
SARD’S THEOREM

ALEX WRIGHT

Abstract. A proof of Sard’s Theorem is presented, and applica-
tions to the Whitney Embedding and Immersion Theorems, the
existence of Morse functions, and the General Position Lemma are
given.

Suppose f : Mm → Nn is a map from am-dimensional manifold M to
an n-dimensional manifold N . (All manifolds and maps are assumed to
be smooth.) A critical point pf f is an x ∈M such that (dfx)(TxM) 6=
Tf(x)N . A critical value is the image of a critical point.

Theorem (Sard’s Theorem). The set of critical values of f is null.

We say that a set S ⊂ N is null if its image in Rn under every chart
is null. If m < n there is a simple proof of Sard’s Theorem, and if
n = m a relatively short proof can be found in M. Spivak’s Calculus on
Manifolds ([5], p.72). Here we make no assumption on m and n, and we
benefit from this extra power in two of the three applications bellow.
The following proof is from V. Guillemin and A. Pollack’s Differential
Topology ([1], p.205-207), which in turn cites [3] as its source.

Proof of Sard’s Theorem. By passing to charts, and using the fact that
there is a countable sub-collection of charts that cover M , we can as-
sume M = U ⊂ Rm, U open, and N = Rn (so f : U → Rn).

To begin, we break up C, the set of critical points of f , into a
sequence of nested subsets C ⊃ C1 ⊃ C2 ⊃ · · · , where C1 is the
set of all x ∈ U such that dfx = 0, and Ci (i ≥ 1) is the set of all
x such that all partial derivatives of order at most i vanish at x. We
then proceed by induction on m and prove three lemmas. Lemmas
1 and 2 give that f(C − C1) and f(Ci − Ci+1) are null. These two
lemmas use the inductive hypothesis and the fact that Rm is second
countable (that is to say: if {Uα} is set of open sets in Rm, there there
is a countable sub-collection {Uαk

} so that ∪αUα = ∪kUαk
). Lemma 1

makes use of Tonelli’s Theorem, a variant of Fubini’s Theorem. Lemma
3 uses Taylor’s Theorem to show that if i is sufficiently big, then f(Ci)
is null. These lemmas clearly combine to give Sard’s Theorem.
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We assume Sard’s Theorem is true for m − 1, and prove the three
lemmas. The base case of m = 0 is trivial, since R0 is a point.

Lemma (1). f(C − C1) is null.

Proof. Around each x ∈ C − C1 we will find an open set Vx such that
f(Vx ∩ C) is null. Since Rm is second countable, we will then be able
to find a countable sub-collection Vx1 , Vx2 , · · · , that covers C−C1, and
we will conclude

m(f(C − C1)) ≤
∑
i

m(f(Vxi
∩ (C − C1))) ≤

∑
i

m(f(Vxi
∩ C)) = 0,

where m is Lebesgue measure. So if we fix x ∈ U it suffices to prove
that we can find an open set V containing x with f(V ∩ C) null.

Since x /∈ C1, f = (f1, · · · , fm) has some partial, say ∂f1
∂x1

, which does

not vanish at x. Define h : U → Rm (recall U ⊂ Rm) by

h(x) = (f1(x), x2, · · · , xm).

Now dhx is non singular, so by the Inverse Function Theorem, h maps
some neighbourhood V of x diffeomorphically onto an open set V ′ ⊂
Rm. The composition g = f ◦ h−1‘ : V ′ → Rn will then have the
same critical values as f |V (f restricted to V ). So we want to show
that the set of critical values of g restricted to V ′ is null. Note that
the first coordinates of h and f are the same, so g = f ◦ h−1 leaves
the first coordinate unchanged. Therefore, for each t, g induces a map
gt : (t× Rm−1) ∩ V ′ → Rn. Since dg has the form(

1 0

∗ (
∂gt

i

∂xj
)

)
a point (t, z) ∈ (t × Rm−1) ∩ V ′ is a critical point of g if and only if
z is a critical point for gt. By induction, the set V t of critical values
of gt is null for each t. The set of critical points of g is closed, so its
image under g, the set V of critical values of g, is Borel. Thus χV (the
indicator function of V ), is measurable, and Tonelli’s Theorem gives

m(V ) =

∫
Rn

χV =

∫
t

∫
Rn−1

χV t =

∫
Rn−1

0 = 0.

