most r, so we get a1 P Sr. □

5.3. The medium and high complexity cases. For convenience we continue to
use the notation Sc

r “ Sr X CcΣ. The second key proposition is the following.

Proposition 5.4. In the curve complex CΣ with Σ medium or high complexity, for
any c and any r we have the following.

(1) For every z P Sc
r and x, y P Sc

r`1 X B1pzq there exists a path

x “ x0, x1, . . . , xℓ “ y

in the graph CcΣg,n with

xi P pSc
r`1 Y Sc

r`2q X B2pzq

for 0 ď i ď ℓ. If Σ has high complexity, we can moreover obtain

xi P Sc
r`1 X B1pzq

for 0 ď i ď ℓ.

(2) For every adjacent pair x, y P Sc
r there exists a path

x “ x0, x1, x2 “ y

in CcΣg,n with x1 P Sc
r`1.

We can now explain how Proposition 5.4 implies Theorem 1.1 in the medium
and high complexity case.
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Proof Theorem 1.1 in the medium and high complexity cases. Lemma 2.1 implies that
the spheres Sc

r in the graph CcΣ are connected in the high complexity case, and
similarly for the union Sc

r YSc
r`1 in the medium complexity case. Since Lemma 5.3

gives that every element of Sr is either in CcΣ or adjacent to an element of Sc
r , this

gives the result. □

Remark 5.5. Roughly speaking, we will prove Proposition 5.4 by induction on the
complexity of Σ. The proof for a given surface will make use of Theorem 1.1 for
lower complexity surfaces. So it is important to note that really what we have just
done is show that if Proposition 5.4 holds for a surface Σ, then Theorem 1.1 holds
for that same Σ.

5.4. Linear connectivity. We conclude by explaining why the propositions imply
linear connectivity.

Proof of Theorem 1.2. Fix x P CΣ. If Σ “ Σg,n has type pg, nq P tp0, 5q, p1, 2qu, we
set Γ “ CΣ. Otherwise, we set Γ “ CcΣ. Since Γ is 1-dense in CΣ, the Gromov
boundaries of Γ and CΣ are equal.

Recall that [Min10, Lemma 5.14] gives that any point of of the Gromov boundary
can be represented by a geodesic ray starting at c in CΣ. This can be easily modified
to lie in Γ, for example using the observation in the proof of Lemma 5.2 first on the
vertices of even index and then on the vertices of odd index. So assumption (1) in
the statement of Proposition 2.2 is satisfied. Corollary 4.3 gives that assumption
(2) is satisfied.

Propositions 5.1 and 5.4 show the remaining two assumptions are also satisfied,
so Proposition 2.2 shows that Γ has linearly connected boundary. □

6. The five times punctured sphere

In this section, let Σ “ Σ0,5. The goal of this section is to prove Proposition 5.1.

6.1. Pentagons. We begin by recalling some basics on CΣ when Σ “ Σ0,5.

Lemma 6.1. The curve complex CΣ does not contain cycles of length 3 or 4.

Such cycles are called triangles and quadrilaterals respectively. We also note the
following immediate consequence.

Corollary 6.2. If x and y are vertices of CΣ with dpx, yq ď 2, then there is a
unique geodesic from x to y.

Given the above, it is perhaps unsurprising that the geometry of CΣ is often
studied using pentagons.

Definition 6.3. A pentagon in CΣ is a 5 tuple of curves pa1, a2, a3, a4, a5q such
that the 5 punctures of Σ can be labeled by the elements of Z{5Z in such a way
that, for each i, the curve ai

(1) goes around punctures i and i ` 1,

(2) has intersection number 2 with ai´1 and with ai`1, and

(3) has intersection number 0 with ai´2 and with ai`2.

Traversing these curves in the cyclic order pa1, a3, a5, a2, a4q gives a 5-cycle in the
graph CΣ. See Figure 1.
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Figure 1. The five curves in a pentagon (left), and the 5-cycle
they define in CΣ (right).

It is known that every 5-cycle in CΣ arises from a pentagon according to our
definition [AL13, Theorem 3.1], but we do not require that result.

