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The purpose of this note is to give a proof of Smillie’s theorem. Orig-
inally proven but not published by John Smillie, it was first announced
by Veech in [Vee95], where a short proof outline was given. The proof
used Ratner’s theorem, and the key fact that the orbit of certain circle
measures under the godesic flow is compact in the weak-* topology.
Because this says that certain weak-* limits of probability measures
have mass 1, instead of having mass less than 1, this property is called
no loss of mass. It is a dynamical property of the SLn(R) action on
the space of quadratic differentials. Veech claims that this follows from
the techniques of Kerckhoff, Masur and Smillie’s paper [KMS86], but
it can be more directly seen from [EM01].

We will not give that proof, but rather one suggested by Smillie and
Weiss in [SW04] that avoids the use of Ratner’s theorem and uses the
quantitative recurrence of horocycle flow of Minsky and Weiss [MW02].

Theorem 1. Let Ω be the space of quadratic differentials on a closed
surface of fixed positive genus. Say (X,ω) ∈ Ω and SL2(R) · (X,Ω) is
closed. Then the stabilizer SL(X,Ω) is a lattice in SL2(R).

Here is an outline of our proof:

(1) Show that the orbit SL2(R) · (X,Ω) is an embedded copy of
SL2(R)/SL(X,ω); So we think of the orbit as (the unit tangent
bundle to) a hyperbolic orbifold.

(2) By [MW02], the horocycle flow on Ω is quantitatively recurrent.
(3) A Mautner type computation will give that whenever the horo-

cycle flow on a hyperbolic orbifold is quantitatively recurrent,
the orbifold has finite hyperbolic volume.

(4) Hence SL2(R)/SL(X,ω) has finite volume, so SL(X,ω) is a
lattice.

Any dynamical property of the SL2(R) action on Ω that holds at
every point of Ω but does not hold for an infinite volume hyperbolic
orbifold could similarly be used to prove Smillie’s theorem.

If SL(X,Ω) were finitely generated (which is known not to be the
case) our job would be much easier. If SL(X,Ω) is not a lattice but
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is finitely generated, then SL2(R)/SL(X,ω) has a flare, and hence has
very few nice dynamical properties. For example, on such a surface,
it is not true that geodesic flow in almost every direction is recurrent.
However, it is shown in [KMS86] that geodesic flow in almost every
direction starting at any point of Ω is recurrent.

We now state quantitative recurrence, and then proceed to the details
of our proof.

A flow ht on a space Y is said to be quantitatively recurrent if there
is an exhaustion of Y by compact sets Kn, so that for each Kn there
is another compact set K ′n and a δn > 0 so that

lim inf
T→∞

1

T
m({t ∈ [0, T ] : ht(y) ⊂ K ′n}) > δnF,

for all y ∈ Kn. (Note m is just Lebesgue measure on R.) By [MW02],
positive horocycle flow ht on Ω is quantitatively recurrent. In fact
[MW02] prove a stronger version of quantitative recurrence than this,
but this is all we need.

Lemma 2. Suppose G is a locally compact, second countable Hausdorff
group, and Y is a locally compact Hausdorff space. If G acts transi-
tively on Y , and y ∈ Y , then the natural map f : G/Gy → Y is a
homeomorphism.

The following proof is adapted from [AM07].

Proof. Let U be a compact neighborhood of e ∈ G, and W be a smaller
compact neighborhood with W ·W−1 ⊂ U . Since G is second countable,
we can pick a countable subcover of {g ·W : g ∈ G}, say {g1 ·W, g2 ·
W, . . .}. Each of f(gi ·W ) is compact, and ∪∞i=1f(gi ·W ) = Y , so there
is some i so that f(gi ·W ) = gi · f(W ) contains an open set. Hence
f(W ) contains an open set, since gi acts as a homeomorphism.

