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Introduction: These are notes on a graduate topics course at the University of Michi-
gan in Winter 2022. Corrections are welcome and may be sent via email to Alex Wright.

Audience and scope: These notes might be useful for students who would like addi-
tional preparation before tackling the literature on what has been called the “Masur-
Minsky machine”, and is now in a broader context called “hierarchical hyperbolicity”.
We attempt to begin without assuming familiarity with either Teichmüller theory or
coarse geometry, and proceed with an example focused approach. The main goal is to
get a good idea of what a hierarchically hyperbolic space is and why Teichmüller space
is an example. The course concludes with guest lectures by Tim Susse and Mark Hagen
on connections between cube complexes and hierarchical hyperbolicity.

Authorship: For each lecture, one course participant was designated as the author,
and another as the editor. The notes for each lecture are labelled with the initials of
the author followed by the initials of the editor. In addition to the listed main authors
and contributors, Paul Apisa and Giuseppe Martone each served as the editor for one
or two days each.

Citations: Only a very small number of citations are provided.
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and with great clarity and insight explaining many things related to these notes. He
would also like to thank Jacob Russell for numerous very helpful conversations, and
Tim Susse and Mark Hagen for sharing their insights as guest lecturers during the last
four meetings of the course.

During the period in which this course was taught, there were a number of seminar
talks related to hierarchical hyperbolicity at Michigan. These were not part of the
course, and are not recorded in these notes, but nonetheless they had a large indirect
benefit on the course. Alex Wright would like to thank Daniel Berlyne, Alexandre Mar-
tin, Jacob Russell, Alessandro Sisto, and Bin Sun for speaking. Alex Wright would like
to especially thank Kasra Rafi and Howard Masur, who both gave expository seminar
talks specifically designed to complement the course.
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1. Hyperbolicity and quasi-geodesics (01/05, TY, CZ)

Hyperbolic space Hn is defined by its curvature being a constant ´1. While curva-
ture is a local property, this condition on curvature leads to many global features. In
contrast to curvature, coarse geometry studies features that are unaffected by changes
to the geometry in a small neighborhood. One can think of zooming out so that local
features cannot be distinguished. You can only see the forest, not the trees. A Gromov
hyperbolic space defined below will be a generalization of hyperbolic space from the
point of view of coarse geometry.

Definition 1.1. A geodesic is an isometry from an interval in R to a metric space.

Definition 1.2. A metric space is called geodesic if every pair of points is joined by
a geodesic.

Example 1.3. The space R2 minus a ball (with the induced metric from R2) is not
geodesic, as two points on either side of the ball cannot be joined by a geodesic.

Figure 1

Definition 1.4. A geodesic metric space is called δ-hyperbolic if, for any geodesic
triangle (a triple of geodesics, each ending where the next begins), each edge is contained
in the closed δ-neighborhood of the union of the other two edges.

Definition 1.5. A space is called (Gromov) hyperbolic if there exists a δ ě 0 such
that it’s δ-hyperbolic.

Example 1.6. The space R2 is not hyperbolic. Taking equilateral triangles of greater
and greater side lengths, we also need larger and larger δ in order for one edge to be
contained in the δ-neighborhood of the other two edges.

Figure 2
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Example 1.7. Trees (collections of vertices and edges with no cycles, and edges have
length 1) are 0-hyperbolic. Given a geodesic triangle, every point on one of the geodesics
is also on one of the other two geodesics.

Figure 3

Remark 1.8. Trees should be thought of as the best example of hyperbolic spaces since
δ can be taken to be 0.

Example 1.9. The real line R is also 0-hyperbolic, similar to the previous example.

Figure 4

Example 1.10. The hyperbolic plane H2 is hyperbolic.

Example 1.11 (Alexandrov). Let κ ă 0. Any complete, simply connected manifold
with curvature ď κ is Gromov hyperbolic.

See [BH99, Theorem 1A.6, page 173] for a proof.

Example 1.12. Every space of finite diameter is hyperbolic.

Definition 1.13. ‚ The map f : X Ñ Y is a pK,Cq-quasi-isometric embed-
ding if for all x, y P X,

dpx, yq

K
´ C ď dpfpxq, fpyqq ď Kdpx, yq ` C.

‚ The map f is a quasi-isometry if there exists a constant C ě 0 such that for
all y P Y , there exists x P X such that dpfpxq, yq ď C.

‚ A pK,Cq-quasi-geodesic in X is a pK,Cq-quasi-isometric embedding of an
interval in R into X.

Remark 1.14. The notation of quasi-isometry will be like a notation of isomorphism for
coarse geometry. For example, we will discuss later that if a space X is quasi-isometric
to a hyperbolic space, then X is hyperbolic.
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The following two examples show that quasi-geodesic is not a good notion in R2

since there are too many quasi-geodesics. We will see later that in a hyperbolic space,
a quasi-geodesic will closely follow a geodesic.

Example 1.15. We’ll show that the following is an example of a p2, 0q-quasi-geodesic
in R2:

f : R Ñ R : t ÞÑ

#

pt, 0q if t ě 0,

p0,´tq if t ď 0.

In words, the real line is wrapped about the origin along the positive y- and x-axes.

Figure 5

Let s, t P R with s ă t. If s, t are both non-negative or both non-positive, then
dpfpsq, fptqq “ dps, tq, and so

dps, tq

2
ď dpfpsq, fptqq “ dps, tq ď 2dps, tq.

If s ă 0 and t ą 0, then dpfpsq, fptqq ď dps, tq by the triangle inequality. We also have

that maxp|s|, |t|q ě
dps,tq

2
, and so dps,tq

2
ď dpfpsq, fptqq. Thus, we also have in this case

that
dps, tq

2
ď dpfpsq, fptqq ď dps, tq ď 2dps, tq.

Figure 6
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Compare to the fact that the L2 and L1 metrics are comparable on R2.

Example 1.16. Consider the embedding f of the interval r0,8q in R2 as a spiral with
side lengths given by the sequence tℓiuiě1.

Figure 7

For s, t P r0,8q with s ă t, we always have that dpfpsq, fptqq ď dps, tq. Now, assume
that we have the following two conditions on the sequence tℓiu of side lengths: for each
i ą 1,

(A.) ℓi ě
ři´1

j“1 ℓj, and

(B.) ℓi ě 16ℓi´1.

We’ll show that f is a p8, 0q-quasi-geodesic. By above, we have the upper bound

dpfpsq, fptqq ď dps, tq ď 8dps, tq, so we’ll now show the lower bound, dps,tq
8

ď dpfpsq, fptqq.
Suppose fpsq and fptq are on the ℓj and ℓi segments of the spiral respectively, where
i ě j. We proceed by cases.

(1) If i “ j, then we have that dpfpsq, fptqq “ dps, tq, and so the lower bound holds.

(2) If i “ j ` 1, then as in Example 1.15, we have that dps,tq
2

ď dpfpsq, fptqq, and so
the desired lower bound holds here.

(3) If i ą j ` 1, then let r be such that fprq is the point between the ℓi´1 and ℓi´2

segments, so s ă r ă t.
By (A.), ℓi´1 ě

ři´2
j“1 ℓi, and so

dpr, tq ě ℓi´1 ě

i´2
ÿ

j´1

ℓj ě dps, rq.

This implies that dpr, tq ě
dps,tq

2
.

Then, we have that

dpfpsq, fptqq ě dpfprq, fptqq ´ dpfpsq, fprqq ě
dpr, tq

2
´ 2ℓi´2,
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Figure 8

where the first inequality comes from the triangle inequality, and the second in-

equality comes from dpfprq, fptqq ě
dpr,tq
2

(similar to Example 1.15) and dpfpsq, fprqq ď

2ℓi´2, as fpsq, fprq are contained in a square with side lengths ℓi´2.

By above, dpr,tq
2

ě
dps,tq

4
, and by (B.), dps,tq

8
ě

ℓi´1

8
ě 2ℓi´2. Thus, we see that

dpfpsq, fptqq ě
dpr, tq

2
´ 2ℓi´2 ě

dps, tq

4
´

dps, tq

8
“

dps, tq

8
,

and so the desired lower bound holds in this case.

Optional Exercise 1. Prove that the wedge of two hyperbolic spaces is hyperbolic.

Optional Exercise 2. Prove the easier direction of Manning’s Bottleneck Criterion
[Man05, Theorem 4.6].

Optional Exercise 3. Prove that the composition of two quasi-isometric embeddings is
a quasi-isometric embedding, and that being quasi-isometric is an equivalence relation.

Optional Exercise 4. Prove R2 and R3 are not quasi-isometric.

Optional Exercise 5. Formulate and prove a thinness result for geodesic n-gons in a
δ-hyperbolic space.

Optional Exercise 6. Consider the wedge of infinitely many copies of the real line.
Convince yourself that anything quasi-isometric to this space is hard to compactify.
Show that the Gromov boundary is not compact.

2. Fellow travelling (01/07, JH, KS)

Last time, we saw that quasi-geodesics are not well-behaved in Euclidean space. In
hyperbolic spaces, they are much nicer and naturally arise when using quasi-isometry



COARSE GEOMETRY AND TEICHMÜLLER THEORY 9

as a coarse notion of equivalence. Here, “nice” means that quasi-geodesics are not too
different from actual geodesics, in the sense that a quasi-geodesic between two points
is always close to a geodesic between the points. To formalize this, we need a notion of
distance between sets; the usual definition is Hausdorff distance.

Definition 2.1. If A,B Ď X, the Hausdorff distance between them is

dHauspA,Bq “ inf

"

R ě 0 s.t. every point of A is distance
ď R from a point of B and vice-versa.

*

More concisely,

dHauspA,Bq “ inftR ě 0 s.t. A Ď NRpBq and B Ď NRpAqu,

where NR denotes the R-neighborhood of a set.

Now, we can make precise the idea that quasi-geodesics are always close to geodesics
in hyperbolic spaces. One reference for this is [Sisb, Proposition 5.4.2].

Proposition 2.2 (Fellow Traveller Property). Let X be δ-hyperbolic. Then for all K,C
there is a D such that any pK,Cq-quasi-geodesic α has Hausdorff distance at most D
from any geodesic γ joining its endpoints.

γ
D α

Figure 9

Remark 2.3. The quasi-geodesic could be a geodesic, hence “geodesics are coarsely
unique in hyperbolic spaces.” For this reason, many people refer to “the” geodesic
between two points.

Remark 2.4. Proposition 2.2 is very false in R2, which we can see using Example 1.15,
the simpler example from last time. The legs form a quasi-geodesic, even though

γ
α

Figure 10

the point at their intersection can be arbitrarily far from the actual geodesic (the
hypotenuse).
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γ

α

α

γ

Figure 11

Remark 2.5. To prove Proposition 2.2, we need to rule out both of the following cases:
That is, we need to show both that the quasi-geodesic stays close to the geodesic and
that the geodesic stays close to the quasi-geodesic.

Example 2.6. In a tree, a (continuous) quasi-geodesic must go through every vertex
on the geodesic between two points; this says that the geodesic is never far from the
quasi-geodesic. For the other direction, when a quasi-geodesic leaves the geodesic, it
must eventually return, and the defining inequalities ensure that this excursion never
takes points on the quasi-geodesic too far from the geodesic. More concretely,

α(s) α(t)

α(p)

Figure 12

|s ´ t|

K
´ C ď dpαpsq, αptqq “ 0 ùñ |s ´ t| ď KC,

so
dpαpsq, αppqq ď K|p ´ s| ` C ď K|s ´ t| ` C ď K2C ` C.

That is, we can take D “ K2C ` C in Proposition 2.2.

Lemma 2.7. Let X be δ-hyperbolic . Let α : ra, bs Ñ X be a path with

dpαpsq, αptqq ď K|t ´ s| ` C.

Let p be any point on a geodesic from αpaq to αpbq, and assume further that b ´ a ą 1.
Then

dpp, αq ď δ log2pb ´ aq ` D,

where D “ Dpδ,K,Cq depends only on δ,K,C.

Remark 2.8. We think of b ´ a as the length of α. If we want to get from x to y
while avoiding a ball centered at the midpoint of radius dpx, yq{2 (as shown above), the
length required is exponential in dpx, yq. The situation is comparable to the fact that
balls have circumference „ exppradiusq in H2. This is different than the Euclidean case,
where the required length is only linear (a factor of π).
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γ
x = α(a) α(b) = y

α

p

≤ d(p,α)

Figure 13

For trees, it’s actually impossible to avoid large enough balls; this is because there
are unavoidable intermediate points when going between any two points in a tree. That
being said, small balls (e.g., balls of radius less than C{2 for a pK,Cq-quasi-geodesic)
can be avoided because quasi-geodesics are not required to be continuous, so they could
“jump over” the ball since the points on opposite sides would still be within the required
distance of one another.

Proof of Lemma 2.7. First, if b ´ a ď 2, then for all s P ra, bs,

dpp, αpsqq ď dpp, αpbqq ` dpαpbq, αpsqq

ď dpαpaq, αpbqq ` dpαpbq, αpsqq

ď K|b ´ a| ` K|b ´ s| ` 2C ď 4K ` 2C.

So, take D “ 4K ` 2C.
We induct on n with 2n´1 ď b ´ a ă 2n. We just took care of the base case n “ 1,

so let n ą 1 and assume the result holds for n ´ 1. Set m “ pa ` bq{2, the midpoint
of a and b, and note that 2n´2 ď m ´ a, b ´ m ă 2n´1 by our definition of n. Say p

γα(a) α(b)

α(m)

q

p

≤ δ

Figure 14

is distance at most δ from a point q which lies on the geodesic from αpaq to αpmq (q
could also lie on the geodesic from αpmq to αpbq, but we may assume WLOG that it
does not). By induction,

dpq, α|ra,msq ď δ log2

ˆ

b ´ a

2

˙

` D “ δ log2pb ´ aq ´ δ ` D.
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So,

dpp, αq ď dpp, qq ` dpq, α|rα,msq

“ δ ` δ log2pb ´ aq ´ δ ` D

“ δ log2pb ´ aq ` D. □

Remark 2.9. This proof basically gives us an algorithm to find a point of α close-ish to
p.

≤ δ

≤ δ

p

Figure 15

We now upgrade Lemma 2.7 for the case when α is a quasi-geodesic (before, we only
assumed the upper bound).

Lemma 2.10. If α is a pK,Cq-quasi-geodesic from x to y and γ is a geodesic from x
to y, then for all p P γ, dpp, αq ď E for some constant E “ EpK,C, δq.

Remark 2.11. This lemma is an upgrade because it gives a constant bound that does
not depend on the length of the parametrizing interval instead of the logarithmic bound
from Lemma 2.7.

Proof. Pick a point p on γ as far from α as possible and set E “ dpp, αq (such a p exists
because γ is compact and distance to α is continuous). Our goal is to find a bound on
E that does not depend on p.

Pick points as follows (the picture is more helpful than the descriptions):

‚ y1 by traveling along γ from p for a distance of 2E, or y1 “ y if that is not
possible.

‚ y2 on α such that dpy1, y2q ď E, which is possible since E is the largest distance
from a point on γ to a point on α. If y1 “ y, choose y2 “ y1 “ y.

‚ x1 by traveling backwards along γ from p for a distance of 2E, or x1 “ x if that
is not possible.

‚ x2 on α such that dpx1, x2q ď E. If x1 “ x, choose x2 “ x1 “ x.

Define β to be the concatenation of the geodesic from x1 to x2, then α until y2, then
the geodesic from y2 to y1. Note the following:

(1) dpx2, y2q ď 6E as there is a path of length 6E joining x2 and y2.
(2) Say αpsq “ x2, αptq “ y2. Since α is a quasi-geodesic,

|t ´ s|

K
´ C ď dpx2, y2

q ď 6E,
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γ

α

x y

p

y′
x′

y′′ = α(t)

x′′ = α(s)

≤ E ≤ E

β

2E
2E

Figure 16

hence |t ´ s| ď 6EK ` CK.
(3) With its natural parametrization, β is parametrized by an interval of length at

most 6EK ` CK ` 2E.
(4) It follows from the triangle inequality and α being a quasi-geodesic that β sat-

isfies
dpβpcq, βpdqq ď K|d ´ c| ` C.

Claim 2.12. dpp, βq ě E.

Because dpp, αq “ E (by definition), we expect equality to hold.

Proof of Claim. If q is a point on the α-part of β, then dpp, qq ě E by the definition of
E and choice of p as the farthest point on the geodesic from α. If q is a point on the
geodesic from x1 to x2 (or y1 to y2), then

dpp, qq ě dpp, x1
q ´ dpx1, qq “ 2E ´ E “ E,

unless x1 “ x2, which happens if dpp, xq ď 2E. But in this case, the geodesic from x1 to
x2 is simply the point x1, so q “ x1 and q lies on α. As before, this means dpp, qq ě E
by definition of E and p. b

Finally, applying Lemma 2.7 to β gives

dpp, βq ď δ log2p6EK ` CK ` 2Eq ` D,

so Claim 2.12 gives

(1) E ď δ log2p6EK ` CK ` 2Eq ` D.

This implies an upper bound on E because the left hand side grows faster than the
right hand side, so if E can be arbitrarily large then the inequality would break. This
bound depends only on (1); since D “ Dpδ,K,Cq, this means bound on E depends
only on δ, K, and C, as desired. □

3. Fellow travelling (01/10, DC, CK)

Proposition 3.1. (This is Prop 2.2, the Fellow Traveller Property) Let X be δ-hyperbolic.
Then @K,C, there is a D “ Dpδ,K,Cq such that any pK,Cq-quasi-geodesic has a Haus-
dorff distance ď D from any geodesic joining its endpoints.
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Last class, we did the harder direction as encapsulated by lemma 2.10, which says
that geodesics are uniformly close to quasi-geodesics. The lemma below is the opposite
direction, which is easier.

Lemma 3.2. Let X be a δ-hyperbolic space. If α : ra, bs Ñ X is a pK,Cq quasi-geodesic
and γ is a geodesic joining its endpoints, then every point on α is a uniformly bounded
distance from some point on γ.

Proof. The moral goal of this lemma is to exclude the case where the quasi-geodesic
has a protruding segment that goes far away from the geodesic (the straight line), as
shown below. Before we launch into the proof, the idea is as follows: given a point q
(thought of as a point on this long segment), we break α into the parts before and after
q and find a point p P γ close to both parts. Using the closeness of p to both sides of q,
we show that such a long protruding segment can’t be too long and so q can’t be too
far away from γ.

γ

α

Figure 17

Pick a point q P α, q “ αpcq. By Lemma 2.10, there exists an E “ EpK,C, δq such
that every point p on γ satisfies dpp, αq ď E.
So, each p P γ is distance ď E close to a point on either αpra, csq “: α1 or αprb, csq “:

α2, or both. The union of the closed neighbourhoods N̄Epα1q Y N̄Epα2q thus contains
γ, where NrpSq is the (open) r-neighbourhood of the set S.
Since both the closed neighbourhoods intersect γ (one at each endpoint), N̄Epα1q Xγ

and N̄Epα1q X γ are both non-empty closed subsets of γ that exhaust it. By the con-
nectedness of γ, N̄Epα1q X N̄Epα2q X γ is non-empty. So, there exists a point p P γ that
satisfies dpp, α1q ď E and dpp, α2q ď E. See Figure 18.

This implies that there exist points on the segments α1, α2 at most E away from p:
Ds, t such that a ď s ď c ď t ď b with

dpαptq, pq ď E, dpαpsq, pq ď E

By the triangle inequality, these 2 inequalities imply that

dpαpsq, αptqq ď 2E.

Since α is a pK,Cq-quasi-geodesic, we see that

t ´ s

K
´ C ď 2E ùñ t ´ s ď Kp2E ` Cq.
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This last inequality implies the result because we can show the distance from q to
the geodesic is uniformly bounded:

dpq, pq “ dpαpcq, pq ď dpαpcq, αptqq ` dpαptq, pq ď pKdRpc, tq ` Cq ` E

ď KdRps, tq ` C ` E ď KrKp2E ` Cqs ` E ` C

Figure 18. An image of the first case in Lemma 3.2, when there is a
point p P γ close to both parts of α.

□

Remark 3.3. Suppose f : X Ñ Y is a pK,Cq-quasi-isometric embedding.
If γ : I Ñ X is a geodesic, then f ˝ γ : I Ñ Y is a quasi-geodesic.

Proof. Use the definition of a quasi-isometric embedding and that dXpγpsq, γptqq “

|t ´ s|, as we have defined geodesics to be isometries. □

Corollary 3.4. @δ,K,C Dδ1 such that if Y is δ-hyperbolic and f : X Ñ Y is a pK,Cq-
quasi-isometric embedding, then X is δ1-hyperbolic.

Proof. Let γ1, γ2, γ3 form a geodesic triangle T in X, which we aim to show is δ1-thin.
We know from Remark 3.3 that fpγ1q, fpγ2q, fpγ3q is a quasi-geodesic triangle in Y
which we will call fpT q. Form a geodesic triangle T 1 in Y from the 3 vertices of fpT q.
The key is to use the fact that by the Fellow Traveller Property, there is a uniform
bound on the change in the thinness of a triangle when we tighten the quasi-geodesics
to geodesics. See Figure 19 below.

Since Y is δ-hyperbolic, we know from Proposition 2.2 that the Hausdorff distance
between an edge on the geodesic triangle T 1 and a corresponding edge on the quasi-
geodesic triangle fpT q in Y is bounded by a uniform constant D “ Dpδ,K,Cq. Let
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Figure 19. For Cor 3.4. The left geodesic triangle is T , which maps to
fpT q on the right and is tightened to a geodesic triangle T 1.

x1 P γ1 in T . Since fpx1q P fpγ1q, there exists a point y1 on the geodesic triangle T 1 Ă Y
such that

dpfpx1q, y1q ď D.

Because Y is δ´hyperbolic, there exists a point y2 on another edge of the geodesic
triangle T 1 (WLOG the edge corresponding to the quasi-geodesic fpγ2q) such that

dpy1, y2q ď δ.

Finally, we use Proposition 2.2 again to conclude that there exists some x2 P γ2 such
that

dpy2, fpx2qq ď D.

The triangle inequality shows that for the 2 points x1, x2 in γ1, γ2 respectively

dpfpx1q, fpx2qq ď dpfpx1q, y1q ` dpy1, y2q ` dpy2, fpx2qq ď 2D ` δ.

Now, if we use the fact that f is also a quasi-isometric embedding, we see that we have
found x2 P γ2 so that

dpx1, x2q ď Kdpfpx1q, fpx2qq ` C ď Kp2D ` δq ` C “: δ1.

Since x1 was arbitrary, we have shown that X is δ1-hyperbolic.
□

We will use the techniques used to prove the Fellow Traveller Property (Proposition
2.2) to show the geodesic guessing lemma in the next class.

Optional Exercise 7. Consider a non-Gromov-hyperbolic metric space. Prove that
there are geodesics and quasi-geodesics joining the same pair of points that don’t stay
close together. So the fellow traveling result is actually an “if and only if” characteri-
zation of hyperbolicity.



COARSE GEOMETRY AND TEICHMÜLLER THEORY 17

Optional Exercise 8. Suppose X is a geodesic metric space, C ą 0, and S is a subset
of X that is C-dense. Suppose that all geodesic triangles in X with vertices in S are
δ-slim. Show that X is δ1 “ δ1pδ, Cq hyperbolic.

Optional Exercise 9. Prove that a geodesic metric space X is quasi-isometric to a
proper metric space if there exists a real number R ą 0 such that any set of points that
have pairwise distance in r2R, 4Rs is finite.

Conversely, suppose that a metric space X is pK,Cq-quasi-isometric to a proper
metric space. Show that any set of points that have pairwise distance in rR,R1s is
finite, for any R1 ą R ą KC.

4. Geodesic guessing (01/12, SK, SC)

We will now prove the Geodesic Guessing Lemma (which will be labelled as a Propo-
sition rather than a lemma because of its relative importance). Before we state the
result though, we define what a family of geodesic guesses is, and what it means for the
family to be thin.

Definition 4.1 (Geodesic guesses). Let X be a geodesic metric space, and let D ą 0
be a constant. A family of geodesic guesses is a set of paths ηpx, yq for all x and y in
X satisfying the following conditions.

(1) If dpx, yq ď 1, then the diameter of ηpx, yq is less than D.
(2) For any x1 and y1 in the path ηpx, yq, any segment of ηpx, yq starting at x1 and

ending at y1 is within D Hausdorff distance of ηpx1, y1q1.

The family is called thin if for all triples tx, y, zu in X, ηpx, zq is contained in a
D-neighbourhood of ηpx, yq Y ηpy, zq.

Proposition 4.2 (Geodesic Guessing Lemma). Let X be a geodesic metric space, and
suppose it admits a thin family η of geodesic guesses. Then

‚ For all x and y in X, the geodesic γ from x to y is at most Hausdorff distance
K from ηpx, yq, where K is some constant only depending on D.

‚ X is a p2K ` Dq-hyperbolic space.

One reference for this is [Sisa]. Before we prove Proposition 4.2, we need the following
lemma.

Lemma 4.3. Suppose γ : ra, bs Ñ X is a path from x to y satisfying the following
inequality for some constants K and C and for all c, d P ra, bs.

dpγpcq, γpdqq ď K|c ´ d| ` C

Then for any point p on ηpx, yq, we have the following estimate on dpp, γq, where A is
constant only depending on K, C, and D.

dpp, γq ď D log2pmaxp1, |b ´ a|qq ` A

Proof. The proof of this lemma is almost identical to the proof of Lemma 2.7, with all
the geodesic segments replaced by the corresponding geodesic guesses, so we skip the
proof. □

1Note that there may be multiple segments in ηpx, yq starting and ending at x1 and y1.
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Remark 4.4. The proof of Proposition 4.2 is quite similar to the proof of Proposition
2.2, with the geodesic guesses in this setting playing the role geodesics played in the
proof of Proposition 2.2 and the actual geodesics playing the role quasi-geodesics played
in the proof of Proposition 2.2.

Proof of Proposition 4.2. It will suffice to prove the first statement of the proposition,
since the second statement follows from the first statement, and the fact that the family
of geodesic guesses is D-thin.

It will suffice to prove the following two claims:

(1) Every point on ηpx, yq is within K distance of a point on a geodesic from x to
y.

(2) Every point on a geodesic from x to y is within K distance of a point on ηpx, yq.

Proof of Claim (1). Let γ be a geodesic from x to y, and let p P ηpx, yq be a point that
is as far as possible from γ. Let E “ dpp, γq, and pick points x1 and y1 on ηpx, yq such
that a segment of ηpx, yq from x1 to y1 contains p and x1 and y1 are distance 2E from p.
If such points don’t exist on ηpx, yq, then set x “ x1 or y “ y1 (or both, if necessary).
Let x2 and y2 be points on γ closest to x1 and y1. Let β be the segment obtained by
concatenating a geodesic from x1 to x2, followed by the segment of γ from x2 to y2,
and then a geodesic from y2 to y1. Finally, consider the geodesic guess ηpx1, y1q (see
Figure 20 for all the points and segments depicted).

β γ

x
y

x1
p y1

ηpx, yq
ηpx1, y1q

x2

y2

Figure 20. The geodesic guesses ηpx, yq and ηpx1, y1q and the geodesic
segment γ from x to y.

First of all, note the geodesic segment from x2 to y2 has length at most 6E, since
there’s a path from x2 to x1 to p to y1 to y2 with length at most 6E. This means that
the unit speed parameterization of β has length at most 8E. Also note that β with the
unit speed parameterization satisfies the hypothesis required from the path in Lemma
4.3 with K “ 1 and C “ 0. Using Lemma 4.3, we have the following bound for any
point p1 P ηpx1, y1q.

dpp1, βq ď D log2p8Eq ` A

We pick p1 to be the point on ηpx1, y1q closest to p, we use property (2) in the definition
of geodesic guesses to deduce that dpp, p1q ď D, giving us the following inequality.

dpp, βq ď D log2p8Eq ` A ` D
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We now claim that any point on β that minimizes distance to p lies on γ, and not on
the geodesic segments from x1 to x2 or y1 to y2. The proof of this claim is the same as
the proof of Claim 2.12. The fact that a point minimizing the distance between p and
β lies on γ gives us a lower bound on dpp, βq, namely E which is the minimal distance
between p and γ. We therefore have the following inequalities.

E ď dpp, βq ď D log2p8Eq ` A ` D

From this, we conclude that E is bounded above by a fixed constant J , depending only
on D.
Proof of Claim (2). Let γ be a geodesic from x to y, and let q be a point on γ that is
as far as possible from ηpx, yq. We know from Claim (1) that every point on ηpx, yq is
within distance J of γ. We color each point in ηpx, yq red if it is within distance J of
the geodesic segment from x to q (we call this the first half of the geodesic) and blue if
it is within distance J of the geodesic segment from q to y (we call this the second half
of the geodesic). There are two possible cases that can now arise. We describe what
happens in the first case, and rule out the second case.

Case 1: There exist points on ηpx, yq which are red and points which are blue:
Since a path is the image of an interval under a coarsely continuous map, there
must be arbitrarily close points of the interval whose images p and p1 are coloured
red and blue respectively. Note that p and p1 can be at most D distance apart.
Let a and b be points on the geodesic segment from x to q and q to y which are
within J distance of p and p1 respectively. We then have that dpa, bq ď 2J ` D,
which means dpp, qq ď 2J ` D, since q lies on the geodesic segment between a
and b. (see Figure 21)

Case 2: All of ηpx, yq is either red or blue: Note that x is always colored red, and
y is always colored blue. We therefore rule out this case.

x
y

ηpx, yq

p p1

a b

q

ď J ď Jď D

Figure 21. Proving that the geodesic lies in a bounded neighbourhood
of the geodesic guess.

Letting K “ 2J ` D proves statement 1 of the proposition, and therefore the entire
proposition. □

5. The horoball construction (01/14, YW, SK)

We will show how to construct a hyperbolic space from any geodesic metric space
using a construction called the horoball construction. Given a group G acting upon
a metric space X, the horoball HpXq is a hyperbolic space upon which the group G
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continues to act via isometries. This is quite useful, since the group G need not be
hyperbolic, giving us plenty of examples of non-hyperbolic groups acting on hyperbolic
spaces. References include [GM08, Definition 3.1], [MS20, Definition 2.1].

Definition 5.1 (Horoball construction). Let pX, dq be a geodesic metric space. A
horoball HpXq on X is defined as

˜

8
ď

k“0

X ˆ tku, 2´kd

¸

,

with an edge of length 1 added from px, kq to px, k ` 1q for any x P X, k ě 0.

Figure 22

There is a natural path metric on HpXq given by

dHpXqpx, yq “ inf

$

&

%

n`1
ÿ

i“0

dpxi, xi`1q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

x0 “ x, xn`1 “ y, for each i, xi and xi`1

are either on the same added edge or on
X ˆ tku for the same k.

,

.

-

We now give an alternative definition of horoball.

Definition 5.2 (Combinatorial horoball). Let Γ be a graph. Define the combinatorial
horoball HpΓq on Γ to be the following metric graph:

(1) vertices are V pΓq ˆ t0, 1, 2, ¨ ¨ ¨ u

(2) If v, w P V pΓq are joined by an edge, then for any i ě 0, join pv, iq and pw, iq by
an edge of length 2´i.

(3) For any v P V pΓq, i ě 0, join pv, iq and pv, i ` 1q by an edge of length 1.

Remark 5.3. Every geodesic metric space X is quasi-isometric to a graph Γ by the
following construction. Let V pΓq “ tvx : x P Xu, and join vx and vy by an edge of
length 1 if dpx, yq ď 1. Then the horoball HpXq is quasi-isometric to the combinatorial
horoball HpΓq.

A natural question to ask is what are the geodesics of HpXq. We first prove a lemma
that shows we do not need to consider complicated paths in the definition of dHpXq in
Definition 5.1:
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Lemma 5.4. Define an up-geodesic-down path to be a path γ “ γ1 ¨γ2 ¨γ3 where γ1 is a
path from px0, iq to px0, jq for j ą i via the added edges, γ2 is a geodesic from px0, jq to
py0, jq in X ˆ tju, and γ3 is a path from py0, jq to py0, kq for k ă j via the added edge.
Similarly we define geodesic-down paths and so on.

For any path γ in HpXq that equals to a concatenation of finitely many paths in
X ˆ tku for some k or some added edges, there is a up-geodesic-down path joining the
same endpoints of at most the same length.

Proof. Let γ be as given. Suppose γ has a segment γab from a “ px, iq to b “ py, jq as
in the graph. Then γab has length j ´ i ` d for d “ dXˆtiuppx, iq, py, iqq. But we can
replace the segment γab by γ1

ab, which has a smaller length j ´ i` 2´j`id. Then replace
the horizontal movements by a geodesic in the metric space pX, 2´jdXq. Similarly, we
can replace the down-geodesic segments by the geodesic-down segments, and cancel the
up-down segments. □

Figure 23

Remark 5.5. Suppose dpx, yq “ s. Then

dHpXqppx, iq, py, jqq “ inft2h ´ i ´ j ` 2´hs | h ě i, ju.

In the above distance formula, as h becomes very large, the length of the path starts
increasing, once 2´hs is less than 1. That means the inf of the above quantity is actually
achieved in a finite range of values for h, and therefore can be replaced by a min. This
shows that HpXq is a geodesic metric space, (recall Definition 1.1).

We now realize the infimum in 5.5 using a concrete formula. Suppose dXˆtiuppx, iq, py, iqq “

d, and we want to see if going up one level higher will end up with a shorter path.

Lemma 5.6. Suppose we have a path γ from px, iq to py, iq in X ˆ tiu. We say that γ1

is γ going up one level if γ1 “ γ1 ¨ γ2 ¨ γ3 where γ1 is the path from px, iq to px, i` 1q via
the added edge, γ2 is the image of γ via the translation map X ˆ tiu Ñ X ˆ ti ` 1u,
and γ3 is the path from py, i ` 1q to py, iq via the added edge.

For any i ě 0, going up one level gives up a shorter path if

dXˆtiuppx, iq, py, iqq “ d ą 4,
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and if going up by more than one level reduces length, then going up by exactly one level
also reduces length.

Combined with 5.4, we conclude that an up-geodesic-down path is a geodesic if and
only if the height of the horizontal geodesic segment is h “ maxpi, j, rlog2 ds ´ 2q.

