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Abstract. We construct a smooth, area preserving, mixing flow
with finitely many non-degenerate fixed points and no saddle con-
nections on a closed surface of genus 5. This resolves a problem
that has been open for four decades.

1. Introduction

Motivation and main result. Flows on surfaces are a basic example
in smooth dynamics, being in a sense the smallest smooth dynamical
systems after circle diffeomorphisms, and have been the topic of a vast
body of research.

In 1972, the existence of smooth ergodic flows on all closed surfaces
except the sphere, projective plane, and Klein bottle was established
by Blohin [Blo72]. Only a few years later Katok, Sinai, and Stepin
indicated the following as an open problem in their 1975 survey paper
[KSS75, 4.4.1].

“Let Tt be a smooth flow on a surface of genus p ≥ 2 with smooth
positive invariant measure, all of whose fixed points are non-degenerate
saddles. Can Tt be mixing? The distinguished results of A. V. Kocher-
gin and A. B. Katok give a negative answer to this question in all
probability.”

The same question was listed by Katok and Thouvenot in the Hand-
book of Dynamical Systems [KT06, Problem 6.10] and was mentioned
by Forni in [For02, Page 4]. The purpose of this paper is to provide a
positive answer.

Theorem 1.1. There is a mixing, smooth, area preserving flow on a
surface of genus 5 with finitely many fixed points, all non-degenerate,
and no saddle connections.

A saddle connection is a flow trajectory joining two fixed points for
the flow. The derivative of a smooth flow is a vector field, which can be
written locally on a surface as A(x, y)∂x + B(x, y)∂y. A fixed point is
called non-degenerate if at that point the function (A,B) has non-zero
Jacobian, i.e. if AxBy − AyBx 6= 0.
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Already at the time of Katok, Sinai, and Stepin’s question, Kochergin
had shown that mixing flows do exist on surfaces if degenerate saddles
are allowed [Koč75], again on all closed surfaces except the sphere,
the projective plane and the Klein bottle. However, the presence of
degenerate saddles has such a drastic effect that it is reasonable to
believe that the natural class of dynamical systems that should be
grouped together is not all smooth area preserving flows on surfaces,
but rather those with only finitely many saddles, all of which are non-
degenerate.

Kochergin also showed that a class of smooth flows on surfaces with
finitely many non-degenerate fixed points arising from Blohin’s con-
struction (namely certain suspensions of irrational circle rotations) are
never mixing [Koč76], [Koc07a]. Thus Kochergin’s results supports
making a large distinction between degenerate and non-degenerate sad-
dles. A consequence of Kochergin’s result is that there does not exist
a mixing, smooth, area preserving flow on a surface of genus 1 with
finitely many fixed points, all non-degenerate, and no saddle connec-
tions [Koc07a].

The intuition that the types of flows considered in our main theorem
are very unlikely to be mixing has proven correct, as Ulcigrai has re-
cently established that such flows are typically not mixing [Ulc11]; us-
ing different methods Scheglov had established this in genus 2 [Sch09a].
It is however known that these flows are generically uniquely ergodic
[Mas82, Vee82] and weak mixing [Ulc09]. (The notion of generic
here is measure theoretic.) Many examples are mild mixing [KKP].

Kochergin’s mechanism for mixing. Consider a small horizontal

line segment in R2. Under the action of

(
1 0
t 1

)
this small horizon-

tal line segment will be sheared until eventually it is close to a long
vertical line segment. Similarly, an interval transverse to a flow may
eventually get sheared so much that it becomes close to an orbit of the
flow. Kochergin’s seminal observation is that in this case, if the flow
is ergodic, one may expect equidistribution of such flowed transverse
intervals, and subsequently hope to conclude that the flow is mixing.

This idea has been used in many subsequent works, and has also
been applied to flows on higher dimensional manifolds, such as Fayad’s
example of a reparameterization of a linear flow on T3 that is mix-
ing and has singular spectrum [Fay06]. (We mention in passing that
mixing is easier to obtain in dimension greater two, and indeed Fayad
obtains mixing for a flow without fixed points, because there are two
dimensions transverse to the flow which may alternately be sheared.)
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Kochergin’s technique will be the engine of mixing in Theorem 1.1.
The shearing effects are most significant near the fixed points of the
flow, since trajectories that pass closer to a fixed point will get slowed
down more than trajectories that pass farther away. This is why de-
generate fixed points can help in establishing mixing; they establish
a strong shearing effect. For non-degenerate fixed points, the shear-
ing effect is weaker, and typically many passes near a fixed point are
required to accumulate an appreciable amount of shearing. However,
passing on different sides of a fixed point produces opposite effects,
which are expected to cancel out. This leads to the intuition, which
has been made rigorous with the work of Scheglov, Ulcigrai, and others,
that area preserving flows should not be mixing.

Suspension flows. Given a flow on a surface with finitely many fixed
points and no saddle connections, pick a disjoint union I of intervals
transverse to the flow direction. (Typically one picks only one interval,
but it will be convenient for us to use four.) Let T : I → I be the first
return map, and let f : I → (0,∞] be the first return time function.
The flow is isomorphic to the vertical flow F t on the space

Z = {(x, s) : x ∈ I, 0 ≤ s ≤ f(x)}/((x, f(x)) ∼ (T (x), 0)),

defined by F t(x, s) = (x, s + t) for all 0 ≤ s + t ≤ f(x). Note in
particular that F f(x)(x, 0) = (Tx, 0).

If the flow is measure preserving, I can be parameterized so that T is
a multi-interval exchange transformation, i.e., a permutation of a finite
number of subintervals that partition I. (If there is only one interval,
this is called an interval exchange transformation.) Since the flow is
smooth, f is smooth away from the discontinuities of T .

The standard model for a non-degenerate fixed point is given by
the vector field x∂y + y∂x. This has two incoming trajectories, and
two outgoing trajectories. For a flow with only finitely many non-
degenerate fixed points, the first return map is, up to a bounded
function with bounded derivative, equal to a function of the form
f = 1 −

∑
ci log |x − xi|. Since the roof function is infinite at the

xi, these are the points that orbit into a fixed point. If xi and xj orbit
into the same discontinuity, then ci = cj. More precise statements can
be found in [Kat73] and [Koč76, Section 3]; see also [CF11].

Moreover, standard arguments show that all T and f satisfying cer-
tain technical conditions arise from smooth flows on surfaces with only
finitely many non-degenerate fixed points [CF11, Section 7]. Thus, to
prove our main theorem, we will find an appropriate T and f for which
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the suspension flow is mixing, and in the last section of this paper will
will explain how Theorem 1.1 follows.

Birkhoff sums of non-integrable functions. We will see that
the net shearing of an interval transverse to the flow is controlled by
Birkhoff sums of f ′, that is, by sums of the form

N−1∑
i=0

f ′(T ix).

Our roof function f will have f ′ non-integrable, so the Birkhoff Ergodic
Theorem may not be used to understand these sums. Note also that
f will not be of bounded variation. Katok has shown that suspen-
sion flows over interval exchange transformations with roof functions
of bounded variation are never mixing [Kat80].

To get enough shearing for mixing, we will require the above Birkhoff
sums to grow faster than linearly in N , and we will need fairly precise
control.

The problem is that we expect a large amount of cancellation to
occur between positive and negative terms in this Birkhoff sum. When
T i(x) is close to and on the right side of a singularity, f ′(T ix) will
be very negative. When T i(x) is close to and on the left side of a
singularity, f ′(T ix) will be very positive.

