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Abstract. We give an exposition of Benoist-Quint’s “exponen-
tial drift” argument in the case of the two dimensional torus T2.
These are the author’s notes for three informal talks he gave at the
University of Chicago in March 2013.

1. Statement of results, stationary measures, and
backwards random walk

1.1. Introduction. The work of Benoist-Quint lies in the field of er-
godic theory on homogenous spaces, which seeks among other things
to understand orbit closures and invariant measures for actions of sub-
groups of Lie groups on homogeneous spaces. The most prominent
success in direction is

Theorem 1.1 (Ratner’s Theorem). Let G be a Lie group, Γ a lattice
in G, and ut a one parameter unipotent subgroup of G. Then

(1) the ut–orbit closure of every point in G/Γ is homogeneous,
(2) every ut–orbit in G/Γ equidistributes in its orbit closure,
(3) every ut–invariant ergodic probability measure on G/Γ is ho-

mogeneous.

A closed subset S ⊂ G/Γ is called homogeneous if there is some Lie
subgroup L ⊂ G whose image in G/Γ is S. It this case it is automatic
that Γ ∩ L is a lattice in L. A probability measure on G/Γ is called
homogeneous if it is the pushforward of Haar measure on a subgroup
L of G for which Γ ∩ L is a lattice in L.

Idea of Ratner’s Theorem Part 3. All such results are based on the
idea of additional invariance. That is, one begins with a ut–invariant
ergodic probability measure ν on G/Γ, and show that ν is invariant
under more and more one parameter subgroups of G. At the end of
the argument, ν is invariant under a subgroup L ⊂ G (generated by all
these one parameter subgroups of G) and also supported on a single L
orbit, and it follows that ν is homogeneous.
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Let us give the idea of how this argument begins. Pick two very
nearby points x, y which are in the support of ν but which are not in
the same ν orbit. It is possible to do this unless ν is supported on a
closed ut orbit, in which case we are done.)

After some large time T we see that the orbits of x and y have finally
drifted apart, and for the first time the distance between uT (x) and
uT (y) is now 1. A key point is that the distance between ut(x) and ut(y)
grows polynomially. That is, the orbits have undergone polynomial
drift. This is important because that it guarantees that in fact the
orbits spent a large amount of time almost at distance 1 before finally
reaching distance 1 from one another. If the orbits had been separating
at exponential speed, the time during which they are about distance
one from each other would be at most O(1). But in this polynomial
drift situation, the time during which the orbits are about distance one
from each other is in fact some fraction of T . That is, the orbits are
within distance 1− δ during times t ∈ [0.99T, T ].

Since T is very large, this is in fact a very large window of times.
So large in fact that the segment ut(x), t ∈ [0.99T, T ] equidistributes
with respect to ν. Every point ut(x) in this interval has a “friend”
ut(y) which is distance about 1 away. It is possible to assume that
in fact ut(y) is distance 1 from ut(x) in the direction of some one
parameter subgroup of G. In this way we prove that ν, which is very
well approximated by the segment ut(x), t ∈ [0.99T, T ], is invariant by
translation by 1 in the direction of this one parameter subgroup. By
replacing 1 with smaller numbers, we see that ν is invariant by this one
parameter subgroup.

This argument has a number of common features.

• A starting condition must be satisfied to run the argument.
Above we had to find appropriate x and y.
• The direction in which the drift is occurring must be under-

stood. Above it was in the direction of the one parameter sub-
group.
• The speed of drift must be understood, and slow drift is much

easier than fast. Exponential drift cripples the argument above.

Although we have used equidistribution (of large chunks of the horo-
cycle) in the above sketch, it is not required. Indeed, all that is required
is for most points to have a “friend” in a certain direction. It seems to
be common for additional invariance arguments to use some equidis-
tribution statement as intuition, but actually use something weaker in
the proof. The intuitive equidistribution statements are usually true,
but sometimes only provable after the fact.
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Idea of Ratner’s Theorem Parts 1 and 2. These parts follow from
part 3. If we wish to consider the ut–orbit of x, we consider any weak-∗
limit of Lebesgue probability measure on the segment ut(x), t ∈ [−T, T ]
as T →∞. In this way we are able to construct a ut–invariant measure
on any orbit closure. It is important that the group ut which is acting
is a one parameter subgroup isomorphic to R, and R is amenable. If
the acting group ut is replaced by a non-amenable group, this averaging
technique does not work, and it may not be possible to construct an
invariant measure on each orbit closure.

The general rule is that to understand orbit closure of actions of
amenable groups such as ut it often suffices to understand invariant
measures, but more work is required for non-amenable groups.

The setting of Benoist-Quint. Here we consider the work of Benoist-
Quint only for the torus X = T2 = R2/Z2. The work of Benoist-Quint
applies in much more general settings, but in this case we see almost
all the ideas while avoiding some technical difficulties.

The group SL(2,Z) acts on X linearly, preserving Lebesgue measure.
A motivating problem is to understand orbit closures for the action of
a subgroup Γ of SL(2,Z) on X.