Proof. The length of the path that goes up one level is 2` d{2. Solving for 2` d{2 ă d
gives us d ą 4. So the top horizontal segment is smaller than 4 if γ is a geodesic. Now
suppose going up by more than one level reduces the length of the path. This means
for any n ě 1, we have 2n ` d{2n ă d. Solving for this inequality gives 2n`2n

2n´1
ă d. But

2n`2n
2n´1

ą 2n`2n
2n

“ 4n ě 4. That means going up by one level would have also reduced
the length of the path.

In order for a path from px, iq to py, jq be a geodesic, the highest copy X ˆ thu

of X we can achieve is when dpX,hqppx, hq, py, hqq ď 4. This is, 2´hdΓpx, yq ď 4, or
h ě rlog2 dΓpx, yqs ´ 2. □

Corollary 5.7. If dΓpx, yq ą 4, then dHpXqppx, 0q, py, 0qq « 2 log2 d.

Proof. Since dΓpx, yq “ d ą 4, by 5.6, we have h “ rlog2 ds ´ 2. Then

dHpXqppx, 0q, py, 0qq “ 2h ` 2´hd « 2 log2 d ´ 2 ` 2´ log2 d22d ` 2 « 2 log2 d ` 2.

□

Example 5.8. We provide some examples of how geodesics are achieved between
px, iq, py, jq. In each of the example, the horizontal segment has length no more than 4.

when

Figure 24

Proposition 5.9. For any geodesic metric space X, all triangles in HpXq with vertices
at integer height are 5-slim.

It follows from this that HpXq is hyperbolic.

Remark 5.10. As a warm up, you might want to verify yourself that if x1, x2, x3 are
the vertices of an equilateral triangle in X, which may very well be far from slim, that
px1, 0q, px2, 0q, px3, 0q are the vertices of a slim triangle in HpXq. Speaking extremely
vaguely, one might say that the horoball construction is “pulling” the midpoints of the
edges up to a height at which the metric in the X direction is so contracted that they
become close.
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Since the geodesics in HpXq always have horizontal distance no more than 4 by 5.6,
the vertical movement is the major contribution to the distance between two points. So
we need to understand how vertical movements between any three vertices are related
to each other, which is studied by the next lemma:

Lemma 5.11. Let pxi, niq P HpXq for i “ 1, 2, 3. For a ‰ b P t1, 2, 3u, let hab be the
height achieved in 5.6 for paths from pxa, naq to pxb, nbq. Then hab ď maxphac, hbcq ` 1.

Proof. We prove two cases for this lemma and leave the third case to the next class. Re-
call hab “ maxpna, nb, rlog2 dΓpxa, xbqs´2q. If hab “ na, then since hac “ maxpna, nc, rlog2 dΓpxa, xcqs´

2q, we have hab “ na ď hac. Similarly hab “ nb implies hab ď hbc. □

6. The horoball construction (01/19, CK, KS)

Recall that our aim is to show Proposition 5.9, restated below.

Proposition 6.1. For any geodesic metric space X, all triangles in HpXq with vertices
at integer height are 5-slim.

We were in the process of proving lemma 5.11, restated below.

Lemma 6.2. Let pva, iaq P HpXq for a “ 1, 2, 3. For a ‰ b P t1, 2, 3u, let hab be the
height achieved in 5.6 for paths from pva, iaq to pvb, ibq. Then hab ď maxphac, hbcq ` 1.

Proof. Recall hab “ maxpia, ib, rlog2 dΓpxa, xbqs ´ 2q. If hab “ ia, then since hac “

maxpia, ic, rlog2 dΓpxa, xcqs ´ 2q, we have hab “ ia ď hac. Similarly hab “ ib implies
hab ď hbc.

If hab “ r log2 dpva, vbqs ´ 2, then we note that the triangle inequality implies that

dpva, vbq ď dpvb, vcq ` dpva, vcq ď 2maxpdpvb, vcq, dpva, vcqq

Applying r log2 p¨qs ´ 2 to both sides, we have

hab ď 1 ` maxprlog2 dpvb, vcqs ´ 2, rlog2 dpva, vcqs ´ 2q ď maxphbc, hacq ` 1

□

Proof of Proposition 6.1. See Figure 25. The picture is only representative and has
some loss of generality, but the argument below holds in general.

Pick p on the geodesic triangle T formed by pva, iaq P HpXq for a “ 1, 2, 3. WLOG, p
lies on the 12 side. If p lies on the horizontal part of 12, then it is at a distance of 4 from
either endpoint (see the topmost point p in Figure 25). WLOG, h23 “ maxph13, h23q.
So h12 ď h23 ` 1 and the endpoints of the horizontal part of 12 are either on the verti-
cal part of 23 or one edge above it. Hence, p is at most a distance 4`1 “ 5 away from 23.

When p is on a vertical edge, WLOG p “ pv1, kq; i1 ď k ď h12. We have two cases:

‚ Case 1: k ď h13 ` 1. In that case, p is at most one edge away from the 13 side.
So it is at most at a distance of 1 away from the 13 side.
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Figure 25. The red, yellow and green sides represent sides of the geo-
desic triangle in the horoball. The proof addresses the three possibilities
for p: case 1, case 2 and horizontal edge respectively, bottom to top.

‚ Case 2: k ą h13 ` 1. So rks ě h13 ` 2 and since dppv1, h13q, pv3, h13qq ď 4,
dppv1, rksq, pv2, rksqq ď 4 ˚ 2´2 “ 1. Note also that Lemma 6.2 implies that
k ď h23 ` 1. So, as illustrated by the second path in the figure, p can travel up
to pv1, rksq by a distance of at most 1, from pv1, rksq to pv3, rksq by a distance
of at most 1 to end up at most 1 edge above the 23 side. So it is at most at a
distance of 1 ` 1 ` 1 “ 3 away from the 23 side.

□

Remark 6.3. Given a space X and a “nice” collection of subspaces Xi, X is called
hyperbolic relative to Xi if it is hyperbolic after gluing HpXiq to Xi Ă X. (We might
not discuss relative hyperbolicity much in this course, so we’ll leave this a bit vague for
now.)

We now define a “downward extension” EpXq of the horoball HpXq. EpXq can be
thought of as related to the horoball the way the hyperbolic plane is to the horodisk at
8.

Definition 6.4. If pX, dq is a geodesic metric space, we define the extended horoball on
X as

EpXq “

˜

8
ď

k“´8

pX ˆ tku, 2´kdq

¸

,

with an edge of length 1 added from px, kq to px, k`1q for any x P X, k P Z. See Figure
26.

It is actually a fact that EpRq is quasi-isometric to H2 and HpRq is quasi-isometric
to the horodisk at 8 in H2.

Definition 6.5. For k P Z define

HkpXq “

˜

8
ď

r“k

pX ˆ tru, 2´rdq

¸

,
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Figure 26. The extended horoball.

with an edge of length 1 added from px, rq to px, r ` 1q for any x P X, r ě k.

Remark 6.6. Note that HkpXq – HppX, 2´kdqq under the map px, rq ÞÑ px, r ´ kq.

The remark above shows that each HkpXq is 5-hyperbolic, since by Proposition 6.1,
any horoball is 5-hyperbolic.

Remark 6.7. Under the map px, rq ÞÑ px, rq

HkpXq Ă Hk´1pXq Ă Hk´2pXq Ă ... and
8
ď

k“0

H´kpXq “ EpXq

By repeating our argument from the previous class, geodesics in EpXq must take the
up-geodesic-down path as well. Then HkpXq is convex in EpXq, since any up-geodesic-
down path does not go lower in height than its endpoints.

Lemma 6.8. EpXq is hyperbolic.

Proof. Pick any three points x, y, z P EpXq. Each lies in someH´kpXq. Pick the highest
k “ j, say. By our inclusions in the remark above, all three points lie in H´jpXq. Since
this set is convex, any geodesic triangle joining the three points also lies in H´jpXq.
Since H´jpXq is 5-hyperbolic, this triangle is 5-slim. So, EpXq is 5-hyperbolic. □

We can also collapse a horoball in the extended horoball to get an important con-
struction, the hyperbolic cone.

Definition 6.9. If pX, dq is a geodesic metric space, define the hyperbolic cone on X
to be the quotient CpXq “ EpXq{H1pXq, equivalently defined as

t0u
ď

˜

8
ď

k“0

pX ˆ tku, 2´kdq

¸

,
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Figure 27. The hyperbolic cone.

with an edge of length 1 added from px, kq to px, k ` 1q for any x P X, k ě 0 as well as
an edge of length 1 from 0 to px, 0q for any x P X.

We will show that CpXq is hyperbolic in the next lecture.

Optional Exercise 10. Show that HpRq is quasi-isometric to a the subset of the upper
half plane with Impzq ą 1, with the hyperbolic metric.

Optional Exercise 11. Show that for any X, the Gromov boundary of HpXq is a
point.

7. Electrification (01/21, SC, KH)

We will now exhibit an operation that allows us to get new hyperbolic spaces from
existing ones.

Definition 7.1 (Electrification/Coning Off). Let X be a metric space and let tXjujPJ

be a collection of subspaces. We define ConetXjujPJ
pXq to be the disjoint union of X

with a collection of points tcjujPJ along with an edge of length 1 from each point of Xj

to cj, for every j. This procedure is called coning off X along tXjujPJ . The resulting
space is also called the electrification of X along tXjujPJ .

We also have the path metric defined similarly as in the case of the horoball -

dConepXqpx, yq “ inf

#

n`1
ÿ

i“0

dpxi, xi`1q

ˇ

ˇ

ˇ

ˇ

ˇ

x0 “ x, xn`1 “ y, for each i, xi and xi`1

are either on the same added edge or on X

+

We see that each Xj has diameter less than or equal to 2 under the path metric. We
now see some examples,

Example 7.2. Consider the coning off of X along a single subspace X0. The distance
between any two points x and y changes only if there is a path passing through c0 with
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Figure 28. Coning off X along X1 and X2

Figure 29. The path realising the distance between x and y in the coned
off space

smaller length than dpx, yq. In this case, we may assume that the path visits c0 only
once. In case X is proper and X0 is closed, we have points a and b in X0 that are closest
to x and y respectively, and the distance in the coned off space then realised along a
path from x to a, a to c0, c0 to b and b to y (Figure 29). We thus have the expression,

dConeX0
pXqpx, yq “ minpdXpx, yq, 2 ` dXpx, aq ` dXpy, bqq

Since the distance function in the space resulting from collapsing X0 to a point has the
same form as above with 2 replaced by 0, we see that the coning off of X along X0 is
p1, 2q quasi-isometric to the space resulting from collapsing X0 to a point.

This is not true in general. If the Xj’s overlap, then collapsing and coning off could
be very different, as can be seen with the help of the following example-

Example 7.3. Let X be R and Xj “ rj, j ` 10s, j P Z. In this case, collapsing all the
Xj’s gives us only a point, but coning off Xj’s gives a space that is quasi-isometric to
R with the quasi-isometry coarsely reducing distances by a factor of 5 (Figure 30).

Example 7.4. Recall the space CpXq from the previous lecture obtained by collapsing
a horoball in the extended horoball. The preceding discussion tells us that CpXq is
quasi-isometric to ConeH1pXqEpXq (Figure 31).

We will show that coning off a hyperbolic space along quasiconvex subspaces gives
us a hyperbolic space, for which we first define what quasiconvex subsets are.
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Figure 30. Coning off R along subspaces of the form rj, j ` 10s

Figure 31. The space ConeH1pXqEpXq

Definition 7.5 (Quasiconvexity). A subset Y of a geodesic metric space X is said to
be C-quasiconvex if any geodesic segment of X with end points in Y stays in NCpY q.

For example, the graph of sinpxq in R2 is 2-quasiconvex, since the geodesic between
any two points of the graph stays in Rˆ r´1, 1s, and the 2-neighbourhood of the graph
of sinpxq contains this set. On the other hand the graph of |x| is not quasiconvex, since
no D-neighbourhood of the graph contains the convex hull of the graph. We also note
that with this definition, a 0-quasiconvex set is simply a convex set. We can now state
the proposition,

Proposition 7.6. Let X be δ-hyperbolic and let Xj Ă X, j P J all be C-quasiconvex,
then ConetXjujPJ

pXq is δ1 “ δ1pδ, Cq hyperbolic, if it is a geodesic metric space.

Proposition 7.6 and Example 7.4 together give us the corollary,

Corollary 7.7. For a geodesic metric space X, CpXq is hyperbolic.

The heavy lifting in proving Proposition 7.6 will be done by the following lemma
from [KR14, Proposition 2.5].

Lemma 7.8. Let X be δ-hyperbolic and Y be a geodesic metric space. Let f : X Ñ Y
be a map satisfying the following conditions -

(1) dY pfpxq, fpyqq ď LdXpx, yq for all x, y P X, i.e., f is L-Lipschitz, for some
L ą 0.

(2) NCpfpXqq “ Y , i.e., f is C-surjective, for some C ą 0.
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Figure 32. Wedging lines with the aim of extending f to a surjective
map

Figure 33. Showing that f 1 satisfies condition 3 of Lemma 7.8

(3) There existM1,M2 ą 0 such that if γ is a geodesic from x to y and dpfpxq, fpyqq ď

M1 ` 2C, then diampfpγqq ď M2.

Then, Y is hyperbolic and there exists D such that, for each geodesic segment γ in X,
we have a corresponding geodesic segment γ1 in Y with dHauspfpγq, γ1q ď D.

Remark 7.9. Restriction (3) is absolutely crucial. Indeed, every finitely generated group
is a quotient of a free group via a 1-Lipschitz, surjective map; but of course not every
finitely generated group is hyperbolic!

Proof. We first show that, without loss of generality, we may assume f to be surjective.
To see this, we construct a new space X 1 from X by wedging a line segment on X for
each y P Y zfpXq. For every such y, by C-surjectivity, there exists an xy P X with
dY pfpxyq, xq ď C. The line segment in X 1 associated to y has length dY pfpxyq, yq and
is wedged to X along the point xy (Figure 32). We then have a natural extension f 1 to
X 1 of the map f on X, given by mapping each new line segment to a geodesic segment
between fpxq and y. It can be shown that the map f 1 is pmaxp1, Lqq-Lipschitz.
It remains to show that f 1 satisfies condition 3 of the lemma. To see this, consider

y1, y2 P Y with dpy1, y2q ď M1. Let γ̃ be a geodesic from a point in pf 1q´1pty1uq to a
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point in pf 1q´1pty2uq. Then, there is a segment γ̃core of γ̃ lying entirely in X (Figure
33). There are at most two segments of γ̃ other than γ̃core at each end of γ̃, and each of
these segments has length at most C. f 1 maps these segments isometrically onto their
images.

An application of the triangle inequality then shows that the end points of fpγ̃coreq
are not more than 2C ` M1 apart, which then gives us that fpγ̃coreq has diameter less
than or equal to M2. Consequently, fpγ̃q has diameter less than or equal to M2 ` 2C.
This shows that f 1 satisfies condition 3 of the lemma with new constants M 1

1 “ M1´2C
and M 1

2 “ M2 ` 2C. Thus, we henceforth assume that f is surjective.
Next, for all y1, y2 P Y , we pick a geodesic γpy1, y2q joining a point in pf 1q´1pty1uq to

a point in pf 1q´1pty2uq, and define ηpy1, y2q to be fpγpy1, y2qq. We shall use these η’s
as geodesic guesses in the geodesic guessing lemma and continue the proof in the next
lecture. □

8. Electrification (01/24, KS, TY)

Our goal is to prove Proposition 7.6. Let us restate it here.

Proposition 8.1. Let X be δ-hyperbolic and let Xj Ă X, j P J all be C-quasiconvex,
then ConetXjujPJ

pXq is δ1 “ δ1pδ, Cq hyperbolic, if it is a geodesic metric space.

To prove the proposition we need Lemma 7.8, which is also restated below.

Lemma 8.2. Let X be δ-hyperbolic and Y be a geodesic metric space. Let f : X Ñ Y
be a map satisfying the following conditions

(1) dY pfpxq, fpyqq ď LdXpx, yq for all x, y P X, i.e., f is L-Lipschitz, for some
L ą 0.

(2) NCpfpXqq “ Y , i.e., f is C-coarsely surjective, for some C ą 0.
(3) There existM1,M2 ą 0 such that if γ is a geodesic from x to y and dpfpxq, fpyqq ď

M1 ` 2C, then diampfpγqq ď M2.

Then, Y is hyperbolic and there exists D such that, for each geodesic segment γ in X,
we have a corresponding geodesic segment γ1 in Y with dHauspfpγq, γ1q ď D.

Proof. In the previous lecture we proved that WLOG C “ 0, i.e., f is surjective.
For all y1, y2 P Y pick a geodesic γpy1, y2q in X from a point of f´1py1q to a point

of f´1py2q, and set ηpy1, y2q “ fpγpy1, y2qq. We will check conditions in the Geodesic
Guessing Lemma 4.2.

The first condition (if dpy1, y2q ď 1, then the diameter of ηpy1, y2q is bounded by a
constant) is satisfied by assumption (3).

We’ll now show the second condition: for any z1 and z2 in the path ηpy1, y2q, the
segment of ηpy1, y2q starting at z1 and ending at z2 is within bounded Hausdorff distance
of ηpz1, z2q (see Figure 34).

It suffices to check that if γ, γ1 : r0, 1s Ñ X are constant speed geodesics and
fpγp0qq “ fpγ1p0qq and fpγp1qq “ fpγ1p1qq, then fpγq and fpγ1q are Hausdorff close
(in Figure 34, γ corresponds to the green segment and γ1 to the red segment).

WLOG, p P γ (the argument is symmetric with respect to γ and γ1), and so p is
δ-close to a point p1 P α1 Y α2 by the thinness of geodesic triangles in X (see Figure
35).
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Figure 34. Showing that segment of ηpy1, y2q (in green) is Hausdorff
close to ηpz1, z2q

Figure 35. Showing that fpγq is Hausdorff close to fpγ1q

There are two cases:

‚ Suppose p1 P α1. Note that the endpoints of α1 map to the same point of Y ,
so diam fpα1q ď M2 by assumption. So fpp1q is close to fpγ1p0qq. Since f is
L-Lipschitz, fpp1q is at most δL from fppq, so fppq is close to fpγ1q.

‚ Suppose p1 P α2. Then p1 is δ-close to a point p2 P γ1 Y α3. If p
2 P α3, then it is

the same situation as in the previous case. If p2 P γ1, then fppq is 2δL-close to
fpp2q, so we are done.

Finally, we check the third condition of the Geodesic Guessing Lemma: that for all
triples ty1, y2, y3u, ηpy1, y3q is contained in a D-neighbourhood of ηpy1, y2q Y ηpy2, y3q.
Consider y1, y2, y3 P Y . By the work we just did when checking the second condition,
it suffices to show that, for i “ 1, 2, 3, if xi P f´1pyiq and γij is a geodesic from xi to
xj, then the fpγijq form a slim triangle. This follows from γ1 Y γ2 Y γ3 being slim and
f being L-Lipschitz. □

Now let us prove the proposition.

Proof of Proposition 8.1. Let f : X ãÑ ConetXjupXq be the inclusion. It is 1-Lipschitz
and 1-coarsely surjective. Let γ be a geodesic from x to y inX, and assume dpfpxq, fpyqq ă
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2.1. So, the geodesic γ1 in ConetXjupXq can go through at most one cone point. If γ1

doesn’t go through a cone point then dXpx, yq “ dpfpxq, fpyqq ă 2.1, so diam γ ă 2.1
and diam fpγq ă 2.1.

Now assume γ1 does go through a cone point: Say it goes from x to x1 P Xj along a
geodesic in X, then takes the edge to the cone point cj associated to Xj, then takes the
edge from cj to y1 P Xj, and then goes to y along a geodesic in X. See Figure 36. We
need to use this information to show γ has bounded diameter in ConetXjupXq, which
we will do by showing γ stays close to Xj and hence cj.

Figure 36. Showing that geodesic γ is close to Xj

Since 2.1 ą dpx, yq “ 1 ` 1 ` dXpx, x1q ` dXpy, y1q we have dXpx, x1q ă 0.1 and
dXpy, y1q ă 0.1. Let α be a geodesic from x1 to y1 in X. By quasiconvexity of Xj, for
any p P α, one has dpp,Xjq ď C. Then every point on γ is at most distance 2δ`1 from
α. Then dpp,Xjq ď 2δ ` C ` 1, so diam fpγq ď 2p2 ` 2δ ` C ` 1q. In particular, we
can then apply Lemma 8.2 to see that ConetXjupXq is hyperbolic. □

Example 8.3. The following non-example shows that the quasiconvexity condition
cannot be dropped for electrification to be hyperbolic.

Let X “ r0,8q and X0 “ t2n, n ě 0u. Then ConeX0pXq is not hyperbolic. It looks
like a wedge of an infinte number of bigger and bigger circles, and in particular it doesn’t
have coarsely unique geodesics.

Example 8.4. Let X be hyperbolic and Xj for j P J be a geodesic segment. The
following is an analogy for the electrification of a space along a collection of geodesic
segments. There are a bunch of train lines, which all go straight (but can go over and
under each other). It is a magical train: there is always a train waiting for you at any
point on any train line; it leaves immediately when you get on; and it takes exactly 2
minutes to get to where you want to get off (on the same line), no matter how far away
it is. Despite the magic, even if your start and endpoints are connected by the train
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system, it might take a long time to get between them, simply because you might need
to transfer lines a lot of times.

Example 8.5. Fix δ and C, and suppose we are considering the electrification of a
δ-hyperbolic space X along a collection of C-quasi-convex subsets Xj. We actually
know that every geodesic in X stays D close to a geodesic in the coned off space, where
D depends only on, and can be explicitly computed from, δ and C.

If we happen to know that any two Xj are more than D apart in X, it is much easier
to understand the coned off space. For example, suppose γ is a geodesic in X, and γ1 is
a geodesic joining the same endpoints in the coned off space. Suppose γ1 goes through
the cone point cj associated to Xj, coming along the edge from x1 P Xj and exiting
along the edge to y1 P Xj. So, x1 and y1 are within distance D of γ in the coned off
space. Since the different Xi are more than D apart, we get that x1 and y1 are within
distance D of γ in X. So, γ1 can’t go through cj unless γ comes close to Xj. This isn’t
a complete answer to the question of which cone points γ1 goes through, but it does
make that question comparatively easy.

This isn’t true in general: especially if D is large and the Xj overlap, it can be quite
challenging to figure out which cone points a geodesic γ1 will go through, and it might
go through cone points of sets Xj that aren’t close to the original geodesic γ Ă X.

Optional Exercise 12. Let T be a tree, and let S be a connected subset of T . (a)
Show that each point in T has a unique closest point in S. (b) Let πS denote the closest
point projection. Show that if U is a connected subset of T disjoint from S, then πSpUq

is a point.

Optional Exercise 13. Let X be a tree, and let Xj, j P J be an arbitrary collection of
connected subtrees. Prove that ConetXjupXq is a quasi-tree, using Manning’s bottleneck
condition (from Exercise 2). Is there a more explicit way to see this space is qi to a
tree?

Optional Exercise 14. Determine the Gromov boundary of EpXq and CpXq for
arbitrary X.

Optional Exercise 15. Show that every bi-infinite geodesic in X gives rise to a qi-
embedding of the hyperbolic plane in EpXq.

Optional Exercise 16. Let Fn be the free group, and let X be its Caley graph, i.e. the
2n-regular tree. (a) Let HS be the subgroup generated by a subset S of the generators.
Show that HS, as well as all its cosets, are convex in X. (b) Let R denote a set of
proper subsets S of the set of generators of Fn. Consider the space Y defined by coning
off all cosets of all HS, S P R. Show R is hyperbolic. (c) Show Y is infinite diameter.

Optional Exercise 17. Let X be a hyperbolic space, and let r : r0,8q Ñ X be a
geodesic ray. Let R be the image of r. Relate the Gromov boundary of X to that of
ConeRpXq. (See [DT17, Theorem 3.2] for the ultimate generalization of this.)

Optional Exercise 18. Let X be a hyperbolic space, and let p P X. Fix numbers

0 “ r0 ă r1 ă r2 ă . . . ă rk.
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For any q P X, let i be the largest number with dpp, qq ą ri, and pick a geodesic segment
γq from q to a point that is distance ri from p. Let Y be X with all γq, q P X coned off.
Show Y has bounded diameter.

A natural special case is when X is the hyperbolic plane, and γq goes straight towards
p. This special case can be interesting is because a geodesic in Y between two points
of X Ă Y might go through cone points of some γq that are far in X from the geodesic
joining the two points. Why doesn’t this contradict “geodesics in Y are Hausdorff close
to geodesics in X”?

9. Closest point projections (01/26, JH, YW)

We now develop several results about closest point projections in δ-hyperbolic spaces.
First, we establish notation for the distance from a point to a subspace.

Definition 9.1. For any metric space X, if x P X and S Ď X, set

dpx, Sq “ inf
sPS

dpx, sq “ dHausptxu, Sq.

The first thing we want to show about closest point projections is that they are
(coarsely) well-defined.

Example 9.2. As a motivating example, suppose S Ď R2 is convex and closed. Then
any x P R2 has a unique closest point in S. Indeed, if there were two distinct closest
points s, s1 P S, then their midpoint would be closer (see Figure 37).

d
s

d
s′

x m< d

Figure 37. Taking the midpoint of two projections yields a closer pro-
jection in R2.

If m “ ps ` s1q{2 is the midpoint of s and s1 and d “ dpx, sq “ dpx, s1q, then

dpx,mq “
a

dpx, sq2 ´ dpm, sq2 ă d.

More simply, dpx,mq ă d because the legs of a right triangle are shorter than its
hypotenuse. Since S is convex, m P S, so this contradicts the fact that s was a closest
point in S to x.

More generally, the same argument goes through in CAT(0) spaces.

In our coarse setting, hyperbolicity yields a similar result, although as usual strict
uniqueness is lost. In this case, rather than a single closest point, we have a bounded
diameter set of closest points. The loss of uniqueness is ultimately inconsequential
because from the coarse perspective, a bounded-diameter set is essentially the same as
a point.
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Lemma 9.3. Suppose X is δ-hyperbolic and S Ď X is C-quasi-convex. For x P X, set

ΠSpxq “ ts P S : dpx, sq ď dpx, Sq ` 1u.

Then diamΠSpxq ď D “ Dpδ, Cq.

We think of ΠSpxq as being the closest points in S to x. We take the points with
distance at most dpx, Sq ` 1, rather than just dpx, Sq, so that we don’t need to worry
about whether the infimum in dpx, Sq is realized. If x P S, then the infimum is always
realized (by x), but because of the `1, ΠSpxq is the closed ball of radius 1 around x,
intersected with S.

Remark 9.4. We could arbitrarily pick a point πSpxq P ΠSpxq to get a coarse projection
map πS : X Ñ S. For this reason, some authors/papers treat ΠS as an actual closest-
point projection map, even though it is only coarsely well-defined. In this case, πS is
not strictly a projection map, since it may not restrict to the identity on S; but it will
only move points in S distance at most 1 and it would be easy to modify πS to restrict
to the identity.

Proof of Lemma 9.3. Take y, z P ΠSpxq and let m be the midpoint of a geodesic from
y to z (see Figure 38). Setting D “ dpy, zq, we want to find a uniform bound on D
depending only on δ and C.

D/2

D/2

≤ δx

y

z

m

x′

Figure 38. Showing two projections of the same point are bounded
distance apart.

As S is C-quasi-convex, dpm,Sq ď C. Since the geodesic x-y-z triangle is thin,
there is a point x1 on the geodesic from x to (without loss of generality) y such that
dpm,x1q ď δ. Now,

dpx, x1
q ` dpx1, yq “ dpx, yq

ď dpx, Sq ` 1

ď dpx, x1
q ` dpx1,mq ` dpm,Sq ` 1

ď dpx, x1
q ` δ ` C ` 1.

This implies dpx1, yq ď δ ` C ` 1, so finally,

D

2
“ dpm, yq ď dpm,x1

q ` dpx1, yq ď δ ` δ ` C ` 1.

Hence, D ď 4δ ` 2C ` 2, giving the desired bound. □



36 CHENAKKOD, HAVILAND, KAUSIK, KHAN, SHCHETKA, WRIGHT, YU

Remark 9.5. The 2 in this bound comes from the fact that we allowed a maximum error
of 1 in the definition of ΠSpxq, and the 2C comes from quasi-convexity. Because we
could modify the definition of ΠSpxq to use some smaller amount of error (as long as
we still use a positive number), and C disappears if we assume S is actually convex, in
some sense the essential part of the bound is 4δ. The case δ “ 0 occurs in trees, so in
trees we do have a well-defined closest point projection onto closed convex sets.

Next, we consider projections of subsets, especially geodesics.

Definition 9.6. If γ Ď X, define

ΠSpγq “
ď

xPγ

ΠSpxq “ imagepΠS|γq.

Note that if we replace ΠS by a projection map πS, then we could instead define
πSpγq “ tπSpxq : x P γu.

Example 9.7. As a warm-up for the next lemma, let X be a tree, S Ď X convex
(equivalently, connected) and closed, and γ Ď X convex and closed with γ X S “ H.
In this case, ΠS can be an honest map (the strict closest point projection) because our
subspaces are closed, and ΠSpγq is a point. The idea is that any two connected subsets
of a tree can be separated by removing a single point of the tree, so any geodesic from
one subset to the other has to go through that bottleneck.

γ

S

ΠS(γ)

Figure 39. Projecting a convex subset of a tree onto another yields a
single point.

Remark 9.8. Example 9.7 fails in R2. For example, when S and γ are two distinct
parallel lines, ΠSpγq is all of S.

Even though the result does not hold in R2, we know that hyperbolic spaces are more
like trees than R2, so we expect a version of Example 9.7 to hold.

Lemma 9.9. Let X be δ-hyperbolic and S Ď X a C-quasi-convex subspace. Then there
exists a B “ Bpδ, Cq ą 0 such that if γ is a geodesic segment with

γ X NC`2δ`1pSq “ H,

then diamΠSpγq ď B.



COARSE GEOMETRY AND TEICHMÜLLER THEORY 37

S

x = 0

γ

x = 10

Figure 40. Projecting a line onto a parallel line.

This says that if γ is a geodesic and stays far enough away from S, then its projection
onto S has bounded diameter. The proof will be very similar to the proof of Lemma 9.3.

Proof. Say γ joins x to y. Pick px P ΠSpxq, py P ΠSpyq, and say B “ dppx, pyq. We want
to find a uniform bound on B depending only on δ and C. Let m be the midpoint of
a geodesic from px to py, and let αx and αy be geodesics from x to px and y to py (see
Figure 41).

αx

αy

γ

B/2

B/2

≤ 2δ

x px

pyy

m

q

Figure 41. Showing the projections of points in γ have bounded dis-
tance apart.

Note that dpm, γq ě 2δ ` 1 because γ doesn’t come within distance C ` 2δ ` 1 of
S and dpm,Sq ď C by quasi-convexity. Recall that quadrilaterals in a δ-hyperbolic
space are 2δ-thin (this is easily proved by drawing a diagonal and applying thinness
of triangles and the triangle inequality). Therefore, there is a point q in αx Y αy Y γ
with dpm, qq ď 2δ. Since dpm, γq ą 2δ, q cannot lie on γ, so without loss of generality
assume q lies on αx.

Now,

dpx, qq ` dpq, pxq “ dpx, pxq

ď dpx, Sq ` 1

ď dpx, qq ` dpq,mq ` dpm,Sq ` 1

ď dpx, qq ` 2δ ` C ` 1.

This implies that dpq, pxq ď 2δ ` C ` 1, so

B

2
“ dpm, pxq ď dpm, qq ` dpq, pxq ď 2δ ` 2δ ` C ` 1.
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Hence, B ď 8δ ` 2C ` 2, giving the uniform bound we wanted. □

Remark 9.10. There is not really a weaker condition than γ being a geodesic (or at
least quasi-geodesic) that we could use for this lemma. We need the thinness condition,
and the geodesic guessing lemma tells us that any reasonable family of paths with the
thinness property stays Hausdorff close to geodesics, so there is no difference from the
coarse perspective.

Example 9.11. The condition γXNC`2δ`1pSq “ H cannot be replaced with γXS “ H.
For example, let T be an arbitrary hyperbolic space. Then T ˆ r0, 1s is also hyperbolic,
and T ˆt0u and T ˆt1u are disjoint and convex, but the projection of one onto the other
is surjective. The point is that “disjoint” is not very robust notion in coarse geometry.

Lemma 9.9 has an application that sets up an important perspective. Suppose that
we have a convex (or quasi-convex) set S and two points x and y such that ΠSpxq and
ΠSpyq are “far apart” (see Figure 42). Lemma 9.9 tells us that if a geodesic from x to
y does not get close to S, then its projection onto S has bounded diameter. That is,
moving along the geodesic cannot significantly change the projection to S. Therefore, if
two points do have significantly different projections onto S, any geodesic joining them
must get close to S.

far

x

y

ΠS(x)

ΠS(y)

S

Figure 42. Understanding geodesics by projecting them onto a convex
set.

This means knowing the projection of two points x, y onto S, and especially knowing
the projections are far apart, gives us partial information about the points. It tells us
that a geodesic γ joining them must travel to S, then stay close to S, and then travel
back away from S (see Figure 42). Moreover, while γ is traveling to S from x and to y
from S, it does not make any appreciable progress in S, in the sense that the projections
of those parts of γ have bounded diameter.
This idea is related to the fact that it is exponentially expensive to avoid going

through a ball (see Remark 2.8) in hyperbolic space; in fact it is really a more general
version. It turns out that understanding geodesics between points by looking at their
projections onto a convex subspace is a very useful way to get information. It will
be an important perspective when we study Teichmüller space — we will talk a lot
about projections as a way to build intuition for things that would be very mysterious
otherwise.
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10. Intersection number (01/28, MM, SC)

Let S “ Sg be a surface of genus g ě 2.

Figure 43. Genus 3 surface

A curve α on S is called essential if it is not null-homotopic, and simple if it has no
self-intersections. (A simple curve is null-homotopic if and only if it bounds a disc.)
Throughout this section, we will refer to simple, essential closed curves as simple closed
curves (scc’s).
The type of α is given by the homeomorphism class of Szα. In particular,

Figure 44. α is non-separating; β is separating

‚ α is called non- separating if Szα is a genus g ´ 1 surface with two boundary
circles

‚ α is called separating if Szα is the union of a surface of genus g1 with one
boundary circle and a surface of g2 with one boundary circle, where g1 ` g2 “ g

Figure 45. Types of separating curves of a genus 4 surface
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As the genus increases, we get more and more types of separating curves. For a genus
g surface, there are t

g
2
u types of separating scc’s.