The Katok-Sataev-Veech construction. In turns out that the
following result is technically easier to prove than Theorem 1.1.

Theorem 1.2. There a Z2 = {0, 1} skew product T : S1×Z2 → S1×Z2

over a rotation with the following properties: T has four discontinuities,
p1, p2, p3, p4 ∈ S1×Z2. There is a fifth point p0 ∈ S1×Z2 that is not a
discontinuity, such that the suspension flow over T with roof function

f(p) = 1−
4∑
i=0

log d(p, pi)

is mixing, where d is a distance function on S1 × Z2 that restricts to
the standard distance on each of the two copies of S1.

This choice of T and f do not satisfy the technical conditions to
correspond to a smooth flow, because the roof function has one extra
non-degenerate singularity that is not at a discontinuity of T . (For
a smooth flow with no saddle connections, and all fixed points non-
degenerate, each singularity of the roof function must occur at a dis-
continuity of the multi-interval exchange transformation.) In the final
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section we choose a closely related but more complicated T̂ and f̂ to
prove Theorem 1.1.

Most of this paper is occupied with the proof of Theorem 1.2. To
build T , we modify the Katok-Sataev-Veech construction for producing
examples of minimal but non-uniquely ergodic interval exchange trans-
formations [Vee69,Kat73,Sat75]. Our T will in fact be uniquely er-
godic, but orbits equidistribute very slowly and in a controlled manner.

To obtain mixing, we construct T to be very well approximated by
non-minimal Z2 skew products of rotations, Tk, such that Tk has two
minimal components, one of which contains an interval to the left of x0,
and one of which contains an interval to the right of x0. Quantitative
estimates, and highly non-generic choices of parameters such as the
continued fraction expansion of the base rotation, allow us to show
that this asymmetry in the minimal approximants yields appropriate
growth in the Birkhoff sums of f ′ and hence obtains sufficient shearing
for mixing. To get this growth, we must prevent the terms in these
sums where T i(x) is to the right of x0 from canceling with the terms
where T i(x) is to the left of x0. This is difficult because T is uniquely
ergodic, so all orbits equidistribute. We show that the terms where
T i(x) is in certain decreasing neighborhoods of x0 dominate these sums,
and within these smaller and smaller neighborhoods orbits of certain
lengths are not at all equidistributed.

Technically speaking, our analysis makes heavy use of continued frac-
tions and the Denjoy-Koksma inequality. We chose parameters so that
the base rotation has orbits which equidistribute very quickly, but the
two minimal components in the skew product equidistribute slowly.

Open problems. The proof of Theorem 1.1 is built on the fact that
there are non-minimal smooth flows with finitely many non-degenerate
fixed points on surfaces of genus 5 such that one minimal component
sees only one side of a fixed point. As we observe in Remark 9.9, such
flows also exist on surfaces of genus 3 and 4. However, there are no
such flows on surfaces of genus 2. Thus, the following seems especially
interesting.

Problem 1.3. Is there a mixing, smooth, area preserving flow on a
surface of genus 2 with 2 non-degenerate fixed points and no saddle
connections?

Some pointers to the literature. We have tabulated over 40 papers
that should be mentioned in any complete history of area preserving
flows on surfaces. We will omit many of them here. See [Koc07b] for
a survey.
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Some early examples of flows on surfaces that are not mixing include
[Kol53, Kat67, Sch09b, Koč72, Koč76]. The first result on weak
mixing of flows may perhaps be due to von Neuman [vN32,FL09].

Novikov has suggested a link between area preserving flows on sur-
faces, and solid state physics [Nov82]. Because of this connection to
physics, area preserving flows on surfaces are often called multi-valued
Hamiltonian flows.

Arnold pointed out that flows over interval exchange transformations
with asymmetric logarithmic singularities arise from non-minimal flows
on surfaces, and as a result these flows are now well studied and it is
known that mixing in this context is generic [Ulc07], see also [Arn91,
Koc03,Koc04c,Koc04a,Koc04d,SK92,Rav17].

Fraczek-Lemanczyk have provided many examples of smooth area
preserving flows on surfaces that are disjoint from all mixing flows,
and have proven weak mixing for many suspension flows over rotations
[FL05,FL03].

Kochergin has given examples of flows over rotations that mix at
polynomial speed on rectangles [Koc04b]. Fayad-Kanigowski have
shown multiple mixing of many suspension flows over rotations with
asymmetric logarithmic singularities or degenerate fixed points [FK].

Suspension flows over interval exchange transformations with differ-
ent roof functions are also frequently studied, see for example [Lem00,
Koc02,FL04,FL06].

While this paper was under revision, Fayad, Forni and Kanigowski
showed that for area preserving flows on the torus with one sufficiently
strong singularity, the maximal spectral type is typically Lebesgue
measure on the line [FFK]; Ravotti proved quantitative mixing es-
timates for minimal components of generic smooth flows on surfaces
(suspension flows with asymmetric logarithmic singularites) [Rav17];
and in the same same context Kanigowski, Kulaga-Przymus and Ulci-
grai proved mixing of all orders [KKPU].

The organization of this paper. Most of this paper is occupied
with the proof of Theorem 1.2. In the final Section 9 we explain how
to modify our construction to yield Theorem 1.1.

Section 2 collects standard results on continued fractions and rota-
tions whose use will be ubiquitous in our analysis. In Section 3 we
list the assumptions we must place on the rotation number of the base
rotation, and we give an explicit example of a continued fraction ex-
pansion satisfying these assumptions. In Section 4 we define the skew
product T used to prove Theorem 1.2, and discuss its non-minimal
approximants Tk. In Sections 5 and 6 we prove estimates on Birkhoff
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sums. In Section 7 we prove unique ergodicity of the T used in Theo-
rem 1.2, and in Section 8 we prove Theorem 1.2 from the results in the
pervious sections via a standard argument.

Big O and little o notation. Given two sequences of numbers,
{cn}n∈N and {dn}n∈N, we write cn = O(dn) if there exists M ∈ R so that
−M |dn| < cn < M |dn| for all n. We write cn = o(dn) if lim

n→∞
cn
dn

= 0.

In Remark 5.3 we specify additional conventions for quantities that
depend on more than on parameter.

Warning. Readers should pay careful attention to the typesetting in
subscripts, for example to distinguish qnk+1

and qnk+1.

Acknowledgements. Research of JC partially supported by the NSF
grants DMS 1004372, 1300550 and a Warnock Chair. Research of AW
partially supported by a Clay Research Fellowship. The authors are
very grateful to Anatole Katok, Corinna Ulcigrai, and Amie Wilkinson
for useful conversations, and to the referees for their careful reading of
the paper and helpful suggestions.

2. Continued fractions and rotations

Continued fractions. Fix a positive irrational real number α ∈ R.
Let an denote the n-th term in the continued fraction expansion of α,
and let pn/qn denote the n-th best approximant of α.

α = a0 +
1

a1 +
1

a2 +
1

a3 + · · ·

pn
qn

= a0 +
1

a1 +
1

a2 +
1

· · ·+
1

an

A best approximant of α is defined to be any rational number p/q
such that if p′, q′ are integers with 0 < q′ ≤ q, then∣∣∣∣α− p

q

∣∣∣∣ ≤ ∣∣∣∣α− p′

q′

∣∣∣∣ .
Theorem 2.1. The following hold.

