A BRIEF SUMMARY OF OTAL’S PROOF OF
MARKED LENGTH SPECTRUM RIGIDITY

ALEX WRIGHT

ABSTRACT. We outline Otal’s proof of marked length spectrum
rigidity for negatively curved surfaces. We omit all technical de-
tails, and refer the interested reader to the original [Ota90] or
the course notes [Wil] for details, and to [Cro90] for different ap-
proach. (Actually the course notes [Wil] combine the approaches
in [Ota90, Cro90].)

The author thanks Amie Wilkinson for explaining this proof to
him. This informal note was written while the author was Amie
Wilkinson’s teaching assistant for her course on the same topic
at the Park City Math Institute, 2012. The author thanks Jenny
Wilson for producing the figures.

Consider two negatively curved closed surfaces S and S’. Fix a
homeomorphism from S to S’, or alternatively consider S and S’ to
be two Riemannian structures on the same topological surface. Due to
negative curvature, every closed curve is homotopic to a unique closed
geodesic, called the geodesic representative of the homotopy class. Let
C denote the set of homotopy classes of closed curves. The marked
length spectrum of S is defined as the function /g : C — R which
assigns to each homotopy class of curve the length of its geodesic rep-
resentative.

Theorem 1 (Otal, Annals 1990). Let S and S’ be two negatively curved
closed marked surfaces. If S and S’ have the same marked length spec-
trum, they are isometric.

Step 1: Coarse geometry gives a correspondence of geodesics.
Let S and S’ denote the universal covers of S and S’. The homeomor-
phism Id : S — S’ lifts to a homeomorphism

IH:S—>§’,

which is in fact a quasi-isometry. Again due to negative curvature, both

S and S’ have boundaries, which are homeomorphic to a circle. The
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quasi-isometry Id : S — S induced a homeomorphism on boundaries
Id:9S — 95"

The image of any geodesic under a quasi-isometry is a quasi-geodesic,
and in negative curvature every quasi-geodesic is a bounded distance
from a genuine geodesic. Hence we get a correspondence ¢ between
geodesics in S and geodesics in S’: given a geodesic v in S, we define
¢(y) to be the unique geodesic which lies within bounded distance from

the quasi-geodesic Id(y). i
The space G of geodesics in S is identified naturally with
98 x9S\ A,

where A is the diagonal. The identification sends a geodesic to the
ordered pair of its forward and backward endpoints and infinity. In

these coordinates, we have that

(&, m) = (1d(), 1d(n)).
In other words, given a geodesic 7 in S with endpoints §,n € a5

at infinity, we may map the endpoints to 1d(€),1d(n) € 05" and the
geodesic ¢(7) in S’ is simply the unique geodesic from Id(f’) to Id( ).

Lemma 2. The correspondence of geodesics ¢ sends intersecting geodesics
to intersecting geodesics.

Proof. Suppose we have geodesics 41,72 in S, which may be described
in terms of their endpoints at infinity as

"= (51,771)7 Yo = (52,772)-

Suppose that v, and 7, intersect. We will treat the case where
(&1, &, m1,m2) are cyclically ordered on the circle. (There is one other
case which is identical: the endpoints at infinity may intertwine in a
different order.)

The correspondence

¢:0S x S\ A — 95" x 95"\ A
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€2

is induced by the homeomorphism Id : 95 — 95’. The boundary is
homeomorphic to a circle, and any homeomorphism of a circle preserves
the cyclic order of quadruples of points. Hence

(Ia(fl)» Ia(fz)a Ia(ﬁl)a Ia(%))

are cyclically ordered on the circle 8S’. It follows that the geodesics
¢(71) and ¢(72) intersect. .

Step 2: Marked length spectrum determines the Liouville
current. The Liouville current \ of S is a measure on the space G of
geodesics with the following property. If « is a bounded geodesic arc in
S, then the measure of the set G, of geodesics intersecting « is exactly
the length of «, that is

A(G,) = length(a).

Otal proves that marked length spectrum completely determines the
Liouville current (“Crofton’s Formula”). As a result, we get that ¢
preserves the Liouville current:

Lemma 3. If Q C G is a set of geodesics, then A(Q) = N (9(Q)).

Step 3: Understanding change in angle. Two intersecting
geodesics in S are mapped via the correspondence ¢ to intersecting
geodesics in S’ (Lemma 2). We will see that negative curvature re-
stricts the change in angle.

To make this precise, let us define a function

0 :T'S x [0,7] = [0, 7],

where TS is the unit tangent bundle to S. Given v € TS, denote
by 7, the geodesic through v, and given 6 € [0, 27| let fv denote the
tangent vector v rotated by 6.
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We consider the intersecting geodesics v, and 7y,, and the define
¢ (v,0) to be the angle between ¢(v,) and ¢(7yp,). The notation is
intuitive because 6 is the angle between v, and g, in S, and ¢’ is the
angle between the corresponding geodesics in S’

Lemma 4. Let 0(v) denote the rotation of v by angle . Then we have
the following superadditivity relation:

9,(’0, 491 + 02) Z 9,(1), 01) + 9/(011}, 92)

Equality is only possible if the corresponding geodesics in S' of the three
geodesics through v, 601v and (6 + 02)v all intersect in a point.