Warning 6.4. We will call the tuple pa1, a2, a3, a4, a5q a pentagon, and the tu-
ple pa1, a3, a5, a2, a4q a 5-cycle. Because of the different cyclic order, the terms
pentagon and 5-cycle are not synonymous here.

The following two lemmas produce pentagons that will be helpful for our analysis.

Lemma 6.5. Suppose a1, a3 P Sr´1 are disjoint and distinct. Then there are curves
a2, a4, a5 P Sr Y Sr`1 such that pa1, a2, a3, a4, a5q is a pentagon.

Proof. Again, start with any a2, a4, a5 P CΣ such that pa1, a2, a3, a4, a5q is pentagon,
and then replace it by its image under a large Dehn twist in a1 and a large Dehn
twist in a3 to assume that

da1
pa2, cq ą M, and da3

pa2, cq ą M.

It suffices to show a2 P Sr`1, so consider a geodesic from a2 to c. Theorem 4.1
gives that this geodesic must contain a curve that doesn’t cut a1, and that it must
contain a curve that doesn’t cut a3.

First consider the possibility that the geodesic contains a single curve b that
simultaneously fails to cut both a1 and a3. The only such curves are a1 and a3
themselves, so without loss of generality assume b “ a1. We know dpa2, a1q “ 2,
and the only thing adjacent to both a1 and a2 is a4, so the geodesic must start
a2, a4, a1. This gives the result.

Next assume the previous possibility does not occur. Say that, starting at a2,
the geodesic first contains a curve b that doesn’t cut a1 and then contains a curve
b1 that doesn’t cut a3, and neither of these curves are a1 or a3. Note dpa2, b

1q ě 2.
Since b1 has distance 1 from a3 P Sr´1, we’re done if dpa2, b

1q ě 3.
So assume dpa2, b

1q “ 2. Thus b comes immediately next to a2 and hence is
disjoint from both a2 and a1. Thus b “ a4. Since b1 is disjoint from b “ a4 and a3,
we get that b1 “ a1, a contradiction. □

Lemma 6.6. Suppose a3, a4 P Sr have intersection number 2 and are both disjoint
from a1 P Sr´1. Then there are curves a2, a5 P SrYSr`1 such that pa1, a2, a3, a4, a5q

is a pentagon.
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Proof. Start with any a2, a5 that such that pa1, a2, a3, a4, a5q is a pentagon, then
replace it with its image under a large Dehn twist about a1 to assume that

da1pa2, cq ą M, and da1pa5, cq ą M.

We wish to show a2 P Sr Y Sr`1. Consider a geodesic from a2 to c. Theorem 4.1
gives that this geodesic must contain a curve b that doesn’t cut a1. First assume
that dpa2, bq “ 1. In this case Corollary 6.2 gives that b “ a4, and we get a2 P Sr`1.
Next assume that dpa2, bq ě 2. The fact that b doesn’t cut a1 P Sr´1 guarantees
that dpc, bq ě r ´ 2. So we get dpc, a2q ě r as desired. □

6.2. First notes on spheres. The very first observation on spheres is that S1

has no edges, and so is as disconnected as possible. In analyzing larger spheres,
the following definitions will be useful, where we continue to assume that a center
vertex c has been fixed.

Definition 6.7. A vertex x P CΣ has unique backtracking if it has a unique neigh-
bour y with dpy, cq “ dpx, cq ´ 1.

Definition 6.8. A vertex x P CΣ has no sidestepping if it does not have any
neighbour y with dpy, cq “ dpx, cq.

Definition 6.9. A vertex x P CΣ is forward facing if it has unique backtracking
and no sidestepping.

The absence of edges in S1 immediately gives the following.

Lemma 6.10. Every x P S1 is forward facing.

As a warm up, we can also easily observe the following.

Lemma 6.11. Every sphere Sr contains forward facing vertices.

