
PLANE CUBICS

ALEX WRIGHT

These are my personal notes on some of the classical background
material for my paper with Mukamel and McMullen on cubic curves
and totally geodesic subvarieties of moduli space.

Linear series and projective embeddings. Let A be a Riemann
surface of genus 1. By Riemann-Roch, for any divisor D of degree d ≥ 1
we have h0(D) = dimH0(OD) = d, where H0(OD) is the dimension of
the space of global sections of the sheaf OD of meromorphic functions
h on A with (h) + D ≥ 0. If the degree d is at least 3, the linear
system gives an embedding into Pd−1. The image of this embedding
has degree d. We will be especially interested in the case d = 3, that
is, in realizations of A as cubic plane curves.

Suppose A = Z(f) ⊂ P2 is a cubic plane curve. Here f is a homoge-
neous polynomial of degree 3 in three variables. By Riemann-Roch, we
immediately see that this linear series is complete. That is, if D is the
intersection of a line in P2 with A, then h0(D) = 3. So every embedding
of A into P2 comes from a degree 3 divisor. Since two divisors that are
linearly equivalent give projectively equivalent embeddings into projec-
tive space, and since A has a unique divisor of degree 3 up to automor-
phisms of A and linear equivalence, we see that the embedding of A
into P2 is unique up to pre-composition with automorphisms of A and
post-composition by projective maps of P2. (Given two divisors D,D′

on A of the same degree, one can replace one with a translate, i.e. its
image under an automorphism, so that D −D′ = 0 ∈ Jac(X).)

It is obvious for the usual reason that if D′ is the intersection of a
different line with A, then D and D′ are linearly equivalent. (If the
first line is defined by a linear function φ, and the second line is defined
by a linear function φ′, then φ/φ′ is a meromorphic function on A with
divisor D−D′.) Completeness means exactly that if D′ is an effective
divisor and D′ is linearly equivalent to the intersection D of A with a
line, then D′ is also the intersection of A with a line.
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The linear series of quadrics on a cubic A ⊂ P2 is complete.
Recall that P2 has a line bundle O(k), for which the space of global sec-
tions has dimension

(
k+2
2

)
and consists of the homogeneous polynomials

of degree k. For later use, we record the following.

Lemma 1. Let D denote the intersection of A with a quadric, so D
has degree 6.

The restriction map from global sections of O(2) to the global sections
of O(D) on A is an isomorphism.

Proof. The space of global sections of O(2) has dimension 6. Since A
doesn’t lie on a conic, the restriction map is injective. By Riemann-
Roch, h0(D) = 6, so the restriction map must be surjective. �

Points on P2. As a point of reference, we mention that 2 points
determine a line, 5 points determine a conic, and 9 points determine
a cubic. In general, (d + 2)(d + 1)/2 − 1 points determine a curve of
degree d, which is expected since this is the dimension of the space of
homogeneous polynomials of degree d up to scaling.

Degree three maps A → P1. Suppose π : A → P1 is degree 3. We
may choose an embedding of A in P2 so that any given fiber of π is the
intersection of A with a line. (Precomposing a given map A→ P1 with
an automorphism of A changes which triples of points lie on a line.)
Since all fibers of π are linearly equivalent, this means that all fibers
of π will be intersections of A with a line. Take two such lines arising
from fibers, and let S be their intersection. Let πS : A → P1 be the
projection from S.

By definition, π and πS are equal on two different fibers. Any two
maps with this property must be equal up to projective transformation,
since two meromorphic functions with the same zeros and poles must
be multiples of each other. Hence every map A → P1 arrises from a
map πS for some embedding A ⊂ P2.

Note, πS is degree 3 with S /∈ A but degree 2 when S ∈ A. The
codomain P1 can be considered as the space of lines through S, and if
S ∈ A then πS(S) is equal to the tangent line to A at S.

Polars. Let f be a degree d homogeneous polynomial in n+1 variables,
and let Z(f) ⊂ Pn denote its zero set. Fix s = (s0, . . . , sn) ∈ Cn+1 and
consider the corresponding point S = [s] ∈ Pn.