Figure 46. Separating curves of same type

Lemma 10.1. α, β are scc’s of same type if and only if there exists a homeomorphism
e : S ÝÑ S such that epαq “ β

Proof. ðù is clear.
For ùñ :

If α, β have same type, then there exists a homeomorphism ẽ : Szα ÝÑ Szβ. Let
α1, α2, β1, β2 be the copies of the cut curves α, β respectively as shown in Figure 46.
Any x P α has copies xi P αi, and any y P β has copies yi P βi.

The only problem in gluing up via ẽ is that it is possible that for some x P α,
ẽpx1q, ẽpx2q are not copies of the same point y P β.

But this problem can be easily fixed by slightly altering ẽ in a neighborhood of the
boundary of Szα. That is, De isotopic to ẽ such that @x P α, epx1q “ y1, epx2q “ y2 for
a unique y P β. This e glues up into a homeomorphism e : S ÝÑ S with epαq “ β. □

The above lemma is proved in Chapter 1 of [FM12]. Its philosophy is analogous to
the fact that all bases of a linear vector space are equivalent.

Definition 10.2. Given scc’s α, β, we define the intersection number ipα, βq as the
minimum number of intersections between scc’s α1, β1 in the homotpy classes of α, β
respectively. That is,

ipα, βq “ mint#pα1
X β1

q|α1 is homotopic to α, β1 is homotopic to βu

Example:

‚ ipα, αq “ 0 (orientability of S is necessary here. If α is the central curve of a
Möbius strip for instance, ipα, αq “ 1).

‚ See Figure 47.

Definition 10.3. Given scc’s α, β, a bigon is a disc bounded by a segment of α and a
segment of β.
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Figure 47. β can be homotoped into a curve that is disjoint from α,
and so, ipα, βq “ 0

Example:

Figure 48. Bigon

Lemma 10.4. (The Bigon Criterion)
If simple closed curves α and β are transverse and do not make bigons, then

ipα, βq “ #pα X βq

Remark 10.5. If α, β make a bigon, then we expect to be able to slide β over the bigon
to produce a curve β1 homotopic to β such that #pα X β1q ă #pα X βq. See Exercise
19 for how to pick which bigon to start with to make this totally clear. This partially
proves the lemma. But we need to check that in the absence of bigons, there exist no
homotopies that reduce the intersection number.

Corollary 10.6. If #pα X βq “ 1, then ipα, βq “ 1.

The above is clear since two curves intersecting at a single point cannot form a bigon.

Lemma 10.7. Any collection of scc’s can be homotoped so that no pair of them forms
a bigon.

Remark 10.8. An isotopy between two scc’s is a homotopy h : S ˆ r0, 1s ÝÑ S between
them such that @t P r0, 1s, hp., tq traces out a simple closed curve. Two scc’s are
homotopic if and only if they are isotopic. We will denote the isotopy class of α by rαs.
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Figure 49. Sliding over a bigon

We will now introduce the curve graph CS. It has connections with the geometry
of Teichmüller space. We will later see that it is connected and hyperbolic, and is not
locally compact.

Definition 10.9. The curve graph CS is defined in the following way:

‚ its vertex set is trαsu where rαs ranges over all isotopy classes of scc’s on S
‚ there is an edge joining rαs and rβs if and only if ipα, βq “ 0

This graph has a natural metric - the distance between any two vertices is the length
of the shortest length path connecting them. (You might say two vertices with no
path connecting them are an infinite distance apart, but we’ll see immediately that this
doesn’t happen.) One reference on the curve complex is [Sch].

If ipα, βq “ 0, then distprαs, rβsq “ 1. We also have the following.

Lemma 10.10. If ipα, βq ‰ 0, then

distprαs, rβsq ď 2 log2 ipα, βq ` 2

A reference is [Hem01, Lemma 2.1].

Corollary 10.11. CS is connected.

We’ll start with some warm up discussion related the lemma, which in particular will
provide the base case when we do an inductive proof of the lemma next class.

Note that

distprαs, rβsq “ mintn|D scc’s γ0, γ1, ..., γn with γ0 “ α, γn “ β, γi X γi`1 “ H@iu

‚ If ipα, βq “ 1, we let γ be the boundary of the ϵ neighborhood Nϵpα Y βq of

the two curves. For ϵ small enough, Nϵpα Y βq is a torus with one boundary
component (see Figure 50). We note that

Szγ “ Nϵpα Y βq \ S 1

In particular, if g ě 2, S 1 cannot be a disk, and so, γ is not null-homotopic.
Clearly,

ipα, γq “ ipγ, βq “ 0

Therefore,

distprαs, rβsq “ 2
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Figure 50. α, β have geometric intersection number 1

‚ Suppose distprαs, rβsq ą 2, then for any scc γ, ipα, γq ą 0 or ipβ, γq ą 0 or
both. In this case, we say that α and β fill the surface. Now cut along α, β.
This gives a collection of polygons, each of which have an even number of edges
(see Figure 51). These constitute a cell-decomposition of S, with V vertices, E

Figure 51. A possible connected component of Szpα Y βq

edges end F faces. We note that

V “ ipα, βq

E “ 2ipα, βq

F ě 1

Thus,

2g ´ 2 “ ´χpSq

“ ´V ` E ´ F

ď ´ipα, βq ` 2ipα, βq ´ 1

ùñ ipα, βq ě 2g ´ 1

Optional Exercise 19. Suppose α and β are simple closed curves on S. Suppose
there is disc on the surface bounded by a segment of α and a segment of β. Prove there
is a component of S ´ pα Y βq that is a disc and is bounded by a segment of α and
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Figure 52. The green bigon is not disjoint from β

a segment of β. That is, show that if α and β have a bigon, then they have a bigon
where the interior of the bigon is disjoint from α and β. (Sometimes this disjointness
is included in the definition. See Figure 52.)

Optional Exercise 20. Think about intersection number for non-simple curves: Sup-
pose α and β are primitive, which means they aren’t obtained by traversing a smaller
loop multiple times. Suppose neither has immersed monogons, which means they have
simple lifts in the universal cover. Prove that the number of intersections is equal to
the intersection number if and only if there are no immersed bigons. Or equivalently,
if and only if any lift of α to the universal cover does not form any bigons with any lift
of β. (Hint: It seems helpful to think about geodesic representatives for a hyperbolic
metric.)

11. Connectivity of the curve complex (01/31, TY, CK)

Proof of Lemma 10.10. Recall that α, β are assumed to have no bigons. We proceed
by induction on ipα, βq.

First, if ipα, βq “ 1, then we saw last class that distpα, βq “ 2. Thus, we see that

distpα, βq “ 2 ď 2 log2 ipα, βq ` 2 “ 2 log2 1 ` 2 “ 2,

as desired.
Now, assume ipα, βq ě 2, and that the lemma holds for all pairs of curves with smaller

intersection number. Orient α. Then at least one of the following cases occurs (they
are not mutually exclusive).

‚ Case 1: Suppose that there exists a pair of intersections between α and β that
are consecutive on β such that the orientations of α along each intersection are
in the same direction, as in the left of Figure 53.

If α starts at the top intersection (end 2) and returns to the top intersection
(end 1) before reaching the bottom intersection (end 3), it will never reach the
bottom intersection, since α is the image of S1. So, it must go to the bottom
intersection after the top one (2 Ñ 3 Ñ 4 Ñ 1). An example of this is in the
left of Figure 54.

Let α1 be a curve that starts to the right of α at the top intersection (end 2),
follows α to the right until reaching just before the bottom intersection (end 3),
and then crosses over α and β vertically to close the path. Similarly, let α2 be a
curve that starts to the right of α after the bottom intersection (end 4), follows
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Figure 53. Possible cases for orientations of α around consecutive in-
tersections on β.

Figure 54. Paths α1 and α2.

α to the right until reaching just before the top intersection (end 1), and then
crosses over β and then α to close the path vertically. See the right of Figure 54.

Notice that α1 and α2 basically divide α into two halves. Every intersection
between α and β that doesn’t occur in the vertical segment leads to either an
intersection of β with α1, or an intersection of β with α2. With the middle
segment, there are two intersections between α and β and two intersections
between α1 Yα2 and β. Hence, there is no increase in the number of intersections
with β upon going from α to α1 and α2. See Figure 55.

To rephrase,

ipα1, βq ` ipα2, βq ď ipα, βq

Here, we have an inequality (rather than an equality) since the no-bigon condi-
tion holds for α, β by assumption, but might not hold for β with α1 or α2.
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In addition, we’ve constructed α1, α2 so that

ipα, α1
q “ 1 “ ipα, α2

q.

Note that this also implies that α1, α2 are essential; if not, they wouldn’t have
intersection numbers 1 with something else on the closed surface.

Figure 55. Outside of the middle segment, intersections between α and
β occur as an intersection between β with either α1 or α2. The right is a
zoom-in on intersections in the middle segment.

Now, from the above inequality, we have WLOG that ipα1, βq ď
ipα,βq

2
, and so

our claim holds for α1, β by the induction hypothesis. By the triangle inequality,

distpα, βq ď distpα, α1
q ` distpα1, βq.

Also, by the base case, distpα, α1q “ 2 since ipα, α1q “ 1. Combining all this
with the induction hypothesis, we see that

distpα, βq ď 2 ` p2 log2 ipα
1, βq ` 2q

ď 2 `

ˆ

2 ` log2
ipα, βq

2
` 2

˙

“ 2 ` 2 log2 ipα, βq,

as desired.
‚ Case 2: Now suppose that there exists a pair of intersections between α and β
that are consecutive on β such that the orientations of α along each intersection
are in opposite directions.

Again, α must go from the top intersection (end 2) to the bottom intersection
(end 4) before returning to the top (end 1), and vice versa.

As in the previous case, let α1 be a curve starting to the right of α after the top
intersection, follows to the right of α until right before the bottom intersection,
and then travels up along β to close the path. Similarly define α2. See Figure 56.
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Figure 56. Paths α1 and α2, along with their intersections with β.

By construction, we have that

ipα, α1
q “ 0 “ ipα, α2

q,

as α does not intersect either α1 or α2; see Figure 56. In addition, we see that

ipα1, βq ` ipα2, βq ` 2 ď ipα, βq.

This inequality is shown in a way similar to the previous case: every intersection
of α with β outside the middle segment occurs exactly once as an intersection
between either α1 or α2 with β, and α1 Yα2 does not intersect β along the middle
segment, whereas α, β intersect twice there.
We have that α1, α2 are simple, as they couldn’t self-intersect on the portions

where they follow α, nor on the portions where they follow β, as α and β are
simple and β doesn’t intersect α along the middle segment.

We also have to show that α1, α2 are essential. This is true as they are bicorns
of α, β (see Definition 11.1 and Remark 11.2 below).

Now, the desired inequality follows as in the first case since we have the weaker
inequalities distpα, α1q “ 1 “ distpα, α2q ď 2 and ipα1, βq ` ipα2, βq ď ipα, βq.

□

Definition 11.1. Given scc’s α, β with no bigons, a bicorn curve γ is a simple closed
curve that consists of an arc of α and an arc of β.

Remark 11.2. Since α, β have no bigons, a bicorn γ cannot bound a disk. Thus, γ is
essential.

Next, we’ll show that the curve complex is hyperbolic by making paths from scc’s
α to β of bicorn curves of that are geodesic curves. To do so, we’ll interpolate from
one curve to another via bicorns: we’ll first follow all of α, then start interpolating by
following more and more of β and less and less of α, until we get to following all of just
β.
To get this interpolation, we’ll prove the following lemma next class.
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Figure 57. Bicorn γ of α and β. This is only representative, since α
and β don’t have any bigons.

Lemma 11.3. Let γ be a bicorn of α and β. Then if ipγ, βq ą 2, then there exists a
bicorn γ1 of α, β whose β segment strictly contains the β segment of γ, and ipγ, γ1q ď 1.

Note that the path of bicorns we’re constructing could be very inefficient, but this
does not affect our application of the Geodesic Guessing Lemma (Proposition 4.2), since
its conditions don’t refer to the parametrization of the path, only to its image.

Optional Exercise 21. Suppose dCSpα, βq “ D. Prove that there is a connected
degree D cover S 1 of S where α and β have disjoint lifts (meaning there are disjoint scc
α1, β1 on S 1 such that α1 maps to (a power of) α, and similarly for β1).

Optional Exercise 22. Use the last exercise to show that if CS had finite diameter,
there would be a finite cover S 1 Ñ S such that any two scc on S have disjoint lifts on
S 1.

12. Improved geodesic guessing (02/02, CK, JH)

We will start proving a generalization of the Geodesic Guessing Lemma, namely
one that removes the need for the second coherence condition for geodesic guesses.
References are [MS13, Theorem 3.15] and [Bow14a, Proposition 3.1].

Proposition 12.1. For any given h, if G is a connected graph such that @x, y P V pGq,
we have a chosen connected subgraphs ηpx, yq so that

‚ dpx, yq ď 1 ùñ diampηpx, yqq ď h and
‚ ηpx, yq Ă Nhpηpx, zq Y ηpz, yqq @x, y, z P V pGq,

then G is hyperbolic. Moreover, there is a D “ Dphq so that for any geodesic γ joining
x and y, dHauspγ, ηpx, yqq ď D.

Remark 12.2. We state this for graphs, but any geodesic metric space X is quasi-
isometric to a graph described as follows: Let V pGq “ X as a set and join any two
vertices of distance ď 1 in X by an edge. This is a connected graph by our assumption
on X.
If we have path-connected geodesic guesses in X satisfying these conditions, then one
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can check that the subgraphs generated by their images in V pGq satisfy the same
conditions with a slightly different h.

Proof. The breakdown of the proof is similar to the original version: we get a logarithmic
bound on distances of points on geodesic guesses to paths, then show that distances
from guesses to geodesics are bounded and vice versa. We first prove the logarithmic
bound. We only prove it for paths that are concatenations of geodesics since length is
troublesome to define otherwise and more generality is not needed in the proof.

Lemma 12.3. Given a concatenation of geodesics γ : ra, bs Ñ G, define its length to
be lpγq “ b ´ a. Then for any point p P ηpx, yq,

dpp, γq ď h log2plpγqq ` 2h “ h log2pb ´ aq ` 2h

if b ´ a ě 1.

Proof. This is identical to the proof of a similar lemma used in the original Geodesic
Guessing Lemma. Consider the midpoint m “ γp b`a

2
q. By the second condition

ηpx, yq Ă Nhpηpx,mq Y ηpm, yqq.

So, p is within h of ηpx,mq or ηpm, yq. WLOG, p is within h of ηpx,mq. Pick p1 P ηpx,mq

so that dpp, p1q ď h. Let γ1 be the part of γ from x to m. See Figure 58.

Figure 58. The squiggly sets are the geodesic guesses and the black
curve is the geodesic γ.

Now if b ´ a ď 2, then lpγ1q “ b´a
2

ď 1. So, dpx,mq ď 1. By the first condition,
diampηpx,mqq ď h and so

dpp1, γq ď dpp1, γ1
q ď diampηpx,mqq ď h.

Hence, dpp, γq ď dpp, p1q ` dpp1, γq ď 2h ď h log2pb ´ aq ` 2h.

Assume that this holds for paths of length ď n. Then if b´a ď n`1, lpγ1q “ b´a
2

ď n.

By the induction hypothesis, dpp1, γq ď dpp1, γ1q ď h log2p b´a
2

q ` 2h. Then,

dpp, γq ď dpp, p1
q ` dpp1, γ1

q ď h ` h log2

ˆ

b ´ a

2

˙

` 2h “ h log2pb ´ aq ` 2h.

By induction, the lemma holds. □
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Note that for b ´ a ě 2, h log2pb ´ aq ` 2h ď 3h log2pb ´ aq. The rest of the lemma
is proved like last time. We first show that any point on a geodesic guess is at most
c “ cphq from a corresponding geodesic and then vice versa. We will continue next
class. □

13. Improved geodesic guessing (02/04, SK, KS)

Proving the key lemma. In this section, we finish proving Proposition 12.1, which
is a version of the geodesic guessing lemma where the guesses are connected subgraphs.

Proposition 12.1. For any given h, if G is a connected graph such that @x, y P V pGq,
we have a chosen connected subgraphs ηpx, yq so that

‚ dpx, yq ď 1 ùñ diampηpx, yqq ď h and
‚ ηpx, yq Ă Nhpηpx, zq Y ηpz, yqq @x, y, z P V pGq,

then G is hyperbolic. Moreover, there is a D “ Dphq so that for any geodesic γ joining
x and y, dHauspγ, ηpx, yqq ď D.

Remark 13.1. Note that this version of the geodesic guessing lemma differs from the
previous version in two ways: instead of ηpx, yq being coarsely continuous paths, they are
now connected subgraphs. This lets us drop the requirement that ηpx1, y1q be bounded
distance away from the subpath of ηpx, yq between x1 and y1.

The proof is mostly identical to the proof of Proposition 4.2; the only part of the
proof that differs is the proof of the following lemma.

Lemma 13.2. There exists a constant c ą 0 such that for any geodesic γ from x to y,
and any p P ηpx, yq, dpp, γq ď c.

Proof. In Lemma 12.3, we proved the following bound on dpp, γq, where ℓpγq is the
length of the geodesic γ from x to y, and ℓpγq ě 1.

dpp, γq ď h log2pℓpγqq ` 2h

Let Eγ “ maxpPηpx,yq dpp, γq, i.e. the furthest ηpx, yq gets from γ: it will suffice to get
an upper bound on Eγ, independent of γ.
Without loss of generality, we can replace γ with the smallest rγ such that E

rγ ě Eγ.
This lets us assume that if δ is a geodesic shorter than γ, then Eδ ď Eγ. Consider now
points q, x1, and y1 on γ: q is a point on γ that is distance Eγ from p, and x1 and y1 are
points in ηpx, yq which are distance at least 2h ` 1 ` 2Eγ from q and closer to x and y
respectively than y and x (see Figure 59).
Let z be any point on the open geodesic segment from x to x1 or y to y1. In case

x “ x1 and y “ y1, we have the logarithmic bound on Eγ from the previous section,
which gives us the following inequality.

Eγ ď h logp4h ` 2 ` 4Eγq ` 2h

This provides an upper bound for Eγ.
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x yx1 y1q

2h ` 1 ` 2Eγ 2h ` 1 ` 2Eγ

p

γ

ηpx, yq

Figure 59. The guess ηpx, yq and the geodesic γ.

When at least one of x ‰ x1 and y ‰ y1 holds, we have the following lower bound on
dpz, pq from the triangle inequality.

dpz, pq ě dpz, qq ´ dpp, qq

ě 2h ` 1 ` 2Eγ ´ Eγ

“ 2h ` 1 ` Eγ

Without loss of generality, we can assume that x ‰ x1 and z lies on the geodesic γ1 from
x to x1. We must have that Eγ1 ď Eγ since ℓpγ1q ă ℓpγq. In particular, this means that
for any p1 P ηpx, x1q, dpp1, γ1q ď Eγ. The triangle inequality then lets us conclude the
following.

dpp, ηpx, x1
qq ě 2h ` 1

Consider now the 2h-slim quadrilateral formed by ηpx, x1q, ηpx1, y1q, ηpy1, yq, and
ηpx, yq. Since both ηpx, x1q and ηpy, y1q are distance at least 2h ` 1 from ηpx, yq by the
previous argument, there must exist some point q1 on ηpx1, y1q such that dpp, q1q ď 2h.

We also have that dpq1, γ2q ď k logp4h ` 2 ` 4Eγq, where γ2 is the geodesic segment
from x1 to y1. Finally, since q is contained in γ2, dpp, γq “ dpp, γ2q. See Figure 60 for
all new points and labels added to the picture.

Combining all these inequalities, we get the following chain of inequalities.

Eγ “ dpp, γq

“ dpp, γ2
q

ď dpp, q1
q ` dpq1, γ2

q

ď 4h ` h logp4h ` 2 ` 2Eγq

This inequality shows that Eγ is bounded uniformly, independently of γ, proving the
lemma. □

The rest of the proof of the Proposition 12.1 is identical to the proof of Proposition
4.2, so we leave the verification to the reader.
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x yx1 y1q

2h ` 1 ` 2Eγ 2h ` 1 ` 2Eγ

p

γ2

ηpx, yq

ηpx, x1q ηpy1, yq

ηpx1, y1qq1

Figure 60. The geodesic quadrilateral and the point q1.

Constructing the family of geodesic guesses for CpSq. To use Proposition 12.1
to prove that CpSq is hyperbolic, we first need to construct connected paths ηpx, yq

between points x and y in CpSq. To do so, we will need to prove the following key
lemma.

Lemma 13.3 (Constructing coarsely connected paths). Let γ be a bicorn between α
and β. If ipγ, βq ą 0, then there exists another bicorn γ1 whose β segment strictly
contains the β segment of γ and ipγ, γ1q ď 1.

Proof. Let α1 and β1 be the segments of α and β that form the bicorn γ. We extend the
segment β1 along β starting at one of the corners until the curve intersects α again in
the interior of α1 then turn and follow α until we reach the other corner of the bicorn.
This is guaranteed to happen since ipγ, βq ą 0. There are 2 cases to consider depending
on whether the segment turns left or right to reach the other corner. We illustrate the
2 cases in Figure 61.

It is clear from the picture that the resulting curve γ1 in both the cases is a bicorn
between α and β and contains a larger segment of β.2 This proves the result. □

For any α and β in the curve complex CpSq, we define the geodesic guess ηpα, βq

to be tα, βu Y tbicorns between α and β and the interpolating length 2 pathsu. By the
above lemma, this is a connected subgraph of the curve complex.

14. Hyperbolicity of the curve complex (02/07, SC, MM)

In today’s class we prove the following theorem. A reference is [PS17, Theorem 2.1].

Theorem 14.1. CpSq is hyperbolic.

2Note that the extension of β1 may intersect α many times before it first intersects α1. We only stop
extending β1 the first time it intersects α1.
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β1 β1

α1 α1

γ γ

γ1 γ1

γ1 turns right: ipγ, γ1q “ 1. γ1 turns left: ipγ, γ1q “ 0.

Figure 61. The 2 cases to consider for bicorn interpolation.

This will follow once we show that the geodesic guesses ηpa, bq defined earlier satisfy
the conditions required by the upgraded geodesic guessing lemma, Proposition 12.1.
Recall that each geodesic guess ηpa, bq consists of a, b and all bicorns between a and b
along with all the interpolating paths between these curves of length at most two.

Figure 62. The geodesic guess ηpa, bq. c and c1 are bicorns between a
and b. There may be multiple paths from a to b each given by series of
bicorns between a and b.

Proof. We just need to check the two conditions in the upgraded geodesic guessing
lemma, Proposition 12.1. To check the first condition, we consider curves a and b with
dpa, bq ď 1. This means either a “ b, or a and b are disjoint. In the former case,
ηpa, bq consists of just a point, and in the latter case, ηpa, bq consists of a, b and the
edge between a and b (since disjoint curves cannot form bicorns). In either case, ηpa, bq
has diameter at most 1.

Next, we show that for curves a, b and d in CpSq, ηpa, bq Ă N3

`

ηpa, dq Yηpd, bq
˘

. This
will follow from the following lemma,
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Lemma 14.2. Let a, b and d be curves on S with no bigons between any pair of them,
and c be a bicorn of a and b. Then, there exists a curve c1 P ηpa, dq Y ηpd, bq that
intersects c at most twice.

To see that this lemma implies ηpa, bq Ă N3

`

ηpa, dq Y ηpd, bq
˘

, we observe that if c1

intersects c at most twice, dpc, c1q ď 2. This is because if dpc, c1q ą 2, then c and c1 fill,
and we saw on January 28 that filling curves intersect at least 2g ´ 1 ě 3 times. Then,
if c̃ P ηpa, bq, it is either a bicorn between a and b or it lies on an interpolating path
of length two between bicorns of a and b. In either case, we have a bicorn c (where c
could possibly be c̃) at distance at most 1 from c̃ to which we apply the lemma (Figure
63).

Figure 63. Showing that ηpa, bq Ă N3

`

ηpa, dq Y ηpd, bq
˘

. The shaded
region between a and b is ηpa, bq.

Figure 64. The bicorn c1 when d1 intersects b1 once and the two ends of
d1 are on different sides of a1.

Proof of lemma. If ipc, dq ď 2, we let c1 “ d. Else, let a1 and b1 be the segments from a
and b respectively in the bicorn c as shown in Figure 64. Let d1 be a minimal segment
of d with both end points on a1 or both endpoints on b1. WLOG, assume that d1 has
both end points on a1. Then, d1 does not intersect a1 except at its end points and it
intersects b1 at most once. For example, in Figure 64, d1 interects b1 once, and in Figure
65 d1 does not intersect b1.
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Figure 65. The bicorn c1 when d1 does not intersect b1 and the two ends
of d1 are on the same side of a1.

We define c1 to be the bicorn of d and a formed by closing up d1 along a1 as shown
in Figure 64. Since d1 does not intersect a1 except at its end points, d1 clearly does not
interesect the segment of a1 that it forms the bigon c1 with. This tells us that the curve
c1 is simple.

The intersections between c1 and c can come either from intersections between c and
d1 or intersections between c and the segment of c1 joining the two ends of d1. There can
be at most one intersection between c and d1, which is a possible intersection between
d1 and b1. The segment of c1 joining the ends of d1 along a1 intersects c at most once
when the two end points of d1 are on different sides of a1 (Figure 64). When the two
end points of d1 are on the same side of a1, then the segment of c1 joining the ends of d1

does not intersect c (Figure 65). □

□

Later on, we will show that CpSq is quasi-isometric to an electrification of Tg.

Remark 14.3. A bicorn is somewhat related to a “closest return” of an IET. For example,
suppose α is the core curve of a horizontal cylinder on an Abelian differential, and β
is a core curve of a vertical cylinder. Think of α as length 1 and β as huge. α is like
the interval (the transversal) on which the IET is defined. If you start at a point of
intersection, you can follow β upwards, and it will return to α many times. You can’t
always close up such a vertical segment to get a simple curve, but you can if the return
is as close as the segment has gotten so far to the start point. Such a closing up is a
bicorn.

This maybe could provide a bit of intuitions for bicorn paths having something to do
with Teichmüller geodesics, and hence being reasonable guesses.

15. Hyperbolic surfaces (02/09, KS, SC)

In this lecture we discuss hyperbolic surfaces and their properties. Hyperbolic sur-
faces are surfaces with a Riemannian metric of constant curvature equal to ´1. They
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are locally isometric to H “ tx ` iy : y ą 0u with the metric dx2`dy2

y2
. Hyperbolic

surfaces have a lot of nice geometric properties which we state as key facts below.

‚ Key fact 1. For any l1, l2, l3 ą 0 there exists a unique hyperbolic metric on
S0,3 (a.k.a. “pants”, see Figure 66) such that boundary circles are geodesics of
length l1, l2, l3.

Figure 66. “Pants” S0,3, i.e. sphere with three boundary components

“Pants” can be glued to each other to construct closed geodesic surfaces of
different genus (see Figure 67). Note that we may have twists.

Figure 67. “Pants” S0,3, i.e., sphere with three boundary components,
two boundaries with the same length l are glued together

‚ Key fact 2. There do not exist hyperbolic geodesic bigons. More generally,
that’s a feature of spaces of non-positive curvature (see Figure 68).

‚ Key fact 3. Every closed curve is homotopic to a unique geodesic.

Let us describe how “pants” can look like. By the Gauss-Bonnet formula they always
have an area of 2π. For example, if li, i “ 1, 2, 3 are small, boundaries have to be far
from each other in order to keep area equal to 2π. In the limit li Ñ 0, i “ 1, 2, 3 we get
a sphere with three cusps (see Figure 69). For other possible cases, see Figure 70.

Now let us see how to get a hyperbolic surface by gluing “pants” (see Figure 71) with
an example of a genus 2 surface. Given a hyperbolic surface of genus g, we can get its
topological 2g ´ 2 “pants” decomposition, then take 3g ´ 3 geodesic representatives as
“pants” boundaries. They are disjoint so we don’t have any bigons.

Now let us discuss properties of simple closed geodesics on hyperbolic surfaces.



COARSE GEOMETRY AND TEICHMÜLLER THEORY 57

Figure 68. Geodesic bigon on a sphere.

Figure 69. On the left: “pants” with three small boundaries. On the
right: limit as li Ñ 0, i “ 1, 2, 3, i.e., sphere with three cusps.

‚ “Bad” news. For any c ą 0, there exists a hyperbolic surface with genus large
depending on c so that every simple closed geodesic has length greater than c.

‚ “Good” news (part 1). For any g, there exists Cg ą 0 such that all hyperbolic
surfaces of genus g have a simple closed geodesic of length at most Cg. One can
show Cg „ log g.

‚ “Good” news (part 2). For any g there exists Bg ą 0 such that all hyperbolic
surfaces of genus g have “pants” decomposition with all geodesics of length not
greater than Bg. Notice that Bg is a lot bigger than Cg.

‚ Final remark. There exists δ ą 0 such that for all hyperbolic surfaces of any
genus, any two geodesics of length less than δ are disjoint and simple.

16. Systole and Teichmüller space (02/11, JH, MM)

We cover one more topic on hyperbolic surfaces before moving on to some basic
Teichmüller theory.
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Figure 70. On the left: l1, l2, l3 " 1, in the middle: l1 " l2, l2, on the
right: l1 ! l2, l3.

Figure 71. “Pants” decomposition for genus 2 surface.

Definition 16.1. If X is a (compact) hyperbolic surface, a systole of X is a closed
geodesic on X of minimal length (excluding single points).

A systole always exists because there are countably many isotopy classes of closed
curves on X, and the lengths of the isotopy classes form a discrete set, which must have
a minimal element.

Remark 16.2. Every closed geodesic on X is essential, using the same proof that there
are no hyperbolic bigons. This is worth remarking because it is specific to hyperbolic
surfaces, since they exclude, for example, the situation in Figure 72.

We will develop some basic facts about systoles.

Lemma 16.3. A systole must be simple.

Some authors include being simple as part of the definition of being a systole.
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Figure 72. A minimal-length, closed, non-essential geodesic.

Proof. If a systole γ were not simple, take a closed arc α along γ. Then α has no bigons
with γ, hence is essential. The geodesic in the homotopy class of α has length at most
lpαq ă lpγq. See Figure 73. □

Figure 73. A hypothetical closed arc of a systole.

It would be preferable if systoles were unique, and this is what we expect to happen
for “most” spaces, but it is not true in general.

Example 16.4. We can construct a space with two systoles of length ε using two pairs
of pants, as shown in Figure 74

Figure 74. A hyperbolic surface with two systoles.

Even worse than failing uniqueness, systoles don’t even have to be disjoint! However,
the situation is not too bad.

Lemma 16.5. If γ1 and γ2 are systoles of X, then ipγ1, γ2q ď 1.

This means that in the curve complex, systoles have distance at most 2 from each
other, so at least we have coarse uniqueness.

Proof. If ipγ1, γ2q ě 2, pick two intersections which divide γi into γ1
i and γ2

i . Without
loss of generality, assume lpγ1

iq ď 1
2
lpγiq. Define α “ γ1

1 Y γ1
2, so

lpαq ď lpγ1
1q ` lpγ1

2q ď lpγ1q “ lpγ2q.
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See Figure 75. However, since γ1
1 and γ1

2 are distinct geodesic arcs, they must intersect
transversally, so α will have corners where they meet. This means α cannot be a
geodesic, so the geodesic representative of α has length strictly less than lpαq ă lpγ1q.
This contradicts minimality of lpγ1q, so ipγ1, γ2q ď 1. □

Figure 75. Finding a smaller geodesic if two systoles intersect twice.

Example 16.6. We can’t do better than bounding the intersection number by 1, since
we could have the situation shown in Figure 76. In that case, expanding the two red
curves causes the blue curve to shrink, so there is some point where they all have the
same length. There are some technical details to worry about with making sure that
there are no shorter curves anywhere, but this construction gives the idea for how to
obtain two intersecting systoles.

Figure 76. Systoles that intersect.

Example 16.7. By making surfaces with lots of symmetry, we can obtain arbitrarily
many systoles on a surface, since the image of a systole under an isometry is still a
systole. For example, making a genus-2 surface out of a regular octagon gives a surface
with four intersecting systoles. See Figure 77.

Remark 16.8. From last time (“good news part 1”), we know that there is a constant
Cg „ log2pgq, depending only on the genus g, which is an upper bound on the length
of a systole of surfaces of genus g.

We want to put all the information we have about hyperbolic surfaces together and
look at different surfaces and metrics in a unified way. One way to do this would be
to look at the space of all hyperbolic metrics on a fixed surface, but that space is
infinite-dimensional and not nice to work with.



COARSE GEOMETRY AND TEICHMÜLLER THEORY 61

Figure 77. A genus-2 surface with 4 systoles.

Definition 16.9. Let S be an oriented surface of genus g ě 2. Then the Teichmüller
space of S, denoted by Tg, is

Tg “

#

φ : S Ñ X

ˇ

ˇ

ˇ

ˇ

ˇ

X is an oriented hyperbolic surface;
φ is an orientation-preserving

homeomorphism

+

„
,

where

φ1 : S Ñ X1 „ φ2 : S Ñ X2

õ

there is an orientation preserving isometry I : X1 Ñ X2

such that I ˝ φ1 is homotopic to φ2.

We call S the reference or marking surface.

This is the formal definition of Teichmüller space, but no one really thinks of it this
way. A better way to think of points in Tg is as a hyperbolic surface X with some
“marking data,” in the form of a homotopy class of orientation-preserving homeomor-
phisms S Ñ X. Since there are countably many such homotopy classes, the second
part of the data can be thought of as discrete. For this reason, people (including us,
going forward) often write X P Tg, with S, φ, and the equivalence class being implicit.

Remark 16.10 (Key Point). The map φ : S Ñ X induces a bijection between homotopy
classes of closed curves on S and on X. Concretely, for any closed curve α on X, a
marking rφ : S Ñ Xs determines a homotopy class of curves on X, all homotopic to
φpαq, with a unique geodesic representative. So we can assume φpαq to be geodesic.
So, we can define a map

ℓα : Tg Ñ Rą0

ℓαprφ : X Ñ Ssq “ lpφpαqq,

mapping rφ : X Ñ Ss to the length of the image of α.