Proof. We assume r ą 1. For any y P Sr´1, pick x adjacent to y with dU px, cq much
larger thanM , where U is the component of Σ´y that isn’t a three times punctured
sphere. As noted in the proof of Corollary 4.3, we have that every geodesic from x
to c goes through y, and in particular that x P Sr. So x has unique backtracking.

To see that x has no sidestepping, suppose in order to obtain a contradiction
that z P Sr is adjacent to x. Since z ‰ y, we see that z cuts U . By the coarse
Lipschitz property of subsurface projections, we see that dU pz, cq is approximately
equal to dU px, cq, and in particular we get that dU pz, cq ą M . So any geodesic from
z to c passes through y. Since z P Sr and y P Sr´1, we see that actually z and y
are adjacent. Thus x, y, z form a triangle, giving a contradiction. □

Corollary 6.12. For every r, the sphere Sr is disconnected.

Proof. Lemma 6.11 gives that Sr has vertices that are not adjacent to any other
vertex of Sr. So the graph Sr contains vertices with no edges. □

We also make the following observations.

Lemma 6.13. For any c, S1pcq Y S2pcq is connected.

Proof. Consider two points in S1. Connect them with a path x0, x1, . . . , xk in the
Farey graph CpΣ ´ cq not passing through c.
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For each 0 ď i ă k, consider a 5 cycle pxi, yi, zi, xi`1, cq. The fact that S1 does
not have edges implies that yi, zi P S2. The path

x0, y0, z0, x1, y1, z1, . . . , xk´1, yk´1, zk´1xk

is contained in S1 Y S2 and proves the result. □

Lemma 6.14. Suppose a P Sr is forward facing. Then if b, b1 P Sr`1 are neighbours
of a, then there is a path from b to b1 in pSr`1 Y Sr`2q X B2paq.

Proof. The curve complex CpΣ´aq is the Farey graph, and removing any given ver-
tex does not disconnect the Farey graph. So we can find a path b “ x0, x1, . . . , xk “

b in CpΣ´aq not passing through the unique neighbour of a in Sr´1. All the vertices
of this path are in Sr`1 since a has no sidestepping.

Using Lemma 6.6, for each i we can find a 5-cycle pxi, yi, zi, xi`1, aq with yi, zi P

Sr`1 Y Sr`2.
The path

x0, y0, z0, x1, y1, z1, . . . , xk´1, yk´1, zk´1xk

lies in pSr`1 Y Sr`2q X B2paq, proving the result. □

Lemma 6.15. For any c, S2pcq Y S3pcq is connected.

Proof. Since every element of S1 is forward facing, Lemma 6.14 gives that if a P S1,
and b, b1 P S2 are both neighbours of a, then there is a path from b to b1 in S2 YS3.

Now, given two points of S2 Y S3 that we wish to join with a path, we first join
them by a path in S1 Y S2 Y S3, which is possible by Lemma 6.13. Since S1 does
not have edges, this path cannot contain consecutive vertices in S1. The previous
remark allows the path to be modified by replacing each entry of the path into S1

by a path in S2 Y S3. □

6.3. The proof. Our key lemma is the following.

Lemma 6.16. Suppose a P Sr and b, b1 P Sr`1 X B1paq. Then there is a path
b, x1, x2, . . . , xk, b

1 in CΣ with

(1) dpxi, aq P t2, 3u,

(2) dpxi, cq ě r,

(3) dpxi, cq “ r implies dpxi, aq “ 2, and the unique vertex adjacent to both xi

and a lies in Sr´1, and that xi has unique backtracking, and

(4) if a has unique backtracking then dpxi, cq “ r also implies xi has no sidestep-
ping.

Proof. Consider a path x1, . . . , xk in S2paq Y S3paq, starting next to b and ending
next to b1, as must exist by Lemma 6.15. Without loss of generality, by applying a
large power of the Dehn twist in a, we can assume dapxi, cq is much greater than
M for all i. We will prove the lemma with this choice of path.

The first point is true by construction. For the second point, suppose that
dpxi, cq ă r. By the Bounded Geodesic Image Theorem, a geodesic from xi to c
must pass though B1paq. But any point in the geodesic cannot be in B1paq because
B1paq Ă Sr´1 Y Sr Y Sr`1. This proves the second point.