It is important to avoid bad situations. For example, if

Γ =

〈(
2 1
1 1

)〉
,

then we are considering a single hyperbolic automorphism of X. The
dynamics of such an automorphism are as complicated as possible, and
there are a great many closed invariant sets and invariant measures.

Therefor we ask that Γ not be non-elementary. By definition this
means Γ does not contain a finite index cyclic subgroup. It is equivalent
that Γ is Zariski dense in SL(2,R).

Standing assumption: Γ ⊂ SL(2,Z) is non-elementary.

This assumption will be in force for the remainder of this document.
The answer to the motivating question is

Theorem 1.2. All Γ–invariant closed subsets of X are finite or equal
to X.

But how are we to show this? Since Γ is non-amenable, we do not
expect to be able to directly construct Γ invariant measures on orbit
closures. Instead, we put a probability measure µ on Γ, which allows
us to consider random diffeomorphisms of T2 chosen with law µ. It is
not hard to show that every Γ–orbit closure admits a measure ν which
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is, on average, invariant under random elements of Γ. Benoist-Quint
classifies such measure µ. We must of course assume that ν “sees” all
of Γ, and is not supported on a proper subgroup of Γ.

Standing assumption: the support of µ generates Γ.

We will also assume that the support of µ is finite. If you’d like, you
can think of

µ =
1

2
δA +

1

2
δB, where A =

(
2 1
1 1

)
and B =

(
1 1
1 2

)
.

Proposition 1.3 (Kakutani). Every orbit Γ–orbit closure supports a
µ–stationary measure.

Theorem 1.4 (Benoist-Quint). All µ–stationary measures ν on X are
either finitely supported of Lebesgue measure on X.

1.2. Stationary measures. The idea of a µ–stationary measure for-
malizes the idea of a measure which is on average invariant under ran-
dom elements of Γ, when these random elements are chosen with law
µ. Formally,

Definition 1.5. A µ–stationary measure is a measure ν for which
µ ∗ ν = ν.

The condition µ ∗ ν = ν is rewritten more explicitly as∫
Γ

gνdµ(g) = ν

where (gν)(A) = ν(g−1(A)). The condition that gν = ν is exactly
invariance of ν, so µ ∗ ν = ν really does say that ν is invariant on
average.

The problem with the definition of a stationary measure is that it
seems quite floppy; it leaves the possibility that any particular element
of Γ can distort the stationary measure ν in an unconstrained way.
This makes the work of Benoist-Quint all the more remarkable. It
gives that these measures which might a priori be distorted a lot by Γ
are in fact invariant by Γ, and for this reason the result is sometimes
called stiffness.

Examples of stationary measures. In particular, a Γ–invariant
measure is µ–stationary. However, there are many stationary measures
which are not invariant in the situation where Γ is non-abelian and
features lots of contracting elements.
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Let us leave the case Γ ⊂ SL(2,Z) for a just moment. A common ex-
ample (from the theory of Lyapunov exponents) comes from the action
of SL(2,R) on P1. For simplicity let us consider µ a SO(2)–invariant
absolutely continuous compactly supported measure on SL(2,R). Then
the SO(2)–invariant Lebesgue measure ν on P1 is µ–stationary. Al-
though most elements of the support of µ will expand and contract P1

and thus distort the measure, because µ is SO(2)–invariant we see that
µ ∗ ν is again SO(2)–invariant and hence must be equal to ν.

1.3. The backwards random walk. Stationary measures are ideally
suited to study via random walks, because they are only on average in-
variant by a random element of Γ. Using a random walk setup will
allow us to trade in the stationary measure ν for an invariant mea-
sure on a much more complicated dynamical system which takes into
account all the randomness.

Despite the name, the random walk set up leads to a non-random dy-
namical system, in the same way that a Bernoulli shift is a non-random
map modeling the random flipping of coins. In this non-random sit-
uation we will eventually be able to understand in which directions
different parts of the measure should be invariant, and thus run the
additional invariant argument.

The bilateral and forwards random walks. We could consider
the space ΓZ ×X, with the sift map

(. . . , g−1, g0, g1, . . . , x) 7→ (. . . , g0, g1, g2, . . . , g1x).

This system (the bilateral random walk) remembers the current posi-
tion in T2 of the random walk (x), the past history (. . . , g−2, g−1, g0) and
the future moves (g1, g2, . . .) of the random walk. The invariant mea-
sure is easily seen to be µ⊗Z × ν, using the fact that ν is µ–stationary.

We could also consider the mild variant of this where the past is
forgotten, thus obtaining a unilateral shift. In either case the map
represents moving forward one step in time.

However, we will see that the strategy of Benoist-Quint requires a
different set up.

The backwards random walk. This set up remembers the current
position and past trajectory of the random walk only. That is, it re-
members “where you are and how you got there.” The map on this
space is taking one step into the past. Moving into the future is not
well defined.

The benefit of this setup is that, since we have not constrained the
future, we are free to move forward into the future randomly and find
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equidistribution of the resulting points an increasing number of steps
into the future.

The cost of the backwards setup is a more complicated invariant
measure which is no longer a product.