We can start to see why S is useful to have around. It serves as a universal reference
to compare points in Tg without having to designate any individual hyperbolic surface.

There is a natural topology on Tg in which each ℓα is continuous, and with this
topology, Tg is homeomorphic to R6g´6.



62 CHENAKKOD, HAVILAND, KAUSIK, KHAN, SHCHETKA, WRIGHT, YU

Theorem 16.11 (Fenchel-Nielson Coordinates). Tg is homeomorphic to R3g´3
ą0 ˆR3g´3.

Some basic ideas for the proof are as follows: we fix a pants decomposition for S.
This gives a pants decomposition of each X P Tg and induces 6g ´ 6 parameters.

‚ The first 3g ´ 3 are the length coordinates, which are the lengths of the cuffs
of the pants. These are positive (hence we use Rą0 for these coordinates) and
relatively easy to understand.

‚ The last 3g ´ 3 coordinates are the twist coordinates, which are more subtle.
They tell use which points to identify while gluing each of the circles; i.e., how
much to “twist” each of the legs while gluing the pants together. Somewhat
surprisingly, going “around the circle” once in these coordinates does not bring
us back to the same result, which is why these coordinates use R and not p0, 2πq.

We will go into more detail about the twist coordinates next time.

17. Mapping classes and Fenchel-Nielsen coordinates (02/14, CK, TY)

Recall that in the last class, we defined the Teichmuller space Tg of a surface of genus
g. Formally, Tg “ tϕ : S Ñ Xu{ „ under the equivalence relation from last class, with
S being our chosen topological surface of genus g, X any hyperbolic surface of genus
g and ϕ a homeomorphism. However, we will often suppress the marking ϕ and talk
about hyperbolic surfaces X P Tg.

17.1. Mapping Class Groups. Consider a pants decomposition of the topological
surface S as in Figure 78. Pick the cuff curve γ and consider the red curve α in the
figure. Since α and γ don’t form any bigons (as they intersect only once), ipα, γq “ 1.
Cut S along γ, twist the top copy to the right by an angle of ϵ in the parametrization,
and reglue the curves. See Figure 78.

This gives a new surface Sϵ with the same Euler characteristic as S and is thus
abstractly homeomorphic to S by the classification of surfaces. There is a natural
homeomorphism between the cut surfaces before and after twisting. But there is no
natural continuous map we can get after the regluing, since we cannot define a con-
tinuous extension from Szγ to S (there are two choices for the image of each point
on γ). However, if you continue twisting and twist by a full circle, there is a natural
continuous map that can be defined this way. It is easy to check that this map is a
homeomorphism, once one formally defines the twist in a tubular neighborhood of γ,
as we will do later.

Intuitively, it make sense that since α twists one extra time around γ, this map is
not the identity. We will see that such homeomorphisms can change the marking of a
given hyperbolic surface to give a new point in Teichmuller space, assuming that they
are not homotopic to the identity. This motivates the following definition.

Definition 17.1. Themapping class groupMCGpSq of a topological surface S is the
group of orientation preserving homeomorphisms quotiented by the normal subgroup
of homeomorphisms homotopic to the identity. That is,
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Figure 78. Cutting along γ, twisting and regluing produces an ab-
stractly homeomorphic surface. Twisting by a full circle gives us a natural
homeomorphism to the new surface.

MCGpSq :“
tϕ : S

– o.p.
ÝÝÝÑ Su

tϕ „ idu

Remark 17.2. MCGpSq is countable. In particular, if you extend the group to include
all homeomorphisms (those preserving or reversing orientation) modulo homotopy to
get MCG˘pSq, then

MCGpSq Ă MCG˘
pSq – Outpπ1pSqq “

Autpπ1pSqq

Innpπ1pSq

Definition 17.3. We define the (left) action of the mapping class group on Teichmuller
space by changing the marking as hinted above. That is, if rf s P MCGpSq (in the sense
that f is an orientation preserving homeomorphism) and rϕ : S Ñ Xs P Tg, then

rf s ¨ rϕ : S Ñ Xs :“ rϕ ˝ f´1 : S Ñ Xs

In terms of a commutative diagram,
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S S

X
ϕ˝f´1

f´1

ϕ

Using the tubular neighbourhood theorem, for any s.c.c. γ we can obtain a neighbor-
hood homeomorphic to S1 ˆ r0, 1s. See Figure 79. On this, define a homeomorphism
pθ, yq ÞÑ pθ`2πy, yq. Notice that it restricts to the identity on the boundary S1ˆt0, 1u,
so it extends to a homeomorphism fγ of the surface S.

Figure 79. The cylindrical tubular neighborhood around an s.c.c γ

Definition 17.4. rfγs P MCGpSq as defined above is called the Dehn twist about
the curve γ. Dγ :“ rfγs

Figure 80. The Dehn twist about the curve γ and its effect on a curve
α intersecting γ once.

It is easy to see the following.

Claim 17.5. ipα,D20
γ pαqq “ 20

Thus, since ipα, αq “ 0, D20
γ prαsq ‰ rαs and so Dγ ‰ id.

Remark 17.6. One can think of changing a twist in a gluing as a “partial Dehn twist.”

17.2. Fenchel-Nielsen Coordinates. We will now prove a theorem that creates a
rough picture of what Teichmuller space looks like.

Theorem 17.7. Tg – R3g´3
ą0 ˆ R3g´3

Sketch of Proof. We first define both sets of coordinates (namely the length and twist
coordinates). Pick a pants decomposition of S given by cuff curves γ1, ...γ3g´3. See
Figure 81.
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Figure 81. Gluing two pairs of pants with length coordinates li and
twist coordinates τi to get a hyperbolic surface of genus 2. There are
3 ˚ 2 ´ 3 of each set of coordinates.

‚ Length parameters: Map X ÞÑ lγipXq, so that these 3g ´ 3 maps give the
3g ´ 3 length coordinates.

‚ Twist parameters: This one is more subtle. Orient all γi and for simplicity,
assume that they are all non-separating. Let αi be s.c.c.’s intersecting γi exactly
once. For example, consider α in Figure 78. It is a fact that there exists a unique
curve homotopic to αi that is made of a geodesic segment orthogonal to γi and
a segment of γi together. We define the twist to be the signed length of this
segment.

Note that since twisting by a full circle around any γi (that is, by the Dehn twist
Dγi) actually changes the marking and thus the point in Tg, the twist parameter is in
fact unbounded.

It is a fact that any 3 length parameters prescribe a unique hyperbolic pant. Also, one
can see that the twist parameters describe a unique way to glue these pants together,
recovering for us a unique hyperbolic surface up to homotopies that take these cuff
curves to non-geodesic-representatives. Thus, these parameters define a unique point
in Teichmuller space.

It takes a little bit of work to show that in any of the few definitions of the topology
on Teichmuller space, this is actually a homeomorphism. One can also just use this
bijection to (non-canonically) define the topology on Teichmuller space and attempt
to show that the identity map is a homeomorphism between topologies induced by
different pants decompositions. □

Definition 17.8. The moduli space of hyperbolic metrics on a surface of genus
g is Mg :“ Tg{MCGpSq.

Remark 17.9. Say rϕ1 : S Ñ Xs, rϕ2 : S Ñ Xs P Tg. Then for f “ ϕ1 ˝ ϕ´1
2 , rf s ¨ rϕ1 :

S Ñ Xs “ rϕ2 : S Ñ Xs. So, any two different markings of a hyperbolic surface are
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related by a mapping class. The converse is clearly true – when a mapping class acts on
a point in Tg, it does not change the hyperbolic surface itself, just the marking. This
means that each hyperbolic surface has exactly one representative in Mg.

By the remark above, one can think of Mg as the space of hyperbolic surfaces up to
isometry. The natural projection map Tg Ñ Mg can be represented by the map that
takes rϕ : S Ñ Xs ÞÑ X. That is, it “forgets the marking.”

Remark 17.10. It is a fact that the projection Tg Ñ Mg is an orbifold covering. So, Mg

is a “nice” Hausdorff space – namely, an orbifold.

We now want to define an object that leads to the construction of a map from
Tg Ñ CpSq.

Definition 17.11. Let Měϵ
g “ {hyperbolic surfaces with systolic length ě ϵ}. This is

called the ϵ-thick part of moduli space.

In the next class, we will prove the following theorem.

Theorem 17.12 (Mumford’s Compactness Criterion). For every ϵ ą 0, the ϵ-thick part
Měϵ

g is compact.

18. The systole map (02/16, BZ, CK)

In this lecture, we will begin the proof that the curve complex is an electrification of
Teichmüller space. We start with a characterization of divergent sequences of hyperbolic
surfaces.

Let S be an orientable surface of genus g. Recall that

Mg “ Tg{MCGpSq “ tX a hyperbolic surface of genus gu{isometry,

Měε
g “ tX P Mg | ℓsyspXqpXq ě εu.

We call Měε
g the ε-thick part of the moduli space Mg. The following theorem says that

a sequence Xn of hyperbolic surfaces in Mg “diverges to 8” if and only if syspXnq Ñ 0.

Theorem 18.1 (Mumford’s Compactness Criterion). For every ε ą 0, the ε-thick part
Měε

g is compact.

The proof of this theorem is clarified by the following fact.

Proposition 18.2. There is a bijection
"

Topological types of pants
decomposition in genus g

*

Ø

"

3-regular multigraphs on
2g ´ 2 vertices

*

Proof sketch. Let P “ tP1, . . . , P2g´2u be a pants decomposition of S. To each pair
of pants Pi, we associate a vertex vi, and to each cuff cij joining the pants Pi to the
pants Pj, we associate an edge vi—vj. Note that we may have edges of the form vi—vi
because a pair of pants may have one of its cuffs glued to another of its cuffs. We may
also have up to three cuffs of the form cij for given i, j. □
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Proof of Mumford’s Compactness Criterion. Let Xn be a sequence of hyperbolic sur-
faces with ℓsyspXnqpXnq ě ε for every n. We must find a convergent subsequence of Xn.
Recall there exists a constant Bg, called the Bers constant, such that all hyperbolic
surfaces of genus g have a pants decomposition all of whose cuffs have length no greater
than Bg. Pick such a pants decomposition Pn on Xn.
By Proposition 18.2, there are only finitely many topological types of pants decom-

position in genus g. Therefore there is some subsequence Xn1 such that every Pn1 is
of the same topological type. By our assumption, all cuffs of these pants have lengths
contained in the closed interval rε, Bgs. Furthermore, we may choose a (not necessarily
injective) local system of Fenchel-Nielsen coordinates on Mg such that all the twist
coordinates of these cuffs lie in r´Bg, Bgs. Therefore the subsequence Xn1 is contained
in a region which is the continuous image of the compact set rε, Bgs3g´3ˆr´Bg, Bgs3g´3,
and hence is compact. We conclude that Xn1 has a convergent subsequence Xn2 , which
is what we wanted to show. □

There is a metric dTg on Tg called the Teichmüller metric. In our proof that CpSq is
an electrification of Tg, we will only use the following two facts about dTg .

Proposition 18.3. The Teichmüller metric dTg is invariant under the action of MCGpSq

on Tg, and there is a constant Cg such that

dTgpX, Y q ď 1 ùñ ipsyspXq, syspY qq ď Cg.

Remark 18.4. Note that the metric in which any two distinct points have distance 1
is invariant but doesn’t at all satisfy the second property. This metric shows that we
really do need to know at least a tiny bit about the metric beyond that it is MCG
invariant.

Let ε0 ą 0 be such that any two curves of length less than or equal to ε0 are disjoint
on any hyperbolic surface. Fix 0 ă ε ď ε0. For a simple closed curve α on S, let
Sα “ tX P Tg | ℓαpXq ď εu. Let Eg be the electrification of Tg along all the sets Sα,
and let cα denote the cone point of Sα in Eg. We will denote the induced metric on Eg
also by dEg . Note that a hyperbolic surface can have more than one systole; indeed,
it can have up to 3g ´ 3 systoles. Also note that, by our hypothesis on ε0, we have
Sα X Sβ ‰ H if and only if ipα, βq “ 0.

Since a surface may have multiple distinct systoles, let us fix a choice of function
sys : Tg Ñ CpSq, where syspXq is a systole of X. Note that if X P Sα, we need not
have syspXq “ α. Nevertheless, our hypothesis on ε0 ensures that ipα, syspXqq “ 0,
and hence dCpSqpα, syspXqq ď 1. Hence sys is “coarsely constant” on Sα. We extend sys
to a function sys : Eg Ñ CpSq by setting syspcαq “ α.

Theorem 18.5. The function sys : Eg Ñ CpSq is a quasi-isometry.

Our proof of Theorem 18.5 will be an application of Proposition 18.7.

Definition 18.6. A map f : A Ñ B is coarsely Lipschitz if there exist constants K, C
such that

dBpfpxq, fpyqq ď KdApx, yq ` C @x, y P A.
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A map ϕ : A Ñ A is C-coarsely equal to the identity if |dApϕpxq, ϕpyqq ´ dApx, yq| ď C
for every x, y P A. If coarsely Lipschitz maps f and g are such that f ˝ g and g ˝ f are
coarsely the identity, the we say they are coarsely inverse to each other.

Proposition 18.7. If coarsely Lipschitz maps f and g are coarsely inverse to each
other, then f and g are quasi-isometries.

The proof of the proposition is left as an exercise.

Proof of Theorem 18.5. We define cone : CpSq Ñ Eg by conepαq “ cα. By Proposition
18.7, we will be done when we show that cone and sys are coarsely Lipschitz maps
that are coarsely inverse to each other. To show that a map f : A Ñ B is coarsely
Lipschitz, observe that it suffices to provide a global upper bound on dBpfpxq, fpyqq for
any x, y P A with dApx, yq ď 1.
We first show that cone is coarsely Lipschitz. By our observation above, it suffices to

show that if α and β are simple closed curves on S with dCpSqpα, βq “ 1, i.e. ipα, βq “ 0,
then dEgpcα, cβq ď 2. Let X P Tg such that ℓαpXq, ℓβpXq ă ε. Since ε ď ε0, our
hypothesis on ε0 implies that we can construct a pants decomposition of X such that
α and β are cuffs of pants. This shows that X P Sα X Sβ, and hence this intersection
of sets is nonempty. It follows that dEgpcα, cβq ď 2.
We now show that sys is coarsely Lipschitz. Suppose that X, Y P Eg, and dEgpX, Y q ď

1. If there is a geodesic from X to Y going through a point of the form cα P Eg, then
X and Y both lie on edges to cα and we get that dCpSqpsyspXq, syspY qq ď 1. Otherwise,
let X 1 and Y 1 be the points in Tg Ă Eg nearest to X and Y , respectively. Then
dCpSqpsyspXq, syspX 1qq ď 1, and similarly for Y and Y 1. Furthermore, dTgpX 1, Y 1q ď

dEgpX, Y q ď 1, as in Figure 82. (Note that a geodesic in Eg from X 1 to Y 1 cannot
go through a cone point, since such a path would have length at least 2; such any
geodesic in Eg stays in Tg.) By Proposition 18.3, there is a constant Cg such that
ipsyspX 1q, syspY 1qq ď Cg, and hence also a constant C 1

g such that

dCpSqpsyspX
1
q, syspY 1

qq ď C 1
g.

Therefore dCpSqpsyspXq, syspY qq ď C 1
g ` 2, and hence sys is coarsely Lipschitz by our

observation above.

Figure 82. X and Y are close to points X 1 and Y 1 of bounded distance
in Tg Ă Eg

In the next lecture, we will complete the proof by showing that cone and sys are
coarsely inverse to each other.
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19. The systole map (02/18, TY, GM)

We continue with the proof of Theorem 18.5, which states that sys : Eg Ñ CpSq is
a quasi-isometry. We already showed that sys and the candidate inverse map cone :
CpSq Ñ Eg are coarsely Lipschitz. It now suffices to show that sys and cone are coarsely
inverse to each other.

Proof of Theorem 18.5 cont. First, note by definition that for α P CpSq, we have that

syspconepαqq “ syspcαq “ α,

where cα is the cone point of α.
Now, we need to consider cone ˝ sys. For a cone point cα P Eg, we have that

conepsyspcαqq “ conepαq “ cα,

again by definitions. The argument for a point of Eg that’s on an edge is similar, up to
a bounded error, as we can define the image under sys of such a point to be α P CpSq.

We now need to show that for other points of the electrification, namely X P Tg, we
have that dEgpconepsyspXqq, Xq is bounded by a constant only depending on g. Suppose
syspXq “ α, so we want to bound dEgpcα, Xq. It then suffices to bound dTgpSα, Xq, since
dEgpcα, Xq ď dTgpSα, Xq ` 1.

We use ideas from Mumford’s Compactness Criterion (Theorem 18.1) to prove this
bound (alternatively, one could use knowledge of the Teichmüller metric).

If the length of α in X is less than ε, then note that X P Sα, and so we’re done.
Thus, assume otherwise.

We have a pants decomposition of X that includes α where all cuff lengths are
contained in the closed interval rε, Bgs, where Bg is a constant depending only on g.
The existence of such a finite constant Bg can be shown similarly as the proof that the
Bers constant is finite: any scc can be extended to a pants decomposition with cuff
lengths are all bounded by a constant only depending on g and the length of the scc,
and so since α has length bounded only in terms of g, we have a bound on every curve
in the pants involving α, which is our Bg. WLOG, we can assume that all the twist
coordinates of these cuffs lie in r0, Bgs, since doing a Dehn twist about the cuff changes
the twist parameter by the length.

Let X 1 have the same Fenchel-Nielsen coordinates as X, but with the α length now
set to ε, so both X,X 1 are in a fixed compact set of Tg, where all lengths are in rε, Bgs,
and all twists are in r0, Bgs. In addition, X 1 P Sα by construction.

Then, the distance between X,X 1 is bounded above by the diameter of this compact
set, and so dTgpSα, Xq is bounded as well. □

The main takeaway from this result is that we have a coarsely Lipschitz map sys :
Tg Ñ CpSq. Note that it is surjective, and it remembers a lot, as long as you believe
that CpSq is big. However, the map also forgets a lot, as it fails to be a quasi-isometric
embedding. In particular, it crushes each Sα to a point, so there are many things about
Tg that you cannot see just by looking at the curve complex. Knowing syspXq “ α
doesn’t tell you much about the shape of X ´ α; all you know is that α is short.
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The idea to remedy this is to use subsurfaces of S (e.g., thinking of S ´ α as a
subsurface) and their curve complexes. In the future, we’ll get a map

Tg Ñ
ź

U , subsurface of S

CpUq

that is (speaking roughly in a way that will have to be corrected/clarified later) a
quasi-isometry to its image; we’ll now define CpUq.

Let U Ă S be a connected (for now), closed subsurface, whose boundary consists of
non-essential curves. Equivalently, U is a component of the complement of a union of
disjoint scc’s. For now, we’ll also exclude the following.

(1) Annulus, or a sphere with two boundary components. We’ll later see that we
actually need such subsurfaces, but they are annoying to deal with.

(2) Pants. For this and the annulus, the problem is that every scc is peripheral,
meaning that it’s homotopic to a boundary curve, and so if we defined the curve
complex the usual way, it would be empty.

(3) Torus with one boundary component.
(4) Sphere with four boundary components. For this and the torus with one bound-

ary component, there are non-peripheral simple closed curves, but any 2 such
curves intersect. This will just require some slightly special definitions.

Figure 83. Subsurfaces that we are excluding for now.

Definition 19.1. The curve complex of U is the graph CpUq whose vertices are
non-peripheral scc in U , with edges for disjoint curves.

Remark 19.2. We have that CpUq ãÑ CpSq, as every curve of U gives a curve in S.
However, the image has diameter 2, as a curve in the boundary of U has distance one
from each curve coming from U .
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Much of what we’ve proven about CpSq also holds for CpUq, and can be proven
similarly. For example, CpUq is connected, with distpα, βq ď Oplog ipα, βqq and it’s
δ-hyperbolic. It’ll also turn out to be infinite diameter, though it wouldn’t be if we
included peripheral curves.

Optional Exercise 23. For ϵ ą 0 and α a scc, and let Sαpϵq be the subset of Te-
ichmüller space where ℓαpXq ď ϵ. Show that for any ϵ, even large ϵ, the diameter of
syspSαpϵqq is bounded only in terms of ϵ. (The bound gets worse as ϵ gets big. You
might need the collar lemma for this. Once you do this, you should be able to check
that the electrification of Tg along the Sαpϵq is qi to CS for any ϵ, although the constants
depend on ϵ.)

Optional Exercise 24. Almost everything we did regarding electrifying Teichmüller
space worked for any metric on Tg that is mapping class group invariant and bounded
on compact sets. But it doesn’t work, for example, for a bounded metric on Tg. The one
place we used what the metric was is showing that if dpX, Y q ď 1 then dpsyspXq, syspY qq

is bounded. Is that true for the WP metric? A naive guess is that it’s true basically
for the WP metric and anything bigger, but probably it wouldn’t be true for a metric
for which the metric completion of Mg is smaller than Deligne-Mumford.

Optional Exercise 25. Show that the image of a Teichmüller disc under the systole
map is a quasi-tree. (This exercise is harder than most of the others. It requires in
particular the non-trivial fact that a quadratic differential of area 1 and fixed genus
always has a cylinder whose modulus is larger than some constant depending only on
the genus, which is proven in [Vor05].)

20. Subsurface projections (02/21, SK, FAH)

Recall that we mentioned in an earlier class that (speaking roughly in a way that will
have to be corrected/clarified later) the Teichmüller space quasi-isometrically embeds

in
ź

U a subsurface

CpUq. To understand the image of Tg in this product, we will also need

to understand how the curve complexes of subsurfaces interact with each other.
Let S be the ambient surface, and U be a subsurface that is not one of the 4 excep-

tional types of subsurfaces discussed in the previous section. We define the subsurface
projection map

ρSU : CpSq Ñ 2CpUq.

Here 2CpUq denotes the set of all subsets of CpUq.

Remark 20.1. Despite the subsurface projection map taking values in subsets of CpUq,
one should really think of it as taking values in CpUq. The reason for this is that for
some choices of input, there is no reasonable value we can assign, in which case the
output is the empty set, and for other input values, the output is only well-defined up
to a set of bounded diameter. One can think of this as the output being a point at a
large enough scale, which is very much in the spirit of coarse geometry.
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Defining the subsurface projection maps. To define the map ρSU for a curve α, we
need to deal with three cases. Crucially, we assume there are no bigons between α and
the boundary of U .

Case 1: α disjoint from U : If α is disjoint from U there’s no reasonable definition
of ρSU ; we define ρSUpαq to be the empty set. (Warning: Later we might change
our mind and decide we’d rather have it be all of CU . Both conventions have
their advantages.)

Case 2: α contained in U : In this case, ρSUpαq “ tαu.
Case 3: α intersects U , but it not fully contained in U : In this case, consider all

the arcs obtained by intersecting α with U . Each of these arcs go from one
boundary component of U to another (possibly the same) one. For each such
arc α1, we consider an ε-neighbourhood Nεpα

1 Y BUq of α1 Y BU . This is again a
submanifold with boundary: we consider the boundary B pNεpα

1 Y BUqq, which
will be a collection of disjoint curves. We discard any curves that are non-
essential or peripheral, and take the union of the resulting curves as we vary
over all the arcs α1. This set of essential non-peripheral curves is defined to be
ρSUpαq.

Examples of subsurface projections in Case 3. We can assume without loss of
generality that each arc α1 forms no bigons with any boundary component. If it does,
it’s easy to see that the resulting curves in U will be peripheral or non-essential, and
thus be discarded. Figures 84, 85, and 84 illustrate examples of subsurface projection
when the arc α1 intersects the surface and starts and ends at boundary components. In
each example, the red arc is the arc α1, the green curve(s) are the boundary components
of Nεpα

1 Y BUq which do not get discarded, and the blue curves are the ones that do.

Figure 84. This arc results in two curves which are homotopic.

Non-emptiness of the subsurface projection in Case 3. Since the definition of
the subsurface projection map in Case 3 involves discarding peripheral and non-essential
curves, it is not clear that the resulting subset of CpUq is always non-empty. We prove
that claim in this section.

Lemma 20.2. Continue to assume α does not form any bigons with BU . Then for each
arc α1, at least one component of BNεpα

1 Y BUq is essential and non-peripheral.



COARSE GEOMETRY AND TEICHMÜLLER THEORY 73

Figure 85. This arc results in only one curve.

Figure 86. This arc results in two curves but one of them is peripheral.

Remark 20.3. The above lemma fails to be true for 2 of the 4 exceptional subsurfaces
we are excluding, namely the S0,2 (an annulus) and S0,3 (a pair of pants). In the former
case, the resulting curve is always non-essential, and in the latter case, the resulting
curve is always peripheral. The lemma is however true for the other two exceptional
subsurfaces; the proof works without any modification in those cases.

Proof of Lemma 20.2. We split the analysis up into two cases.

α1 joins two distinct boundary components: Call the two distinct boundary com-
ponents β and γ. Then BpNεpα

1 Y β Y γqq has one component, and that com-
ponent, along with β and γ bounds subsurface of U that is homeomorphic to
S0,3 (a pair of pants) (see Figure 87). Suppose now that U had genus k and h
boundary components. It follows from an Euler characteristic computation that
the complementary subsurface to the pair of pants is a surface of genus k and
h´1 boundary components. Since pk, h´1q is not equal to p0, 1q, we know that
the green curve is not non-essential, because that would correspond to bound-
ing a disc. Similarly, since pk, h ´ 1q is not equal to p0, 2q, we know that the
green curve is not peripheral, since that would correspond to the complementary
subsurface being an annulus.

α1 is connected to one boundary component: Let β be the boundary component
α1 is connected to. In this case BpNεpα

1 Y βqq will have two components γ
and γ1, and γ, γ1 together bound a pair of pants, which we call P . Here, we



74 CHENAKKOD, HAVILAND, KAUSIK, KHAN, SHCHETKA, WRIGHT, YU

Figure 87. The green curve and the two boundary components bound
a pair of pants.

again need to deal with two cases: whether deleting P from U results in two
components or one component (see Figure 88). We first deal with the case

Figure 88. The two cases we can get if we delete P .

that there are two components left after deleting P . For both γ and γ1 to be
discarded, they must be peripheral or non-essential. That can only happen if
the corresponding complementary subsurface is an annulus or a disc. If both
the complementary subsurfaces were discs, U would be a disc. If both the
complementary subsurfaces were annuli, U would be a pair of pants. And if one
of the complementary subsurface was a disc, and one an annulus, U would be
an annulus as well. Since U is none of the above, it must be the case that at
least one of γ or γ1 is not discarded.

Now suppose that there was only one component left after deleting P . By
an Euler characteristic computation, that subsurface must have genus k ´ 1
and have h ` 1 boundary components, where U had genus k and h boundary
components. We see that since U is not one of the exceptional subsurfaces, the
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complementary subsurface to P is not an annulus proving that neither γ nor γ1

get discarded.

We have dealt with both cases and therefore proved the lemma. □

Optional Exercise 26. Let α be any simple closed curve, and let β P CU be arbitrary.
Show that there is a curve α̂ isotopic to α and an arc α̂1 of α̂XU such that β is isotopic
to a boundary component of Nϵpα̂

1 Y BUq.

21. Subsurface projections (02/23, SC, SK)

In the previous class, we had defined the subsurface projection map

ρSU : CpSq Ñ 2CpUq.

We now show that each subset of CpUq in the image of ρSU has bounded diameter.

Lemma 21.1. If γ1, γ2 P ρSUpαq, then ipγ1, γ2q ď 4.

Since, by Lemma 10.10, dCpUqpγ1, γ2q ď 2 log2pipγ1, γ2qq ` 2, we get the following
corollary.

Corollary 21.2. ρSUpαq has uniformly bounded diameter.

Proof of lemma. By definition of the subsurface projection map, we may assume that
γ1 is a component of Nϵpα1 Y BUq and γ2 is a component of N2ϵpα2 Y BUq, where α1

and α2 are some arcs of α X U . Then each γi has one or two arcs following αi and one
or two arcs following BU (Figure 89).

Figure 89. γ1,1 and γ1,3 are arcs of γ1 following α1 and γ1,2 and γ1,4 are
arcs of γ1 following BU

Since α is simple, α1 and α2 are disjoint. By letting ϵ be sufficiently small, we may
assume that an arc of γ1 following α1 does not intersect an arc of γ2 following α2. Since
arcs of γ2 following BU are 2ϵ away from BU and arcs of γ1 following BU are ϵ away
from BU , we may also assume that an arc of γ1 following BU does not intersect an arc
of γ2 following BU (Figure 90).
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Figure 90. (a) Arcs of γ1 following α1 do not intersect arcs of γ2 follow-
ing α2. (b) Arcs of γ1 following BU do not intersect arcs of γ2 following
BU (c) Intersections between arcs of γ1 following α1 and an arc of γ2
following BU

Thus, the only possible intersections can be between arcs of γ1 following α1 and arcs
of γ2 following BU (Figure 90). Since there are at most two arcs of γ1 following α1 and
at most two arcs of γ2 following BU , γ1 and γ2 can intersect at most 4 times. □

We observe that the proof of lemma 21.1 also goes through when γ1 P ρSUpαq and
γ2 P ρSUpβq, for disjoint curves α and β, giving us the following corollary,

Corollary 21.3. If γ1 P ρSUpαq and γ2 P ρSUpβq, for disjoint curves α and β, then
ipγ1, γ2q ď 4.

We sometimes modify the subsurface projection map so that it takes values in CpUq,
by picking an arbitrary curve in ρSUpαq, for each α. Since ρSUpαq has uniformly bounded
diameter, this map is coarsely well defined. However, we need ρSUpαq to be non-empty to
make a choice for the image. So, keeping in mind Lemma 20.2, we restrict the domain
to get a new map, still denoted by ρSU ,

ρSU : CpSq ´ pCpS ´ Uq Y BUq Ñ CpUq.

For convenience, we henceforth denote CpSq ´ pCpS ´ Uq Y BUq by CpS, Uq.

Proposition 21.4. ρSU : CpS, Uq Ñ CpUq is Lipschitz, with the induced graph metric
on CpS, Uq.
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Proof. It suffices to give a uniform bound on

dUpα, βq :“ dCpUqpρ
S
Upαq, ρSUpβqq

for all α, β P CpS, Uq with dCpS,Uqpα, βq “ 1. For then, given arbitrary α and β, we could
consider a path of curves from α to β at unit distances and use the triangle inequality.

If dCpS,Uqpα, βq “ 1, then dCpSqpα, βq “ 1, which means α and β are disjoint. Corollary
21.3 then tells us that ipρSUpαq, ρSUpβqq ď 4, which in turn gives us that

dCpUqpρ
S
Upαq, ρSUpβqq ď 2 log2p4q ` 2 “ 6,

concluding the proof. □

Now consider the inclusion CpUq ãÝÑ CpS, Uq, which is 1-Lipschitz. Proposition 21.4
tells us that the map ρSU : CpS, Uq Ñ CpUq, which is the left inverse to this inclusion, is
also Lipschitz. We thus get the following corollary,

Corollary 21.5. The inclusion CpUq ãÝÑ CpS, Uq is a quasi isometric embedding.

Morally, this shows that the metric on CpUq can be recovered from the geometry of
CpSq. It also indicates that CpUq is “undistorted” in CpS, Uq.
Some might say that the fact that CpUq is hyperbolic, and that its geometry can be

recovered from CpSq via CpS, Uq, is an indication of extra, hidden, hyperbolicity in CpSq

that goes beyond the hyperbolicity of CpSq itself.
Moving towards stating the Behrstock inequality, we make some definitions.

Definition 21.6. Let U, V be subsurfaces of S.

‚ If U Ď V (possibly after isotopy), we write U Ď V and say that U is nested in
V .

‚ If U X V “ H (possibly after isotopy), we write U K V and say that U is
orthogonal to V .

‚ If neither of the above holds, we write U&V and say that U is transverse to V .

We note that if ipBU, BV q ‰ 0, then U&V , but the converse is not true (Figure 91).

Figure 91. U&V but ipBU, BV q “ 0
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Definition 21.7. If U&V or U Ĺ V , we define

ρUV “
ď

γPBU

ρSV pγq.

We think of ρUV as the projection of BU to CpV q. Since any two curves of BU are
disjoint in S, corollary 21.3 applies and we get that ρUV has bounded diameter.

22. The Behrstock inequality (02/25, KS, AW)

Lemma 22.1 (Behrstock inequality). There exists C ą 0 such that if U&V then

min
`

dUpα, ρVU q, dV pα, ρUV q
˘

ď C.

Remark 22.2. The case when α Ă S ´ U or S ´ V is problematic unless you make the
convention that in that case ρSUpαq “ 2CU .

Proof. Let us give the sketch of the proof, following [Man10, Lemma 2.5]; see also
[Man13, Lemma 2.13] for the case of exceptional subsurfaces, which we exclude here.

We will show that if dUpα, ρVU q is big then dV
`

α, ρUV
˘

is small. For concreteness, say

ρSUpαq, ρVU , ρ
U
V are points. Assume dUpα, ρVU q is big. Then ipρSUpαq, ρVU q is big, so the arc

α X U intersects BV at least three times. Since we have at least three intersections, we
must have a segment α2 of α X V that lies in U and is bounded by points of BV (see
Figure 92). Since the segment α2 is disjoint from BU , we get that ipρSV pαq, ρUV q ď 4, so
dCV pρSV pαq, ρUV q is bounded. □

Figure 92. Green segment α2 Ă U bounded by points in BV

The statement of Behrstock inequality is illustrated in Figure 93.
Let us consider two related examples using closest point projections. Although these

examples don’t involve curve complexes, they give excellent motivation, and are useful
in their own right.

Example 22.3. Let T be a tree, U, V be disjoint connected subsets of a tree. Let
ρUV “ πV pUq be the closest point projection of U onto V . Then for any α P T

min
`

dpπUpαq, ρVU q, dpπV pαq, ρUV q
˘

“ 0.

To see that it is true, it is enough to pick y on the edge between U and V . WLOG α
is on U side, then πV pαq “ ρUV (see Figure 94).
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Figure 93. Behrstock inequality

Figure 94. Behrstock inequality in a tree (C “ 0)

Example 22.4. Let T be a δ-hyperbolic space, U, V quiasiconvex and far apart. By
Lemma 9.3, ρUV “ πV pUq has a bounded diameter. For any x consider minimal length
geodesic γ to V . We have two cases (see Figure 95).