Thus V is null and the proof of Lemma 1 is complete. �

Lemma (2). f(Ck − Ck+1) is null if k ≥ 1.

Proof. This is a similar argument, but easier. For each x ∈ Ck −Ck+1,
there is some (k + t)st partial of f that is not zero at x. Thus we can
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find a kth partial of f , say ρ, that has a first partial, say ∂ρ
∂x1

, that is
non-zero at x. Then the map h : U → Rm defined by

h(x) = (ρ(x), x2, · · · , xm)

maps a neighbourhood V of x diffeomorphically onto an open set V ′ ⊂
Rm. Since all kth partials vanish on Ck, and ρ is a kth partial, h carries
Ck ∩ V into the hyperplane 0× Rm−1.

Define g = f ◦ h−1‘ : V ′ → Rn. Of course f |V and g|V ′ have the
same critical values. As in Lemma 1, it suffices to show that the set of
critical values of g|V ′ is null. But these values all come from points in
0×Rm−1. Let g̃ : (0×Rm−1)∩ V ′ → Rn be the restriction of g. If x is
a critical point of g, then (dg̃)x(TxRm−1) ⊂ (dg)x(TxRm) 6= Tg(x)Rn, so
x is also a critical value for g̃. By induction, the set of critical values
of g̃ is null, so Lemma 2 is proved. �

Lemma (3). For k > m/n− 1, f(Ck) is null.

Proof. Fix such a k. Let S ⊂ U be a cube with sides of length δ. We
will show that f(Ck ∩ S) is null. Since U is covered by a countable
number of such cubes, this will prove that f(Ck) is null. From Taylor’s
Theorem, the compactness of S, and the definition of Ck, we see that

f(x+ h) = f(x) +R(x, h)

where |R(x, h)| < a|h|k+1 for x ∈ Ck ∩ S. Here a is a constant that
depends only on f and S. Now subdivide S into rm cubes whose sides
are of length δ/m. Let S1 be a cube of the subdivision that contains
a point x of Ck. Then any point of S1 can be written as x + h with
|h| <

√
m( δ

m
).. Now if x+ h ∈ S1, then

|f(x+ h)− f(x)| = |R(x+ h)| < a(
√
m
δ

m
)k+1 = b/rk+1

where b is a constant. So f(S1) lies in a cube of side length at most
b′/rk+1 centered at f(x) (b′ a new constant). Hence f(Ck ∩ S) is con-
tained in the union of at most rm cubes having total volume at most

rm(b′)mrm−(k+1)n.

If m − (k + 1)n < 0, (that is k > m/n − 1) then letting r → 0 gives
that f(Ck ∩ S) is null. �

This completes the proof of Sard’s Theorem. �

We proceed to our first application.

Theorem. Every manifold Mm admits an injective immersion into
R2m+1.
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Note that if M is compact, then an injective immersion is an em-
bedding, so this theorem comes very close to the Whitney Embedding
Theorem, which says: Every manifold Mm can be embedded into R2m.
An injective immersion can be turned into an embedding with extra
work (see [1], p.53), but the reduction from 2m+ 1 to 2m is very diffi-
cult, and the author knows of no friendly exposition of this 2m Whitney
Embedding Theorem.