(1) Recursive formulas:

pn+1 = an+1pn + pn−1,

qn+1 = an+1qn + qn−1,

pn
qn

=
pn−1
qn−1

+
(−1)n+1

qn−1qn
.
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(2) Alternating property:

p0
q0
<
p2
q2
< · · · < α < · · · < p3

q3
<
p1
q1
.

(3) Upper and lower bounds:

1

qk(qk + qk+1)
< |α− pk

qk
| < 1

qkqk+1

.

(4) Best approximants property: The set of best approximants of α
is exactly equal to {pn

qn
}∞n=1.

For proofs of any of these facts, see [Khi64]. In particular, see page
36 for the upper and lower bounds.

Rotations. Let S1 = R/Z denote the circle, and let R : S1 → S1

denote rotation by α, so R(x) = x+α. We will often implicitly identify
the circle with the interval [0, 1).

Let d denote the distance on the circle coming from the standard
distance on R.

Given x ∈ S1, define a closest return time as positive integer q such
that if 0 < q′ < q, then

d(x,Rq′(x)) > d(x,Rq(x)).

This definition does not depend on x. Define the orbit segment of
length q of x ∈ S1 to be the sequence {Ri(x)}q−1i=0 .

We will say that a subset of S1 is δ-separated if the distance between
any two distinct points in the subset is at least δ.

Theorem 2.2. The following hold.

(1) Alternating property: For n odd Rqn(x) ∈ x + (−1
2
, 0), and for

n even Rqn(x) ∈ x+ (0, 1
2
).

(2) Upper and lower bounds:

1

qn + qn+1

< d(x,Rqnx) <
1

qn+1

.

(3) Best approximants property: The closest return times are ex-
actly {qn}∞n=1.

(4) Separation: Any orbit segment of length at most qn is at least
d(x,Rqn−1x) separated.

(5) Equidistribution: {Ri0}qn−1i=0 contains exactly one point of each
interval [ i

qn
, i+1
qn

), for i = 0, . . . , qn − 1.
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(6) Denjoy-Koksma Inequality: For any function g : [0, 1) → R of
bounded variation, and any x ∈ S1,∣∣∣∣∣

qn−1∑
i=0

g(Ri(x))− qn
∫
g

∣∣∣∣∣ ≤ Var(g),

where Var(g) is the total variation of g.

The first three statements follow from the corresponding statements
in Theorem 2.1. Separation follows from the best approximants prop-
erty. The equidistribution property follows in an elementary way from
the bounds in Theorem 2.1, and the Denjoy-Koksma inequality follows
from the equidistribution property. For proofs of the equidistribution
property and Denjoy-Koksma, we highly recommend the blog post of
Lima [Lim] (see Lemma 5 and Theorem 6), which is partially based on
the paper by Herman [Her79] where Denjoy-Koksma was first proven.

3. Picking α

In this paper, we will require α with very special properties. Pre-
cisely, we will require the existence of a subsequence nk of the positive
integers such that the following assumptions on nk and the continued
fraction expansion of α hold. Let 〈〈y〉〉 denote the fractional part of a
real number y, so 〈〈y〉〉 ∈ [0, 1). Note that by the Alternating Property,
d(x,Rqi(x)) = 〈〈qiα〉〉 if i is even, and d(x,Rqi(x)) = 1− 〈〈qiα〉〉 if i is
odd.

Assumptions.

(1) All nk are even.
(2)

∑∞
k=1 2〈〈qnk

α〉〉 < min(α
4
, 1− α

4
).

(3) For all ` ≥ 1, we have 1+
∑`

k=1 2qnk
< qn`+1 and 1+

∑`
k=1 qnk−1 <

qn`
.

(4) lim
`→∞

an`+1 =∞.

(5) an = o(log log(qn)), and an+1 = o(log log(qn)).
(6)

∑∞
k=1 a

−1
nk+1 =∞.

(7)
∑n+1

i=1 ai = O(log(qn)).
(8) log(qnk−1+1) = o(log(qnk

)).
(9) For all k, ank

= 2 and ank−1 = 2.

Note that Assumptions 5 and 7 are on all n. Our assumptions are in
effect for the remainder of this paper. They are stronger than necessary;
we saw no benefit in trying to pick the weakest sufficient assumptions.

Remark 3.1. Assumptions 1 and 2 allow us to fix notation. They have
no particular dynamical significance for us. Assumption 3 is used in
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proving unique ergodicity in Section 7, and a few other places, where
it guarantees that the sequence qnk

grows very rapidly.
Assumption 4 indicates that at time qn`

, orbits come back very close
to themselves, and for a long time after that they almost repeat their
paths. This will govern transfer of mass between invariant subsets of
certain non-minimal approximants of T . Assumption 6 guarantees that
T is uniquely ergodic.

Assumptions 5 and 7 reflect that the continued fraction has mostly
small coefficients, and hence α is poorly approximated by rationals,
so the rotation by α has especially good equidistribution properties.
These assumptions are important in estimating Birkhoff sums.

Assumption 8 indicates that the times nk are chosen so sparsely that
orbits of length qnk

come back vastly closer to themselves than orbits
of length qnk−1

. It will be used in Lemma 5.6.

Assumption 9 is used in the proofs of unique ergodicity of T and T̂ ,
the multi-interval exchange that we use to prove Theorem 1.1.

To verify that the assumptions are mutually compatible, we show
the following.

Proposition 3.2. Define a sequence nk recursively by

n1 = 10 and nk = 10k
2

nk−1.

Define α by specifying its continued fraction expansion as follows:

ank+1 = k + 8 for all k, and ai = 2 if i /∈ {nk + 1}k∈N.
Then all the above assumptions are satisfied.

Proof. We will establish the assumptions one at a time.

(1) Obvious.
(2) By the upper bound in Theorem 2.1, 〈〈qnk

α〉〉 < 1
qnk+1

. By the

second recursive formula, and the fact that all ai are at least 2,
we see that qn > 2n. Since n1 = 10,

∑∞
k=1 2〈〈qnk

α〉〉 < 4
210

. The
alternating property in Theorem 2.1 (using p1/q1 and p2/q2)
gives that 2

5
< α < 1

2
, so the result follows.

(3) Again by the recursive formula and the fact that all ai are at
least 2, we have qi+k > 2kqi. Since ank+1

> 2 for every k, we have
in particular that qnk+1 > 3qnk

, whence the inequality follows
by induction. The second claim follows because qni−1 <

1
2
qni

and qni−j−1 <
1
4

j
qni

.
(4) Obvious.
(5) Clear if i 6= nk, nk + 1, and otherwise it follows because k2 =

o(log(nk)) and qi > 2i.
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(6) Obvious.
(7) Let i be the greatest number such that ni ≤ n. Then there are i

numbers k such that nk ≤ n. Since i+8 = ani+1, by Assumption
5, there are o(log log qn) numbers k such that nk ≤ n. Again
by Assumption 5, each ank+1 is o(log log qn). So, the sum is at
most 2n+o(log log qn)2. Since n is O(log qn), we have the claim.

(8) Since qi+k > 2kqi, we have that qnk+1
> 2nk+1−nkqnk

, so

log qnk+1
> (nk+1 − nk) log(2) + log qnk

.

