SARD’S THEOREM
ALEX WRIGHT

ABSTRACT. A proof of Sard’s Theorem is presented, and applica-
tions to the Whitney Embedding and Immersion Theorems, the
existence of Morse functions, and the General Position Lemma are
given.

Suppose f : M™ — N"™is a map from a m-dimensional manifold M to
an n-dimensional manifold N. (All manifolds and maps are assumed to
be smooth.) A critical point pf f is an x € M such that (df,)(T, M) #
Ty N. A critical value is the image of a critical point.

Theorem (Sard’s Theorem). The set of critical values of f is null.

We say that a set S C N is null if its image in R™ under every chart
is null. If m < n there is a simple proof of Sard’s Theorem, and if
n = m a relatively short proof can be found in M. Spivak’s Calculus on
Manifolds ([5], p.72). Here we make no assumption on m and n, and we
benefit from this extra power in two of the three applications bellow.
The following proof is from V. Guillemin and A. Pollack’s Differential
Topology ([1], p-205-207), which in turn cites [3] as its source.

Proof of Sard’s Theorem. By passing to charts, and using the fact that
there is a countable sub-collection of charts that cover M, we can as-
sume M = U C R™, U open, and N =R" (so f: U — R").

To begin, we break up C, the set of critical points of f, into a
sequence of nested subsets C' D C; D Cy D ---, where (] is the
set of all x € U such that df, = 0, and C; (i > 1) is the set of all
x such that all partial derivatives of order at most ¢ vanish at x. We
then proceed by induction on m and prove three lemmas. Lemmas
1 and 2 give that f(C — C}) and f(C; — C;41) are null. These two
lemmas use the inductive hypothesis and the fact that R™ is second
countable (that is to say: if {U,} is set of open sets in R™, there there
is a countable sub-collection {U,, } so that U,U, = UyU,,). Lemma 1
makes use of Tonelli’s Theorem, a variant of Fubini’s Theorem. Lemma
3 uses Taylor’s Theorem to show that if 7 is sufficiently big, then f(C})
is null. These lemmas clearly combine to give Sard’s Theorem.
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We assume Sard’s Theorem is true for m — 1, and prove the three
lemmas. The base case of m = 0 is trivial, since R? is a point.

Lemma (1). f(C — Cy) is null.

Proof. Around each x € C' — C; we will find an open set V,, such that
f(Ve N C) is null. Since R™ is second countable, we will then be able
to find a countable sub-collection V,.,V,,, -, that covers C'— C, and
we will conclude

m(f(C —Cy)) <Zm (Ve N (C=CY)) Zm Vo, NC)) =

where m is Lebesgue measure. So if we fix x € U it suffices to prove
that we can find an open set V' containing z with f(V N C) null.

Since x ¢ C1, f = (f1,--- , fim) has some partial, say 3 afl , which does
not vanish at z. Define h: U — R™ (recall U C R™) by

h(l‘) = (fl(x)wr?v T 7xm)‘

Now dh,, is non singular, so by the Inverse Function Theorem, h maps
some neighbourhood V' of z diffeomorphically onto an open set V' C
R™. The composition ¢ = foh™Y : V' — R™ will then have the
same critical values as f|y (f restricted to V). So we want to show
that the set of critical values of g restricted to V' is null. Note that
the first coordinates of h and f are the same, so ¢ = f o h™! leaves
the first coordinate unchanged. Therefore, for each t, g induces a map
g : (t x R™ 1) NV’ — R". Since dg has the form

1 0
* (5)

a point (¢,z) € (t x R™ 1) NV’ is a critical point of ¢ if and only if
2 is a critical point for ¢g'. By induction, the set V* of critical values
of ¢g' is null for each t. The set of critical points of ¢ is closed, so its
image under g, the set V' of critical values of g, is Borel. Thus yy (the
indicator function of V'), is measurable, and Tonelli’s Theorem gives

/Xv—// th:/ 0=0.
n Rn—1 Rn—1

Thus V' is null and the proof of Lemma 1 is complete. O
Lemma (2). f(Cy — Ciy1) is null if k > 1.

Proof. This is a similar argument, but easier. For each x € Cy — Cy1,
there is some (k 4 t)st partial of f that is not zero at x. Thus we can



SARD’S THEOREM 3

find a kth partial of f, say p, that has a first partial, say (%f’l, that is
non-zero at . Then the map h : U — R™ defined by

h(l‘) = (p(:l?),l‘g, T 7Im)

maps a neighbourhood V' of x diffeomorphically onto an open set V' C
R™. Since all kth partials vanish on C}, and p is a kth partial, h carries
Cr NV into the hyperplane 0 x R™1,

Define g = foh ™' : V' — R™ Of course f|y and g|y» have the
same critical values. As in Lemma 1, it suffices to show that the set of
critical values of g|y- is null. But these values all come from points in
0xR™ 1 Let g: (0 x R™ 1NV’ — R" be the restriction of g. If x is
a critical point of g, then (dg),(T,R™ ') C (dg),(T,R™) # Ty R™, so
x is also a critical value for g. By induction, the set of critical values
of g is null, so Lemma 2 is proved. O

Lemma (3). For k> m/n—1, f(Cy) is null.