Proof. The proof is by picture. Since the angles in a triangle add up

V(01 +62)v) ¢(V6,0)

d(1v) »7

to strictly less than 7 in negative curvature, we obtain
9’(1), 91) + (9/<(91(U), 92) + (77' — (9/(1), 0, + 92)) < T,

which gives the superadditivity. Equality is only possible in the degen-
erate case when the triangle above is actually a point. n

Step 4: The correspondence ¢ of geodesics sends triples of
geodesics intersecting in a single point to triples of geodesics
intersecting in a single point. Roughly speaking, we wish to show
that we are always in the equality case of the super-additivity relation
Lemma 4. To do so, we will have to average 6.

Indeed, using the Liouville current, we can further constrain the
average change in angle. We must first note that 6’ descends to a well
defined function on TS x [0,7]. The unit tangent bundle T*S can
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be equipped with a natural volume measure vol, called the Liouville

measure. It is with respect to this measure that we average.

We define
1

© (0) = m/jﬂs@ (v,@)dvol.

Lemma 4 implies a corresponding superadditivity relation for ©'.

Lemma 5.
O'(0; + 6,) > 6'(6;) + ©'(6s),

with equality if and only if ¢ sends triples of geodesics intersecting in
a single point to triples of geodesics intersecting in a single point

What is harder is to show the following.

Proposition 6. For all continuous convex functions F : [0, 7] — R we
have

/ " P(O/(0)) sin 048 < / " F(6) sin 0.

We omit the proof, but make a few remarks:

e The sin # term appears naturally in the expression of the Liou-
ville current on G, in certain natural local coordinates.

e The proof begins with Jensen’s inequality.

e The key step uses that the Liouville measure is preserved.

e Using this, Otal computes the average of

/ F(6'(v,0)sin 0do
0

over ever closed orbit.

e The average of a continuous function on T'S over all closed
geodesics determines its average with respect to the Liouville
measure vol.

Otal deduces that ©' is constant by applying the following elemen-
tary result on functions.
Lemma 7. Let © be an increasing homeomorphisms from [0, 7| to itself
satisfying

(1) © is super-additive and symmetric (O(m —0) =1 —©O(0)), and
(2) for all continuous convex functions F' : [0, 7] — R we have

/ " P(O(0)) sin 6d0 < / " F(6) sin 0do.

Then © is the identity.
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Since ©' is the identity, it follows in particular that equality in
Lemma 5 is achieved.

Step 5: Constructing an isometry S — S’. To establish Theo-
rem 1, it suffices to construct an isometry f : S — S’ which is equivari-
ant with respect to deck transformations (the action of the fundamental
group).

The map f is defined as follows. Given p € S, we pick any two
geodesics 71, y2 intersecting at p, and set f(p) to be the unique point
of intersection of the geodesics ¢(v1), d(72)-

4! v

By Step 4, the result does not depend on which two geodesics through
p are chosen; f is well defined.

Lemma 8. Let p,g € S, and let o = [p, q| be the geodesic arc from p
to q. Furthermore let o/ = [f(p), f(q)] denote the geodesic arc in S'
from f(p) to f(q). i

Then if v is any geodesic in S intersecting c, then the corresponding
geodesic ¢(7y) in S' intersects o

Proof. Let v, and 7, be geodesics through p and ¢ respectively, each
not intersecting . The geodesic v is thus “in between” ~, and 7,. As

?(7q)

in Lemma 2, since the correspondence ¢ of geodesics is induced by a
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homeomorphism on boundaries at infinity, ¢(y) lies in between ¢(,)
and ¢(v,). However, since ¢(7,) contains f(p) and ¢(v,) contains f(q),
it follows that ¢() must intersect o/. n

The proof of the Theorem 1 is completed using the Liouville current
again.
Proof that f is an isometry. Let p,q,a,a’ be as above. Let G, be

the set of all geodesics in S intersecting «; similarly G,/ is the set of all
geodesics in S’ intersecting /. Lemma 8 gives that

¢(ga) = ga’~
We know that the Liouville current measure of G, is the length of
Ga:
A(Ga) = length(a),
and similarly for G, .
Now, using that the Liouville current is preserved (Lemma 3), we
get
distg(p,q) = length(a)
= AGa)
= N(¢(Ga))
= X(ga’)
= length(ca)
= dists (f(p), f(q))-

That is, we have shown that f : S — S’ preserves distances. The
isometry f descends to an isometry S — S’, completing the proof. m
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