For the third point, we again use that any geodesic from xi to c must contain
a vertex z in B1paq; in fact z must be the vertex adjacent to xi on the geodesic,
and z must be in B1paq X Sr´1. Thus z lies on a geodesic from xi to a of length 2.
Since geodesics of length 2 are unique, there is only one possibility for z.
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For the last point, suppose that y is a sidestep of xi. There is a unique vertex z
adjacent to xi and a, and it is in Sr´1, so since y P Sr by assumption we get that
y ‰ z and that y cuts a. By the coarse Lipschitz property of subsurface projections,
we get that dapy, cq ą M . The same analysis as in the previous paragraph shows
that the geodesic from y to c must start with a curve in Sr´1 X B1paq. Since a
has unique backtracking, the curve z is the unique such curve, so we get that y is
adjacent to z. But now y, xi, z is a triangle, contradicting the fact triangles do not
exist in CΣ. □

Lemma 6.17. Suppose a P Sr and b, b1 P Sr`1 are neighbours of a. Then b and b1

can be joined by a path in pSr`1 Y Sr`2 Y Sr`3q X B6paq.

Proof. We prove the lemma using a sequence of sublemmas.

Sublemma 6.18. Suppose a P Sr is forward facing and b, b1 P Sr`1 are neighbours
of a. Then b and b1 can be joined by a path in pSr`1 Y Sr`2 Y Sr`3q X B2paq.

Proof. This is Lemma 6.14. (Here we don’t need Sr`3.) □

Sublemma 6.19. Suppose a P Sr has unique backtracking and b, b1 P Sr`1 are
neighbours of a. Then b and b1 can be joined by a path in pSr`1 Y Sr`2 Y Sr`3q X

B4paq.

Proof. Lemma 6.16 gives the existence of a path in pSrYSr`1YSr`2YSr`3qXB3paq

from b to b1, with the extra property that each vertex on the path in Sr is forward
facing and is in B2paq. Since forward facing vertices in particular have no side
stepping, the path does not have adjacent vertices in Sr. We can now replace the
vertices in Sr with paths given by Sublemma 6.18 to obtain the result. □

To complete the proof, note that Lemma 6.16 gives the existence of a path in
pSr Y Sr`1 Y Sr`2 Y Sr`3q X B3paq from b to b1, with the extra property that each
vertex on the path in Sr has unique backtracking and is in B2paq.

Using Lemma 6.5 we can modify this path to get the additional assumption that
no two adjacent vertices are in Sr, resulting in a path in pSr YSr`1YSr`2YSr`3qX

B4paq. Sublemma 6.19 can then be used to modify the path to avoid the vertices
in Sr. □

Proof of Proposition 5.1. The first claim follows from Lemma 6.17, and the second
claim from Lemma 6.5. □

7. The medium and high complexity cases

The goal of this section is to prove Proposition 5.4. Throughout this section,
we assume Σ is medium or high complexity. We continue to use C0Σ to denote
the essentially non-separating curve graph, and CcΣ to denote the result of adding
the vertex c to C0Σ as well as all edges between curves that are disjoint and have
different distances to c (see Section 5.2 for details).

7.1. A note on the medium complexity case. To help motivate why the
medium complexity case has a slightly different statement, we give the following
observation, which will not be used.

Lemma 7.1. If Σ “ Σ0,6 and c is a loop around a pair of punctures, then Sc
1 is

disconnected.
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Proof. Label the punctures by t1, 2, 3, 4, 5, 6u. Every element of CcΣ is a loop
around a pair of punctures, and we will call a loop around puncture i and puncture
j an “ij loop”.