Let consider the projection from Cn+1 to the perp space of s. This
projection is linear and hence degree 1 homogenous, and hence induces
a projection πS from Pn \{S} to the projective space on the perp space
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of s. The range of πS can be viewed intrinsically as the set of all lines
through S.

The kernel of the projection from Cn+1 to the perp space of s is
spanned by s. The tangent space to Z(f) at [x] is given by the perp
space to ∇f(x). Hence, Z(〈∇f(x), s〉) gives the set of critical points of
πS restricted to Z(f). We define Z(〈∇f(x), s〉) to be the polar of A,
and denote it Pol(A, S).

By definition, Pol(A, S) intersects A in the critical points of πS. The
polar of f has degree 1 less than that of f , the number of critical points
of πS is d(d − 1). For plane cubics, the six critical points of πS lie on
the conic Pol(A, S).

Dual curve. For a plane algebraic curve, the dual curve is the closure
of the set of tangent lines (at smooth points) to the curve. The dual
curve is naturally a plane algebraic curve in the dual projective space.
If the curve has degree d, the dual curve has degree d(d− 1). Indeed,
the degree of the dual curve is the number of tangent lines passing
through a generic point S, and that is exactly the number of intersec-
tions of Pol(A, S) with A. Typically, dual curves of smooth curves have
singularities.

The if C is a plane algebraic curve, the double dual of C is equal to
C. This is intuitive. Indeed, the tangent line L to C at a point p is
the line that goes through p and comes as close as possible to all the
nearby points of C. The tangent to the dual curve at L is given by
a point which is contained in L and comes as close as possible being
contained in all the nearby tangent lines to C. This obviously should
be p.

Satellite. Let A = Z(f) ⊂ P2 be a plane cubic. The Polar of A with
respect to S ⊂ P2 is a conic which contains the 6 critical points of πS.
We now claim that there is a conic that contains the 6 co-critical points
of πS.

Say the critical points are Ci, and the co-critical points are Di. We
have 2Ci+Di is given by the zeros of a section of O(1) intersected with
A, since these points lie on a line (through S). We have that

∑
Ci is

similarly given by the section of O(2) given by the quadric defining
Pol(A, S).

Now,
∑
Di =

∑
(2Ci+Di)−2

∑
Ci is given by a section of O(1)⊗6⊗

O(2)⊗(−2) = O(2) restricted to A. Since O(2) on P2 restricted to A is a
complete linear series, this means that there is a quadratic polynomial
whose intersection with A is

∑
Di. The zero set of this quadratic

polynomial will be denoted Sat(A, S).
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The symmetry property of polars. Let Da denote directional
derivative in the direction a. Let f be a homogeneous polynomial of
degree d. Then we have

k!((Da)
kf)(b) = (d− k)!((Db)

d−kf)(a).

We will give a proof when a and b are not collinear. Let X1, . . . , be
a basis of degree 1 homogeneous polynomials such that

Xi(a) = 1 if i = 1 and 0 otherwise

Xi(b) = 1 if i = 2 and 0 otherwise

Write f =
∑
X i

1X
j
2gi,j, where gi,j is a polynomial in the Xi with i > 2.

Then
(Dk

af)(b) = k!gk,d−k

and
(Dd−k

b f)(a) = (d− k)!gk,d−k.

The Hessian. Every conic is defined by a quadratic form. For cubics,
the symmetry property of polars gives

b ∈ Pol(Z(f), a) = Z(Daf)⇐⇒ a ∈ Z((Db)
2f),

which by definition means that the quadratic form given by the Hessian
matrix Hess(f) evaluated at a is zero at b. Hence, the quadratic form
defining Pol(Z(f), a) is Hess(f) evaluated at a.

A conic is singular if and only if the quadratic form is singular, in
which case the conic is a cone. In particular Pol(Z(f), a) is singular
if and only if a ∈ Z(det(Hess(f))), in which case it is a union of two
lines. When A = Z(f), we will will refer to Z(det(Hess(f))) as HA.