Proof. We assume M can be embedded into some Rn. For compact
manifolds, this can be proved using partitions of unity ([2], p.23). If
n = 2m+ 1, we’re done, so we assume n > 2m+ 1. For a ∈ Rn, a 6= 0,
let πa be the projection of Rn onto the perp space of a. By iteration,
it suffices to show that πa : M → Rn−1 is an injective immersion for at
least one a. We will in fact use Sard’s Theorem to show that it is true
for a.e. a! Define

g : M ×M × R→ Rn

g(x, y, t) = t(x− y)

h : TM → Rn

h((p, v)) = v

where (p, v) ∈ TM represents the tangent vector v ∈ Rn at the point
p ∈M . (Note immediately that the domain of g has dimension 2m+1.)
Now, if πa : M → Rn−1 is not injective, then we have some x, y ∈
M, t ∈ R so that x 6= y and x− y = ta. That is to say, g(x, y, 1/t) = a.
Furthermore, if πa is not an immersion, then there is some (p, v) ∈ TM
such that v = sa for some a. Since M is immersed into Rn, we must
have s 6= 0, so h(v/s) = a.

Now it is clear that if a is in neither the range of g or the range of h,
then πa is the desired injective immersion. Since the dimensions of the
domains of g and h are 2m + 1 and 2m respectively, and n > 2m + 1,
every point in the range of these functions is a critical value! Thus we
can pick almost any a ∈ Rn and get that πa : M → Rn−1 is an injective
immersion. �

We leave it as an exercise to the reader to modify this proof to get
that every Mm can be immersed into R2m (with the same starting
assumption that it can be immersed into some Rn). This essentially
comes from the fact that we can drop g, and the domain of h has
dimension 2m instead of 2m+ 1.

Our next application of Sard’s Theorem will be the existence of
Morse functions. Given a function f : M → R, a critical point x ∈ M
is called non-degenerate if the Hessian of f at x, Hess(f)x = ( ∂2f

∂xi∂xj
)
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is non-singular in local coordinates. See [1] p.42 or compute using
the chain rule to see that this does not depend on local coordinates.
Such critical points turn out to be very important because f is locally
quadratic at these points. (This is known as the Morse Lemma.) If
all of f ’s critical points are non-degenerate, f is called a Morse func-
tion: such functions say a great deal about the topology of M . If
M ∈ R3, and f(x, y, z) = z is a Morse function, we think of filling
up R3 with water up to the level z. The the topology of the part un-
derwater, f−1((−∞, z)), changes only with the water covers a moun-
tain top (of M), fills a valley (saddle point), or meets a bowl (local
minimum).:These events correspond to the water level reaching a non-
degenerate critical point, and this intuitive picture is used to think of
all Morse functions.

Theorem. There are lots of Morse functions: Given M ⊂ Rn, and
f : M → R, then fa = f + a1x1 + · · · + anxn is a Morse function for
almost every a ∈ Rn.

Proof. Define g = df = ( ∂f
∂x1

+ · · ·+ ∂f
∂xn

) on M . Note that dfa = g + a,

and Hess(fa) = Hess(f) = dg. Pick any a so that −a is a regular value
for g. Then if x is a critical point of fa, g(x) = −a so Hess(fa)x = dgx
is non-singular. Thus fa is a Morse function. �

The reader who wants to learn more about Morse theory is urged
to consult J. Milnor’s Morse Theory ([4]). Our final application is the
General Position Lemma. Recall that manifolds M,N ⊂ Rn are said to
be transverse (written M t N) if TpM+TpN = TpRn for all p ∈M∩N .
Tranverse manifolds are said to be in general position.

Theorem (General Position Lemma). For almost every a ∈ Rn, (M +
a) t N .

Note that if dimM+dimN < n, and p ∈M∩N , then TpM+TpN 6=
TpRn (the dimension of the left hand side is too small). So in this case
M and N are transverse if and only if they are disjoint, and the General
Position Lemma has a marvelous consequence: We can budge M a bit
so that it is disjoint from N .

Proof. Consider g : M × N → Rn defined by g(x, y) = x − y. Pick
any a ∈ Rn that is a regular value of g. We claim (M + a) t N . If
not, then there would be an x ∈ M, y ∈ N such that y = x + a and
TxM + TyN 6= Rn (Rn is the tangent space TyRn). Then g(x, y) = a
and dg(x,y)(T(x,y)M ×N) = TxM +TyN , which since TxM +TyN 6= Rn

contradicts the fact that a is a regular value. Thus, it must be that
(M + a) t N . �
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