Case 1: Suppose γ stays far from U , then πUpγq is bounded, and πUpxq is close to
πUpx1q P πUpV q. So it follows from Lemma 9.9 that πUpxq is close to πUpV q.

Case 2: Suppose γ comes close to U , then πV pxq “ πV px1q is close to πV px2q (since
projection is coarse Lipschitz). So it follows that πV pxq is close to πV pUq.

Optional Exercise 27. Recall that there are constants C “ Cpδq, D “ Dpδq such that
if X is a δ-hyperbolic space, and U is a convex set, and γ is a geodesic segment that
stays C away from U , then diampπUpγqq ă D.

Suppose that U and V are both convex subsets such that the intersection of each with
the C-neighbourhood of the other is bounded diameter. Show that πUpV q is bounded
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Figure 95. Behrstock inequality in a δ-hyperbolic space (left: case 1,
right: case 2)

diameter and vice versa. Check that a version of Behrstock’s inequality holds in this
context, generalizing Example 22.4.

23. The Bounded Geodesic Image Theorem (03/07, SK, BZ)

We begin by recalling Lemma 9.9, which is a result about closest point projections
in Gromov hyperbolic spaces.

Lemma 9.9. Let X be δ-hyperbolic and S Ď X a C-quasi-convex subspace. Then there
exists a B “ Bpδ, Cq ą 0 such that if γ is a geodesic segment with

γ X NC`2δ`1pSq “ H,

then diamΠSpγq ď B.

In this section, we prove an analogous result for subsurface projections, which sug-
gests that subsurface projections behave like closest point projections.

Theorem 23.1 (Bounded Geodesic Image). There exists (possibly large) positive num-
ber E (depending only on the topology of S), such that if V is any subsurface of S, and
γ any geodesic segment in CpSq such that the following holds

γ X NEpρVS q “ H,

then diamCpV qpρ
V
S pγqq ď E.

Remark 23.2. The conclusion of the theorem is also true if the hypothesis γXNEpρVS q “

H is replaced with the hypothesis that γ is contained in CpSqzpCpSzV q Y BV q.
This is the weakest hypothesis that is possible: consider a geodesic segment of length

2 that starts and ends in CpV q but whose midpoint is in CpSzV q Y BV . This geodesic
can have arbitrarily large projection to CpV q.

The stronger version of the theorem follows from the Theorem 23.1 by dividing γ into
(at most) three segments: a “middle” segment of bounded length, and two segments
that may have unbounded length but are at least E away from ρVS . The middle segment
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had bounded image under ρVS because ρVS is Lipschitz, and the other two segments have
bounded length by Theorem 23.1. (One can define the “middle” segment as the segment
between the first and last intersections of γ with NEpρVS q.)

To prove Theorem 23.1, we will prove an analogous statement about bicorns ηpx, yq

interpolating between points x and y in CpSq. We have already seen that bicorns stay
within bounded Hausdorff distance of geodesics in CpSq, so proving the result for the
bicorn interpolation will suffice. (The optimal constant E for bicorn paths may be
different than the optimal constant E for geodesics.) We first state a key lemma.

Lemma 23.3. Let z be a bicorn between x and y, and let x1 and y1 denote the arcs of

x and y forming z. If
ÿ

bPBV

ipz, bq ě 5, the following inequality holds for some uniform

constant k:

min pdV px, zq, dV py, zqq ď k.

Here dV px, zq is shorthand for distance in CpV q of the subsurface projections of x and
z, and dV py, zq is the distance between the subsurface projections of y and z.

Before we prove this key lemma we show how it implies Theorem 23.1.

Remark 23.4. It may be helpful to note the following fact as a warm up: Suppose we
are given a continuous map η from a closed interval rx, ys to a metric space. Suppose
that for all z P rx, ys, we know that ηpzq is distance at most 1 from at least one of ηpxq

or ηpyq. Then the distance between ηpxq and ηpyq is at most 2. What we will do next
will involve a coarse version of this.

Proof of Theorem 23.1. We assume that every point on ηpx, yq is more than distance E
from BV in CpSq. From the logarithmic inequality between curve complex distance and

intersection numbers, we can conclude that for every z P ηpx, yq,
ÿ

bPBV

ipz, bq is large. In

particular, by picking a large enough E, we can ensure that the intersection number is
at least 5.

Lemma 23.3 then tells us that ρSV pzq lies within distance k of either ρSV pxq or ρSV pyq.
Recall also that ηpx, yq is coarsely connected: In particular, Lemma 13.3 tells us that
x and y can be joined by a path of bicorns with each having distance at most 2 to the
next. Since the map ρSV is coarsely pm, jq-Lipschitz for some m, j (Proposition 21.4),
we can conclude that the projections of successive bicorns are distance at most 2m ` j
apart. Since all the bicorns are also distance at most k from either the projection of x
or y, we can conclude that the projections of x and y are distance at most 2k ` 2m` j
from each other, which proves the result. □

To complete the proof of the Theorem 23.1, we now need to prove Lemma 23.3.

Proof of Lemma 23.3. For simplicity, we first assume that z does not form bigons with
BV . In this case, we have the following equality for the intersection number of z with
BV .

ÿ

bPBV

ipz, bq “ # px1
X BV q ` # py1

X BV q
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Since the sum of the two terms is at least 5, one of them is at least 3. Without loss of
generality, we assume it’s the first term.

Consider the regions of x1 in between successive intersections with BV , excluding the
regions containing endpoints of x1. Since there are at least 3 intersections, there are at
least 2 regions, and at least one of them is contained in V (see Figure 96). Call the

Figure 96. The projection of the arc x2 is a component of the projection
of x and z.

corresponding arc x2. Observe now the curves in V obtained by projecting x2. One of
the curves will be essential and non-peripheral, and be a component of both ρSV pxq and
ρSV pzq. Since we know that the diameters of ρSV pxq and ρSV pzq are uniformly bounded,
and have non-empty intersection, the result follows. □

Remark 23.5. The analysis in this section suggests a technical connection between BGI
and Behrstock. A moral connection may also be possible, since BGI suggests that if
γ X NEpρVS q “ H, then “γ is transverse to V ”. (Imagine there was a subsurface I with
CI “ γ, and I transverse to V . Think about what Behrstock would say.)

Optional Exercise 28. Show that if Y Ñ X is a QI embedding of hyperbolic spaces,
the image is quasi-convex in X. Conclude that there is a coarsely well defined closest
point projection of CS ´ α onto CpS ´ αq, for any (non-separating) curve α.

Optional Exercise 29. Show that the closest point projection of CS´α onto CpS´αq

is coarsely equal to ρSS´α. (Exercise credit: Alessandro Sisto.)

24. HHS Axioms (03/09, JH, SC)

There is one technical point to clarify from the proof of Lemma 23.3, which is that we
need to be careful to remove bigons before taking subsurface projections. The following
lemma justifies the way we do this.

Lemma 24.1. Suppose x, y, BV do not form bigons. Let z “ x1 Y y1 be a bicorn of x
and y. Then V is isotopic to a subsurface V 1 that does not form bigons with z and such
that every arc of V 1 Y z not containing a corner is an arc of x X V or y X V .
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x1

y1

BV

Figure 97. A problematic bigon.

Proof. The case we need to worry about is in Figure 97. Since x, y, BV don’t form
bigons, any bigons be be at a corner of z. So, we can “push” the surface so that the
boundary goes around the corner instead, as in Figure 98. Note that the shaded region
does not need to be contained in V ; it is just showing the bigon of BV and z. V could
just as well be on the right hand side of the boundary. Also, if there were any genus in
the shaded region, we would not have a bigon, so there is no problem. □

x1

y1

BV

Figure 98. Pushing a surface to remove a bigon.

Remark 24.2. We could equally well push z off and leave V unchanged in this proof.

We now introduce the axioms for hierarchically hyperbolic spaces. Teichmüller space
and the mapping class group are the most important examples and serve as motivation
for the axioms. The basic idea with hierarchically hyperbolic spaces is that we have
maps to hyperbolic spaces, which can be thought of as coordinates. However, there are
some restrictions on these maps (mainly the Behrstock inequality), so the coordinates
cannot be completely arbitrary. The result is that (in the best case scenario), we can
completely reduce the study of a complicated space to the study of some hyperbolic
spaces.

A good reference for this is [Sis19], and the best place to simply read the axioms all
at once is [BHS19].

Definition 24.3. Suppose X is a q-quasi-geodesic space (i.e., every pair of points
can be joined by a pq, qq-quasi-geodesic), with q fixed. We say X is a hierarchically
hyperbolic space, or HHS, if there is an index set S, a δ ě 0, and a set tCW : W P Su

of δ-hyperbolic spaces subject to nine axioms.

Remark 24.4. Often, CW is called a curve complex even if X is not Tg. In all our
examples, X will actually be a geodesic metric space rather than just a quasi-geodesic
metric space; of course this doesn’t matter because we are working coarsely. The set S
is like the set of subsurfaces, and CW is like the curve complex of W P S.
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(1) Projections:
There exist ξ,K and maps

tπW : X Ñ 2CW | W P Su,

called projections, sending points in X to subsets of diameter ď ξ, such that all
these maps are pK,Kq-coarse Lipschitz and have uniformly quasi-convex images.

Remark 24.5. This is the most important axiom, but we haven’t discussed the
πW maps yet for our primary examples. Just to give a hint at how one might
try to define them: for X “ Tg Q x take α P syspxq, where syspxq is the set
of shortest curves. If α cuts W (i.e., α can’t be isotoped out of W ), we define
πW pxq “ ρSW pαq; otherwise, we can try the next shortest curve, and so on.
Eventually, we will get one that cuts W . We’ll revisit this soon.

The purpose of the remaining axioms is to ensure that CW make useful coordinates
and make it easy to work in coordinates.

(2) Nesting:
S has a reflexive partial order Ď with a unique maximal element S (called the
whole surface, or top element, or main element). We additionally require that
if V Ĺ W , then we have two things:

‚ A subset ρVW of CW of diameter at most ξ. For Tg, we will use BV as an
element of the curve complex CW .

‚ A projection map ρWV : CW Ñ 2CV .
We covered this for W “ S, but in fact it works more generally. At this point,
ρWV is completely useless, but the other axioms give us information so that it is
not useless.

(3) Orthogonality:
S has a symmetric, anti-reflexive (i.e., nothing is orthogonal to itself) relation
K, called orthogonality, such that
(3.1) V Ď W and W K U implies V K U .
(3.2) The container axiom holds, which is slightly weaker than saying all V

have a V K such that W K V ðñ W Ď V K. There are examples where
it was not clear how to prove the last equivalence, but it turns out that
it suffices to assume something weaker. See exercise 31 for details.

For Tg, orthogonality will mean disjointness of subsurfaces, as we have seen
before. In particular, it does not refer to subsurfaces that intersect orthogonally
in the usual geometric sense.

Remark 24.6 (Chinmaya’s observation). Note that anti-reflexivity and “V Ď W
andW K U implies V K U” implies (when V “ U) that “V Ď W” and “V K W”
are mutually exclusive. That is, one subsurface cannot be both nested in and
orthogonal to another.

(4) Transversality and Consistency:
If V and W are not orthogonal and neither is nested in the other, we say they
are transverse and write V &W .
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(4.1) Behrstock Inequality:
There is a constant κ0 ą 0 such that if V &W , then there are subsets
ρVW Ď CW and ρWV Ď CV of diameter at most ξ satisfying

minrdW pπW pxq, ρVW q, dV pπV pxq, ρWV qs ď κ0

for all x P X. Here, dW denotes distance in CW and dV distance in CV .
(4.2) If V Ď W , for all x we have

min
“

dW pπW pxq, ρVW q, diamCV pπV pxq Y ρWV pπW pxqqq
‰

ď κ0.

This is a kind of functoriality requirement, which says that we can com-
pose projections in the expected way with nested subsurfaces: projecting
to a larger subsurface, then a smaller, nest subsurface is the same as just
projecting straight to the smaller subsurface. This breaks down when
subsurface projections don’t make sense, which is when πW pxq and ρVW
are too close (closer than κ0).

(4.3) Omitted here. This is a condition on some coarse points being close to
others. See exercise 32 for details.

Together, 4.2 and 4.3 are called the consistency axioms, and they will even-
tually tell us which points are actually obtained as coordinates of points in
X.

25. HHS Axioms (03/11, FAH, CK)

Recall that:

‚ X is a q-quasi-geodesic metric space.
‚ Axiom (1) provides “maps” πU : X Ñ CU for every U P S; we will sometimes
call elements in S domains.

‚ Axioms (2) and (3) correspond to book-keeping for the relations Ď and K.
‚ Axiom (4) corresponds to the Behrstock inequality and functoriality, i.e., for
U Ď V , πU « ρUV ˝ πV except when ρUV is not meaningful.

Ok, let us get back to introducing new axioms:

(7) Bounded geodesic image theorem:
If V Ĺ W and γ is a geodesic (segment, ray, bi-infinite) in CW , then

γ X NEpρVW q “ H ñ diamCV pρWV pγqq ď E.

(E ą 0 is a uniform constant for X that will be introduced later in Axiom (6)).

(5) Finite complexity:
There is an upper bound for the length of properly nested chains

V1 Ĺ V2 Ĺ ¨ ¨ ¨ Ĺ Vn.

The maximum such n P N is called the complexity of the HHS.



86 CHENAKKOD, HAVILAND, KAUSIK, KHAN, SHCHETKA, WRIGHT, YU

Remark 25.1. We will later show that if n “ 1 then the HHS is hyperbolic. The converse
is not meaningful because the extra data, e.g., the “maps”, of an HHS is not completely
determined by the space itself. In this sense it would be more appropriate to refer to
HHS spaces as metric spaces endowed with an HHS structure.

The remaining three axioms are best understood as very weak versions of two key
theorems, which we now state. Historically, these theorems were originally part of the
axioms but they were reduced to the weakest conditions that imply them to make it
easier to check if a space is an HHS.

Definition 25.2. For A ě 0 define the threshold function r¨sA : Rě0 Ñ Rě0 given by

rxsA :“

"

x if x ě A,
0 else

.

Intuitively, we think of threshold functions as throwing away terms that are small,
or coarsely zero.

Definition 25.3. Write A —C,D B to mean

C´1A ´ D ď B ď CA ` D.

We read A —C,D B as saying that A and B are coarsely equal with multiplicative
error C and additive error D.

Theorem 25.4 (Distance Formula). For any HHS pX,Sq there exists s0 ą 0 such that
for every threshold s ě s0 there exist constants K,C ą 0 such that for every x, y P X,

dXpx, yq —K,C

ÿ

WPS

rdW px, yqss,

where we recall that dW px, yq :“ dCW pπW pXq, πW pY qq.

Remark 25.5. Keep in mind that the game we are playing is to reduce the study of an
HHS to the study of a bunch of hyperbolic spaces, hence a distance formula like this
one seems quite useful. The presence of threshold functions in this formula should be
thought of as throwing away noise.

Remark 25.6. Roughly speaking, the distance formula says that “product map”

X Ñ
ź

UPS

CU

is almost a quasi-isometric embedding when
ś

UPS CU is endowed with the ℓ1-metric.

Remark 25.7. It is NOT obvious at all that the right hand side of the distance formula
is either positive or finite.

The last remark motivates the introduction of two axioms, one to guarantee the right
hand side of the distance formula is (coarsely) positive, the other to take steps towards
the finiteness of the corresponding sum. So, more axioms:
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(9) Uniqueness:
For every s ą 0 there exists θ “ θpsq ą 0 such that if x, y P X with dpx, yq ą θ
then there exists a domain V P S such that dV px, yq ą s.

Remark 25.8. Axiom (9) implies that the right hand side of the distance formula is
positive. It also implies that the image ofX Ñ

ś

UPS CU has coarsely unique preimages,
hence the name of the axiom.

The next axiom is a statement in the direction that the right hand side of the distance
formula is finite. Recall the constants ξ and K0 from the previous lecture.

(6) Large Links:
There exists a constant E ě maxtξ,K0u, λ ą 1 such that given W P S,
x, x1 P X, and N :“ λtdW px, x1qu ` λ, there exist domains τ1, . . . , τN Ĺ W
such that if τ Ĺ W and dτ px, x1q ě E then τ Ď τi for some i P t1, . . . , Nu.3

Remark 25.9. Roughly speaking, Axiom (6) says that big terms in the right hand side
of the distance formula are organized into a few domains (at most N of them). Said
another way, it guarantees that there are at most distance many domains into which you
are nested if you are a domain with big term in the distance formula. This makes steps
towards ensuring there are not many big terms in the right hand side of the distance
formula.4

To motivate the last axiom of an HHS we state the following theorem.

Theorem 25.10 (Realization theorem, imprecise version). The image of

X Ñ
ź

UPS

ImpπUq

is as big as possible given the restrictions of Axiom (4).

Remark 25.11. Notice that the restrictions given by Axiom (4) are particularly nice
because they only involve pairs of domains.

Now to the statement of the last axiom:

(6) Partial realization:
There exists a constant α ą 0 such that if tViuiPI is a set of pairwise orthogonal
domains (necessarily finite) and pi P ImpπVi

q for every i P I, then there exists
x P X with the following properties:

‚ dVj
px, pjq ď α for every j P I.

3The original formulation of the Large Links axiom also stipulates that “dW px, ρτiW q ď N for every
i P t1, . . . , Nu”. Jacob Russell pointed out to us that this can be derived from the BGI and consistency
axioms so does not need to be included as an axiom.

4Technically speaking, it is possible to show finiteness of the distance formula without Large Links,
as in Remark 33.4 below. A more sophisticated and correct motivation for Axiom (6) is the “Passing
up lemma” [BHS19, Lemma 2.5].
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‚ For each j P I and each V P S with Vj Ĺ V , dV px, ρ
Vj

V q ď α.

‚ If W&Vj for some j P I then dW px, ρ
Vj

W q ď α.

Remark 25.12. Roughly speaking, Axiom (6) guarantees that X Ñ
ś

iPI ImpπVi
q is

coarsely onto. The last two conditions of Axiom (6) should be thought of as some extra
information that one can arrange for the realized x P X.

Optional Exercise 30. Show that any space of infinite diameter cannot admit a HHS
structure where all CU are uniformly bounded. (This is easy, but it’s good to pause
and realize which axiom makes this impossible.)

Optional Exercise 31. This is a long exercise on axiom (3b), which was omitted in
class. It is sometimes called the “container axiom”. This is its statement:

(3b) Suppose U is nested in T , and that there is at least one domain that is both
nested in T and orthogonal to U . Then there exists some W strictly nested in T such
that everything that is both nested in T and orthogonal to U is nested in W . (This W
is sometimes called a “container” for everything nested in T and orthogonal to U .)

I find that statement hard to parse. It is intended to be a weak version of the
following:

(3b-strong) Suppose U is nested in T , and that there is at least one domain that is
both nested in T and orthogonal to U . Then there exists some W nested in T such
that sometime is both nested in T and orthogonal to U if and only if it is nested in W .
(This W might be called “the perp of U in T”.)

There is now also another version of this axiom, called “Bounded pairwise orthogo-
nality”:

(3b-weak) There is an upper bound for the size of a set of pairwise orthogonal do-
mains. (Anything in the index setS is called a domain; for us domains are subsurfaces.)
Check that (3b-strong) ùñ (3b) ùñ (3b-weak). (The first implication is basically

trivial, and, although you can probably do the second implication yourself, you can also
find it as [BHS19, Lemma 2.1].)

Remark 25.13. Remark: While it is not literally true that (3b-weak) imples (3b), the
appendix of [ABD21] shows that this is true up to a quite harmless and insignificant
change to the HHS structure: so substituting (3b-weak) for (3b) essentially gives an
equivalent definition of HHS. It is an open problem if one similarly has that (3b) essen-
tially implies (3b-strong). This is purely a problem about the set S with the nesting
and orthogonality relations, so if you like combinatorics maybe you can solve it!

Optional Exercise 32. This is a long exercise on axiom (4c), which was omitted in
class. Let’s start with a quick summary:

‚ If V is nested in U , we get a map ρUV .
‚ If U is nested in V , or if they are transverse, we get a coarse point ρUV .
‚ If U and V are orthogonal, there is no ρUV at all.

Axiom (4c) concerns the case when they are coarse points. There are a few statements
you’d want to be true, for example:

(i) If U nested in V nested in W , then ρUW is coarsely equal to ρVW .
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(ii) If U and V are both nested in W and U and V are orthogonal, then ρUW is
coarsely equal to ρVW .

Part A: Check (i) and (ii) for subsurfaces. (Here ρUW is equal to the set of boundary
components of U that aren’t peripheral for W .)

There is also a variant of (i):

(iii) Suppose U is nested in V . Suppose U is nested in W , and that V is transverse
to W . Then ρUW is coarsely equal to ρVW .

Part B: Draw an example of three subsurfaces U, V,W with these relations to each
other.

Part C: Verify (iii) for subsurfaces. (When V is transverse to W , then ρVW is the the
projection of the boundary of V to W (as in our proof of Behrstock).)

I will finally state (4c): Both (i) and (iii) hold.
What about (ii)? It’s omitted because it’s automatic!
Part D: Prove (ii) from the HHS axioms. (This appears as [BHS17a, Lemma 1.8]

and, as part of a slightly more general statement, as [DHS17, Lemma 1.5].)

Optional Exercise 33. Suppose that an HHS X has only a single domain S, and that
the map πS : X Ñ CS is surjective. Prove that X is hyperbolic.

Optional Exercise 34. Show that the infinite sum in the distance formula is actually
finite, for sufficiently large “thresholds”.

Optional Exercise 35. Consider X “ R (the real line). Let tSu be the set of domains
(there’s just one of them), and let CS be the upper half plane model of the hyperbolic
plane. Let πS : X Ñ CS be defined by πSpxq “ x ` i (so the real line maps to the
boundary of a horoball).

How that this data satisfies all the axioms of an HHS, except that πSpXq is not
quasi-convex. Show that the distance formula is false for this example.

Optional Exercise 36. Let X “ r0,8q. Let I0 “ r0, 1s, and for all k ą 0 let Ik be
the interval of length k starting 1{2k to the right of the endpoint of Ik´1. So all these
intervals are disjoint and they have unbounded lengths.

Let CS “ r0, 1q, and let πS : X Ñ CS be the map that contracts each Ik to a point.
(Really a point, not just something bounded diameter.)

For each i in t0, 1, 2, . . .u let Ci “ Ii, and let πi be the closest point projection to Ii.
All these i are nested in S and transverse to each other.

Define ρiS be the point in r0, 1q obtained from collapsing Ii. Define ρij be the closest
point projection of Ii to Ij. (This is just one of the endpoints.)

Show that this data satisfies all the axioms of an HHS except for the Large Links
axiom. (Exercise credit: Jacob Russell.)

Optional Exercise 37. Consider a tree X. The edges can have different lengths if
you’d like. For each edge e, define πe : T Ñ e to be the closest point projection. Define
S “ tSu Y tedges of Xu. Define CS to be a point, and Ce “ e for all edges e. Define
different edges to be transverse to each other; and the only nesting will be that all edges
are nested in S.
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Show that this satisfies all the axioms of an HHS except possibly large links and
uniqueness, and that the distance formula holds with no error when the threshold is
0. (If all edges have length 1, actually large links will vacuously hold, but uniqueness
will always fail. If there are only finitely many edges of length less than any given
constant, then actually uniqueness will hold, but large links will fail unless the tree has
an extremely special structure like having all but one vertex be a leaf.)

This example is not too hard, and is helpful since it gives excellent intuition for a
lot of arguments with HHSes (even though the given structure doesn’t satisfy all the
axioms).

If you’re an expert on CAT(0) cube complexes: I suspect you can do something
similar for any CAT(0) cube complex, where now the domains would be S plus certain
equivalence classes of edges, and now there is orthogonality.

Optional Exercise 38. For any valid index set, prove that any infinite set of domains
contains an infinite subset consisting of pairwise transverse domains.

Remark 25.14. A slightly shorter but equivalent version of the axioms is provided by
[BHS19, Proposition 1.11], which has the feature that the “downward” maps ρVU : CU Ñ

CV with U Ĺ V do not need to be defined.

26. Toy HHSes (03/14, CK, TY)

We will now consider some toy examples of hierarchically hyperbolic spaces.

Example 26.1. SupposeX is a δ-hyperbolic quasi-geodesic metric space. LetS :“ tSu

and CS :“ X. CS is clearly hyperbolic. Define the projection πS : X Ñ CS by πS :“ id.
It is straightforward to see that this is an HHS structure on X. We will call this the
trivial HHS structure on a hyperbolic space X. We often abbreviate this to saying that
pX,Sq is an HHS.

Example 26.2. Consider X “ X1 ˆ X2 with X1, X2 both δ-hyperbolic. Let S :“
tS,A1, A2u (these are formal variables) with the nesting relation given by Ai Ď S.
Also, A1 K A2, so there is no transversality.

Define CAi :“ Xi for i “ 1, 2 and CS :“ t˚u. Let πAi
: X Ñ CAi be the projection to

the ith coordinate for i “ 1, 2. Let πS : X Ñ CS be the constant map to the only point
in CS.

One can check that this is an HHS structure on X. The maps ρSAi
can be defined

arbitrarily (say, ρSAi
p˚q :“ CAi for i “ 1, 2) and they will still satisfy all axioms. Partial

realization is satisfied by choosing x “ pp1, p2q, given pi P Ai with i “ 1, 2.

Example 26.3. This is the main example for this lecture and models a lot of the
phenomena in HHS structures. Consider a δ-hyperbolic geodesic space X and pick C
big depending on δ. How big C needs to be will be clarified as we go. To begin with,
for large enough C, we know by the bounded geodesic image theorem (Theorem 23.1)
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that if γ is a geodesic and A Ă X is convex, then there is some fixed ξ “ ξpδq so that
γ X NC

2
´1pAq “ H implies that diampπApγqq ď ξ.

Now let tAuAPA be a collection of convex (or quasi-convex) subsets of X, all at least
at a distance C apart from each other. Let S :“ tSu\A, where S is an artificial index.
Let CA :“ A for all A P A and let CS :“ ConeApXq, the electrification of X along A.
Define the relation on S by having A Ď S for all A P A, A&B for A ‰ B and A,B P A,
and no orthogonality.

Define the projection πS : X Ñ CS as the inclusion of X into ConeApXq “ CS.
Define πA : X Ñ 2CA to be the closest point projection. The image of a point has a
uniformly bounded diameter by our result on closest point projections from January
26, Lemma 9.3.

If A ‰ B, then define ρBA :“ πApBq. Remember that A&B.

Let ρAS P CS be the cone point of A. Define ρSA : CS Ñ 2CA by:

‚ ρSApxq :“ πApxq, if x P X Ă CS.
‚ ρSApxq :“ ρBA if x is in the cone of B ‰ A.
‚ ρSApxq :“ A if x is in the cone of A. It doesn’t actually matter what we do in this
case. This is because dHauspx, ρ

A
S q ď 2 by going through the cone point, and so

the minimum in axiom 4pbq enters the trivial case for K0 ą 2. Additionally, the
condition of the bounded geodesic image axiom is not affected by this choice,
since for E ą 1, any geodesic avoiding NEpρAS q also avoids x.

We now briefly sketch why this structure, abbreviated by pX,Sq, satisfies all the
HHS axioms, defering three of them to next class.

1. (Projections) By Proposition 7.6, ConeApXq is hyperbolic. A is a (quasi-)
convex subset of X, so it is also hyperbolic for any A P A. The map πS is an
inclusion and thus a contraction of quasi-geodesic metric spaces, so it is coarsely
Lipschitz.

The maps πA are closest point projections, so by Lemma 9.3 again, the Haus-
dorff distance dHauspπApxq, πApyqq ď D for some D “ Dpδq whenever dpx, yq ď 1
for x, y P X. This implies that the map πA is coarsely Lipshitz with respect to
dX and dHaus.

2. (Nesting) The nesting order is a reflexive partial order and diampρAS q ď 2 by
going through the cone point, as required.

3. (Orthogonality) This holds trivially since there is no orthogonality.

4. (Transversality and Consistency) 4(a) follows from the discussion at the end
of the lecture on Behrstock’s inequality, along with the fact that the projections
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ρBA have uniformly bounded diameters by Lemma 9.9, using the (quasi-) con-
vexity of A and B. 4(b) follows from the comments above in the definition of ρSA.

5. (Finite Complexity) This system has complexity 2, by the design of the nest-
ing relation.

8. (Partial Realization) The only set of pairwise orthogonal domains is a sin-
gleton, tV u.

If V “ A for some A P A, then let x “ p P X given any p P V “ A Ă X.
Conveniently, dpx, pq “ 0. This means that dSpx, ρAS q ď 1 since ρAS is a cone
point. For any B&A, dBpx, ρABq is uniformly bounded too, since πBpxq P ρAB,
which already has a uniformly bounded diameter.

If V “ S, then let x “ p if p P X Ă CS; otherwise let x be the cone point
of the cone that p is in. Everything is satisfied vacuously here after noting that
dpx, pq ď 1.

27. Toy HHSes (03/18, SC, AW)

We continue with our sketch of how the structure defined in Example 26.3 satisfies
the HHS axioms.

7. (Bounded Geodesic Image) The only indices with V Ĺ W are W “ S and
V “ A for some A P A.

Recall that, coming from our use of the Geodesic Guessing Lemma in the
proof of Proposition 7.6, there is some D “ Dpδq such that every geodesic γ in
CS “ ConeApXq is distance at most D away from a geodesic γ̂ in X Ă CS.

Assume that dpγ, ρAS q is big. This implies that dpγ̂, Aq is also big as follows:
dXpγ̂, Aq small would imply dCSpγ̂, ρAS q small, which would imply dCSpγ, ρAS q small
since γ and γ̂ are close to each other. (Here we have added subscripts to em-
phasize the space the distance is being taken in.)

So, by our results on closest point projections in hyperbolic spaces, namely
Proposition 9.9, we have that diampπApγ̂qq is bounded. Since ρSA is almost
defined to be πA, one can show, with a bit of work, that ρSApγq has bounded
diameter as well. For this, one should keep in mind that all πApBq “ ρBA have
uniformly bounded diameter, as was already used in the definition of ρSA.

Before moving on to the large links and the uniqueness axioms, we note the following
result, which is almost the same as the distance formula if we move the second term on
the right to the left.

Lemma 27.1. Given δ ě 0, DC,R,Dě0 such that if X is δ-hyperbolic and tAuAPA are
C-separated convex sets and Y “ ConeAX, then @x, y P X, if γ is a geodesic from x to
y in X,

dY px, yq — dXpx, yq ´ rtime γ spends in
ď

NRpAqs,

and if γ X NRpAq “ ϕ, then diamπApγq ď D.
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Proof sketch. The fact that there exists a D for which the final statement holds for any
R large enough is just a restatement of Lemma 9.9. This does not involve C.

A upper bound on dY px, yq of the desired form follows just from the definition of
electrification, as long as C is significantly larger than R.

The key point is getting a lower bound on dY px, yq. In general, it isn’t even always
clear if electrifications are finite diameter, but here the assumption that the different A
are far apart is very powerful. The main idea in is to note that that geodesics in Y can
only go through the cone points of those A that γ comes close to, assuming C is large
compared to the Hausdorff distance bound from the geodesic guessing lemma (Figure
99).

In particular, for any R large enough, we can assume that C is large enough so that
if γ doesn’t intersect NRpAq then the geodesic from x to y doesn’t go through the cone
point of A; see Figure 99. We can assume C is much larger than R if desired, so even
the NRpAq are far apart.

Figure 99. For a geodesic in Y to go through the cone point of A, the
corresponding geodesic in X has to come close to A

A geodesic in the electrification consists of geodesics from one A to another, followed
by hops through cone points. The last key point in the sketch is that if there is a
geodesic segment of length ℓ from the boundary of NRpAq to the boundary NRpBq

whose interior is disjoint from NRpAq Y NRpBq then the distance between A and B
is at least ℓ minus a constant depending in R, assuming R is large enough. Indeed,
the bounded geodesic image theorem says that the projection of the segment to A is
close to the projection of B to A, and vice versa. Thus, as in Figure 100, the triangle
inequality gives a lower bound for the distance from A to B.

We leave it as an exercise to combine these observations into a proof of the lemma. □

6. (Large Links) We need to show that for any two points x and x1 in X, the
number of A for which dApx, x1q can be large is bounded by dCSpx, x1q. Lemma
27.1 tells us that dApx, x1q can be large only when the geodesic joining x and x1

intersects the R-neighbourhood of A. Now, when C " R, the geodesic has to
travel at least C ´ 2R between the R-neighbourhoods of any two such A. This
C ´ 2R contributes to dCSpx, x1q. Thus, dCSpx, x1q bounds the number of A for
which dApx, x1q is large.

9. (Uniqueness) We use the same ideas as the large links axiom. For any two
points x and y in X far apart, we need to show that there is at least one domain
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Figure 100. The triangle inequality gives dpA,Bq ě ℓ´ 2R1. An upper
bound R1 for the length of the purple geodesic segments can be obtained
since the projections of the red geodesic segment are close to the pro-
jection of each set onto the other, and because those projections have
bounded diameter and contain the endpoints of the orange minimal length
path from A to B.

where the projections of x and y are far apart. If dpx, yq is large but dCSpx, yq

is not, then the argument from the large links axiom tells us that the geodesic
joining x and y can only go near tdCSpx, yqu many A. Lemma 27.1 then tells us
that the geodesic joining x and y must spend a large time near some A. One
can then show that the projections of x and y to this A are far apart (Figure
101).

Figure 101. When the geodesic from x to y spends a large time near
A, the projections x1 and y1 onto A of x and y respectively are far apart.

We now sketch a few other examples in lesser detail.

Example 27.2. We again look at a hyperbolic space, an infinite tree X, and consider
infinite diameter convex subsets A,B whose intersection D is also convex, as shown
in Figure 102. This is in contrast to the previous example, where the convex subsets
were well separated. We let S be the set of indices tS,A,B,Du and define CS to be a
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point and CD to be D Ă X. Since the projections from A to B and vice versa are not
independent, A and B cannot be orthogonal, and have to be transverse. Our definitions
of CA and CB are then motivated by the properties that we want ρAB and ρBA to satisfy.
A natural definition for ρAB would be the closest point projection of A onto B, but this
is not bounded in B, so we cone off D Ă B, and we look at the projection in the coned
off space. Thus, we define CA :“ ConeDA and CB :“ ConeDB. In general, whenever
we want an image to be a coarse point, we cone off the relevant subset.