On the other hand, qi+1 ≤ (ai+1 + 1)qi, so we have that

log(qnk
) ≤

nk∑
i=1

log(ai + 1) = O(nk),

since there are O(nk) terms where log(ai + 1) has size log(3),
and at most O(log(nk)) terms where i = n` + 1 for some ` and
hence ai+1 has size log(`+ 8) = O(log(nk)).

Since (nk+1 − nk)/nk →∞, the result follows.
(9) Obvious.

�

4. A skew product over a rotation

This section develops the Katok-Sataev-Veech construction [Vee69,
Kat73,Sat75] in a manner convenient for our purposes.

We now define a Z2 = {0, 1} skew product over the circle rotation
R by angle α. (In the notation Z2 = {0, 1}, it is implicit that 0 and 1
represent equivalent classes modulo 2.) Set

J =

[
0,
∞∑
k=1

2〈〈qnk
α〉〉

)
.

By Assumption 2, we have that J has length less than 1.
Define a skew product T to be the rotation by α skewed over the

interval J , so

T : S1 × Z2 → S1 × Z2, T (x, j) = (R(x), j + χJ(R(x))).

Here χJ denotes the characteristic function of J . We will denote the
coordinate projections as

πS1 : S1 × Z2 → S1, πZ2 : S1 × Z2 → Z2.

We denote by ι : S1×Z2 → S1×Z2 the involution ι(x, j) = (x, j + 1).
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Notation. For ` ≥ 1, set

J` =

[
`−1∑
k=1

2〈〈qnk
α〉〉,

∑̀
k=1

2〈〈qnk
α〉〉

)
,

so J is the disjoint union of the J`. Let

J ′` =

[
`−1∑
k=1

2〈〈qnk
α〉〉,

`−1∑
k=1

2〈〈qnk
α〉〉+ 〈〈qn`

α〉〉

)
,

J ′′` =

[
`−1∑
k=1

2〈〈qnk
α〉〉+ 〈〈qn`

α〉〉,
∑̀
k=1

2〈〈qnk
α〉〉

)
be the left and right halves of the interval J`, so J` = J ′` ∪ J ′′` .

For any subset Y ⊂ S1, we set

Ỹ = Y × Z2 = π−1S1 (Y ).

Moving a bit of one invariant set into another. Here we con-
sider a very general construction. The notation has been chosen to
match the situation to which the lemma will be applied.

Lemma 4.1. Let T` : X → X be an invertible transformation with
two invariant sets U` and V` = X \ U`. Suppose there is an involution
ι : X → X that interchanges U` and V`. Let J̃ ′`+1 ⊂ X be ι invariant,
and let qn`+1

be any integer such that

J̃ ′`+1, T`(J̃
′
`+1), . . . , T

qn`+1

` (J̃ ′`+1)

are disjoint. Consider the transformation T`+1 on X defined by

T`+1(x) =

{
ι(T`(x)) if T`(x) ∈ J̃ ′`+1 ∪ T

qn`+1

` (J̃ ′`+1)

T`(x) otherwise.

Then the set

U`+1 =

U` ∪
qn`+1

−1⋃
i=0

T i` (J̃
′
`+1 ∩ V`)

 \
qn`+1

−1⋃
i=0

T i` (J̃
′
`+1∩U`)

is T`+1 invariant, as is V`+1 = X \ U`+1 = ι(U`+1).
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Figure 4.1. Schematic picture of Lemma 4.1. The set
U`+1 is shaded.

The proof of Lemma 4.1 is left to the reader, who is invited to con-
vince himself or herself while looking at Figure 4.1.

Non-minimal approximants. Define T` : [0, 1]× Z2 → [0, 1]× Z2

to be the rotation by α skewed over the interval [0,
∑`

k=1 2〈〈qnk
α〉〉), so

T`(x, j) = (R(x), j + χ[0,
∑`

k=1 2〈〈qnk
α〉〉)(R(x))).

Set U0 = [0, 1]× {1} and V0 = [0, 1]× {0}, and for each ` ≥ 0 define

U`+1 =

U` ∪
qn`+1

−1⋃
i=0

T i` (J̃
′
`+1 ∩ V`)


\

qn`+1
−1⋃

i=0

T i` (J̃
′
`+1 ∩ U`)

and V`+1 = U c
`+1.

We will show that U` and V` are T` invariant sets, which implies T`
is not minimal. Because T` is not minimal, and is equal to T on a
set of large measure, we refer to T` as a non-minimal approximant to
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T . Our understanding of T will follow from a study of the T`. Our
understanding of T` will be inductive, using the fact that T` is almost
the same as T`−1 but with additional skewing.

Lemma 4.2. For each ` > 1 the intervals

Ri(J ′`), i = 0, . . . , qn`

are disjoint from each other and [0, 〈〈qn`
α〉〉) and [1− 〈〈qn`

α〉〉, 1).

Recall J ′` = [
∑`−1

k=1 2〈〈qnk
α〉〉,

∑`−1
k=1 2〈〈qnk

α〉〉+ 〈〈qn`
α〉〉).

Proof. Since J ′` = RN0([0, 〈〈qn`
α〉〉)) when N0 = 2

∑`−1
k=1 qnk

, the inter-
vals in question are

RN([0, 〈〈qn`
α〉〉), N = −qn`

and N = 0 and N = N0, . . . , N0 + qn`
.

Thus the intervals in question are contained in the N0+2qn`
+1 orbit

of an interval of length 〈〈qn`
α〉〉. By Assumption 3, N0+2qn`

+1 < qn`+1,
so the separation property gives that these intervals are disjoint. �

Lemma 4.3. U` and V` are T` invariant, and V` = ι(U`).

Proof. This is proven inductively using Lemma 4.1, where the notation
has been chosen to indicate how the result should now be applied.
T`+1 is obtained from T` by additionally skewing over J`+1 = J ′`+1 ∪

Rqn`+1 (J ′`+1). This additional skewing amounts to applying ι every time

the orbit lands in J̃ ′`+1 ∪ T
qn`+1

` (J̃ ′`+1). Thus the definition of T`+1 as a
skew product coincides with the inductive definition of T`+1 provided
in Lemma 4.1.

The disjointness condition in Lemma 4.1 has been verified in the
previous lemma. �

Theorem 4.4. For each integer ` ≥ 1, there are sets U`, V`, defined
above, whose disjoint union is S1 × Z2 such that ι(U`) = V` and the
following properties hold.

(1) U` contains

[0, 〈〈qn`
α〉〉)× {0} and [1− 〈〈qn`

α〉〉, 1)× {1}.

(2) There is a subinterval J ′` of S1, defined above, of length 〈〈qn`
α〉〉

such that πS1(U` \ U`−1) = ∪qn`
−1

i=0 Ri(J ′`).

Remark 4.5. In can be shown (using (1) and (2) and Theorem 2.2) that
U` contains most of [0, 〈〈qn`−1

α〉〉), i.e. that [0, 〈〈qn`−1
α〉〉)\U` has small

measure. This is important in the proof of Claim (3) of Theorem 6.1
(see Lemma 5.8).
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Proof of Theorem 4.4. The first part of the first claim is true by in-
duction. The base case is ` = 1. The inductive step follows from

the definition of U`+1 as well as the disjointness of {Ri(J ′`)}
qn`
−1

i=0 from
[0, 〈〈qn`

α〉〉) and [1− 〈〈qn`
α〉〉, 1) in Lemma 4.2.