Pick h ∈ W so that f(h) is in the interior of f(W ). Then h−1f(W ) ⊂
f(U) contains an neighborhood of y. This gives that whenever U is a
neighborhood of e, f(U) contains a neighborhood of y. Now if U is a
neighborhood of g ∈ G, then f(g−1U) contains a neighborhood of y, so
f(U) contains a neighborhood of gy. Hence the map f is open. �

Lemma 3. Let H be a strongly continuous unitary representation of a
topological group G. Fix v ∈ H. If hn, h

′
n ∈ G fix v for all n > 0, and

there are gn ∈ G so that hngnh
′
n → 1, gn → g, then g also fixes v.

The following proof of this variant of the Mautner Lemma is taken
from [Mar91].
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Proof. Note g fixes v if and only if 〈gv, v〉 = 〈v, v〉, since g acts unitarily.
Now

〈gnv, v〉 → 〈gv, v〉
and

〈gnv, v〉 = 〈hngnh′nv, v〉 → 〈v, v〉,
so the result follows. �

Lemma 4. Given a unitary representation of SL2(R), any vector fixed
v by positive horocycle flow is fixed by all of SL2(R).

Proof. Compute(
1 c−1(1− a)
0 1

)(
a 0
c a−1

)(
1 c−1(1− a−1)
0 1

)
=

(
1 0
c 1

)
.

Letting c→ 0 we get that

(
a 0
0 a−1

)
fixes v.

Now, apply the previous claim again, using the fact that geodesic
flow contracts horocycle flow, to get that negative horocycle flow fixes
v. Explicitly, we compute(

a 0
0 a−1

)(
1 0
c 1

)(
a−1 0
0 a

)
=

(
1 0

a−2c 1

)
and we let a→∞.

It remains only to verify that SL2(R) is generated by positive and
negative horocycle flows along with geodesic flow. Note(

1 c
0 1

)(
1 0
d 1

)
=

(
1 + cd c
d 1

)
.

Every matrix in SL2(R) with a 1 in the lower right entry is of this
form. Every matrix in SL2(R) with non-zero lower right entry can be
brought into this form by multiplying by geodesic flow. And of course
any non-zero matrix in SL2(R) can be made to have non-zero lower
right entry by multiplying by positive or negative horocycle flow. �

Lemma 5. If a space Y admits a SL2(R) action with a locally finite
invariant SL2(R) measure µ, and satisfies quantitative horocycle recur-
rence, then µ is in fact a finite measure.

Proof. Pick a compact set K ⊂ Ω of positive measure, so that there is
a compact set K ′ and a δ > 0 so that

lim inf
T→∞

1

T
m({t ∈ [0, T ] : ht(y) ⊂ K ′}) > δ

for all y ∈ K.
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Let χK′ be the characteristic function of K ′. Define

S =

{
y ∈ Y : lim inf

T→∞

1

T

∫ T

0

χK′(ht(y))dt ≥ δ

}
.

Note K ⊂ S so S has positive measure. But by the Birkhoff ergodic
theorem, the function

y 7→ lim
T→∞

1

T

∫ T

0

χK′(ht(y))dt

exists almost everywhere and has integral µ(K). So we see that
µ(S)·δ ≤ µ(K ′) <∞, so S has finite measure. Of course, S is horocycle
flow invariant.

Now, χS is an invariant vector of the unitary representation of SL2(R)
on L2(µ). So, by the previous lemma, χS is in fact SL2(R)–invariant.
Hence S is all of Y , and µ is in fact finite. �

Now, we can easily piece together the proof of Smillie’s theorem.

Proof of Smillie’s Theorem. Since SL2(R) ·(X,ω) is closed, the ac-
tion of SL2(R) on SL2(R) · (X,ω) satisfies the conditions of Lemma
2, we get that it is an embedded copy of SL2(R)/SL(X,ω). (If the
orbit were not closed, the transitive action on the orbit would be an
action on a space which is not locally compact.) In particular, it is the
unit tangent bundle to a hyperbolic orbifold, and admits a locally finite
SL2(R)–invariant measure. This hyperbolic orbifold has quantitative
recurrence of horocycle flow, and so must be finite volume. �
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