Suppose c is a 12 loop. Note that every element of Sc
1 is an ij loop with i, j P

t3, 4, 5, 6u. Note also that, in Sc
1, 34 loops can only be adjacent to 56 loops, 35

loops can only be adjacent to 46 loops, and 36 loops can only be adjacent to 45
loops. So Sc

1 has at least three connected components. □

7.2. The structure of the proof. For any z P Sc
r , we define

Opzq “ ta P S1pzq X CcΣ : dU pa, cq ą Mu,

where U is the unique component of Σ ´ z that isn’t a pants.
Note that Theorem 4.1 implies that O Ă Sc

r`1. We think of O as the subset of
S1pzq which is most obviously in Sc

r`1. In subsequent subsections we will prove the
following two lemmas.

Lemma 7.2. For z P Sc
r , any x P S1pzq XSc

r`1 can be connected to Opzq by a path
in S1pzq X Sc

r`1.
Moreover, for any N , any point in Opzq can be connected by a path in Opzq to

a point e with dU pe, cq ą N .

Lemma 7.3. Suppose Theorem 1.1 holds for surfaces of smaller complexity than
Σ. If Σ is high complexity, then Opzq is connected. If Σ is medium complexity,
then any two points of Opzq can be joined by a path in B2pzq X pSc

r`1 Y Sc
r`2q.

For both of these lemmas, it is implicit that we are working in (subgraphs of)
the graph CcΣ. Before we give the proofs, we explain how the two lemmas imply
Proposition 5.4.

Proof of Proposition 5.4. Suppose in order to find a contradiction that Proposition
5.4 is false, and let Σ be a minimal complexity surface for which it fails. Thus,
Remark 5.5 gives that Theorem 1.1 can be assumed to hold for all surfaces of
smaller complexity.

Lemmas 7.2 and 7.3 imply (1) holds.
To see that (2) holds, suppose x, y P Sc

r are adjacent. By definition of the
graph CcΣ and our complexity assumption on Σ, we know that there is a unique
component V of Σ ´ px Y yq that is not a pants.

By appealing to Lemma 3.8 and using that the mapping class group action on CV
has unbounded orbits, we can find a curve x1 P CV that is essentially non-separating
and such that dV px1, cq ą M . Then Theorem 4.1 gives that every geodesic from z
to c contains a curve not cutting V . The only curves not cutting V are x and y, so
this shows that x1 P Sc

r`1. This completes the verification of (2), showing that in
fact Proposition 5.4 actually does hold for Σ. □

7.3. Getting into Opzq. We now turn to the proof of Lemma 7.2, first giving
another lemma on picking essentially non-separating curves.

Lemma 7.4. Let Σ have medium or high complexity. Let a, b P CΣ be disjoint and
(individually) essentially non-separating. Then, there is a curve d P CΣ such that
d is disjoint from and not isotopic to a and b, and such that a Y d and b Y d are
essentially non-separating. If V is a component of Σ ´ pa Y bq containing such a
curve d, then the set of such d is coarsely dense in CV .
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Proof. The last statement is immediate using the mapping class group action, so it
suffices to find a single d. We proceed in cases, all of which are illustrated in Figure
2.

Figure 2. The proof of Lemma 7.4. The number below and to
the right of each surface indicates which case it belongs to.

Case 1: a, b and a Y b are all non-separating. The existence of these curves
implies g ě 2, and we can pick d so that a, b and d bound a pants whose complement
is connected.

Case 2: a and b are both non-separating and a Y b is separating. If
m ě 3, then we can pick d to be a loop around two punctures on a component of
Σ ´ pa Y bq with at least 2 punctures. If m ă 3 then g ě 2 and we can pick d to be
a non-separating curve on a component of Σ ´ pa Y bq of positive genus.

Case 3: a is non-separating and b is a pants curve (or vice versa). If
m ě 3, we pick d so that a and d bound a once punctured annulus. If m ď 2 then
g ě 2 and we can pick d so that d and a Y d are non-separating.

Case 4: a and b are both pants curves. If m ě 6, we can pick d to also
go around a pair of punctures. If m ď 5 then g ě 1 and we can pick d to be
non-separating. □
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Proof of Lemma 7.2. Let x0 “ x, and let U continue to denote the unique compo-
nent of Σ ´ z that isn’t a pants. We start with the following observation, whose
notation has been chosen to match how it will be applied.