The second claim is by the definition of U`. �

5. Birkhoff sums for the rotation R

In this section we consider the Birkhoff sums of the function g(x) = 1
x

over the rotation R. Estimates on these sums are used in the next
section to provide the shearing estimates.

Results on Birkhoff sums over rotations have previously been used to
prove mixing in a slightly different setting (asymmetric singularities),
see for example [FK,Koc03,SK92].

Lemma 5.1. For each positive integer N , there are unique integers bn
such that

N =
k∑

n=1

bnqn,

and such that 0 ≤ bn ≤ an+1 and qn >
∑n−1

i=0 biqi for each n.

Such an expression is called the Ostrowski expansion of N [Ost22].

Proof. Pick k such that qk+1 > N ≥ qk, and let bk be the unique
integer such that 0 ≤ N − bkqk < qk. By the second recursive formula
in Theorem 2.1,

N − ak+1qk < qk+1 − ak+1qk = qk−1.

So we get that bk ≤ ak+1. Replacing N with N−bkqk and iterating this
procedure gives the Ostrowski expansion for N . �

Proposition 5.2. Let g : (1, 0] → [0,∞) be a monotone decreasing
function. Let

gN(x) = max
i=0,...,N−1

g(Ri(x)).

Let qk+1 > N ≥ qk, and let CN be any number satisfying 1 ≤ CN <
2qk+1. Then, without any assumptions on α,

N−1∑
i=0

g(Rix) = gN(x) +N

∫ 1

CN
2qk+1

g

+ O

g( CN
2qk+1

) k+1∑
i=2

ai +

bCN c∑
i=1

g

(
i

2qk+1

) .
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Remark 5.3. Let Ψ and Q be functions. We say that Q is O(Ψ) if there
exists a constant C > 0 such that |Q| ≤ C|Ψ| for all allowed values of
all variables which appear in Ψ and Q. The constant C is independent
of everything. If Ψ and Q are functions of N as well as possibly other
variables, we say that Q is o(Ψ) if for all ε > 0 there exists a constant
N0(ε) such that when N > N0(ε) we have |Q| ≤ ε|Ψ|, for any allowed
values of the other variables other than N . The constant N0(ε) does
not depend on any variable other than ε. For example, Proposition 5.2
asserts that the quantity

Q =
N−1∑
i=0

g(Rix)−

(
gN(x) +N

∫ 1

CN
2qk+1

g

)

is at most C|Ψ| for some C, where

Ψ = g

(
CN

2qk+1

) k+1∑
i=2

ai +

bCN c∑
i=1

g

(
i

2qk+1

)
and the constant C is independent of α, CN and x.

Proof. Since N < qk+1, each orbit segment of length N is 〈〈qkα〉〉 ≥
1

2qk+1
separated. Thus,

−gN(x) +
N−1∑
i=0

g(Rix)

is within g
(

1
2qk+1

)
of

N−1∑
i=0

g(Rix)χ[
1

2qk+1
,1

)(Rix).

Indeed, if gN(x) > 2qk+1 the two expressions above are equal and oth-
erwise the claim is immediate by monotonicity.

Now, note that by separation and monotonicity,

N−1∑
i=0

g(Rix)χ[
1

2qk+1
,

CN
2qk+1

)(Rix) ≤
bCN c∑
i=1

g

(
i

2qk+1

)
.

Now, consider the Ostrowski expansion N =
∑k

n=1 bnqn, and consider
an orbit segment of length N to be built from bn orbit segments of
length qn (for n = 1, . . . , k). Applying Denjoy-Koksma individually to



A MIXING FLOW ON A SURFACE 17

these
∑k

n=1 bn orbit segments, we get

N−1∑
i=0

g(Rix)χ[ CN
2qk+1

,1

)(Rix) = N

∫ 1

CN
2qk+1

g +O

(
g

(
CN

2qk+1

) k+1∑
i=2

ai

)
.

Here we have used the estimate
∑k

n=1 bn ≤
∑k+1

i=2 ai, which is immediate
from the definition of the Ostrowski expansion. Denjoy-Koksma gives
that the implied constant in the O(·) notation does not depend on
anything. �

Corollary 5.4. With the assumptions in this paper on α, if g(x) =
1/x, then for all N

N−1∑
i=0

g(Rix) = gN(x) +N log(N) + o
(
N
(

log (log(N))
)2)

and

N−1∑
i=0

g′(Rix) = g′N(x) + o
(
(N log log(N))2

)
.

Remark 5.5. We emphasize that here and for the rest of the paper α is
considered to be a constant; we do not assert that the implied estimates
in the O(·) and o(·) notation (the choice of C and N0(ε) in Remark
5.3) are independent of our specific choice of α.

Proof. Choose k such that qk ≤ N < qk+1. Let 1 < CN ≤ qk+1 be a
constant, and let us address the different quantities appearing in the
previous proposition.

Recall Assumption 5, which gives that qk+1/N = o(log log(N)), and
note ∫ 1

CN
2qk+1

g = log(N) + log(qk+1/N) + log(2)− log(CN)

= log(N)− log(CN) + log(o(log log(N))).

Next, note that the same bound for qk+1/N gives

bCN c∑
i=1

g

(
i

2qk+1

)
= 2qk+1

bCN c∑
i=1

1

i

= 2qk+1 log(CN) +O(qk+1)

= o(log log(N)N logCN).
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Finally, note that Assumption 7 gives that
∑k+1

i=2 ai = O(log(N)),
and hence

g

(
CN

2qk+1

) k+1∑
i=2

ai = O

(
2qk+1

CN
log(N)

)
= o

(
N log log(N)

CN
log(N)

)
.

Now setting CN = log(N) and using the previous proposition gives
the result.

The second bound is similar. �

Lemma 5.6. Set g(x) = 1/x. For any k with qnk
≤ N and any

x ∈ [0, 1) we have

N−1∑
i=0

g(Rix)χ[〈〈qnk−1
α〉〉,1)(R

ix) = o(N log(N))

and
N−1∑
i=0

g′(Rix)χ[〈〈qnk−1
α〉〉,1)(R

ix) = O(N2).

Remark 5.7. In Lemma 5.6 we continue to use the notational conven-
tion described in Remark 5.3. For example, this lemma asserts that

Q =
N−1∑
i=0

g(Rix)χ[〈〈qnk−1
α〉〉,1)(R

ix)

is o(Ψ) with Ψ = N log(N), which means that for all ε > 0 there exists
a N0(ε) such that when N > N0(ε) then |Q| ≤ ε|Ψ| for all x ∈ S1

and all k such that qnk
≤ N . We emphasize that the constant N0(ε)

does not depend on x or k. We also emphasize that the allowed values
for k are k such that qnk

≤ N ; we do not assert that the inequality
|Q| ≤ ε|Ψ| is true when k does not satisfy this condition.

Proof. Let N =
∑L

n=1 bnqn be the Ostrowski expansion of N . As in

the previous proof, using Assumption 7 we get
∑L

n=1 bn = O(log(N)).
Using Denjoy-Koksma, for each of the bn orbit segments of length qn
and summing from n = 1 to n = L we get

N−1∑
i=0

g(Rix)χ[〈〈qnk−1
α〉〉,1)(R

ix) = O

(
−N log〈〈qnk−1

α〉〉+
log(N)

〈〈qnk−1
α〉〉

)
= O

(
N log(qnk−1+1) + log(N)qnk−1+1

)
.
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The implied constant in the O(·) notation does not depend on x or k
because the bounds provided by Denjoy-Koksma do not depend on x
or k. Assumption 8, which gives log(qnk−1+1) = o(log(N)), gives the
result.

