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curves of length at most 100, easy to cut in
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We are interested in hyperbolic surfaces.

Given any three positive numbers, can build

a unique pants with those cuff lengths.

If, for example, we pick all cuff lengths to be

a fixed constant, we can glue together.



Each pants has three cuffs, so, gluing pattern

is given by a three regular graph.

Vertices correspond to pants, edges to pairs

of cuffs glued together.

Number of edges, vertices, and genus related

by:

e “ 3g ´ 3, v “ 2g ´ 2, e “
3

2
v .



More elementary question: What does a

typical large 3-regular graph look like?

(Or d -regular with d ě 3. We take d “ 3

only for concreteness.)



Theorem (Bollobas & de la Vega ‘82)

Diameter typically about log2 v .

Let Ni denote the number of i -cycles.

Theorem (Bollobas, Wormald ‘80)

The Ni , i ě 3 are asymptotically independent

Poisson random variables with means

λi “ 2i{p2iq.
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Deeper questions: How hard is it to cut

graph in two? How fast does random walk

mix?



Both questions related to eigenvalues.

Define the adjacency matrix A as the v by v

matrix with a 1 in position pi , jq if there is an

edge from vertex i to vertex j .



Define the Laplacian of a 3-regular graph to

be

I ´
1

3
A.

It is closely related to the matrix 1
3A

governing the random walk on the graph.

Denote the spectrum of the Laplacian by

0 “ λ0 ď λ1 ď λ2 ď ¨ ¨ ¨ ď λv´1.



Theorem (McKay ‘81)

The proportion of eigenvalues λi in an

interval is typically close to the weight

assigned to this interval by an explicit

distribution supported on r1´ 2
?
2

3 , 1` 2
?
2

3 s.



The Cheeger constant can be bounded above

and below by λ1, and the bigger λ1 is the

faster the random walk mixes.

Big λ1 is desirable, and sequences of graphs

with λ1 bounded from below are called

expanders.



Theorem (Friedman ‘02)

Typically λ1 ě p1´
2
?
2

3 q ´ ε.

Proved an ‘86 conjecture of Alon.

All 3-regular graphs with enough vertices

have λ1 ď 1´ 2
?
2

3 ` ε (Alon & Boppana

‘86).

Graphs with λ1 ě 1´ 2
?
2

3 are called

Ramanujan.



Want analogues of all these results for

random surfaces. Instead of “large number

of vertices/edges” we consider “large genus”.

But the set Mg of hyperbolic surfaces of

genus g is infinite! It is a 6g ´ 6 dimensional

manifold.

How to define a random surface?



Random graph model: fix ` ą 0, and use a

random 3-regular graph as a guide to glue

together pants all of whose boundaries have

length `.

Brooks-Makover model: use a random

3-regular graph as a guide to gluing together

ideal triangles, then fill in cusps.

Random cover model: fix a hyperbolic

surface, and then take a random cover.



All these models use the uniform measure on

a finite set.

So these models see only finitely many points

in the 6g ´ 6 dimensional manifold Mg of

genus g surfaces.

Is there a natural, tractable measure whose

support is all of Mg?



Yes! The Weil-Petersson measure. Its study

in the context of random surfaces was

pioneered by Mirzakhani.

Based on Fenchel-Nielsen local coordinates

for Mg :



Fix X PMg . Consider a pants

decomposition for X , which you can think of

as a collection of 3g ´ 3 disjoint simple

geodesics; they cut the surface up into

2g ´ 2 pants.

The lengths of the 3g ´ 3 cuffs give 3g ´ 3

local coordinates.



Then there are 3g ´ 3 “twist” coordinates

that keep track of how the two pants are

glued together at each cuff.

In total, 6g ´ 6 local coordinates for Mg .



Each point of Mg is contained in infinitely

many local coordinate charts, since each

surface has infinitely many pants

decompositions.

“Magic” fact (Wolpert): The standard

volume form is well defined (does not depend

on choice of local F-N coordinate chart.)



Back to main question: What does random

surface of large genus look like?

The answers to most questions do not

depend too much on the model.



Theorem
In all models, diameter is typically

logarithmic in g .

BM: Brooks & Makover ‘04,

Budzinski, Curien & Petri ‘19.

WP: Mirzakhani ‘13.



Let Nra,bs denote the number of primitive

geodesics of length in ra, bs for a WP

random surface of genus g .