Sublemma 7.5. Suppose xi P Sc
r`1 X B1pzq and z P Sc

r . Let V be a component of
Σ ´ pxi Y zq, and suppose xi`1 P CV satisfies dV pc, xi`1q ą M . Then xi`1 P Sr`1.

Proof. First note that since xi and zi are essentially non-separating and CV is non-
empty, the boundary of V must contain both xi and z. In particular, every curve
not cutting V is disjoint from (or equal to) xi and z. Hence every curve not cutting
V must lie in Sr or Sr`1.

Theorem 4.1 gives that the geodesic from xi`1 to c contains a curve not cutting
V , giving the result. □

Lemma 7.4 with a “ x0 and b “ z gives the existence of a curve x1 disjoint from
x0 and z such that x0 Y x1 and x1 Y z are essentially non-separating. The coarse
density statement in Lemma 7.4 and Sublemma 7.5 imply that we can pick x1 to
be in Sc

r`1 as well.
We now note the following statement.

Sublemma 7.6. For any xi P Sr`1 X CU such that z Y xi is essentially non-
separating there exists xi`1 P Sr`1 X CU disjoint from xi such that xi Y xi`1 and
zYxi`1 are essentially non-separating and such that dU pxi`1, x0q “ dU pxi, x0q `1.

Proof. Lemma 7.4 with a “ xi and b “ z gives the existence of a curve xi`1 disjoint
from xi and z such that xi Y xi`1 and z Y xi`1 are essentially non-separating.
Furthermore, if V is the unique component of Σ ´ pxi Y zq that isn’t a pants, the
coarse density statement in Lemma 7.4 implies we can assume that dV pxi`1, x0q ą

M .
Theorem 4.1 implies that any geodesic from xi`1 to x0 in CU must pass through a

curve in CU not cutting V . The only such curve is xi, so we conclude dU pxi`1, x0q “

dU pxi, x0q ` 1.
Sublemma 7.5 implies that xi`1 P Sc

r`1. □

Repeatedly using the sublemma we obtain a path x0, x1, x2, . . . in CU X Sc
r`1

which is a geodesic in CU and hence eventually lies far from the projection of c to
CU .

To get the second statement, note that if x0 is already in Opzq we can immedi-
ately use Sublemma 7.6 in the same way to get the desired result. □

7.4. Connectivity of Opzq. Our final task in this section is to prove Lemma 7.3.
We start in high complexity.

Proof of Lemma 7.3 when Σ has high complexity. By Lemma 7.2, it suffices to con-
sider two points x, y P Opzq with dU px, cq, dU py, cq ą M ` C, where C is a large
constant, and show they can be connected by a path in Opzq.

Using that Theorem 1.1 is true for U , we can start by finding a path

x “ p0, p1, . . . , pℓ “ y

in CU from x to y with dU ppi, cq ą M ` C for all i.
Note that one of the following is true:

(1) U has genus at least 2.
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(2) U has genus 1. If Σ has genus 1, then the high complexity assumption
ξpΣq ě 4 implies that Σ has at least 4 punctures, so U has at least 2
punctures. If Σ has genus 2, then Σ has at least 1 puncture, so U has a
pair of boundary components and at least 1 puncture.

(3) U has genus 0. If Σ has genus 0, it has at least 7 punctures, so U has at
least 5 punctures. If Σ has genus 1, it has at least 4 punctures, so U has a
pair of boundary components and at least 4 punctures.

Using Lemma 3.10, we can find an essentially non-separating qi P CU which is
equal to or adjacent to pi. (We pick q0 “ x and qℓ “ y.)

One of Lemmas 3.12, 3.13, 3.15 applies to give that there is a path in the essen-
tially non-separating curve graph from qi to qi`1 that has bounded diameter in CU .
Assuming C is large enough, every element of this path is in Opzq, so concatenating
these paths gives the result. □

The proof of the medium complexity case will be similar, but we first need the
following.