Similarly, to prove the second estimate it suffices to note

N−1∑
i=0

g′(Rix)χ[〈〈qnk−1
α〉〉,1)(R

ix) = O

(
N

〈〈qnk−1
α〉〉

+
log(N)

〈〈qnk−1
α〉〉2

)
= O

(
Nqnk−1+1 + log(N)q2nk−1+1

)
= O(N2).

The last equality follows by invoking Assumption 8, which states that
log(qnk−1+1) = o(log(qnk

)) and hence implies that Nq2nk−1+1 = O(N1+ε)
for all ε > 0. �

Lemma 5.8. Set g(x) = 1/x. For any large enough `, for any N > qn`
,

let S be an orbit of length qn`
of an interval of length 〈〈qn`

α〉〉. Assume
S is disjoint from [0, 〈〈qn`

α〉〉), and let x be any point disjoint from

∪
√
an`+1qn`

i=0 R−i(S). Then

N−1∑
i=0

g(Rix)χS(Rix) = o(N log(N))

and
N−1∑
i=0

g′(Rix)χS(Rix) = o(N2 log(N)
1
3 ).

Proof. Denjoy-Koksma gives that the sum of

g(x)χ[〈〈qn`
α〉〉,1)(x)

over an orbit of length qn`
is at most

(5.0.1) O(qn`
log qn`+1 + qn`+1) = O(qn`

log qn`+1) =

O(qn`
log((an`+1 + 1)qn`

)) = O(qn`
log qn`

).

The last equality follows because an`
+ 1 = o(qn`

). Note that, by
the separation property in Theorem 2.2, each orbit of length qn`+1 >
an`+1qn`

can hit each interval of S at most once. A point x as in the
lemma stays outside of S for time at least

√
an`+1qn`

, then makes a
pass through S, then stays outside of S for time at least qn+1 − qn >√
an`+1qn`

(Assumption 4), then makes a pass through S, etc. (We
refer to a pass through S as an orbit segment that hits each interval of
S exactly once.) Therefore, if the orbit makes m−1 full passes through
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S, plus possibly a final partial pass through, then by (5.0.1), the first
sum in the lemma statement is at most

mO(qn`
log qn`

),

while N is at least

m
√
an`+1qn`

.

So N logN is at least

m
√
an`+1qn`

log(qn`
),

whence the result follows by Assumption 4.
Similarly, Denjoy-Koksma gives that the sum of

g′(x)χ[〈〈qn`
α〉〉,1)(x)

over an orbit of length qn`
is at most

O(qn`
qn`+1 + q2n`+1) = O(a2n`+1q

2
n`

).

As before, if the orbit makes m−1 full passes through S, plus possibly
a final partial pass though, then the sum is at most

mO(a2n`+1q
2
n`

),

while N is at least

m
√
an`+1qn`

.

So N2(logN)
1
3 is at least

m2an`+1q
2
n`

log(qn`
)
1
3 ,

whence the result follows by Assumption 5. �

6. Birkhoff sums for the skew product T

We now define a function f : S1 × Z2 → R, which will serve as
the roof function for a suspension flow over T . Recall that d denotes
distance on S1 × Z2. Also note that

T (x, j) = (R(x), j + χJ(R(x)))

has discontinuities at R−1(0) × Z2 and R−1(|J |) × Z2. We will define
f to have logarithmic singularities over these discontinuities, as well as
an additional logarithmic singularity over (0, 1) ∈ S1 × Z2.

f(x, j) = 1 + | log(d(x,R−1(0)))|
+ | log(d(x,R−1(|J |)))|
+ χ{1}(j) · | log(d(x, 0))|
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Let λ denote Lebesgue probably measure on S1×Z2. In the next the-
orem we continue to use the notational convention described in Remark
5.3.

Theorem 6.1. For all large enough M there exists G(M) ⊂ S1 × Z2

such that the following hold.

(1) G(M) is the disjoint union of intervals of length at least 2

M
√

log(M)
.

(2) λ(G(M))→ 1.
(3) For any N with N ∈ [M

2
, 2M ] and for any p ∈ G(M), either

N−1∑
i=0

f ′(T ip)−N log(N) = o(N logN)

or
N−1∑
i=0

f ′(T ip) +N log(N) = o(N logN).

(4) For any N with N ∈ [M
2
, 2M ] and for any p ∈ G(M),

N−1∑
i=0

f ′′(T ip) = o(log(N)
1
3N2).

(5) For any k < 2M and p ∈ G(M),

k+5
√

log(M)∑
i=k

∣∣f ′(T ip)∣∣ = o(M
√

log(M)).

(6) T i is continuous on each interval of G(M) for all 0 ≤ i ≤
2M + 5

√
log(M).

The most important conditions are the first three. In the third, it is
implicit that the sign is constant on each interval in G(M).

Remark 6.2. In Theorem 6.1 we continue to use the notational conven-
tion described in Remark 5.3, now with M as the main variable. For
example, part (3) of this theorem asserts that

Q =
N−1∑
i=0

f ′(T ip)±N log(N)

is o(Ψ) with Ψ = N logN , which means that for all ε > 0 there exists a
M0(ε) such that when M ≥M0(ε) then |Q| ≤ ε|Ψ| for all N ∈ [M

2
, 2M ]

and p ∈ G(M). For clarity, explicitness, if M > M0(ε), then for any

N ∈ [M
2
, 2M ] and p ∈ G(M) we have |

∑N−1
i=0 f ′(T ip) − N log(N)| <

εN log(N) or |
∑N−1

i=0 f ′(T ip) +N log(N)| < εN log(N).
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Proof. Pick ` such that qn`
< M

2
< qn`+1

. Let QM ⊂ S1 be the points

within distance 1

M(logM)
1
12

of the (projections to S1 of) singularities of

f . Define the “bad set” in S1 to be

BS1(M) =

2M+5
√

log(M)⋃
i=0

R−i(QM)

∪
2M+5

√
log(M)⋃

i=0

R−i(∪∞j=`+1Jj)

∪

√
an`+1qn`⋃
i=−qn`

R−i(J ′`).

Set B(M) = BS1(M) × Z2. The complement of the bad set B(M)c is
a union of disjoint intervals. We define the good set G(M) to be the
union of all those intervals in B(M)c of length at least 2

M
√

log(M)
.

Remark 6.3. We chose the neighborhood of the discontinuities in the
definition of QM to be 1

N(log(N))1/12
so that first the measure will be

negligible and second, so that(
1

N(log(N))1/12

)−1
= o(N log(N)) = o(M

√
log(M))

and
(

1
N(log(N))1/12

)−2
= o(N2 log(N)1/3). These are used in estimates

that invoke Corollary 5.4 in the proofs of Claims 3, 4 and 5.

Remark 6.4. The “extra” 5
√

log(M) in the expression 2M+5
√

log(M)
above is not needed in this section, but will be convenient in Section
8, for example in Lemma 8.2.

Claims (1) and (2): Recall that ∪∞j=`+1Jj is an interval of size

∞∑
k=`+1

2〈〈qnk
α〉〉 ≤

∞∑
k=`+1

2

qnk+1

≤ 4

qn`+1+1

by the exponential growth of the qnk
, for example by Assumption 3.