If Pol(A, p) is singular, then certainly πp has three collinear critical
points. (In fact it has two pairs of three collinear critical points.)
Conversely, suppose that πp has three collinear critical points. Then
Pol(A, p) intersects a line in three points. Since a quadratic intersects a
line in only two points, this means that Pol(A, p) is singular. Hence we
see that Z(Hess(f)) is exactly the locus where there are three collinear
critical points.

The Hessian HA is of course cubic.

Flexes. We now claim that Z(Hess(f)) ∩ A gives the nine flexes of
A. Indeed, saying that S ∈ A is a flex is the same as saying that πS
has a point of total ramification at S. So if L is the tangent line, then
A∩L should be S with multiplicity three. The polar must also intersect
A at S with multiplicity two (since total ramification counts for two
simple ramifications). So therefor L and Pol(A, S) must be tangent to
multiplicity two. But a quadratic and a line can’t be tangent to order
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two. So L ⊂ Pol(A, S) and hence Pol(A, S) is singular. Conversely if
Pol(A, S) = L∪L′ is singular and S in L∩A, we have that L∩A = 3S.
This is because the degree 2 map πS can’t have two points of branching
over one point. Hence S is a flex.

Cayleyan. The Cayleyan CA is the locus of lines contained in singular
polars. Either line L or L′ contained in Pol(A, S) determines S, since
S is the intersection of the tangent lines to A at the three points A∩L.
So there is a two-to-one covering map from CA to HA.

Consider the variety in P2 times the dual P2 given by pairs S ∈ HA
and L ⊂ Pol(A, S). We have just proven that the projection onto the
first factor is two-to-one.

We claim CA is a degree 3 curve in the dual projective space. Indeed,
it suffices to show that any point q is contained in exactly three singular
polars (with multiplicity). We will chose to do this computation for
some q ∈ A. We then wish to find S ∈ HA so q ∈ Pol(A, S). These
S are nothing other than the intersections of the tangent line to A at
q with HA. Hence the claim that CA is degree three follows from the
fact that HA is degree three.

Lattès maps. For a point x on A, let x′ denote the other intersection
of the tangent line to A at x with A. Let L be a line, and let a, b, c be
the intersections of A with L. We claim that a′, b′, c′ also lie on a line.
Indeed, a + b + c is given by a section of O(1) of P2, and 2a + a′ by a
section of O(1). So

a′ + b′ + c′ = (2a+ a′) + (2b+ b′) + (2c+ c′)− 2(a+ b+ c)

is given by a section of O(1)⊗3 ⊗O(1)⊗(−2) = O(1).
The map from the line L to the line L′ spanned by a′, b′, c′ is called

a Lattès map δ = δA. It is a map of the dual P2.
Fix an origin on A that is a flex point, so A becomes an elliptic curve.

Consider the endomorphism of A0 = {(a1, a2, a3) ∈ A3 :
∑
ai = 0}

given by
(a1, a2, a3) 7→ (−2a1,−2a2,−2a3).

Note that A0/S3 is the space of lines in P2, i.e. it is the dual P2. The
given endomorphism covers δ, and so we conclude that δ has topological
degree 16. (Note the times 2 map on A has topological degree 4, and
that A0 ' A2.)

Satellite Cayleyan. If S ∈ HA then the critical points lie on two
lines. Hence by the above the co-critical points also lie on two lines.
That is, Pol(A, S) singular implies Sat(A, S) singular.

The converse is true if S is not in A. Indeed, if three co-critical
points a′, b′, c′ are on a line, then a′+ b′+ c′ in O(1) and 2a+a′ in O(1)
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so 2(a+ b+c) is in O(2). So there is a quadratic tangent to A at a, b, c.
However, all these tangent lines go through a single point, namely S.
For a smooth conic, the dual curve is degree 2, so at most two tangent
lines go through a given point. Hence the conic is a double line, and
we get that a, b, c lie on a line.