Lemma 7.7. Suppose xj , xj`1 P Opzq have distance much more than M to c.
Suppose there exists a vertex w in the essentially non-separating curve graph C0Σ
not equal to z that is adjacent in C0Σ to both xj and xj`1. Then w P Sc

r`1 Y Sc
r`2,

and w is adjacent in CcΣ to xj and xj`1.

Note that the assumption requires w Y xj and w Y xj`1 to be essentially non-
separating

Proof. The coarse Lipschitz property of subsurface projections implies that dU pc, wq ą

M , so the geodesic from w to c must pass through z, proving the result. □

Note that the medium complexity assumption that pg, nq P tp2, 0q, p1, 3q, p0, 6qu

gives rise to the following possibilities for U in the notation of Definition 3.1:

ph,m, p, uq P tp1, 0, 1, 0q, p1, 1, 0, 1q, p0, 3, 1, 0q, p0, 4, 0, 1qu.

Recall that h denotes the genus of U , m the number of punctures, p the number
of pairs of boundary components, and u the number of unpaired boundaries. In
particular, U is always genus 0 or 1.

Definition 7.8. If U is genus 0, say xj , xj`1 P C0U intersect nicely if they have
intersection number 2. If U has genus 1, say xj , xj`1 P C0U intersect nicely if they
have intersection number 1. (This implies they are both non-separating.)

Corollary 7.9. Suppose that Σ has medium complexity, and that xj , xj`1 P C0U
that are essentially non-separating and intersect nicely. Then there exists w P

Sc
r`1 Y Sc

r`2 adjacent to both xj and xj`1.

Proof. The proof is illustrated in Figure 3.
First suppose pg, nq “ p2, 0q. In this case let w be a non-separating curve disjoint

from xj , xj`1 that intersects z once.
Next suppose pg, nq “ p1, 3q and z is a pants curve. In this case let w be a pants

curve disjoint from xj , xj`1 that intersects z twice.
Next suppose pg, nq “ p1, 3q and z is non-separating. In this case, let w be a

non-separating curve disjoint from xj , xj`1 that intersects z once.
Finally suppose pg, nq “ p0, 6q. In this case, let w be a pants curve disjoint from

xj , xj`1 that intersects z twice.
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Figure 3. The proof of Corollary 7.9. The unlabelled curves are
xj and xj`1.

With this w as an input, Lemma 7.7 gives the result. □

Proof of Lemma 7.3 when Σ has medium complexity. The proof starts as in the high
complexity case, giving a path

x “ p0, p1, . . . , pℓ “ y

in CU from x to y with dU ppi, cq ą M ` C for all i, and we still have the existence
of an essentially non-separating curve qi P CU equal to or adjacent to pi for all i.
(We pick q0 “ x and qℓ “ y.) It suffices to show that for each fixed i, there is a
path from qi to qi`1 in B2pzq X pSc

r`1 Y Sc
r`2q.

If h “ 1, then Lemma 3.11 gives the existence of a sequence

qi “ x0, x1, . . . , xk “ qi`1

in C0U with all xj , 0 ă j ă k non-separating, and ipxj , xj`1q “ 1 for 0 ă j ă k´2.
We can also assume that either x0 is a pants curve and x1 is disjoint from x0, or that
x0 is a non-separating curve and ipx0, x1q “ 1, and similarly for xk. Since Lemma
3.11 gives that the path has bounded diameter in CU , we can assume that dU pxi, cq
is much greater than M . Now, Corollary 7.9 gives that when ipxj , xj`1q “ 1 there
is a w P Sc

r`1 Y Sc
r`2 adjacent to both xj and xj`1. By interlacing w of this form,

we get a path as desired.
If h “ 0, first note that if a, b P C0U have intersection number 4 and go around

the same pair of peripheries, then there is some v P C0U such that ipa, vq “ 2 “

ipb, vq. Also note that if a and b are disjoint, then there is some v P C0U such that
ipa, vq “ 2 “ ipb, vq. This note and Lemma 3.14 gives the existence of a sequence

qi “ x0, x1, . . . , xk “ qi`1

in C0U such that for each j the intersection number between xj and xj`1 is 2.
Again using Corollary 7.9 allows us to conclude. □
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