Figure 102. The tree X, and subsets A, B and D

For the most general result on HHS structures on spaces X that are already hyper-
bolic, see [Spr17].

Example 27.3. Let X1 and X2 be hyperbolic, and let X be the hyperbolic cone on
X1 ˆ X2 minus the cone point. The hyperbolic cone on X1 ˆ X2 is hyperbolic, but
one can show that it fails to be hyperbolic after removing the cone point. Let S be
tS,A1, A2u, and define CS to be the hyperbolic cone on X1 ˆ X2 and CAi to be Xi.
ρAi
S is the cone point of the hyperbolic cone, and ρSAi

is the projection onto the Xi

coordinate of a point. The domains A1 and A2 are orthogonal, so we do not have sets
ρA1
A2

and ρA1
A2
.

We now look at some less typical examples.

Example 27.4. Let tpXi,SiquiPI be HHSes. Then so is pΠiPIXi,
Ť

iPI Si Y Snewq, with
CSnew being a point. In this structure, each domain from Si is orthogonal to a domain
from Sj, when j ‰ i.

Example 27.5. Let X1 and X2 be hyperbolic. Then there are several HH structures
on Y “ X1

Ž

X2, the wedge of X1 and X2 (Figure 103).

‚ (The trivial HHS) Since the wedge of two hyperbolic spaces is hyperbolic, we
can have the trivial HH structure given by one domain S with CS “ Y .

‚ (X1 on top) In this structure, we have S “ tS,Au with CS “ X1, CA “ X2 and
A Ď S. ρAS is tpu and ρSA is the constant map to p.

‚ (Side by side) In this structure, we have S “ tS,A,Bu with CS a point, CA “

X1, CB “ X2 and A&S. The relevant projection maps are defined similarly.
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Figure 103. X1 and X2 wedged along a point p

Optional Exercise 39. Prove the distance formula for the HHS structure on a hyper-
bolic space coming from well-separated convex subsets.

Optional Exercise 40. Prove that the universal cover of a torus wedge a circle is an
HHS. (This is a special case of cube complex or Right Angled Artin Group examples.)

Optional Exercise 41. Fix n intervals rai, bis of finite length. Fix also a partial order
! on t1, 2, ..., nu.

Define X to be the subset of those points px1, ..., xnq P
ś

irai, bis for which i ! j
implies either xi “ ai or xj “ bj.

Show X has an “especially nice” HHS structure, in which each hyperbolic space is an
interval or a point. Here “especially nice” should mean, ex, ξ “ 0, κ0 “ 0, etc, so these
constants in the axioms have their optimal, most restrictive values. (Feel free to ignore
Large Links and Uniqueness. They don’t have especially nice versions here, but in their
usual form they are automatic if sort of dumb here because everything is bounded.)

Note that A “ pa1, ..., anq and B “ pb1, ..., bnq are both inX. I think of i ! j as saying
that, when going from A to B, the j coordinate must change before the i coordinate.
This example is important, since arbitrary HHSes have subsets that look a lot like

the above. It seems related to the perspective on CAT(0) cube complexes in [AOS12,
Section 2].

Optional Exercise 42. Let S be a set with orthogonality and nesting relations as in
the HHS axioms. For each U P S, pick hyperbolic space CU , with a base point pU .
Define X to be the set of tuples pxUqUPS for which the set of U for which xU ‰ pU is

a set of pairwise orthogonal domains.
An alternate description of this space is that one starts with the wedge of the pCU, pUq,

and then glues in products as dictated by the orthogonality relation.
Show that pX,Sq is an HHS where the orthogonality and nesting relations are as

given, and the πU are just the coordinate projections, and all ρUV are either the point
pV or the map constantly equal to pV .

Like the wedge example from class, this example is potentially misleading, since it
has the strange feature that the space CU and the maps πU don’t uniquely determine
the nesting relation, which wasn’t even used in the construction of X. But it is handy
to disprove overly optimistic conjectures, since it shows since any conceivably set with
orthogonality and nesting relations actually appears for an HHS with all hyperbolic
spaces unbounded.
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28. The Farey Graph (03/21, TY, SK)

Our goal is to better understand the curve complex of the punctured torus CS1,1 by
showing that it is isomorphic to the Farey graph. For the convenience of the reader,
we will refer to non-peripheral simple closed curves as curves, since these are the only
kinds of curves we care about in this section.

Lemma 28.1. The vertices of CS1,1, i.e., the set of curves of the torus up to isotopy,
are in bijection with Q Y t8u.

Proof sketch. We construct a map from Q Y t8u to the set of vertices. Think of S1,1

as pR2 ´ Z2q{Z2, where the quotient comes from translation of the lattice. Given
q P Z Y t8u, take the line x “ qy in R2, so it has slope q´1. This gives a curve
on R2{Z2: it closes up because of the rational slope, and it’s simple because it can’t
intersect itself (we get either parallel lines or complete overlaps). Also note that its
translates that don’t go through the punctures at Z2 are isotopic to each other, even
on the punctured torus, via translations. Thus, we get a map Q Y t8u to the set of
vertices of CS1,1. One can take flat geodesic representatives to see that this map is
surjective. □

Now, we want to understand when these curves intersect. We have an action of
SLp2,Zq on S1,1 coming from its action on R2, which preserves lattice points:

ˆ

p q
r s

˙ ˆ

x
y

˙

“

ˆ

px ` qy
rx ` sy

˙

.

This gives an action by fractional linear transformations on inverse slopes:

x

y
ÞÑ

px ` qy

rx ` sy
“

px
y

` q

r x
y

` s
.

Remark 28.2. Note that x, y have no common factor if and only if px ` qy, rx ` sy
have no common factor; the forward direction is clear, and the backward direction can
be seen via the inverse matrix, which also has integer coefficients. Thus, the action
of SLp2,Zq on inverse slopes preserves fractions being in lowest terms. We consider a
fraction being in lowest terms if no integer besides 0, 1 divide both the numerator and
denominator, so 1

1
, 0
1
, 1
0
are in lowest terms.

We now want to determine the intersection number between the curves; we denote
the curve by its inverse slope a

b
. Note that two such curves do not form bigons, and

so their intersection number is given by the number of points in their intersection.
In addition, since the action of SLp2,Zq on R is by homeomorphisms, it preserves
intersection number.

First, note that the curve a
b
goes around vertically |b| times, and horizontally |a|

times. Then, since 1
0
represents the horizontal curve, we see that

i

ˆ

1

0
,
a

b

˙

“ b “

ˇ

ˇ

ˇ

ˇ

det

ˆ

1 a
0 b

˙
ˇ

ˇ

ˇ

ˇ

.
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Thus, by our comments from above, we have that if a
b
, c
d
are in lowest terms, then

i
´a

b
,
c

d

¯

“

ˇ

ˇ

ˇ

ˇ

det

ˆ

a c
b d

˙
ˇ

ˇ

ˇ

ˇ

.

Definition 28.3. The curve complex of the punctured torus CS1,1 is defined to have a
vertex for curve, and an edge between two such curves if they have intersection number
1.

Definition 28.4. The Farey graph F has vertices QY t8u and an edge between a
b
, c
d

(written in lowest terms) if
ˇ

ˇ

ˇ

ˇ

det

ˆ

a c
b d

˙
ˇ

ˇ

ˇ

ˇ

“ 1.

By our work above, we have shown that CS1,1 – F . We now introduce a model for
F that will allow us to show that CS1,1 is hyperbolic and has infinite diameter. In
particular, we’ll show that CS1,1 is a quasi-tree, i.e., quasi-isometric to a tree.

One can draw F in the upper half plane H by drawing semicircles orthogonal to the
real line for edges between points in Q, and drawing vertical lines for edges between 8

and rational numbers, as seen in Figure 104. For example, we have edges between 0
1
, 1
0

(so a vertical edge coming from 0
1

“ 0) and between 1
2
, 1
1
(so a semicircle edge between

the two numbers) because of the following calculations:
ˇ

ˇ

ˇ

ˇ

det

ˆ

0 1
1 0

˙ˇ

ˇ

ˇ

ˇ

“ 1,

ˇ

ˇ

ˇ

ˇ

det

ˆ

1 1
2 1

˙ˇ

ˇ

ˇ

ˇ

“ 1.

Figure 104. Farey graph F in H

Note that this model for the Farey graph distorts the lengths of edges, as all edge
lengths are actually 1.

Remark 28.5. If a
b

ą c
d
, then a

b
´ c

d
“ ad´bc

bd
, and so we have an edge joining a

b
, c
d
if and

only if
ˆ

a c
b d

˙

P SLp2,Zq.
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Note also that the action of SLp2,Zq on itself via left multiplication is transitive, and
so there’s only one SLp2,Zq-orbit of edges.

Lemma 28.6. There are no crossing edges in our H picture of F .

Proof. By the transitivity of the SLp2,Zq action on the edges, which preserves (non)-
crossing of edges, it suffices to show that no edge crosses the edge from 0 to 8, i.e., the
situation in Figure 105 is impossible.

Figure 105. Impossible edge crossing of F

If there were such an edge, it would be between c
d
and a

b
, where a, b, d ą 0 and c ă 0.

Then, ad,´bc ą 0 and are both integers, and so ad´ bc ě 2. Thus, there in fact cannot
be an edge between a

b
, c
d
. □

From our picture of F , we get an ideal triangulation of H, with each edge of the
graph participating in exactly 2 triangles. We get this just from the fact that edges
can’t cross, SLp2,Zq acts transitively on edges, and we’ve exhibited (in Figure 104) an
edge above that participates in two triangles.

Lemma 28.7. F – CS1,1 is a quasi-tree. Therefore, CS1,1 is hyperbolic.

Keep in mind that all edges have length 1 in CS1,1 – F . One typically shows that a
space is a quasi-tree by applying the bottleneck criterion [Man05, Theorem 4.6]. One
can compare that criterion to the fact that, in an actual tree, any path between points
x and y must pass through every point on the geodesic from x to y.

Proof idea. By the bottleneck criterion, it suffices to show that for vertices v, w far
apart, one can find points pv,w such that any path from v to w must pass through a
bounded neighbourhood of pv,w, the size of which is bounded independent of v and w.
Suppose v, w are vertices of F that are not connected. Then by the planar structure
of the graph in H, any path from v, w must pass through the edges with endpoints
between v, w, either through the edges’ endpoints or along their interiors.

Thus, we have a bottleneck consisting of many diameter 1 sets (i.e., edges), and so
it’s a quasi-tree. □
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Figure 106. Bottleneck consisting of edges between v, w

Remark 28.8. The Teichmüller space T1,1 is a single Teichmüller disc. Exercise 25 asks
you to show that, in general, any Teichmüller disc gives rise to a quasi-tree in the curve
complex.

Lemma 28.9. CS1,1 has infinite diameter.

Proof idea. Given a semicircle edge, one can always find another semicircle edge con-
tained in it, as seen in Figure 107, because F is an ideal triangulation. Any point on
these two edges are at least distance 1 away from each other. We can continue this
process to see that the diameter of CS1,1 has no bound, and therefore the graph has
infinite diameter. □

Figure 107. F has infinite diameter

29. Annular subsurfaces (03/23, BZ, PA)

Besides S1,1, the other exceptional surfaces whose curve complexes we must define
are S0,2 (the annulus), S0,3, and S0,4. On S0,2 and S0,3, all simple closed curves are
peripheral. We will give a special definition for CS0,2 that detects the twisting of curves
on a surface, and we will simply define CS0,3 to be a point. We will first discuss CS0,4.



COARSE GEOMETRY AND TEICHMÜLLER THEORY 101

Consider the branched double-cover π : R2{Z2 Ñ S0,4 that is the quotient by the
involution px, yq ÞÑ p´x,´yq on T :“ R2{Z2. Observe that this involution fixes the four
points P :“ tp0, 0q, p1

2
, 0q, p0, 1

2
q, p1

2
, 1
2
qu, and has fundamental domain p0, 1q ˆ p0, 1

2
q; see

Figure 108.

Figure 108. S0,4 as the quotient of R2{Z2 by px, yq ÞÑ p´x,´yq

Definition 29.1. The curve complex CS0,4 of the sphere with four punctures has a
vertex for each non-peripheral simple closed curve, and an edge from α to β if α and β
have intersection number 2.

One can check that the map π induces an isomorphism CS1,1
„
ÝÑ CS0,4. For instance,

the condition that the curves in CS0,4 are non-peripheral and simple imply that they
disconnect the sphere into two components each of which has two punctures. This
implies that each curve in CS0,4 has two disjoint simple preimages on T ´ P . If two
curves in CS0,4 intersect twice, then any component of the preimage of one on T ´ P
intersects any component of the preimage of the other exactly once.

Lastly, we give the definitions for two different versions of the curve complex of an
annular subsurface S0,2 – A Ă S. Let p : SA Ñ S be the covering space associated
with the subgroup π1pAq ă π1pSq. Note that SA is itself an annulus. Fix a hyperbolic
metric on S, and consider the induced hyperbolic metric on SA. We can compactify
SA to obtain a closed annulus SA, for example via the Gromov boundary construction.
Equivalently, if SA “ D{xγy where D is the hyperbolic disk and γ P PSLp2,Rq has fixed
points F on the boundary (so |F | “ 2), then set SA :“ pD ´ F q{xγy.

Definition 29.2. The curve complex CMCGA has a vertex for each arc (up to isotopy
rel endpoints) from one boundary circle of SA to the other. It has an edge for each pair
of disjoint such arcs.

While there are uncountably many vertices of CMCGA, each with uncountably many
edges, the next lemma shows that CMCGA is not as pathological as this makes it sound.

Lemma 29.3. CMCGA is quasi-isometric to R.

Proof sketch. Let x and y be points on each boundary circle, respectively, of SA. Define
a map φ : Z Ñ CMCGA as follows. Let φp0q be an arbitrary arc from x to y, and let
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α Ă SA be a simple closed curve such that ppαq is the core curve of A Ă S. We define
φpnq “ Dαpφp0qq, where Dα is the Dehn twist about α. For each n P Z, observe that
φpnq is disjoint from φpn` 1q; see Figure 109. It follows that φ is a quasi-isometry. □

Figure 109. An arc is disjoint from its Dehn twist. One can obtain this
picture with n arbitrary by taking a Dehn twist of the same picture with
n “ 0.

Definition 29.4. The curve complex CTeichA is defined to be the set tx`iy P C | y ě 1u,
endowed with the hyperbolic metric.

This is a horoball in the hyperbolic plane. If we fix a coarse identification CMCGA – R,
we get a map

CMCGA Ñ CTeichA
x ÞÑ x ` i.

This map is Lipschitz, but is not a quasi-isometric embedding.

30. Annular subsurfaces and Bers markings (03/25, KS, SC)

Definition 30.1. There is a map ρSA : CS Ñ 2CMCGA, which can be composed with
CMCGA Ñ CTeichA to get a map ρSA : CS Ñ CTeichA.

Recall that we have fixed a hyperbolic structure on S. For any curve α P CS, let us
take its geodesic representative and consider all lifts to SA. Their closures give arcs
in SA. Define ρSApαq to be those arcs that go from one boundary to another. This
has diameter not greater than one and is nonempty if α intersects core curve of A (see
Figure 110). One can extend our previous proofs of Behrstock inequality and BGI to
this setting. We now want to prove the next theorem.

Theorem 30.2. Tg is HHS.

Before we can prove this however, we will need to define the maps from Teichmüller
space to the curve complexes, which will use the following definition.

Definition 30.3. Let X P Tg. Let α1 be the shortest curve. This is not unique, so we
need to make a choice. Given α1, . . . , αk with k ď 3g´3, let αk`1 be the shortest curve
disjoint from α1, . . . , αk (so tαiu is “greedy shortest pants”). For each i, let βi be the



COARSE GEOMETRY AND TEICHMÜLLER THEORY 103

Figure 110. Core curve of A in red and ρSApαq in blue intersect in SA.

shortest scc intersecting αi minimally (once if αi is not separating, twice if separating,
see Figure 111). All these curves are simple. Then

µX “ tα1, . . . , α3g´3, β1, . . . , β3g´3u

is called Bers marking (see Figure 111).

Alternate definition: Sometimes, instead of assuming that βj is a shortest curve
intersecting αj minimally, people arrange to have ipαi, βjq “ 0 if i ‰ j, often as in the
center and left part of Figure 111.

Figure 111. Examples of Bers marking

A crucial feature of µX is that µX “fills” X. In other words, for any scc γ there exists
γ1 P µX with ipγ, γ1q ‰ 0.

Lemma 30.4. There is a constant C such that for any X P Tg and any Bers marking
µX , if γ, γ

1 P µX then ipγ, γ1q ď C.

Proof. We illustrate the proof in Figure 112. □

Definition 30.5. If U is not an annulus, define πU : Tg Ñ 2CU by

πUpXq “
ď

γPµX
γ cuts U

ρSUpγq

for a Bers marking µX .
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Figure 112. As βi is shortest, it doesn’t twist or visit the same place
many times, for if it does, we could find a shorter curve satisfying the
conditions required of βi.

Remark 30.6. Lemma 30.4 and the logarithmic bound for distance in terms of intersec-
tion number in CU imply that πUpXq has uniformly bounded diameter.

31. Teichmüller space is an HHS (03/28, SK, TY)

Projection to annular subsurfaces. Recall that for annular subsurfaces U , we de-
fined two different kinds of curve complexes. We denoted these curve complexes by
CMCGpUq and CTeichpUq respectively. To unify the notation, now we’ll use CpUq to
denote CTeichpUq.

We can define a map πMCG
U : Tg Ñ 2CMCGpUq by the same formula as for non-annular

subsurfaces, namely

πMCG
U pXq :“

ď

γPµX
γ cuts U

ρSUpγq

for a Bers marking µX .
We record the length of the core curve γ of U using the following function.

yU : Tg Ñ r1,8q

yUpXq :“ max

ˆ

1,
1

ℓγpXq

˙

Recall CpUq is the subset of the upper half plane with imaginary coordinate at least 1.
The projection map πU : Tg Ñ CpUq is given by first fixing an implicit quasi-isometric
identification of CMCGU and R, and then using the following formula:

πUpCq :“ tx ` iyUpxq : x P πMCG
U pXqu.
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This is coarsely a point whose x coordinate measures the twisting in U . The y coordinate
is only relevant in the case that the core curve of U is quite short, in which case it encodes
how short this core curve is.

Facts about Teichmüller metric. To prove that Tg with the Teichmüller metric has
an HHS structure, we need the following two results about the metric, which we state
without proof.

Lemma 31.1 (Wolpert’s lemma). Let x and y be points in Tg and let α be a simple
closed curve. Then the ratio of lengths of α is x and y is bounded by dT px, yq in the
following manner:

expp´dT px, yqq ď
ℓαpxq

ℓαpyq
ď exppdT px, yqq.

Lemma 31.2 (Logarithmic lower bound). Let L0 be a positive constant, x and y be
points in the Teichmüller space, and α and β simple closed curves such that ℓαpxq ď L0

and ℓβpyq ď L0. Then

dT px, yq ą log pipα, βqq .

Here ą denotes greater than, up to additive and multiplicative error that depends only
on the genus and L0.

A reference for the second lemma is [Raf07, Lemma 3.5], however it is also possible
to prove the second lemma directly from the first lemma and the collar lemma.

Partial proof that Teichmüller space is an HHS. We now fill in some of the details
of the proof of the fact that Tg with the Teichmüller metric is an HHS, by describing
the index set S, the associated hyperbolic spaces CW , and discussing the 9 axioms that
define an HHS. References for this include [Raf07, Dur16], although are from before the
modern definition of an HHS and we’re not going to follow either. The paper [DDM14,
Section 2] also has some nice discussion, in particular of the maps from Teichmüller
space to the curve complexes. For the closely related case of the HHS structure on the
mapping class group, a modern discussion with pointers to the literature can be found
in [BHS19, Section 11].

The index set S consists of all subsurfaces of the surface S (including the ones with
multiple connected components), and we take the hyperbolic spaces CW to be the as-
sociated curve complexes (for disconnected subsurfaces, the associated curve complexes
have bounded diameter, and thus are still hyperbolic).

(1) Projections: The projection maps are the projections of the Bers marking we
described in this and the previous section. We also verified that the image of
a point under these maps have uniformly bounded diameters. The image of Tg

under any such map is uniformly quasi-convex by the virtue of being surjective.
A more delicate fact to verify is that these maps are all coarse Lipschitz. We

sketch a proof of this fact in the thick part of Teichmüller space, and mention a
theorem that helps with the thin part. It suffices to show that if dT px, yq ď 1,
and γ P πW pxq and γ1 P πW pyq, then dW pγ, γ1q is bounded above by a constant
independent of x, y, and W . Suppose now that x and y are in the thick part:
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using Lemma 31.1, we can conclude that µx has similar lengths on x and y.
Also, since y is in the thick part, µy is not too short on y, and since µx is not
too short either, they must have low intersection number by Lemma 31.2. Thus,
they are not too far off in the curve complex CW .

In the thin part, getting a bound on the intersection number takes additional
work. One approach is to use Minsky’s product region theorem [Min96, Theorem
6.1].

(2) Nesting: A subsurface V is nested in W if it’s a subsurface of W , after possibly
isotoping. The coarse point ρVW in CW is defined to be the boundary curves of
V which are non-peripheral in W . The map ρWV is subsurface projection.

(3) Orthogonality: Two subsurfaces are orthogonal if they are disjoint.
(4) Tranvsersality and consistency: The Behrstock inequality follows from the

version of Behrstock inequality we proved for the curve complex. The proof of
functoriality is omitted.

(5) Finite complexity: The complexity of Tg is linear in the Euler characteristic
(or equivalently, the genus) of the surface.

(6) Large Links: This will be discussed next class.
(7) Bounded geodesic image: This follows from the Bounded Geodesic Image

theorem for curve complexes which we proved in class.
(8) Partial realization: If V and W are orthogonal subsurfaces, and p and q are

points in CV and CW respectively, it’s easy to construct a point x P Tg that maps
to p and q respectively. Namely, pinch both of those curves simultaneously; this
can be done because the curves are in orthogonal subsurfaces. If p and q lie in
transverse subsurfaces and satisfy the Behrstock inequality, one can construct a
point x P Tg that maps to p and q, but we skip the proof of that.

(9) Uniqueness: This will be discussed next class.

32. More on Teichmüller space and more on Behrstock (03/30, JH, KS)

We are currently in the process of discussing the HHS structure on Tg. To finish the
discussion, we need to address the large links and uniqueness axioms; in both cases
we’ll only give an idea of why they are true. For large links we’ll restrict to the case
W “ S, where we need to prove the following:

(6) Large Links: For anyX, Y P Tg, there exist subsurfaces T1, T2, . . . , Tlinear in dSpX,Y q,
which are properly nested in S, such that

dW pX, Y q large ùñ W Ď Ti for some i,

and the same holds for S replaced with any other element of S.

The main idea here is that if the distance between projections of two points in a lot
of random (i.e., not properly nested) subsurfaces is large, then this forces the distance
between the two points in S to be large. This is known as the passing up lemma, and
is essentially the entire reason the large links axiom exists.

Remark 32.1. In a simplicial complex, the link of a vertex is everything distance 1 away
from it. Analogously, the link of a non-separating curve α is the curve complex of the
surface minus α. We can similarly view other curve complexes as links; for example
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CW is the link of any collection of curves that fill the complement of W . So these CW
are the links in “large links,” and the axiom is about links where dW pX, Y q is large. In
particular, it says that there are not too many large links.

Remark 32.2. Sometimes the large links axioms is stated with the linear bound replaced
with the floor of the distance in S. The definitions are equivalent, but only up to
changing curve complexes used in the HHS structure. This does matter and can be
annoying, for example when a curve complex is a point (then the floor of the distance
is 0, so there are no Ti’s). We will proceed with the linear bound definition.

To see why (6) is true, recall the seemingly stronger but actually equivalent version
of the bounded geodesic image theorem mentioned in Remark 23.2:

Theorem 32.3 (Strong Bounded Geodesic Image). If α1, . . . , αn is a geodesic in CS
and dW pα1, αnq is large, then some αj does not cut W .

The conclusion that αj does not cut W is equivalent to saying W Ď S ´ αj. So
setting Tj “ S ´ αj proves (6).

Remark 32.4. Since large links and BGI are both about what can be large, they are
almost always proved together.

Next, recall that the uniqueness axiom (9) is a result on coarse injectivity of the map
Tg Ñ

ś

CU . We will give an idea of how this proof goes by proving a weaker statement.

Proposition 32.5. Say X, Y are thick (i.e., they have no short curves) and µX “ µY ,
where µX and µY are Bers markings. There is a universal upper bound for dpX, Y q.

Proof. The curves in µX all have bounded intersection number with each other, so there
are only finitely many mapping class group orbits of µX . Also, since X and Y are thick,
there is an upper bound on the lengths of curves in µX , i.e., all curves in µX have length
ď L0. So, it suffices to know

tY P Tg : ℓY pγq ď L0 @γ P µXu

is compact, hence has bounded diameter. Even though there are infinitely many Bers
markings that we could choose from, by mapping class group invariance, there are then
only finitely many upper bounds that will arise. Compactness follows from the fact
that µX is filling and the Thurston compactification of Tg. □

Alternatively, we could think about Fenchel-Nielson coordinates (compare to the
9g ´ 9 theorem).

From here, we just need to think about the case where µX ‰ µY , but they are close.
In that case, construct an efficient path from one to the other by interpolating between
markings.

Two alternative approaches for (9) are the following:

‚ Use Teichmüller geodesics and “balanced times,” which is a technology that
lets us show, for example, that if the Teichmüller geodesic is thick, then we’re
actually moving in the curve complex. So, if X and Y are far apart and the
geodesic between them is thick, we’re done immediately.
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CV

CW

ρWV

ρVW
κ0

πpXq

πpY q

Figure 113. The Behrstock inequality, pictorally. Here π “ pπV , πW q.

‚ One imagines there might be a way to reduce to the mapping class group case,
where there is a full elementary proof of uniqueness [BHS19, Section 11].

Remark 32.6. The HHS structure on the mapping class group uses the Cayley graph as
the underlying space, and if µ is a set of curves that fills U (perhaps specially chosen),
πUpgq is the projection of gµ to CU .

Switching gears, recall the Behrstock inequality: if V &W , then

minpdW pπW pXq, ρVW q, dV pπV pXq, ρWV qq ď κ0.

We will pretend that ρVW and ρWV are points, for example by picking a point and adding
to κ0 to absorb additional error. The best way to remember this inequality is by the
picture in Figure 113: it says that the projection of every point must lie within the
dashed red cross, since the projection must be close to either ρVW or ρWV (or both).

This result is powerful because it says that in order to travel between points, it is
necessary to travel in each direction separately, in a prescribed order. For example, in
Figure 113, to get from πpXq to πpY q while staying within the image of π (i.e., within
the dashed red cross), we need to first travel along CV , and then travel along CW . If
we’re not worried about efficiency, we can travel around randomly before making the
switch, but the path needs to start by traveling along CV and end with traveling along
CW .

A corollary of the Behrstock inequality is the following.

Lemma 32.7. If dW px, yq ą 2κ0 and dV px, yq ą 2κ0, then (up to swapping x and y
throughout) all of the following hold:

dW px, ρVW q ď κ0 dW py, ρVW q ą κ0

dV px, ρWV q ą κ0 dV py, ρWV q ď κ0.

After the discussion above, this result should be fairly intuitive: it says that if x and
y are distance greater than 2κ0 in both CW and CV , then x must be in the horizontal
strip and y in the vertical strip, and neither is in the overlap square (since they are too
far apart).
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Proof. The triangle inequality and assumptions imply that at most one of

(2) dW px, ρVW q ď κ0 and dW py, ρVW q ď κ0

holds (by comparing both to ρVW in CW and using the fact that dW px, yq ą 2κ0).
Similarly, at most one of

(3) dV px, ρWV q ď κ0 and dV py, ρWV q ď κ0

holds. If neither expression in (2) held, then by the Behrstock inequality, both ex-
pressions in (3) must hold, so exactly one expression in (2) holds; similarly, exactly
one expression in (3) holds. Exchanging x and y throughout if necessary, assume
dW px, ρVW q ď κ0, so dW py, ρVW q ą κ0. By the Behrstock inequality, dV py, ρWV q ď κ0 must
hold, so dV px, ρWV q ą κ0, and this is everything we wanted to prove. □

33. The Behrstock partial order (04/01, SC, JH)

In the previous lecture, we saw that if the projected distance of two points x and y
in two transverse domains V and W is large, then, in any path from x to y, one of the
coordinates in CV or CW has to change before the other can. Motivated by this, we
define a partial order on domains where such a comparison makes sense.

Definition 33.1. For any E ą κ0, and x, y P X, an HHS, define

ΩEpx, yq “ tV P S| dV px, yq ě Eu.

If V,W P ΩEpx, yq, say V ă W if V &W and dW px, ρVW q ď κ0.

This gives us a partial order on ΩEpx, yq, where V ă W means we have to make
progress in V before W . One can check that if V ă W and W ă U , then V ă U .
Pictorially, this situation is described in Figure 114.

Figure 114. When V ă W and W ă V in ΩEpx, yq.

Figure 114 also gives us some extra information, such as ρVU « ρWU . More generally,
if we have pairwise transverse domains V1, . . . , Vk P ΩEpx, yq, we may reorder them so
V1 ă V2 ă . . . ă Vk, and we have the schematic shown in Figure 115, which we shall
term Sisto’s picture since it appears in [Sis19].

Figure 115 is in general just representational, but it can be made literal for HHSes
coming from coning off well separated convex subsets of a hyperbolic space. Before
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Figure 115. (Sisto’s picture) The shaded regions have bounded diam-
eter. The regions shaded in green contain ρVi

Vj
for i ą j and the regions

shaded in red contain ρVi
Vj

for i ă j.

proceeding, we remark that this is not total information, since we do not have any
restriction if V K W , as depicted in Figure 116. However, if V Ĺ W , then it can be
shown that progress in CW usually happens when πW “ ρVW .

Figure 116. When V K W , there is no restriction on the CW and CV
coordinates of paths from πpxq to πpyq. In particular, both the paths
shown are possible.

The next lemma, which we will not prove, shows us some more properties of domains
in S. See [BHS19, Lemma 2.2] for a short proof.

Lemma 33.2. For any HHS pX,Sq, there exists M ą 0 depending only on the com-
plexity of X such that if V1, V2, . . . , Vm are distinct and pairwise not transverse, then
m ď M .

As a corollary, we get additional information about the partial order on ΩEpx, yq.

Corollary 33.3. For large enough E, it is possible to partition ΩEpx, yq into M subsets
Ω1,Ω2, . . . ,ΩM , some of which may be empty, such that in each subset, all domains are
pairwise transverse.

The proof will use a very general combinatorial result on partial orders on finite sets
called Dilworth’s Theorem. For a proof, see wikipedia.

Proof. Because E is large, it is possible to use large links to show ΩEpx, yq is finite.
But, as the remark following this proof shows, this detail is actually not important.
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Figure 117. Any path from πpxq to πpyq must cover distances dV px, yq

in CV and dW px, yq in CW as shown.

Consider the finite set ΩEpx, yq with the partial order constructed above, and keep
in mind that two elements of this subset are comparable in this partial order if and
only if they are transverse. The previous lemma gives an upper bound on the size of an
anti-chain of ΩEpx, yq, which is by definition a subset such that no two elements of the
subset are comparable in the partial order. The conclusion is now the exact statement
of one direction of Dilworth’s Theorem, applied to the partial order on ΩEpx, yq. □

Remark 33.4. An alternative to invoking large links in the previous corollary is just to
prove the corollary for finite subsets of ΩEpx, yq. This is sufficient for the next lemma
because the M is uniform, and at the end one can conclude that actually ΩEpx, yq was
finite all along.

As an application of this corollary, we get the lower bound in the distance formula.

Lemma 33.5. For any x, y in an HHS X, and E large enough, dpx, yq Á
ř

V PSrdV px, yqsE.

Proof sketch. Let Ωi be the set of domains from Corollary 33.3 for which
ř

V PΩi
rdV px, yqsE

is maximum. Thus
ÿ

V PS

rdV px, yqsE ě
ÿ

V PΩi

rdV px, yqsE ě

ř

V PSrdV px, yqsE

M
.

We conclude that
ř

V PSrdV px, yqsE —
ř

V PΩi
rdV px, yqsE. So, it suffices to prove dpx, yq Á

ř

V PΩi
rdV px, yqsE.

To see this, we observe that any path in X (in particular, a quasi-geodesic) must
progress (i.e. cover distances) in the curve complexes CV for V P Ωi in the order
discussed (Figure 117). In addition, the path progresses in only one domain at a time
and the progress in a domain does not happen much faster than the progress in X since
the projection maps πV are uniformly coarsely Lipschitz. □
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34. Hierarchy paths (04/04, TY, CK)

Recall Example 1.16 from the very first lecture, in which we saw that quasi-geodesics
are not a very good notion in R2. Of course R2 “ R ˆ R and R is hyperbolic, so R2

is an HHS. But one might reasonably feel like that’s a somewhat degenerate example.
The following lemma shows that this extends robustly to more complicated HHSes, in
that quasi-geodesics can be arbitrarily bad.

Lemma 34.1. Let f : N Ñ CS be any path, so for each i P N, we have that fpiq, fpi`1q

are disjoint curves of S. Then there is a quasi-geodesic ray F : r0,8q Ñ Tg such that
πs ˝ F “traces out” this path f .

By traces out, we mean that it may not be at unit speed, but the image is (very close
to the) path.

Proof sketch. Pick a starting point X0 P Tg with fp0q having a really small length which
is also the systolic length, say 1

100
. Then, let X1 P Tg be a surface where fp0q, fp1q have

length 1
100

but with n " 1 twists at fp0q. So, if A0 is an annular thickening of fp0q,
then dA0pX0, X1q " 1.

In general, let Xi have both fpiq, fpi ´ 1q with length 1
100

and tons of twists around
fpi ´ 1q. To be a little more precise, if there are ni twists, then since dAi

pXi, Xi´1q is
comparable to (log of) the number of twists for an annular thickening Ai of fpiq, we can
choose ni so that logpniq "

ř

jăi logpnjq. We also want to make sure that dAi
pXi, Xi´1q

accounts for a definite fraction of dTgpXi, Xi´1q, so we have decent lower bounds on
distances just by looking at progress in the Ai. □

Thus, we see that one can’t really use quasi-geodesics on their own to work with
HHSes. Instead, one uses the following notions.