The formal setup. Set B = Γ⊗Z≥0 , and set BX = B × X. A
point (b, x) of BX should be thought of as giving the past history
b = (b0, b1, b2, . . .) of the random walk as well as the current position x
in the torus. The unilateral shift is denoted

T : B → B, T (b0, b1, b2, . . .) = (b1, b2, . . .),

and the map which “takes one step backwards in time” is denoted

TX : BX → BX , TX(b, x) = (Tb, b−1
0 x).

We will be required to understand measure νb on X which give the
distribution of the point x on the torus given that a specific past b has
occurred. But first a warm up.

Lemma 1.6. The distribution of the final position x ∈ X of the random
walk, conditioned on the the last two steps of the random walk being
b0, b1, is exactly (b0b1)∗ν.

Explanation. The distribution of the end point x ∈ X of the random
walk is ν. Similarly this is the distribution for the position of the ran-
dom walk at two steps into the past. That is, ν is also the distribution
for where the point was two steps ago. This can be seen using that ν
is µ stationary. Convolving µ by ν gives the distribution of a point one
step into the future. But this is again ν, because ν is stationary. Thus
the distribution for the position in the torus is ν at every stage of the
random walk.

In particular, the distribution of the point y two steps before the
random walk ends is ν. Now we condition for these final two steps to
be b1 and then b0. So after the first step the distribution is (b1)∗ν, and
after the second step it is (b0b1)∗ν. �

There is a natural measure on the set B of possible past histories,
given as β = µ⊗Z≥0 .

Proposition 1.7 (Furstenberg). Let ν be a µ–stationary probability
measure on X. Then the limit

νb := lim
n→∞

(b0 · · · bn−1)∗ν

exists for β almost every b ∈ B, and satisfies

νb = (b0)∗νTb.
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Moreover, ν is the average of the νb:

ν =

∫
B

νbdβ(b).

The existence of the limit follows directly from the Martingale Con-
vergence Theorem. We repeat the interpretation of νb: it is the distribu-
tion for the final position in the torus of the random walk, conditioned
on the fact that the past history is b.

In other situation we’d never think of conditioning on the entire past
of the random walk, because often random walks diverge to infinity; it
is relevant that the torus is compact.

The νb are the main objects of the proof. It is the νb on which we will
run the additional invariance argument, concluding that almost every
νb is Lebesgue. This makes a certain amount of sense: to understand
which directions the measure sure be invariant under, one has to re-
member the maps b which have been applied. In particular, νb will be
shown to be invariant by translations in some direction depending on
b. But this direction will almost always be irrational, so almost every
νb will be Lebesgue, so ν will be Lebesgue.

The construction of the invariant measure on BX is stilled owed to
the reader. But first let us pause for a diversion.

An aside on stationary measures for abelian group actions.
No one ever talks about stationary measure for Z. This is because
of the following result, where we again temporarily suspend our usual
notational assumptions.

Proposition 1.8 (Choquet, Deny). Let Γ be an abelian group acting on
a space X. Let µ be a probability measure on Γ whose support generates
Γ, and let ν be a µ–stationary probability measure on X. Then µ is
Γ–invariant

The same statement holds when Γ is nilpotent (Guivarc’h-Raugi)
but not when Γ is solvable.

Lemma 1.9 (Hewitt-Savage zero-one law). Let B = ΓZ
≥0, where now

we can consider Γ as any countable set. Let Σ be the group of permu-
tations of Z≥0 which fix all but finitely many numbers. Then the action
of Σ on B given by

σ(b) = (bσ(0), bσ(1), bσ(2), . . .)

is ergodic.



8 A.WRIGHT

Proof of Proposition. We consider the measurable function b → νb
defined on B. Since

νb = lim
n→∞

(b0 · · · bn−1)∗ν

and Γ is commutative, we see that νb is constant on orbits of Σ. By
ergodicity of the Σ action, νb is almost everywhere constant. Since
ν =

∫
B
νbdβ(b), we get ν = νb for almost every b. Since

ν = νb = (b0)∗νTb = ν

we get that ν is Γ invariant. �

The invariant measure. We know what the invariant measure on B
is (β = µ⊗Z≥0). The invariant measure on BX is more complicated.

Lemma 1.10. There is a unique measure βX on BX = B × X such
that if φ is a function on B × X which only depends on the first n
coordinates of b and the x, then∫

B×X
φ(b, x)dβX(b, x) =

∫
B×X

φ(b, b0 · · · bn−1y)dβ(b)dν(y).

The proof is immediate from the Caratheodory Theorem. Here you
should think of y is the position in the torus of the random walk n
steps into the past (whereas x is the position at present). Intuitively,
if you have a function which only depends on the last n steps of the
walk, you should go back in time n steps to y, and then average over
all ways (b0, . . . , bn−1) of going back to the present, and this will give
you the integral. This is exactly what the above lemma says.

Lemma 1.11. βX is TX invariant, and the pushforward of βX to B
under the projection is equal to β.

Thus βX is the desired invariant measure for the backwards random
walk setup BX .

2. Going backwards and forwards in time, and
conditional measures on stable leaves

3. Time change and the horocyclic flow
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