Since M
2
< qn`+1

, Assumption 4 gives that 4
qn`+1+1

= o(1/M). Hence

the measure of the second union in BS1(M) goes to zero.
The third union has size at most three times√

an`+1qn`

qn`+1

=

√
an`+1qn`

an`+1qn`
+ qn`−1

→ 0
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by Assumption 4.
The first union obviously has size o(1), so in total we see that B(M)c

has measure 1 − o(1). Note also that B(M) is the disjoint union of
O(M) intervals. It remains only to show that the subset covered by
intervals of length at least 2

M
√

log(M)
has measure going to 1. This is

true since the complement has measure at most O

(
M

M
√

log(M)

)
= o(1)

(the total number of such intervals, times max length).

Claim (3): Let g(x) = 1/〈〈x〉〉, so for example g(−0.1) = 10
9

. The
difference between f ′(x, j) and

g(−x+R−1(0)))− g(x−R−1(0))

+g(−x+R−1(|J |))− g(x−R−1(|J |))
+χ{1}(j)g(1− x)− χ{1}(j)g(x)

is a bounded function, whose first and second derivatives are bounded.
Since the derivatives of the difference are bounded, the N th Birkhoff
sum of the difference is O(N), and so it suffices to prove claims (3),
(4) and (5) for this function. If x ∈ G(M), we show that Corollary 5.4
gives that the N th Birkhoff sums of the function

g(−x+R−1(0))− g(x−R−1(0))

+ g(−x+R−1(|J |))− g(x−R−1(|J |))

and its derivative are sufficiently small that they may be ignored. In-
deed, the consecutive terms have that the N log(N) terms appear with
opposite signs and by our assumption on the set G(M) the other terms
are o(N log(N)). In particular, the first term in the union defining

BS1(M) means that gN is at most N log(N)
1
12 .

So it remains to consider Birkhoff sums of

χ{1}(j)g(−x)− χ{1}(j)g(x),

for x /∈ BS1(M). By Lemma 5.6 it suffices to study Birkhoff sums
instead of the function

(6.0.1) (χ{1}(j)g(−x)− χ{1}(j)g(x))χ(0,〈〈qn`−1
α〉〉]∪[1−〈〈qn`−1

α〉〉,1)(x).

The assumption that

BS1(M) ⊃
2M+5

√
log(M)⋃

i=0

R−i(∪∞j=`+1Jj)

implies that the orbit of p of length 2M stays in either U` or V`.
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Remark 6.5. This will allow us to understand the Birkhoff sum of p ∈
G(M) by leveraging understanding how V` and U` are distributed. Our
argument will not directly reference the non-minimal approximants T`
discussed in Section 4, but instead will use estimates from Section 5
together with results from Section 4 on the sets V` and U`.

We now prove the following estimate for points (x, j) ∈ V` ∩G(M),
(6.0.2)

N−1∑
i=0

g(Ri(x))χ[0,〈〈qn`−1
α〉〉)×{1}(T

i(x, j)) = N log(N) + o(N logN),

by explaining how this estimate can be deduced from Corollary 5.4,
Lemma 5.6, and Lemma 5.8.

Indeed, first note that our assumption that

BS1 ⊃
2M+5

√
log(M)⋃

i=0

R−i(QM)× Z2

implies that Rix /∈ QM for 0 ≤ i ≤ N and so

gN(x) = O(M(logM)
1
12 ) = o(N log(N)).

So Corollary 5.4 and Lemma 5.6 imply that

(6.0.3)
N−1∑
i=0

g(Ri(x))χ[0,〈〈qn`−1
α〉〉)(R

i(x)) = N log(N) + o(N logN).

Next, recall that, as we remarked above, the orbit of (x, j) up to
time 2M remains in V`.

Finally, denote by S the the projection of(
[0, 〈〈qn`−1

α〉〉)× {1}
)
\ V`

to S1, and note that the difference between the left hand side of (6.0.3)
and the left hand side of (6.0.2) is

(6.0.4)
N−1∑
i=0

g(Ri(x))χS(Rix).

So to prove equation (6.0.2), it remains to show that (6.0.4) is o(N logN).
Recall that Theorem 4.4 asserts that

(1) V` contains all of [0, 〈〈qn`
α〉〉)× {1}, (Conclusion (1)) and

(2) V` contains all of [0, 〈〈qn`−1
α〉〉) × {1} except a set that is the

orbit of length qn`
of an interval of size 〈〈qn`

α〉〉. ( Using that
[0, 〈〈qn`−1

α〉〉) ⊂ V`−1 and Conclusion (2). The interval is J ′`.)
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So the S defined above satisfies the assumption on S in Lemma 5.8.
Because

BS1(M) ⊃

√
an`+1qn`⋃
i=−qn`

R−i(J ′`),

(x, j) ∈ G(M) implies that x satisfies the assumption on the point in
Lemma 5.8. (Note that S = ∪0i=−(qn`

−1)R
−iJ ′`.) So if (x, j) ∈ G(M)∩V`,

then Lemma 5.8 implies that (6.0.4) is o(N logN), which concludes the
proof of (6.0.2).

Similarly one obtains:

(6.0.5)
N−1∑
i=0

g(−Rix)χ[1−〈〈qn`−1
α〉〉,1)×{1}(T

i(x, j)) = o(N logN).

Indeed, by Theorem 4.4, V` is disjoint from [1− 〈〈qn`−1
α〉〉, 1)× {1}

except an orbit of length qn`
of an interval of size 〈〈qn`

α〉〉. Furthermore,
by Lemma 4.2, this orbit of length qn`

of an interval of size 〈〈qn`
α〉〉 is

disjoint from [1− 〈〈qn`
α〉〉, 1)× {1}. So by a corresponding version of

Lemma 5.8 for the function ĝ(x) = 1
1−x the estimate follows.

Combining (6.0.2) and (6.0.5) implies the desired estimate on (6.0.1)
for (x, j) ∈ V` ∩G(M). The case (x′, j′) ∈ U` ∩G(M) is similar and we
now sketch it to conclude the proof of Claim (3). First, we establish
(6.0.6)
N−1∑
i=0

g(−Rix′)χ[1−〈〈qn`−1
α〉〉,1)×{0}(T

i(x′, j′)) = N log(N) + o(N log(N)).

Symmetrically to the above, [1−〈〈qn`−1
α〉〉, 1)×{1} is contained in U`

except an orbit of length qn`
of an interval of size 〈〈qn`

α〉〉. Furthermore,
by Lemma 4.2, this orbit of length qn`

of an interval of size 〈〈qn`
α〉〉

is disjoint from [1 − 〈〈qn`
α〉〉, 1) × {1}. So by a corresponding version

of Lemma 5.8 for the function ĝ(x) = 1
1−x we have (6.0.6). Now by

symmetry,

N−1∑
i=0

g(Rix′)χ[0,〈〈qn`
α〉〉)×{1}(T

i(x′, j′)) =
N−1∑
i=0

g(Rix′)χS(Rix′)

which we have seen is o(N log(N)). This completes Claim (3).
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Claim (4): The proof of claim (4) is very similar to that of claim (3).

Claim (5): It suffices to bound the Birkhoff sums of

g(−x+R−1(0)))− g(x−R−1(0))

+ g(−x+R−1(|J |))− g(x−R−1(|J |))
+ g(1− x)− g(x)

which is strictly larger than |f |. Thus Corollary 5.4 gives the bound,

since the closest hit term contributes at most M(logM)
1
12 , and the

usual main term is of lower order because the orbit segment has length√
M .