Let SA denote the set of lines contained in singular Sat(A, S) for
some S ∈ HA. Note SA = δ(CA).

Note that if S ∈ HA is not on a flex of A, and if L′ ⊂ Sat(A, S),
then L′ intersects A transversely. Indeed, if L′ is tangent to A, then
Sat(A, S) ∩ A has at most 5 distinct points, so Pol(A, S) ∩ A has at
most 5 distinct points, because the map from critical points to co-
critical points is injective. So πS has a point of total ramification, so S
is on a flex. (A similar argument shows that if S ∈ A then Sat(A, S)
is singular.)

In particular a generic L′ ∈ SA intersects A transversely.

Does L′ ∈ SA determine S? Consider the extent to which a line L ∈
SA determines S with L′ ⊂ Sat(A, S). First note that if additionally
L′ ⊂ Sat(A, T ), and LS ⊂ Pol(A, S) and LT ⊂ Pol(A, T ) are the
corresponding lines in the polars, then we can write

LS ∩ A = {aS, bS, cS} and LT ∩ A = {aT , bT , cT}

so that (aS)′ = (aT )′, (bS)′ = (bT )′, (cS)′ = (cT )′ are the three points of
L′ ∩A. Hence aS − aT , bS − bT , cS − cT are the three two-torsion points
of A. In particular, since LT determines T , this shows that there are
always at most 7 choices of S for any L ∈ SA. (These corresponding
to picking an ordering of the three non-trivial two torsion points, and
adding them to aS, bS, cS. This produces at most 6 new aT , bT , cT .)

It is apparently also true that a line L ∈ SA generically determines
S. I wish I new a soft proof of this. One way to do it, apparently,
is to compute some example of HA and see that it is degree 12. The
relation between the degree of HA and whether L ∈ SA determines S
follows.

SA is degree 12. This follows from the facts that SA = δ(CA) has
degree 12, CA has degree 3, δ has topological degree 16, and the general
fact that if X subset Pn, then

deg(f(X)) = deg(f)dim(X)/n deg(X)/ deg(f |X).

The fact that L ∈ SA generically determines S gives that δ|CA has
degree 1.

Note, that since CA has genus 1 (it is a smooth cubic), and since
δ|CA has degree 1, we get that SA = δ(CA) has genus 1 also.
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Formula for satellite quadric. We now want to show that Sat(A, S)
is defined by

〈x,∇f(s)〉2 − 4f(s)〈s,∇f(x)〉.
Consider the one variable monic polynomial g(t) = (t − a)2(t − b),

and compute

g′(t) = 2(t− a)(t− b) + (t− a)2

g′′(t) = 2(t− a) + 2(t− b) + 2(t− a) = 4(t− a) + 2(t− b)

g′′(t)2 = 16(t− a)2 + 16(t− a)(t− b) + 4(t− b)2

g′′(t)2 − 16g′(t) = −16(t− a)(t− b) + 4(t− b)2.

Conclude that b is a root of g′′(t)2 − 16g′(t).
Note that the leading order term of t 7→ f(x0 + ts) is

lim
t→∞

f(x0 + ts)

t3
= lim

t→∞
f((x0 + ts)/t) = f(s),

using that f is homogeneous of degree 3.
Now, consider the monic cubic polynomial g(t) = f(x0 + ts)/f(s).

If x0 ∈ Z(f) is a critical point of πS, that means the line x0 + ts is
tangent to Z(f) at x0, and hence g(t) has a double root at t = 0. The
third root therefor occurs at a t such that g′′(t)2 − 16g′(t) = 0. We
have

g′(t) = 〈∇f(x0 + ts)), s〉/f(s), g′′(t) = 〈(∆f(x0 + ts))s, s〉/f(s)

so the co-critical points of πS occur in

〈(∆f(x))s, s〉2/f(s)2 − 16〈∇f(x), s〉/f(s).

Now we use the fact that

〈(∆f(x))s, s〉 = D2
s(f)(x) = 2Dx(f)(s) = 2〈∇f(s), x〉.