Definition 34.2. IfM is a metric space, a map f : r0, ℓs Ñ M is aD-unparameterized
quasi-geodesic if there exists a non-decreasing, surjective map g : r0, Ls Ñ r0, ℓs such
that f ˝ g is a pD,Dq-quasi-geodesic.

Intuitively, “the image of f is a quasi-geodesic and there is no backtracking.”

Definition 34.3. A D-hierarchy path in an HHS pX,Sq is a path γ : r0, ℓs Ñ X
that is a quasi-geodesic and such that πU ˝ γ is a D-unparameterized quasi-geodesic for
all U P S. (Note that D doesn’t depend on U .)

The third main theorem of HHSes (after the distance formula and realization theo-
rem) is the following theorem on the existence of hierarchy paths.

Theorem 34.4. Let pX,Sq be a HHS. Then there exists D such that every pair of
points in X can be joined by a D-hierarchy path.

This takes a fair bit of work to prove, but the moral is that one should use hierarchy
paths instead of quasi-geodesics for HHSes. (For the proof of all three main theorems,
see [BHS19].)

Remark 34.5. Note that hierarchy paths are generally not unique. In one example - for
the product HHS structure on R2 “ RˆR, either of the two “taxi-cab paths” between
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two points in R2 is a hierarchy path. In fact, many paths in the box demarcated by
the two taxi-cab paths is a hierarchy path, since we only need both the x and the y
components to be non-decreasing with time.

Instead of proving Theorem 34.4, we’ll use it to prove the distance formula for an
HHS (Theorem 25.4). We already saw that the lower bound comes from the Behrstock
inequality, so we’ll now show that Theorem 34.4 implies the upper bound in the distance
formula. So we want to show that there exists s0 ą 0 such that for any x, y P X, we
have that

dXpx, yq ď
ÿ

U

rdUpx, yqss

for all s ě s0.
We’ll use the following lemma.

Lemma 34.6. For any s,D, there exists κ such that for any pD,Dq-quasi-geodesic
γ : r0,M s Ñ Y in any metric space Y , if we have a sequence of times s1 ď t1 ď s2 ď

t2 ď ¨ ¨ ¨ ď sn ď tn satisfying dpγpsiq, γptiqq ě κ for all i, then dpγp0q, γpMqq ě sn.

One can compare this to an analogous situation for geodesics: if we divide up a
geodesic interval into n subintervals, with the minimum one have length s, then the
length of the geodesic is at least sn. In particular, we expect κ in the lemma to be
comparable to s.

Proof. By definition of quasi-geodesic,

dpγp0q, γpMqq ě M{D ´ D

and ti ´ si ě pκ ´ Dq{D.
Since we have n intervals, we get M ě npκ ´ Dq{D. Hence

dpγp0q, γpMqq ě nppκ ´ Dq{D2
´ D{nq.

If s ă pκ ´ Dq{D2 ´ D, we get in particular the weak bound

dpγp0q, γpMqq ě ns.

Note that s can be made arbitrarily large by making κ large (D is fixed). □

Proof that Theorem 34.4 implies the distance formula. Let s be the desired threshold.
Pick D as in Theorem 34.4, and let κ be as in Lemma 34.6. We then get a θ from the
uniqueness axiom such that if dXpx, yq ě θ, then there exists a domain U such that
dUpx, yq ě κ.

Given a D-hierarchy path γ : r0,M s Ñ X, we have that dpx, yq —D M because it’s
a quasi-geodesic. We’ll want to divide the path into subintervals and apply uniqueness
to each one.

If we have some u, t P r0,M s with u ´ t “ Dθ ` D, then since γ is a pD,Dq-quasi-
geodesic, we have that dXpγptq, γpuqq ě θ. Then, by the uniqueness axiom, there exists
U with dUpγptq, γpuqq ě κ. So, we have to divide r0,M s into

X

M
Dθ`D

\

intervals of
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length at least Dθ ` D each. Since D and θ are constants here, we have the following
“quasi-equations:”

dpx, yq — M —

Z

M

Dθ ` D

^

,

where last quantity is the number of subintervals that we end up with. Note that θ and
D are universal and independent of x and y.

Dividing r0,M s into disjoint subintervals Ji of length Dθ`D and using Lemma 34.6
to collect one contribution for each interval gives

Z

M

Dθ ` D

^

s ď
ÿ

rdUpx, yqss.

Combined with our above quasi-equations, this gives the desired result. □

Remark 34.7. Based on the previous proof, one can say that the lower bound in the
distance formula is true because one can’t have too much stuff happening at once. This
intuition is also present in Rafi’s work, where it takes a more geometric form: One
thinks about moving along a Teichmüller geodesic, and observes that at each given
time, only finitely many subsurfaces have a geometric shape which is compatible with
progress in that subsurface at that time.

Optional Exercise 43. Prove the following special case of the existence of hierarchy
paths, assuming the realization theorem: For any HHS X, show that there exists D ą 0
such that if x, y P X with πUpxq “ πUpyq for all U ‰ S, then there is a D-hierarchy
path from x to y.

35. Infinite diameter and special quasi-geodesics (04/06, CK, SK)

We will sketch a proof of the fact that the curve complex of a surface has infinite
diameter.

Consider the torus T “ R2{Z2. By “the line of slope m on the surface containing a
point p,” we mean that one follows a line of slope m in R2 starting at p until it hits an
edge e, and continues from the edge e1 that e is glued to, with the same slope. This is
the flat geodesic on the surface at p with tangent vector prescribed by m. It is a fact
that every line of irrational slope is dense in T . See Figure 118.

Figure 118. A line of irrational slope is dense in the torus.

Now consider the octagon surface S obtained by identifying opposite pairs of sides of
a regular octagon. Remember that this corresponds to a CW-Complex with one 0-cell,
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four 1-cells and one 2-cell, giving an Euler characteristic of 2´ 2g “ 1´ 4` 1 “ ´4, so
that this represents a genus-2 surface.

It is a fact that for almost every slope, the line of that slope on the surface is either
dense or hits a vertex (and most lines don’t hit a vertex). The statement also holds for
“flat” representatives of higher genus surfaces, where the flat representative is obtained
by picking an arbitrary quadratic differential on the surface.

Figure 119. Rotate the polygon so that every vertical line is dense.

The existence of flat representatives with directions where vertical lines are dense can
be used to construct an infinite diameter subset of the curve complex. Take a polygon
defining S as above (for example, the octagon surface itself) and rotate it in R2 so that
vertical lines are dense. This ensures there are no vertical simple closed curves. In
particular, the vertical upwards line starting from p P S is dense. See Figure 119 above.
Now perform the following iterative procedure, also illustrated by Figure 120 below:

‚ Pick a small horizontal interval I with left endpoint p.
‚ Let p1 be the first point (as measured along l) where l meets I again. Define α1

to be given by l from p to p1 and then close up the curve along I.
‚ Let pi`1 be the first intersection of l with the sub-interval of I from p to pi.
Define αi`1 by following l from p to pi`1 and closing it up along I.

Since no vertical closed curves are simple, the curve l never intersects itself. We thus
have a sequence of simple closed curves α1, α2, . . . such that:

‚ ℓpαiq Ñ 8.
‚ Since l is dense, αi are getting more and more dense in S. This can be made
more precise, but will not be done in this lecture.

‚ For each s.c.c. γ, ipαi, γq ą 0 for i large enough.

Lemma 35.1. dCSpαn, γq Ñ 8 for any fixed γ.

This immediately implies the following proposition.

Proposition 35.2. diampCSq “ 8.

Sketch of proof of lemma. Otherwise, after passing to a subsequence, we can assume
dCSpαn, γq ď k for some constant k. Then dpαn, γq takes only finitely many integer
values. So, after replacing αn with a sub-sequence, we can assume that for some fixed
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Figure 120. Determining p1 and p2.

Figure 121. The curve α
p1q
n (in blue) must roughly follow αn (in green)

before closing up, and is thus long and dense if αn is long and dense.

d ď k, dpαn, γq “ d @n P N. For each n, let αn, α
p1q
n , α

p2q
n , . . . α

pdq
n “ γ be a geodesic in

CS joining αn and γ. So dCSpα
pkq
n , γq “ d ´ k.

Consider the sequence tα
p1q
n u8

n“1. Notice that for big n, αn is long and dense and

for any n, α
p1q
n is disjoint from αn since it is distance 1 from αn. So, intuitively, α

p1q
n

roughly follows the regions between two parallel segments of αn and thus must loop
back roughly as any times as αn before closing up. See Figure 121 above. Hence, it can

also be made arbitrarily long and dense for large enough n. We can repeat this for α
p2q
n ,

this time using the fact that α
p1q
n is long and dense for large n and also that it is disjoint

from α
p2q
n . Repeating this process till α

pdq
n , we get that αnpdq can be made arbitrarily

long and dense for large enough n. But this is clearly a contradiction, since γ “ α
pdq
n is

a fixed curve. This whole argument can be made precise, but will not be done in this
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lecture. It is somewhat forgiving since, for example, α
pkq
n does not have to be as long or

as dense as α
pk´1q
n ; we mainly need that it gets longer and denser as n Ñ 8. □

Remark 35.3. We can prove Proposition 35.2 alternatively by showing that there is a
coarse Lipschitz surjective map CS Ñ R using “balanced times,” outlined in the next
few lines. We can isotope an s.c.c. α to a canonical length-minimizing piecewise linear
path on the surface, and call its vertical and horizontal progress x “

ř

i xi and y “
ř

i yi
respectively. See Figure 122 below. Then, the balanced time tα is the time such that
after travelling for time t along a Teichmuller geodesic, given by applying the matrix

ˆ

et 0
0 e´t

˙

to the determining polygon, α is “as horizontal as it is vertical.” That is, etαx “ e´tαy
or tα “ 1

2
logp

y
x
q. One then shows the non-trivial fact that the map α ÞÑ tα is coarse

Lipschitz and surjective.

Figure 122. A piecewise linear path isotopic to α, used to determine
the balanced time.

We end class with a fun lemma which, although we’re not going to use it in this course,
illustrates some useful techniques and is enough to prove that two different definitions
of “convex co-compact” subgroups of the mapping class group are equivalent.

Lemma 35.4. For a pD,Dq-quasi-geodesic γ : R Ñ X into an HHS pX,Sq, TFAE:

(1) πS ˝ γ is a quasi-geodesic.
(2) Ds0 such that diampπU ˝ γq ď s0 for all U ‰ S.

This morally means that a path makes quasi-linear progress in the topmost curve
complex iff it makes coarsely no progress in curve complexes of all nested subsurfaces.

Sketch of proof. We will use the distance formula for one direction and BGI for the
other.

‚ p2q ùñ p1q: We use the distance formula with a threshold greater than s0. We
claim that |a ´ b| — dXpγpaq, γpbqq — dSpγpaq, γpbqq for any a, b P R. Here, the
first quasi-equality follows from the fact that γ is a quasi-geodesic. The second
one follows from the distance formula and the fact that contributions from all
other curve complexes are zero by p2q. This establishes the fact that πS ˝ γ is a
quasi-geodesic.
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‚ p1q ùñ p2q: See Figure 123 below. Consider E given by BGI and κ0 given
by the transversality and consistency axiom. WLOG E “ maxpE, κ0q. Notice
that NEpρUS q Ă CS is uniformly bounded since ρUS is uniformly bounded. Since
πS˝γ is a quasi-geodesic by p1q, it spends a uniformly bounded amount of time in
NEpρUS q. Since πS is uniformly coarsely Lipschitz and γ is also coarsely Lipschitz
since it’s a quasi-geodesic, the image of this uniformly bounded amount of time
under πS ˝ γ is also uniformly bounded.

For any time t when γ is outside NEpρUS q, BGI guarantees that the image of
pρSU ˝ γqptq is in a bounded region. The functoriality condition p4.2q guarantees
that πU ˝ γ for the portion of γ outside of these times is bounded. □

Figure 123. The casework for the projection of a quasi-geodesic from
X to CU based on its distance from ρUS in CS, separated into the green
and the blue case.

36. Historical comments and course highlights (04/08, KS, SC)

In this lecture we give a semi-historical overview. In pre 1980s coarse geometry existed
in, for example, Mostow rigity and quasiconformal maps. Comparison geometry existed
in, for example, CAT(0) spaces. In 1980s Gromov (and others, for example, Cannon)
studied δ-hyperbolic spaces and especially δ-hyperbolic groups.

Definition 36.1. If G is a group with a finite generating set S, let CaypG,Sq be the
graph with

‚ a vertex for each element of G, and
‚ an edge from from g1 to g2 if g1 “ sg2 for some s P S.

If S1 and S2 are different finite generating sets, then CaypG,S1q and CaypG,S2q are
quasi-isometric, so one says the Cayley graph of G (without specifying a generating set)
is well defined up to quasi-isometry.

Definition 36.2. G is hyperbolic if CaypG,Sq is.

Highlights of the theory of hyperbolic groups:

‚ Tons of groups are hyperbolic (hyperbolicity is generic in various models of
random groups).

‚ Hyperbolic groups have solvable word problem, etc.
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Tg, Mg, MCG are very important in geometry and topology, algebraic geometry,
physics, dynamics, and 3-manifolds. To study Mg, one can compare it to H3{Γ. The
idea is to cone off non-hyperbolic bits to get a hyperbolic space [Far98]. Motivated
by this and the Ending Lamination Conjecture, Masur-Minsky showed CS is quasi-
isometric to ConepTgq and that CS is hyperbolic [MM99]. They proved the distance
formula and BGI [MM99, MM00]. Many people (among them Minsky’s former students
Behrstock [Beh06] and Rafi [Raf07, Raf14]) added to the machine, which became central
for questions like

‚ classifying hyperbolic 3 manifolds (see [Min03]) for an introduction);
‚ how hyperbolic Tg is?
‚ what do geodesics in Tg do?
‚ word problems and conjugacy problems in MCG;
‚ quasi-isometric rigidity;
‚ convex cocompact subgroups of MCG and connections to surfaces bundles, 4-
manifolds, etc.

Progress on curve complexes continued: after several intermediate developments in-
cluding the uniform hyperbolicity of curve graphs [Aou13, Bow14b, CRS14], in 2013
Hensel-Prytski-Webb posted a super-short proof of its hyperbolicity [HPW15], which
lead the to bicorn approach that we followed in this course.

The same magical structure enjoyed by mapping class groups was found by Behrstock-
Hagen-Sisto for many cube complexes, leading them to axiomatize the machine (2014),
giving to the definition of an HHS [BHS17b, BHS19]. The main idea is that we want
spaces that “would be” hyperbolic, except for product regions, whose factors again
“would be” hyperbolic except for simpler product regions. We saw the following features
for an HHS:

‚ Maps πU to hyperbolic spaces CU .
‚ If U Ď V , CU holds information that was crushed (coned to a point called ρUV q)
in CV ), so it is reasonable to talk of a “hierarchy of hyperbolic spaces”.

‚ U K V corresponds to product behavior.
‚ For U&V , CU and CV behave like convex subsets of hyperbolic space that are
well separated or at least such that the projection of each to the other has been
coned off.

‚ BGI.

We also have 3 main theorems whose proofs you can now read in [BHS19]:

‚ Realization: The image of an HHS in
ś

CU is a set of consistent tuples. We
think of πU as coordinates and can build points in X by specifying coordinates.

‚ Existence of hierarchy paths.
‚ Distance formula (most iconic feature of HHS).

There exist many more HHSes, for example, cube complexes, which we shall see more
of in the next 4 lectures. Hierarchical hyperbolicity is an extremely special property
that is only one of a zoo of different ways a space can have some hyperbolic behavior
while failing to be literally hyperbolic; it requires a huge amount of very particular (and
useful!) structure. So it is beautiful and surprising that a long and ever growing list
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of extremely important spaces are hierarchically hyperbolic. The result is a powerful
unification of the study of these spaces.

There is now a well established mutually profitable relationship between different
HHSes: Most prominently, the Masur-Minksy ideas got applied to give new information
on cube complexes, and now cube complexes are turning out to be useful in the study
of all HHSes, even Teichmüller space and the mapping class group.

37. Cube complex basics (04/11, AW, TY, guest lecture by Susse)

Definition 37.1. A d-dimensional cube is a metric space isometric to r´1
2
, 1
2
sd (with

the Euclidean metric). A k-dimensional face (also called a k-face) of a cube is
obtained by setting pn ´ kq coordinates to ˘1

2
. A 0-cube is called a vertex, and a

1-cube is called an edge.

Figure 124. Some cubes. On the d “ 3 cube, a 1-face (edge) is high-
lighted in blue, and a 2-face in red.

Definition 37.2. A cube complex is obtained by gluing cubes isometrically along
faces. It is finite dimensional if there is a bound on the dimensions of the cubes. It
is proper if only finitely many cubes are glued along each face.

Figure 125. An example of a cube complex

Each cube complex has a natural path metric, where the length of a path γ is

ℓpγq “
ÿ

C

ℓpγ X Cq,

where the sum is over the maximal cubes C. The distance between points is

dpx, yq “ inftℓpγq : γ a path from x to yu.
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Theorem 37.3 (Bridson). In a finite dimensional cube complex, any two points can be
connected by a geodesic.

Definition 37.4. A geodesic metric space X is called CAT(0) if geodesic triangles in
X are at most as fat as Euclidean triangles. More specifically, consider a triangle in X
with vertices x, y, x and edges of length ℓ1, ℓ2, ℓ3. Up to isometries, there is a unique
triangle in Euclidean two space with edge lengths ℓ1, ℓ2, ℓ3; sometimes this is called the
comparison triangle. Call its vertices x, y, z. For any point q on the edge from x to y,

Figure 126. The definition of CAT(0). On the left is a triangle in X,
and on the right is the comparison Euclidean triangle.

let q be the point on the edge from x to y defined by dpx, qq “ dpx, qq. The space X is
CAT(0) if given any points in such a configuration, we have

dpz, qq ď dpz, qq.

This indicates that, as measured at q, the edge is “bowed in” towards z compared to
the comparison triangle.

Definition 37.5. A space is called non-positively curved (NPC) if it is locally
CAT(0).

An important question is: When is a cube complex X NPC or CAT(0)? Since the
cubes themselves are Euclidean, any cube complex is locally CAT(0) in the interior of
any maximal cube. One can worry though that “positive curvature” might be concen-
trated at a vertex. This motivates looking at the geometry near the vertices. Let Xp0q

denote the set of vertices for a cube complex X.

Definition 37.6. Given a vertex v P Xp0q of a cube complex X, its link is a combina-
torial object roughly obtained as the ϵ-sphere based at v for any ϵ small. More formally,
Linkpvq is a delta-complex with a k-simplex for each corner of a pk ` 1q-dimensional
cube at v, with these simplices glued in the same way that cubes incident to v are glued
in X.

Theorem 37.7 (Gromov Link Condition). Let X be a cube complex. Then X is NPC
if and only if the link of every vertex is a flag complex. Furthermore, X is CAT(0) if
and only if it is NPC and simply connected.
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Figure 127. The definition of link. (The square and the cube really
should be shaded in here, since they are part of the complex.)

A flag complex is a simplicial complex satisfying the following property: If it contains
the 1-skeleton of a simplex, it contains the simplex. In other words, there are “no
missing simplices”; see Figure 128 for examples and non-examples of flag complexes.
(Recall that the difference between a simplicial complex and a delta-complex is that in
a simplicial complex the vertices of each simplex must be distinct, and no two simplices
can have the same vertex set.) 

Figure 128. The left picture is a flag complex, but the right tree pic-
tures are disallowed in a flag complex. Middle left contains the 1-skeleton
of a triangle but does not contain a corresponding triangle, and the right
two pictures are not simplicial complexes.

Example 37.8. Consider a cube X that isn’t filled in, so it is a cube with 0 3-cubes,
6 2-cubes, 12 edges, and 8 vertices. The link of any of its vertices is a triangle that
isn’t filled it, and so isn’t a flag complex. It is intuitive that this shouldn’t be NPC,
because it is topologically a sphere and spheres have positive curvature. One can also
draw intuition from flat geometry, by noting that this cube complex is a singular flat
surface with cone angles of 3 ¨ π

2
. In general, cone angles of less than 2π on a surface

are often thought of as point masses of positive curvature.
Formally, one can show X isn’t NPC directly by considering a small triangle near

a vertex obtained by intersecting the cube with a plane. In this case, the comparison
triangle can be thought of as the usual triangle lying on this plane. However, distance
between points on this triangle are larger if one has to travel in X, because one can’t
cut across the plane and instead has to stay on the surface of the cube.
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Figure 129. Cutting off the corner of a cube gives a visualization of a
triangle in the space X of Example 37.8.

The summary is that X is NPC as long as it isn’t missing any “corners of cubes”.
More broadly, the philosophy is that the combinatorics of a cube complex correspond
to its geometry.

Let us mention a result in passing that illustrates the power of CAT(0) cube com-
plexes. Suppose X is a proper, finite dimensional CAT(0) cube complex, and that a
group G acts on X properly and co-compactly by isometries. Sageev and Wise showed
that G satisfies the Tits alternative: every subgroup of G either contains the free group
F2, or is virtually Abelian. It is an open problem whether this is true if X is a CAT(0)
space but not a cube complex. This result is perhaps one instance of theme, which is
that CAT(0) cube complexes in some ways mimic symmetric spaces.

The next part of the lecture is on hyperplanes.

Definition 37.9. A midplane in C “ r´1
2
, 1
2
sd is one of the d sets Mi “ C X txi “ 0u.

Figure 130. One of the three midplanes in a 3-cube.

Definition 37.10. A hyperplane in a cube complex is a connected subspace which
intersects each cube in a midplane of that cube or in the empty set.

More concretely, one thinks of a hyperplane as being obtained by starting with a
midplane, and then “following it around” by iteratively adding midplanes of adjacent
cubes that one of the already added midplanes intersects.

Definition 37.11. Given a hyperplane H, its carrier NpHq is the union of all the
cubes that it intersects.

Fact 37.12. If H is a hyperplane in a CAT(0) cube complex, NpHq – H ˆ r´1
2
, 1
2
s.
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Figure 131. A hyperplane.

Figure 132. Three behaviours which can occur for hyperplanes in cube
complexes, but cannot occur for hyperplanes in CAT(0) cube complexes:
A one-sided hyperplane (left); a self-intersecting hyperplane (middle);
and a self-osculating hyperplane (right). In all three examples, it is not
the case that NpHq is homeomorphic to H ˆ r´1

2
, 1
2
s.

This fact can be derived by first showing that the behaviors illustrated in Figure 132
cannot occur.

Fact 37.13. In a CAT(0) cube complex X,

(1) For any hyperplane H, the space X ´ H has exactly two components called

halfspaces, denoted
ÐÝ
H,

ÝÑ
H . (There doesn’t seem to be any canonical way in

general to decide which halfspace gets the left arrow and which gets the right
arrow.)

(2) NpHq is convex.
(3) H is naturally a cube complex of dimension 1 less than X.

(4) If H1 X H2 “ H, then up to reordering we have
ÝÑ
H 1 Ă

ÝÑ
H 2 and

ÐÝ
H 2 Ă

ÐÝ
H 1.

Let us focus now on the 1-skeleton Xp1q with its natural graph metric. (Usually
we use the Euclidean metric on a CAT(0) cube complex, but the graph metric on the
1-skeleton can be thought of as the restriction of the ℓ1 metric on X.)
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Figure 133. The two possible behaviors for how two hyperplanes relate
to each other in a CAT(0) cube complex: Either they intersect (left), or
they divide the space into an in between region and two halfspaces (right).

For any cube complex X, CAT(0) or not, a basic combinatorial observation is that
if γ is a (simplicial) path in Xp1q, we have the formula

ℓpγq “
ÿ

H

#pH X γq,

where the sum is over the hyperplanes H in X. The formula is true because the length
ℓpγq is the number of edges in the path γ, and for each edge there is a unique hyperplane
which intersects the edge in its midpoint.

We can say more if X is CAT(0): each geodesic crosses each hyperplane at most
once.

Proposition 37.14. Let X be a CAT(0) cube complex, v, w P Xp0q, and let γ be a
geodesic edge path from v to w. Then

#pH X γq ď 1.

You might compare this to the fact that in Rn, each geodesic crosses each hyperplane
(codimension 1 affine subspace) at most once. To cross more than once would be a
waste of the geodesic’s time!

Note that it is tempting to say that the proposition is an immediate corollary of the
fact that NpXq is convex and that geodesics in CAT(0) spaces are unique, but those
results concern that Euclidean metric on X, and here we are using the restriction of
the ℓ1 metric.

Proof. Suppose to the contrary that H is a hyperplane with (at least) two points v1, w1

in H X γ. Suppose that we pick this data pH, v1, w1q with v1 and w1 as close together as
possible along γ; we’ll call this an “innermost” double intersection. It follows that the
segment of γ from v1 to w1 does not intersect H at all, and intersects each hyperplane
at most once.

Let γ1 be the edge path that follows γ until just before v1, then follows a minimal
length path β from just before v1 to just after w1 in the 1-skeleton of NpHq, and
then follows γ to w. It’s possible to show that actually γ1 is shorter than γ, giving a
contradiction.

Here are a few more details, filled in by AW: We can prove this result by induction
on the dimension of the cube complex. The 1-dimensional cube complexes are trees
and the hyperplanes are midpoints of edges, so the base case is easy.
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Figure 134

Let α Ă γ be the original path between the start and endpoints of β.
It’s not hard to show that H is CAT(0) with its natural cube complex structure,

and we know it has dimension one less than X, so by induction we can assume that β
crosses each hyperplane at most once. Since hyperplanes are two-sided, it follows that
α crosses each hyperplane that β does. Then, the length of α is at least as long as the
length of β. But actually α is longer by at least 2, since it has to cross H twice, and β
does not. This gives a contradiction. □

From the proposition, we get an upgraded version for the formula for the length of a
path.

Corollary 37.15. If X is a CAT(0) cube complex, for any v, w P Xp0q, we have

dXp1qpv, wq “ #tH : x and y are separated by Hu.

For a reference on the results in this lecture, start with [Wis12], and, for more detail,
see [Wis21]. For a reference that also includes the topics in the next lecture, see [Hag].

Optional Exercise 44. Show that geodesics are unique in CAT(0) spaces.

Optional Exercise 45. Show that geodesic CAT(0) spaces are contractible.

Optional Exercise 46. Prove the easier direction in Gromov’s link condition: If X is
a cube complex and the link of one of its vertices is not a flag complex, then X is not
NPC.

38. Medians and gates (04/13, AW, KS, guest lecture by Susse)

Let X be a CAT(0) cube complex. We will work with the 1-skeleton Xp1q with its
graph metric, and all distances in this lecture will be with respect to this metric. The
graphXp1q is typically not CAT(0), since it typically has many loops and CAT(0) spaces
must be simply connected. But in addition to being more combinatorial (for example,
distances between vertices are integers), the graph metric has some deep and useful
geometric properties.
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Definition 38.1. If X is a metric space, a point m is a median for a triple x, y, z P X
of points if the following three equalities hold:

dpx, yq “ dpx,mq ` dpm, yq

dpx, zq “ dpx,mq ` dpm, zq

dpy, zq “ dpy,mq ` dpm, zq.

Figure 135. The definition of a median.

If X is a geodesic metric space, these equalities are equivalent to there being a
geodesic between any pair of points in tx, y, zu containing m. Note however that in
most of the spaces we deal with, there may be more than one geodesic joining a given
pair of points, as in Figure 136.

Figure 136. Both the red path and the blue path are geodesics from
the bottom left to the top right vertices in the 1-skeleton of this square.

Definition 38.2. A space in which every three points has a median is called a median
space. A graph in which every three vertices has a median is called a median graph.
(Actually we should require unique medians, and Exercise 53 shows this is important,
but we’ll gloss over uniqueness in this lecture.)

Theorem 38.3 (Chepoi). If X is a CAT(0) cube complex, then Xp1q is a median graph.

Conversely, it is known that every median graph is the 1-skeleton of a CAT(0) cube
complex. See [Hag, Theorem 1.17] for more details.
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Proof. Fix a triple of vertices x, y, z; we want to show they have a median. Let H be
the set of half spaces that contain at least two of the tree points x, y, z.
Recall that each hyperplane cuts X into two halfspaces. Since hyperplanes do not

contain vertices, and x, y, z are vertices, exactly one of the two halfspaces arising from
any given hyperplane will be in H.

Figure 137. Half spaces in H.

Define
M “ Xp0q

X
č

H⃗PH

H⃗

to be the vertices contained in all half spaces in H. We will show M consists of a single
point, and this point is a median for x, y, z.

Claim 1: M contains at least one point. Note that

(1) H does not contain an infinite descending chain

H⃗1 Ľ H⃗2 Ľ ¨ ¨ ¨ .

(2) Any two half spaces in H have non-empty intersection.

A result of Sageev gives that any collection of half spaces satisfying these two conditions
contains at least one vertex in their intersection.

Claim 2: M contains at most one point. Suppose not, and let m and m1 be
distinct points in M .

Since m and m1 are distinct vertices, there exists a hyperplane H separating them.
Only one of the two half spaces associated to H can contain at least 2 of the 3 points
tx, y, zu, so this immediately gives a contradiction using the definition of M .

Claim 3: The one point m in M is a median for x, y, z. By symmetry, it suffices
to show

dpx, yq “ dpx,mq ` dpm, yq.

Keeping in mind Corollary 37.15, we first make some observations on hyperplanes.

(1) There does not exist a hyperplane H that separates x from m and separates y
from m. In other words, the situation shown in Figure 138 does not occur. This
is because the associated half space containing x and y but not m would be in
H, proving that m is not in M and thus giving a contradiction.
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Figure 138

(2) It follows from (1) that every hyperplane that separates x and m must separate
x from y, and similarly with x and y swapped.

(3) It also follows from (1) that every hyperplane that separates x and y must either
separate x from m, or separate y from m, but not both.

Corollary 37.15 now implies Claim 3, because the above observations imply that the
set of hyperplanes separating x and y is the disjoint union of the set of hyperplanes
separating x and m and the set of hyperplanes separating m and y. □

Definition 38.4. A subcomplexK of Xp1q is convex if every geodesic joining two points
of K is contained in K.

Figure 139. In this example using the standard cubulation of R2, the
smallest convex subcomplex containing x and y is shown in red.

For example, if X is R2 with its standard cubulation, then Xp1q is an infinite grid,
and the only bounded convex sub-complexes rectangular regions. (The graph metric
corresponds to the “taxi-cab” metric on R2.)

Lemma 38.5. If K is convex, x, y P K, z P Xp0q, then the median m “ mpx, y, zq is
in K.

Note that only two of the three vertices x, y, z are required to lie in K. We emphasize
again that convexity here is quite a strong assumption, since our definition requires that
all geodesics joining two points of K stay in K, and there may be quite a number of
such geodesics.
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Proof. The definition of median gives that there is a geodesic from x to y that contains
m. Because K is convex, this whole geodesic must lie in K, so in particular m lies in
K. □

This has the following amazing consequence.

Corollary 38.6 (Helly property). If K1, . . . , Km Ă Xp1q are convex, and Ki XKj ‰ H

for all i, j, then
m
č

i“1

Ki ‰ H.

Proof. First assume m “ 3. Pick

x P K1 X K2,

y P K2 X K3,

z P K1 X K3.

Note thatm “ mpx, y, zq is inK1 because x and z are inK1 andK1 is convex. Similarly,
m is in K2 and K3, proving that the triple intersection is non-empty.

The m ą 3 case follows from the m “ 3 case and induction, since one can replace
pK1, . . . , Kmq with pK1, . . . , Km´2, Km´1 XKmq and use the m “ 3 case to to show the
assumptions continue to hold. □

We turn now to the topic of closest point projections to convex sets. If we used the
Euclidean metric on X, the existence of such a projection would follow just from the
fact that X is CAT(0). But instead we’ll use the graph metric on the 1-skeleton. That
means we have to do some extra work: since the 1-skeleton need not be CAT(0), we
don’t know from general theory that closest point projections exist. But, once we’ve
done this work, we’ll get a projection with some extra nice properties. We’ll call such
projections defined using the 1-skeleton gate maps, for reasons that will be clarified
soon.

Proposition 38.7. Let K Ă Xp1q be a convex subcomplex. Let x be a vertex of X.
Then there is a unique vertex y in K such that

dXp1qpx, yq “ mintdpx, tq : t P Kp0q
u.

In other words, unique closest points exist for convex subgraphs of the 1-skeleton of
a CAT(0) cube complex.

Proof. To start, note that since distances in a graph are integer, the minimum really is
a minimum, not an infimum.

Suppose y and y1 are both vertices in K that have minimal distance to x. Let
m “ mpx, y, y1q be the median. Since y, y1 P K and K is convex, Lemma 38.5 gives that
m P K.

But, since dpx, yq “ dpx,mq ` dpm, yq, and since m P K, the fact that y achieves the
minimal distance implies that m “ y. Similarly, m “ y1, so y “ y1. □
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Figure 140. The proof of Proposition 38.7 rules out this situation.

Definition 38.8. In the situation above, we call y the projection of x onto K or the
gate from x into K, and denote it y “ gKpxq. The map gK will be called either the
projection map onto K, or the gate map.

The terminology “gate” is motivated by the following amazing observation.

Lemma 38.9. In the setup above, for any z P Kp0q, there is a geodesic from x to z that
passes through gKpxq.

Thus, if you want to get from x to any point of K, you might as well first “enter” K
at the gate gKpxq.

Note however that it can sometimes be equally efficient to travel to given destination
in K by entering K at a different location; it doesn’t have to be the case that all
geodesics from x to K go through the gate, just at least one to each vertex.

Proof. This is basically the same as the last proof. Set y “ gKpxq, and m “ mpx, y, zq.
As before, using that y achieves the minimal distance, we get that m “ y. Then the
median property gives that there is a geodesic from x to z pasing through m “ y “

gKpxq. □

Proposition 38.10. Let K be convex. Suppose that x and y are adjacent vertices in
X. Then:

(1) If gKpxq ‰ gKpyq, then dpx, gKpxqq “ dpy, gKpyqq.
(2) dpgKpxq, gKpyqq ď 1.
(3) dpgKpxq, gKpyqq “ 1 if and only if the unique hyperplane separating x and y

crosses K.
(4) If gKpxq ‰ gKpyq, then a hyperplane separates x from gKpxq if and only if

separates y from gKpyq.