Theorem (Mirzakhani & Petri ‘17)

If the intervals ra1, b1s, . . . , rak , bks are

disjoint, then the Nrai ,bi s are asymptotically

independent Poisson random variables with

means

λi “

ż bi

ai

et ` e´t ´ 2

2t
dt.
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For eigenvalues we use the Laplace-Beltrami

operator, which has eigenvalues

0 “ λ0 ď λ1 ď λ2 ď ¨ ¨ ¨ .

λ1 is related to the Cheeger constant, and

governs the speed of mixing for Brownian

motion and geodesic flow.



Theorem (Monk ‘20)

The number of eigenvalues λi in an interval,

divided by g, is WP-typically close to the

weight assigned to this interval by an explicit

distribution supported on r14,8q.

Related results going back to Wallach ‘76.



What about λ1?

Conjecture
λ1 is typically greater than

1
4 ´ ε.

It is known that in high enough genus, no

surface can have λ1 ą
1
4 ` ε.



Conjecture is open in all models.

Just this month, Hide & Magee shows there

is a sequence of surfaces Sn with λ1pSnq Ñ
1
4

and genus going to infinity.

This had been open since ‘84!



Brooks & Makover ‘04 shows BM-typically

λ1 ą C , constant C not explicit.

Mirzakhani ’13 showed WP-typically

λ1 ą 0.002.



Theorem (Lipnowski-W, Wu-Xue)

WP-typically λ1 ą
3
16 ´ ε.

A 3
16 result was also proved for random

covers by Magee, Naud & Puder ‘20.

Anantharaman and Monk working on related

topics.



How to prove bounds on λ1?

For graphs, compute tracepAnq in two ways:

using eigenvalues, and counting loops of size

length n.

For surfaces, use the Selberg trace formula.

Relates eigenvalues to primitive closed

geodesics.
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To prove theorem, end up needing to

understand the average number of geodesics

of length at most C logpgq on a surface of

genus g .

Problem: We cannot compute the

WP-average of this number over Mg .



Mirzakhani’s thesis: Can compute the

average number of simple, non-separating

geodesics of length at most L over Mg .

Simple means no self-intersections.
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As long as L !
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g , the answer is about
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Compare: On a fixed surface, the number of

geodesics of length less than L is asymptotic

to eL{L as LÑ 8.
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Conjecture (Lipnowski-W)

If L !
?
g, then on most surfaces in Mg ,

most geodesics of length at most L are

simple and non-separating.

If L "
?
g, then on most surfaces in Mg ,

most geodesics of length at least L are not

simple.



Compare: On a fixed surface, most geodesics

of large enough length are very far from

simple!

At moderate length scales, somehow get the

expected number of geodesics, but they

don’t have the expected shape.
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We only need an “averaged” statement.

We only need to work at the logpgq length

scale. Mirzakhani-Petri worked at bounded

length scales.

But, the error terms are central in our

analysis. Basically want to show the average

number of geodesics is eL{L with very small

error; if you get a smaller error, you can

replace 3
16 with something closer to 1

4.



Recap: To bound λ1 using the trace formula,

need to know the average number of

geodesics of length at most C logpgq.

Mirzakhani tells us the average number of

simple geodesics of this length.

We suspect most geodesics of this length are

simple. How to prove this?



Central idea: Every closed geodesic either

fills the whole surface, or fills a subsurface.

A geodesic fills a subsurface if its

complement in the subsurface consists of

simply connected regions and annular regions

about the boundary of the subsurface.



A geodesic of length at most C logpgq is way

too short to fill the whole surface

(isoperimetric inequality).

Ideas of Mirzakhani give bounds for the

average number of subsurfaces that such a

geodesic can fill.



So it suffices to show that most of the

relevant subsurfaces don’t have too many

filling geodesics.

Theorem (Lipnowski-W)

A “tangle-free” subsurface has “very few”

closed geodesics.

Analogue of “tangle-free” condition used for

graphs. Also studied by Monk & Thomas.



Tangle-free means no pants or one-holed tori

with boundary less than some constant.

For typical surfaces in Mg , the constant can

be taken to be logpgq in size.



Final summary:

Theorem (Lipnowski-W, Wu-Xue)

WP-typically λ1 ą
3
16 ´ ε.



1. The Selberg trace formula relates closed

geodesics to spectrum.

2. Need to understand geodesics of length

at a scale slowly growing with genus.

3. There are an understandable number of

subsurfaces that geodesics of this length

can fill.

4. And each such subsurface has few

geodesics.

5. So suffices to use Mirzakhani’s count of

simple geodesics.
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