Proof. Fix such a k. Let S C U be a cube with sides of length §. We
will show that f(Cy NS) is null. Since U is covered by a countable
number of such cubes, this will prove that f(Cj) is null. From Taylor’s
Theorem, the compactness of S, and the definition of C}, we see that

flx+h)= f(x)+ R(z,h)

where |R(z,h)| < alh|*! for x € C, N S. Here a is a constant that
depends only on f and S. Now subdivide S into r™ cubes whose sides
are of length 6/m. Let S be a cube of the subdivision that contains

a point x of Cy. Then any point of S; can be written as x + h with
|h] < /m(2).. Now if 2 4+ h € Sy, then

S
o
£+ h) = f()| = R + )| < a(ym o) = by
where b is a constant. So f(S;) lies in a cube of side length at most

V' /rk+1 centered at f(x) (b’ a new constant). Hence f(Cj, N S) is con-

tained in the union of at most 7 cubes having total volume at most
,rm(b/)mrm—(k—&-l)n‘

If m— (k+1)n <0, (that is & > m/n — 1) then letting r — 0 gives
that f(Cr N .S) is null. O

This completes the proof of Sard’s Theorem. U
We proceed to our first application.

Theorem. Fvery manifold M™ admits an injective immersion into
R2m+1
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Note that if M is compact, then an injective immersion is an em-
bedding, so this theorem comes very close to the Whitney Embedding
Theorem, which says: Every manifold M™ can be embedded into R?™.
An injective immersion can be turned into an embedding with extra
work (see [1], p.53), but the reduction from 2m + 1 to 2m is very diffi-
cult, and the author knows of no friendly exposition of this 2m Whitney
Embedding Theorem.

Proof. We assume M can be embedded into some R"™. For compact
manifolds, this can be proved using partitions of unity ([2], p.23). If
n = 2m+ 1, we’re done, so we assume n > 2m + 1. For a € R", a # 0,
let m, be the projection of R™ onto the perp space of a. By iteration,
it suffices to show that 7, : M — R"~! is an injective immersion for at
least one a. We will in fact use Sard’s Theorem to show that it is true
for a.e. a! Define

g: MxMxR—R"

h:TM — R"

h((p,v)) = v

where (p,v) € T'M represents the tangent vector v € R™ at the point
p € M. (Note immediately that the domain of g has dimension 2m+1.)
Now, if m, : M — R™! is not injective, then we have some z,y €
M,t € R so that x # y and x —y = ta. That is to say, g(z,y, 1/t) = a.
Furthermore, if 7, is not an immersion, then there is some (p,v) € T'M
such that v = sa for some a. Since M is immersed into R”, we must
have s # 0, so h(v/s) = a.

Now it is clear that if a is in neither the range of g or the range of h,
then 7, is the desired injective immersion. Since the dimensions of the
domains of g and h are 2m + 1 and 2m respectively, and n > 2m + 1,
every point in the range of these functions is a critical value! Thus we
can pick almost any a € R™ and get that 7, : M — R""! is an injective
immersion. 0

We leave it as an exercise to the reader to modify this proof to get
that every M™ can be immersed into R*™ (with the same starting
assumption that it can be immersed into some R"). This essentially
comes from the fact that we can drop ¢, and the domain of h has
dimension 2m instead of 2m + 1.

Our next application of Sard’s Theorem will be the existence of
Morse functions. Given a function f : M — R, a critical point x € M

is called non-degenerate if the Hessian of f at x, Hess(f), = (89?_28];,)
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is non-singular in local coordinates. See [1] p.42 or compute using
the chain rule to see that this does not depend on local coordinates.
Such critical points turn out to be very important because f is locally
quadratic at these points. (This is known as the Morse Lemma.) If
all of f’s critical points are non-degenerate, f is called a Morse func-
tion: such functions say a great deal about the topology of M. If
M € R3 and f(x,y,z) = z is a Morse function, we think of filling
up R3 with water up to the level z. The the topology of the part un-
derwater, f~'((—o0,2)), changes only with the water covers a moun-
tain top (of M), fills a valley (saddle point), or meets a bowl (local
minimum).:These events correspond to the water level reaching a non-
degenerate critical point, and this intuitive picture is used to think of
all Morse functions.

Theorem. There are lots of Morse functions: Given M C R"™, and
f:M — R, then f, = f+a1x1 + -+ + apx, is a Morse function for
almost every a € R™.

Proof. Define g = df = (g—jl +ot %) on M. Note that df, = g+ a,
and Hess(f,) = Hess(f) = dg. Pick any a so that —a is a regular value
for g. Then if z is a critical point of f,, g(x) = —a so Hess(f,), = dg.
is non-singular. Thus f, is a Morse function. U

The reader who wants to learn more about Morse theory is urged
to consult J. Milnor’s Morse Theory ([4]). Our final application is the
General Position Lemma. Recall that manifolds M, N C R"™ are said to
be transverse (written M t N) if T,M+T,N = T,R" forallp € MNN.
Tranverse manifolds are said to be in general position.

Theorem (General Position Lemma). For almost every a € R™, (M +
a) M N.

Note that if dim M +dim N < n,and p € MNN, then T,M +T,N #
T,R™ (the dimension of the left hand side is too small). So in this case
M and N are transverse if and only if they are disjoint, and the General
Position Lemma has a marvelous consequence: We can budge M a bit
so that it is disjoint from .

Proof. Consider g : M x N — R" defined by g(x,y) = * —y. Pick
any a € R™ that is a regular value of g. We claim (M + a) h N. If
not, then there would be an x € M,y € N such that y = z + a and
T,M+T,N # R" (R" is the tangent space T,R"). Then g(z,y) = a
and dg g, y)(T(eyyM x N) =T, M +T,N, which since T, M + T, N # R"
contradicts the fact that a is a regular value. Thus, it must be that
(M +a)h N. O
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