As is often the case, here it is implicit that we’re using the graph metric on the
1-skeleton. The proposition might be summarized by saying that the gate map is
1-Lipschitz, and when two adjacent vertices have distinct projections we have many
properties enjoyed by the “strip” picture in Figure 141. It would probably be ok to
skip the proof and view the proposition as a black box.
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Figure 141. A strip.

Figure 142. The proof of Proposition 38.10.

Proof. Since gKpxq is the closest vertex in K to x and gKpyq is a vertex in K of distance
at most dpx, yq ` dpy, gKpyqq “ 1 ` dpy, gKpyqq from x, we get

dpx, gKpxqq ď 1 ` dpy, gKpyqq.

Furthermore, since gKpxq is the unique closest point to x in K, if gKpxq ‰ gKpyq we
get that the above inequality must be strict, so actually

dpx, gKpxqq ď dpy, gKpyqq.

Since the same statements hold with x and y swapped, in general we get

|dpx, gKpxqq ´ dpy, gKpyqq| ď 1,

and if gKpxq ‰ gKpyq we get

dpx, gKpxqq “ dpy, gKpyqq.

This finishes the proof of (1).
By Lemma 38.9, there is a geodesic from x to gKpyq that passes through gKpxq. Any

geodesic from x to gKpyq has length at most 1`dpy, gKpyqq. If gKpxq ‰ gKpyq, it follows
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from (1) any geodesic from x to gKpyq has length at most 1 ` dpx, gKpxqq. Thus, the
fact there there is such a geodesic that goes through gKpxq implies dpgKpxq, gKpyqq “ 1,
finishing the proof of (2).

Now let H be the unique hyperplane separating x and y. First suppose it intersects
K. Let z be a point of K on the same side of H as x (for example a vertex of an edge of
K intersected by H). By Lemma 38.9, there is a geodesic from x to z passing through
gKpxq. Both x and z are on the same side of H, and Proposition 37.14 states that a
geodesic can intersect a hyperplane at most once, so it follows that gKpxq must be on
the same side of H as x and z. Symmetrically, gKpyq must be on the same side of H as
y. Hence, H separates gKpxq and gKpyq. Given (2), that shows dpgKpxq, gKpyqq “ 1.

Conversely, suppose dpgKpxq, gKpyqq “ 1, and let H be the unique hyperplane sep-
arating gKpxq and gKpyq. It suffices to show that H separates x and y. For that, it
suffices to show that x and gKpxq are on the same side of H, since combining this with
the symmetric statement with x replaced with y proves that H separates x and y. Sup-
pose to the contrary that x and gKpxq are on opposite side of H. There is a geodesic
from x to gKpyq passing through gKpxq. Our suppositions show that this geodesic must
cross H at least twice, contradicting Proposition 37.14. This concludes the proof of (3).

Finally, suppose in order to find a contradiction that a hyperplane H separates x
from gKpxq, but that both y and gKpyq are on the same side of H. Case 1 is that y and
gKpyq are on the same side of H as gKpxq. In this case, H separates x and y but not
gKpxq and gKpyq, contradicting our analysis above. Case 2 is that y and gKpyq are on
the same side of H as x, and again this contradicts our analysis above. □

Our last topic for this lecture is to give some hints on what the HHS structure will
be on a CAT(0) cube complex X, and what difficulties might arise. To start, consider
disjoint convex complexesK1, K2. Because of the previous proposition, we might expect
a product region in between the projections of each to the other, as illustrated in Figure
143. (The idea is that the region should be parametrized by the set of hyperplanes
crossing K1 and K2 times the set of hyperplanes separating K1 and K2; see the “Bridge
Theorem” in [Hag, Theorem 1.22].) This may give some intuition.

Let’s indicate what the set of domains should be. We can start with H, the set of
all hyperplanes. (Or rather, since it is better to have sub-cube-complexes here, take H
to be the set of boundary components of carriers of hyperplanes.) This H is however
simultaneously too large and too small to be the index set.

The sense in which it is too small is that, motivated by Figure 143, we should ac-
tually use the hyperclosure F of H, which is defined to be the smallest collection of
subcomplexes containing H that is closed under taking projections. So if K1, K2 P F ,
then gK1pK2q P F .
The sense in which it is too large is that “parallel” objects should be identified. So

actually the set of domains would be F modulo a “parallelism” equivalence relation.
Nesting will be inclusion. The main question will end up being whether the finite

complexity axiom holds. This actually can fail for arbitrary CAT(0) cube complex,
as illustrated in Figure 144. In other words, not all CAT(0) cube complexes have
hyperclosure with finite complexity.

However, this phenomenon may be incompatible with cocompact group actions [HS20].
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Figure 143. The highlighted in between region might be expected to
be a product region.

Figure 144. In this “staircase” example, H1 Ľ gH1pH2q Ľ gH1pH3q Ľ

¨ ¨ ¨ is an infinite nested chain.

Theorem 38.11 (Hagen-Susse). For all known examples of CAT(0) cube complexes
that admit a proper cocompact group action, the hyperclosure has finite complexity.

Optional Exercise 47. Show that, using the usual Euclidean metric on R2, a triple
of points has a median if and only if they are collinear.

Optional Exercise 48. Show that R2 with the ℓ1 (taxi-cab) metric is a median space.

Optional Exercise 49. Suppose X is a metric space with a unique geodesic joining
any pair of points. Prove that X is a median space if and only if X is 0-hyperbolic.

Optional Exercise 50. Show that R2 with the Euclidean metric does not have the
Helly property. Give a hands-on proof that a tree does satisfy the Helly property.
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Optional Exercise 51. Show directly that the 1-skeleton of a d-cube is a median
graph for any d.

Optional Exercise 52. Show that a median graph need not be a median space.

Optional Exercise 53. Consider the graph in Figure 145. Show that any three points
has a median, but that there are triples of points with more than one median. Show
that this graph is not the 1-skeleton of a CAT(0) cube complex.

Figure 145

Optional Exercise 54. Suppose that K is a convex subcomplex. Show that gpxq is
the CAT(0) closest point in K to x.

39. The contact graph (04/15, AW, GM, guest lecture by Hagen)

Fix a CAT(0) cube complex X. (For now, it could be infinite dimensional and/or
locally infinite.)

Definition 39.1. Two hyperplanes h, v ofX contact ifNphqXNpvq ‰ H. Equivalently:

(1) h and v cross or osculate.

Figure 146. A crossing pair of hyperplanes (left) and an osculating pair
(right).

(2) No hyperplane separates h and v.

Optional Exercise 55. Prove that (1) ðñ (2).

Definition 39.2. The contact graph CX is the graph with a vertex for each hyperplane
and an edge between a pair of vertices if the corresponding hyperplanes contact.
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Remark 39.3. This is almost the same thing as the graph with a vertex for each hy-
perplane carrier and an edge for each pair of carriers that intersect. It’s not always
exactly the same thing though because a subcomplex can be the carrier of two different
hyperplanes (like when X is a single square, X is the carrier of both of its hyperplanes).

Figure 147. A single square is the carrier of both of its hyperplanes.

Theorem 39.4. There exists a constant K (K “ 100 works) such that CX is pK,Kq-
quasi-isometric to a tree.

In particular, CX is hyperbolic. A reference for the theorem is [Hag14], but we’ll
also give a proof here.

Proof. We will verify the following condition:
p‹q For all h, v P CXp0q there exists a path α joining h to v such that if γ is another

such path, then γ enters the ball BCX
1 pαpiqq for all i.

Condition p‹q implies the theorem by Manning’s Bottleneck Criterion [Man05]. We
verify p‹q using two claims.

Claim A: If w is a hyperplane separating h, v then any path γ in CX from h to v
enters BCX

1 pwq.

Proof of Claim A. Let γ be h “ h0, h1, . . . , hk “ v.

 

Figure 148
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Choose γ̂i to be paths in Nphiq that can be concatenated to form a path γ̂ “ γ̂0 ¨

γ̂1 ¨ ¨ ¨ γ̂k in X from h to v.
γ̂ must intersect w, and more specifically it must contain end edge crossing w. So for

some i, w crosses hi or w “ hi. So hi P BCX
1 pwq. □

Claim B: There exists a path α : r0, ns Ñ CX such that αp0q “ h, αpnq “ v, and αpiq
separates h and v for all i P t1, . . . , n ´ 1u.

Proof of Claim B. If h “ v or h contacts v there is nothing to check.
Otherwise, Exercise 55 gives that there exists w such that w separates h from v.

Choose such a hyperplane w with minimal distance to h; again using Exercise 55 on
the pair h,w, we see that w contacts h.

Now induct on the number of hyperplanes separating h and v, or on the distance
between h, and v. (Or, iterate, by next picking a hyperplane separating w and v that
contacts w, etc., to build the path.) □

Remark 39.5. Claim B shows that CX is connected. (This can also be established using
that it is the 1-skeleton of the nerve of the cover of X by hyperplane carriers.)

Claims A and B together imply p‹q. □

Remark 39.6. We won’t really use that CX is a quasi-tree; for us, showing CX a quasi-
tree is just a convenient way to prove hyperbolicity. (There is also a 3 line proof of
hyperbolicity using geodesic guessing.)

Example 39.7. If X is a tree, then hyperplanes correspond to edges and CX is the
dual graph.

Figure 149. A tree in black and its dual graph in purple.

Optional Exercise 56. If X “ AˆB, then the hyperplanes of X are partitioned into
two subsets HA,HB, and h P HA, v P HB implies h X v ‰ H. It follows that CX is the
graph theoretic join of CA and CB, and CX has diameter at most 2.

Remark 39.8. The contact graph of the staircase has diameter 3, even though the
staircase isn’t a product. (But, the staircase doesn’t have much symmetry. . . .)

We won’t prove the following theorem, which establishes some “curve graph like”
properties of CX. A reference is [Hag22].

Theorem 39.9. Suppose X is a proper CAT(0) cube complex and G acts on X properly
cocompactly with no invariant proper subcomplex. Then:
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(1) CX is infinite diamter unless X is a product.
(2) For all g P G, one of the following holds:

(a) g acts loxodromically on CX.
(b) A power of g fixes some h P CX.
(c) X contains a subspace F that is CAT(0)-isometric to r0,8q ˆ R and is

invariant under a power of g.

Note that (b) and (c) are not mutually exclusive, but if (a) holds then (b) and (c) do
not. Case (a) corresponds to pseudo-Anosov mapping classes and case (b) corresponds
to reducible mapping classes. Case (c) is a new phenemenon that doesn’t occur for
mapping class groups, but does occur for the staircase or even the standard cubulation
of R2; the translation gpx, yq “ px`1, y`1q on one of those spaces has the property that
every orbit on CX is infinite, but since CX is finite diameter g cannot be loxodromic.
(The staircase doesn’t satisfy the assumptions of the theorem, since it doesn’t have a
cocompact action, but nonetheless this g satisfies the conclusion of Case (c).)

Theorem 39.9 was one of the first results suggesting parallels between cube complexes
and mapping class groups. Similarly, the following result also suggested such parallels,
since it provides a version of hierarchy paths. It is originally from [BHS17b, Proposition
3.1], but we will follow [Hag22, Section 4].

Theorem 39.10. For any x, y P Xp0q, there is a geodesic in Xp1q whose image in CX
tracks a geodesic.

To parse this result, one should first note that all hyperplanes whose carriers contain
a given point x P Xp0q are adjacent in CX, because they contact each other at x. Hence
there is a coarse map Xp0q to CX that maps points to subgraphs of diameter 1.

The proof will produce a geodesic in Xp1q whose image in CX contains a geodesic in
CX from the image of x to the image of y. As in the case of unparametrized quasi-
geodesics, the geodesic in Xp1q does not move at unit speed in CX, but at least its
progress along the geodesic in CX is monotone and it does not backtrack.

Proof. Start by considering an arbitrary geodesic h0, h1, . . . , hn in CX with x P Nph0q

and y P Nphnq. Choose a geodesic γ̂i in each Nphiq such that the concatenation
γ̂ “ γ̂0 ¨ γ̂1 ¨ ¨ ¨ γ̂n is a path from x to y.

There may be different options for the geodesic h0, h1, . . . , hn in CX as well as the
geodesics γ̂i in Nphiq. Consider the choice of all this data such that

p|γ̂0|, |γ̂1|, . . . , |γ̂n|q

is LEX-minimal. This means that we prioritize γ̂0 being as short as possible, and among
choices with γ̂0 as short as possible we prioritize choices with γ̂1 as short as possible,
etc.

We now claim that γ̂ is a geodesic in Xp1q. Since by assumption h0, h1, . . . , hn is a
geodesic, and each point of γ̂ has image containing one of the hi, this claim will prove
the theorem. By Corollary 37.15, to show γ̂ is a geodesic it is nescessary and sufficient
to show it intersects each hyperplane at most once.

So suppose γ̂ crosses a hyperplane w more than once, say at the edge e and then next
at the edge f . Say e P Nphiq and f P Nphjq. Note that we can assume i ‰ j because
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each carrier is convex and the γ̂k are geodesics. So assume i ă j. We will also assume
that e is the first time γ crosses w.

Case 1: j “ i ` 1. In this case we will derive a contradiction. As in Figure 150, let
A be the first vertex of γ̂i, B be the last vertex of γ̂i, and let C be the vertex of f Ă γ̂
immediately after the second crossing with w.

Figure 150. Case 1.

We now apply Lemma 38.5 to the median m “ mpA,B,Cq. Since A and B are in
Nphiq, we get that m must be in Nphiq, and similarly m must be in Nphjq. Moreover,
A and C are in a half-space of w, and since half-spaces are convex, we get that m must
be in this halfspace.

In particular, we have that m ‰ B, since m and B are on different sides of w. By
definition of median, there is a geodesic γ̂1

i from A to B that passes through m, so
here we conclude that dpA,mq ă dpA,Bq. Since m P Nphiq and Nphiq is convex, this
geodesic γ̂1

i lies in Nphiq. Since m is also in Nphjq, this contradicts the LEX-minimality
assumption.

Case 2: j ą i ` 1 and w ‰ hj`1. Since h0, h1, . . . , hn is a geodesic in CX, it follows
that that j “ i`2 and h0, . . . , hi, w, hi`2, . . . , hn is also a geodesic in CX. As Figure 151
indicates, it is possible to pick a new γ̂ contradicting the LEX-minimality assumption.

Case 3: j ą i ` 1 and w “ hj`1.

Optional Exercise 57. Complete Case 3, using Figure 152 as a guide.

This concludes the proof. □

Optional Exercise 58. Define the crossing graph C 1X of X to be the subgraph of
CX with the same vertex set, but with edges only when two hyperplanes cross. (So
osculation gives edges in CX but not C 1X.) Show that CX 1 is connected if and only if
X does not have any cut points (vertices whose removal disconnects X). In the later
case, show it is quasi-isometric to CX. Show that the link of a vertex h in C 1X is C 1h.
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Figure 151. Case 2.

Figure 152. Case 3. The diamonds indicate the division of the path γ̂
into the geodesics it is a concatenation of.

Optional Exercise 59. Suppose X has hyperplanes h0, h1, . . . , hd, such that for all
i we have that h0, . . . , hi´1 are on one side of hi, and hi`1, . . . , hd are on the other.
Suppose also that for each i, there does not exist a hyperplane crossing both hi and
hi`1. Prove that the distance in C 1X between h0 and hd is at least d. Use this to show
that C 1X has infinite diameter for the the cube complex illustrated in Figure 153. (This
exercise can be easily adapted to CX if you prefer it to C 1X.)

40. The HHS structure (04/18, AW, SK, guest lecture by Hagen)

Let X be a CAT(0) cube complex, and let Y Ă X a convex subcomplex.
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Figure 153. A cubulation of the hyperbolic plane (from Wikipedia).

Observation 40.1. Y is a CAT(0) cube complex (since a missing cube would violate
convexity). The hyperplanes of Y have the form h X Y , where h is a hyperplane of X
intersecting Y .

The assignment
h X Y ÞÑ Y

induces a graph map
CY Ñ CX.

Lemma 40.2. This map is injective, and its image is an induced graph.

An induced graph is a subgraph containing all edges between its vertices. As a result
of the lemma, we think of CY as a subgraph of CX.

Proof. It is injective simply because if h X Y contacts v X Y , then h contacts v.
To see that it is an induced graph, we need to show that if h and v both intersect Y ,

and they contact somewhere in X, then in fact they contact in Y . This follows from the
Helly property: since the convex sets Nphq, Npvq, and Y pairwise intersect, Corollary
38.6 gives that Nphq X Npvq X Y is nonempty. □

Observation 40.3. There exists a uniform constant K such that CY is K-quasi-convex
in CX.
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Proof. Consider h, v P CY . Apply Theorem 39.10 to find a geodesic h “ h0, h1, . . . , hn “

v in CX and a geodesic γ̂ “ γ̂0 ¨ ¨ ¨ γ̂n in Xp1q formed from concatenating geodesics
γ̂i P Nphiq, as in Figure 154.

 

Figure 154. Each edge of γ̂ (red) defines a unique hyperplane (purple)
crossing it. Contrary to the image, the proof shows that in fact each
edge of γ̂ lies in CY , so these hyperplanes intersect CY . Each purple
hyperplane thus represents a vertex in CX connected to both CY and γ̂,
showing that γ̂ stays close to CY .

Since Y is convex, γ̂ Ă Y . So already the picture in Figure 154 is not accurate;
actually γ̂ lies in Y , possibly along the boundary of Y . Each edge of γ̂i defines a
hyperplane which thus intersects Y (illustrated in purple), so h0, h1, . . . , hn lies in the
2-neighbourhood of CY .

We have produced a geodesic joining any pair of points in CY that stays in the 2-
neighbourhood of CY . Since any two geodesics with the same end points fellow travel
in a hyperbolic space, this gives the result. □

Corollary 40.4. If tYiu is any collection of convex subcomplexes of X and yCX is

obtained from CX by coning off each CYi Ă CX, then yCX is a quasi-tree (with uniform
constants).

Optional Exercise 60. Prove the corollary using the Bottleneck Criterion.

It isn’t essential to do this exercise, since all we need is that pX is hyperbolic and that
also follows from Proposition 8.1.

Recall that the hyperclosure F of X is defined to be the smallest family of subcom-
plexes of X such that

(1) X P F ,
(2) for each hyperplane h, the subcomplexes h ˆ t´1

2
u and h ˆ t1

2
u are in F , and
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Figure 155. Nphq “ h ˆ r´1
2
, 1
2
s.

(3) if F, F 1 P F then gF pF 1q P F .

All the subcomplexes in F are convex.

Definition 40.5. Convex subcomplexes F, F 1 are parallel if the restriction

gF : F 1
Ñ F

is a (cubical) isomorphism.

Optional Exercise 61. F and F 1 are parallel if and only if the set of hyperplanes
intersecting F is equal to the set of hyperplanes intersecting F 1.

The exercise implies that F and F 1 are parallel if and only if CF “ CF 1 as subgraphs
of CX.

Definition 40.6. The index set S is defined to be F modulo parallelism. If rF s, rF 1s P

S, say rF s Ď rF 1s if F Ă F 1 up to parallism.

A fundamental assumption going forward is that Ď-chains have bounded length.
The staircase illustrated in Figure 144 shows this does not hold for all CAT(0) cube
complexes, but Theorem 38.11 shows that it holds in all known examples of CAT(0)
cube complexes which are universal covers of compact NPC cube complexes.

Definition 40.7. rF s K rF 1s if, up to replacing F and F 1 with things in their parallelism
class, the convex hull of F Y F 1 is isomorphic to F ˆ F 1 as cube complexes.

Optional Exercise 62. rF s and rF 1s are orthogonal if and only if, for every hyperplane
h crossing F and every hyperplane h1 crossing F 1, we have that h crosses h1.

Our next topic is the factored contact graph.

Definition 40.8. For each V P F , let FV “ trW s Ĺ rV su. Define yCV to be the result
of coning off all CW Ă CV for each rW s P FV .

Keep in mind that if V and V 1 are parallel, then CV “ CV 1 as subgraphs of CX. So

really yCV only depends on rV s P S.
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Figure 156

Definition 40.9. For any rV s P S, define πrV s : X Ñ yCV to be the composite

X Ñ V Ñ CV ãÑ yCV

of the gate map gV : X Ñ V , the usual map V Ñ CV defined by x ÞÑ th : x P Nphqu

and the inclusion of CV into its electrification yCV .

Optional Exercise 63. Check that the map πrV s does not depend on the choice of V
in its parallelism class, possibly by showing that Figure 157 is accurate.

Figure 157

We’re now in a good position to discuss the HHS axioms, although we won’t have
time for complete proofs. The context remains CAT(0) cube complexes where the
hyperclosure F is assumed to have an upper bound on the length of a nested chain.

1. (Projections) The yCV are not only hyperbolic but are even quasi-trees, and
the projection maps are the πV above. The index set S is the hyperclosure F
modulo parallelism.

2. (Nesting) Nesting is as defined above.
Suppose V Ĺ W . We define ρVW to be πW pV q, which is a coarse point since

CpgW pV qq has been coned off in the passage from CW to yCW .
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The definition of the “downwards ρ maps” ρWV is less important than you
might think, since if one uses the equivalent variant of the HHS axioms given by
[BHS19, Proposition 1.11], it is not required to define these maps. (But they are

not hard to define: a subcomplex T Ă W representing a vertex of yCW should
map to the set of hyperplanes crossing both T and V , which via intersection
can be interpreted as hyperplanes of V .)

3. (Orthogonality) Orthogonality is as defined above.

4. (Transversality and Consistency) We only discuss the Behrstock inequality
here. Say V &W , and define ρVW “ πW pV q. This is a coarse point since CpgW pV qq

is coned off in the passage from CW to yCW .
We now sketch a proof of Behrstock. Suppose that x P Xp0q and πV pxq is far

from ρWV . It follows that gV pxq is far from gV pW q. So there must be at least
one hyperplane a separating gV pxq from gV pW q. Note that previous arguments

 

Figure 158

we have done imply that x and gV pxq are on the same side of a. Since the
hyperplanes intersecting both V and W are exactly those intersecting gV pW q

and gW pV q, we see that a does not intersect W . Since gV pxq and gV pW q are
on opposite sides of a, it is also possible to show that x and W are on opposite
sides of a. It follows that gW pxq is contained in gW paq, which is coned to a point

in the passage from CW to yCW . Since gW pV q intersects gW paq, we see that

πW pxq is close to ρVW in yCW .

5. (Finite Complexity) This holds by assumption; we are excluding CAT(0)
cube complexes like the staircase where it doesn’t hold.

6. (Large Links) For both this axiom and also Uniqueness, it’s helpful to have a
version of Theorem 39.10 adapted to the coned off contact graphs rather than
the original contact graphs.



146 CHENAKKOD, HAVILAND, KAUSIK, KHAN, SHCHETKA, WRIGHT, YU

Fix x, y P X. A geodesic joining the projections of x and y to yCX can be
thought of as a sequence T0, T1, T2, . . . , Tn, where each Ti is an element of the
hyperclosure F : indeed, the geodesic is a sequence of vertices, and each vertex
is either a hyperplane or a cone-point over some element in the hyperclosure.
Moreover, if Ti, Ti`1 are hyperplanes, their carriers intersect. Otherwise Ti is a
hyperplane and Ti`1 corresponds to a cone-point (or vice versa), and Ti`1 is a
subcomplex in F crossed by the hyperplane Ti.
So we can make a path γ̂, from x to y, by concatenating paths γ̂i that lie in

NpTiq (if Ti is a hyperplane) or in Ti itself (if it’s a subcomplex corresponding
to a cone-point).

Now very similarly to the proof of Theorem 39.10, we can choose the yCX–
geodesic and the γ̂i so that γ̂ is a geodesic in X. In short, you still get geodesics

in X carried by geodesics in yCX.
To address the Large Links axiom, we now claim that if F P F is such that

x, y project far apart on yCF , then F is nested in one of the Ti.
To prove that, first note that gF pxq and gF pyq are far apart; this follows from

the definition of πF and the fact that all the composed maps in that definition
are coarsely Lipschitz.

Note that if j ą i ` 4, it cannot be the case that a hyperplane a crosses both
Ti and F and a hyperplane b crosses both Tj and F . This is because otherwise
the path T0, . . . , Tn could be replaced with the shorter path

T0, . . . , Ti, a, F, b, Tj, . . . , Tn,

contradicting the fact that T0, . . . , Tn was a geodesic in yCX.
In particular, this means that at most 5 values of j can be such that a hy-

perplane crosses both Tj and F . (All that matters is that the number 5 is
bounded.)

Because gF pxq and gF pyq are far apart, there have to be many hyperplanes
crossing F and separating those two points. For any such hyperplane a, one can
show that gF pxq is on the same side of a as x, and similarly for y. Thus, each
of these hyperplanes has to cross the geodesic γ̂ at some point.

If F is nested in some Tj, we’re done. Otherwise, we can use the fact that

the projections of each of the at most 5 relevant Ti to F get coned off in yCF to

so that actually the yCF distance between the projections of x and y was must
have been small.

7. (Bounded Geodesic Image Axiom) Due to time constraints, we’ll only give
a hint of where BGI comes from. Suppose H P F , and gHpxq and gHpyq are
far apart. Then, using Proposition 38.10, we can find a hyperplane a that has
x and gHpxq on one side, and y and gHpyq on the other. We can find a ge-
odesic between the images of x and y in CX that contains a. Note that the

image of a in yCX is contained in the coarse point ρHX since a is contained in CH.
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Figure 159. There may be many blue hyperplanes, but, in yCF , one
can hop over them all in at most 5 hops through cone points.

 

Figure 160

8. (Partial Realization) Suppose rV1s, . . . , rVks P S are pairwise orthogonal, and

choose hi P yCV i.
We will use the following fact: X contains an subcomplex isomorphism to

V1 ˆ V2 ˆ ¨ ¨ ¨ ˆ Vk. For example, suppose k “ 3. The definition of orthogonality
gives subcomplexes isomorphic to V1 ˆ V2, V2 ˆ V3, V1 ˆ V3. To prove the fact,
one would show one can translate them so that all three intersect at a common
point. (One approach to do that is to apply the Helly property to the pairwise
intersecting sets V1 ˆ V K

1 , V2 ˆ V K
2 , V3 ˆ V K

3 .) Then one can imagine that to be
CAT(0) requires filling in the product.

Now, for each i, choose xi P hi XVi, and let x “ px1, . . . , xkq. Then πVi
pxq P hi

for each i, proving the first part of partial realization.
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Figure 161

9. (Uniqueness) Using the notation from our discussion of Large Links, if the
number of n of vertices T0, . . . , Tn in the carefully chosen geodesic from πXpxq

to πXpyq is large, we’re done. Otherwise, a large part of γ̂ must lie in some
individual Ti, and we can induct or iterate to get the result.

We end by mentioning some options for further reading on the topic of this lecture.
For more on the HHS structure on cube complexes, see [BHS17b]. For more on par-
allelism, the hyperclosure, and how it interacts with group actions, see [HS20]. For a
recent concrete example of factor systems in action, see [Che20].

Appendix A. Hints for some exercises

Exercise 4: SK’s idea: Consider many disjoint balls of radius 1 can you fit in a ball
of radius R in both the spaces, as a function of R.

Exercise 5: For a geodesic n-gon in a δ-hyperbolic space, each point on an edge should
be within roughly δ log2pnq of a different edge.

Exercise 6: For any space quasi-isometric to the given wedge, and for any R ą 0, the
space contains an infinite set of points all of distance at least R to each other, and all
contained in a bounded set.

Exercise 11: First figure out what the half-infinite geodesic rays are.

Exercise 20: Suppose α and β are primitive geodesics. Say A is a lift of α to the
unviversal cover H. Consider all lifts of β whose endpoints are intertwined with those
of A. Try to show that the intersection number is the number of StabpAq orbits in this
set.

Exercise 21: Start with the disconnected cover S ˆ t1, ..., Du, and try to modify it
to make it connected. First modify the geodesic in the curve complex so it consists of
separating curves, then cut the copies of the pi ´ 1q-st and i-th curves on S ˆ tiu, and
then glue all the pieces together in the right way.

Exercise 22: The intersection of all subgroups of π1pSq of index at most D is a finite
index subgroup of π1pSq.

Exercise 25: For each cylinder, we can look at the subset of Teichmüller disc where
it has modulus at least some fixed large constant. This region is a horoball, and
in this region the core curve of the cylinder is guaranteed to have small hyperbolic
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length. (These are basic facts in the study of quadratic differentials.) Each of these
horoballs maps to a bounded diameter region of the curve complex. Considering two
horoballs that overlap or come close to each other, as in Figure 162, gives a subset of
the Teichmüller disc that disconnects the disc and yet maps to a bounded diameter
region of the curve complex. This allows one to apply the bottleneck criterion. 

Figure 162. Two horoballs in this configuration, together with (say) a
minimal length geodesic from one to the other, disconnects the hyperbolic
plane.

Exercise 26: Compare to the point pushing map.

Exercise 28: The image of a QI embedding between geodesic metric spaces always
contains a quasi-geodesic between any two points. Since geodesics stay close to quasi-
geodesics in a hyperbolic space, this shows that the image is quasi-convex.

Exercise 29: Let β be a point of CS´tαu, and let γ be a geodesic from β to a point in
the closest point projection of β to SpS ´ αq. The Bounded Geodesic Image Theorem
says that the projection onto CpS ´ αq can’t change much along most of this geodesic.
One can use that subsurface projections are Lipschitz to handle the last little bit of the
geodesic.

Exercise 30: Consider the Uniqueness Axiom.

Exercise 33: Use the Uniqueness Axiom to directly construct a coarse inverse, and
use this coarse inverse to show πS is a quasi-isometry.

Exercise 34: BZ’s idea: Use the Large Links Axiom plus some sort of induction or
iteration. (If you also use that the πU are Lipschitz, you should be able to show that the
number of non-zero terms in the distance formula sum with sufficiently large threshold
is at most a polynomial in the distance in the HHS, with the degree of the polynomial
being something like the complexity of the HHS. Since each term is coarsely at most
the distance between two points, this gives a not very good upper bound on the whole
sum.)

Exercise 38: Use some sort of induction on complexity. Say you have already chosen
U1, . . . , Uk and they’re all transverse to each other. There are infinitely many domains
in your set, so one of the following three things happen: (a) there are infinitely many
domains in your set transverse to all Ui, (b) there is some Ui so that there are infinitely
many domains in your set nested in Ui, or (c) there are infinitely many domains in
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your set orthogonal to some Ui. If (a), just keep picking. If (b), throw out everything
you’ve done so far and replace your set with the subset of domains nested in Ui. If (c),
throw out everything you’ve done so far and replace your set with the subset of domains
orthogonal to Ui. The point is that (b) and (c) reduce some notion of complexity, so
those events can only happen finitely many times, and eventually you end up with (a)
forevermore.

Exercise 43: You just need to show that, for any point on the geodesic from πSpxq to
πSpyq, you can define a point z with πSpzq equal to that point, and all other coordiantes
the same as for x and y.

Exercise 44: Given two geodesics between a pair of points, arbitrarily divide one edge
into two pieces to obtain a (degenerate) triangle.

Exercise 45: Use the previous exercise, and define a unit speed retraction along
geodesics towards an arbitrarily chosen point.

Exercise 46: Compare to Example 37.8 and Figure 129.

Exercise 50: The sides of a triangle are convex sets.

Exercise 51: Given paiq, pbiq, pciq P t0, 1ud, try defining pmiq by mi “ 0 if at least 2 of
ai, bi, ci are 0, and otherwise mi “ 1.

Exercise 52: Consider a single square and its 1-skeleton, which is a 4-cycle graph and
hence is isometric to a circle.

Exercise 54: Let H be a hyperplane separating x and gpxq. Let z P K. Then there
is a geodesic from x to z through gpxq. Since a geodesic can cross each hyperplane at
most once, we see that H separates x and z. Since this is true for all z, it follows that
H separates x and K. Use this, and the fact that, even in the CAT(0) metric, it takes
at least distance 1 to cross a hyperplane carrier.

Exercise 55: (1) ùñ (2) is clear. For the converse, suppose that v and h do
not contact each other. Pick x P Nphq, y P Npvq vertices that minimize dpx, yq. So
x “ gNphqpyq and y “ gNpvqpxq. Pick w that separates x and y.

For any vertex z of Npvq there is a geodesic from x to z through y. This geodesic
must intersect w at least once, and since it is a geodesic it intersects w exactly once.
Hence x and w are on opposite sides of w. Also using the symmetric statement, this
shows w separates v and h.

Exercise 56: For the first part, consider a hyperplane in AˆB, and consider an edge
e crossing the hyperplane. Edges of a product A ˆ B are either a point in A cross and
edge in B or the same with A and B swapped.

Exercise 59: Once you have done the first part, to show the given example of C 1X
of infinite diameter, it might be helpful to start by finding h0, h1 as in the first part.
(Maybe try drawing h0 and h1 on the figure.) Then pick an appropriate automorphism
g : X Ñ X of the cube complex sending h0 to h1, and set hi “ gih0.

Exercise 61: First suppose F and F 1 are parallel. Let h be a hyperplane crossing F 1,
and let x, y P pF 1qp0q be vertices of an edge crossing h. Use Proposition 38.10 to show
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that h must separate gF pxq and gF pyq and hence show h intersects y. After that, let
h be a hyperplane crossing F , and let x, y P pF 1qp0q be such that gF pxq and gF pyq are
vertices of an edge crossing h, and use a similar argument.

Next suppose F and F 1 have the same crossing hyperplanes. If gF is not surjective,
consider a hyperplane not in its image. If it is not injective, consider a hyperplane
separating two points that map to the same point.

Exercise 62: Because of Exercise 61, if the statement holds for one representative of
the two parallism classes, it holds for all of them.

First suppose rF s and rF 1s are orthogonal and that there is a cubical isomorphism
from the convex hull of F Y F 1 to F ˆ F 1. Then it is easy to see the claim about
hyperplanes intersecting, since an intersection can be found in F ˆ F 1.

The harder direction is to assume the result about hyperplanes intersecting, and try
to show that the convex hull is a product. For this, it may be nescessary to replace F
and F 1 with parallel complexes, and MH’s hint for this was to, ex, take the gate of F
on the closest hyperplane to F that crosses F 1.

Exercise 63: MH’s hint: It may be helpful to first consider a gate map onto a product.
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