Claim (6): This follows because B(M) contains all points that orbit

into a discontinuity in 2M + 5
√

log(M) iterates of T . �

7. Unique ergodicity

Proposition 7.1. T is uniquely ergodic.

It is likely that this theorem can be derived from work of Treviño
[Tre14, Theorem 3]. (To do this one would find a flat surface ω where
T arises as a first return map of the vertical flow. One would then
determine the systoles of gtω.) We apply a different approach.

Skew products such as T , of circle rotations, skewed over intervals,
arise in the study of genus 2 translation surfaces that are covers of tori
branched over two points, and their ergodicity has been extensively
studied; see for example [CHM11] and the references therein.

Define

(7.0.1) Sk =

qnk−1−1⋃
i=0

Ri(J ′k)× Z2.

By Assumption 9,

1

3
qnk

=
1

3
(2qnk−1 + qnk−2) < qnk−1 <

1

2
qnk

.

If p ∈ Sk, then p is either in Uk ∩ Vk−1 or Vk ∩ Uk−1, and by the last
inequality and Theorem 4.4 part 2, the orbit of p for time at least qnk−1
remains either exclusively in Uk ∩ Vk−1 or exclusively in Vk ∩ Uk−1.

Recall that the length of J ′k is

(7.0.2) 〈〈qnk
α〉〉 ≥ 1

2qnk+1

≥ 1

3qnk
ank+1

.

Remark 7.2. By Assumption 6 and the inequality above, this gives that
the sum of the measures of the Sk is infinite, but lim

k→∞
λ(Sk) = 0.
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Let λS1 denote Lebesgue measure on S1.

Lemma 7.3. There exists C > 0, n0 such that for L 6= k both at least
n0,

λ(Sk ∩ SL) ≥ Cλ(Sk)λ(SL).

Proof. Without loss of generality, we assume L > k. By definition,
the projection of Sk to S1 is an orbit of length qnk−1 of an interval of
size 〈〈qnk

α〉〉, and the projection of SL is an orbit of length qnL−1 of an
interval of size 〈〈qnL

α〉〉.
Thus it suffices to show that there is some C > 0 such that if Ik is

an interval of size 〈〈qnk
α〉〉, then for any x,

qnL−1−1∑
i=0

χIk(Ri(x)) ≥ CqnL−1λS1(Ik).

The desired result then follows by summing as Ik ranges over the in-
tervals of Sk, and integrating x over an interval of size 〈〈qnL

α〉〉.
We now prove the sufficient condition. By Denjoy-Koksma, the sum

is within 2 of qnL−1λS1(Ik). Observing

qnL−1λS1(Ik)− 2

qnL−1λS1(Ik)
≥ 1− 2

qnL−1〈〈qnk
α〉〉

≥ 1− 2qnk+1

qnL−1

≥ 1− 6qnk+1

qnk+1

→ 1

gives the result. In the last line, we used L > k, qnL−1 >
1
3
qnL

and
Assumption 8.

�

Proposition 7.4. To prove that T is uniquely ergodic, it suffices to
show for λ almost every x we have that for each i, (x, i) is in Sk for
infinitely many k.

This will be proved by showing that ergodic measures are absolutely
continuous with respect to Lebesgue and points that are in infinitely
many Sk cannot be generic for an ergodic measure unless the ergodic
measure is Lebesgue.

Lemma 7.5. If T is not uniquely ergodic then there exist exactly two
ergodic probability measures µ, ν with µ = ι(ν), and λ = µ + ν, and
both µ and ν are absolutely continuous with respect to Lebesgue.
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Proof. Suppose ν is an ergodic measure that is not Lebesgue. Let
µ = ι(ν). Since ι commutes with T , µ must also be ergodic. If µ = ν,
then µ is ι invariant and hence must be Lebesgue, since R is uniquely
ergodic.

Since µ+ν is ι invariant and R is uniquely ergodic, λ = µ+ν. Hence
µ and ν are absolutely continuous with respect to Lebesgue.

If T had a third ergodic measure ν ′, then µ′ = ι(ν ′) would also be
ergodic, and we’d have µ′ + ν ′ = µ+ ν. This contradicts uniqueness of
ergodic decompositions. �

Lemma 7.6. Uk is the union of o(qnk+1
) disjoint intervals. The same

result holds with Uk replaced by Vk.

Proof. By the inductive definition of Uk, it is clear that Uk is the union

of at most O
(∑k

i=1 qni

)
disjoint intervals. Thus it suffices to show that∑k

i=1 qni
is o(qnk+1

). To do so, note the following crude estimate,

qnk+1
> qnk+1 > ank+1qnk

.

Note also that by Assumption 3,

k∑
i=1

qni
= qnk

+
k−1∑
i=1

qni
< 2qnk

.

Thus Assumption 4 gives the result. The argument for Vk is symmetric.
�

Lemma 7.7. Let A ⊂ S1 × Z2 be any measurable set. For any ε > 0,

lim
k→∞

λ

(x, j) ∈ Uk :

∣∣∣∣∣∣ 1

qnk

qnk
−1∑

i=0

χA(T ik(x, j))− λ(A ∩ Uk)

∣∣∣∣∣∣ > ε


 = 0.

The same result is true with Uk replaced by Vk.

Note that Tk appears in the statement, not T .

Proof. It suffices to show this statement for A an interval, since A can
be approximated by a union of intervals.

Let Ak be the projection of A ∩ Uk to S1. Since Uk is Tk invariant
and projects bijectively to S1, the lemma is equivalent to

lim
k→∞

λ

x ∈ S1 :

∣∣∣∣∣∣ 1

qnk

qnk
−1∑

i=0

χAk
(Ri(x))− λ(Ak)

∣∣∣∣∣∣ > ε


 = 0.

Note that since the measure of the symmetric difference of Uk and
Uk−1 goes to zero, because its projection to S1 is Sk (Remark 7.2),
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the measure of the symmetric difference of Ak and Ak−1 must go to
zero too.

Thus |χAk
− χAk−1

| has L1 norm going to zero, so the set of points
where the Birkhoff sums for χAk

and χAk−1
at time qnk

differ by more
than ε/2 goes to zero (simply because a function with small L1 norm

can’t be big very often: λ({x : f(x) > C}) < ‖f‖1
C

). Hence, it suffices
to show the equivalent result with Ak replaced by Ak−1 and ε replaced
by ε/2.

By the previous lemma, the set A∩Uk−1 is a disjoint union of o(qnk
)

disjoint intervals, and hence χAk−1
has total variation o(qnk

). The state-
ment is now implied by Denjoy-Koksma for the function χAk−1

. �

The proof of Proposition 7.4 will consist of two main steps. Step 1 is
to show that if µ is an ergodic measure other than λ it is without loss
of generality the weak-* limit of the uniform measure on the Uk. Step
2 is to show that if (x, i) is in Sk for infinitely many k it can not be a
generic point for µ.

Proof of Proposition 7.4. Step 1: Assume that λ is not uniquely er-
godic. Then Lemma 7.5 gives two ergodic measures µ and ν. Let A be
a T invariant set such that µ(A) = 1 and ν(A) = 0. Let ε > 0.

We claim that for k sufficiently large

λ(Uk ∩ A) > 1− 3ε and λ(Vk ∩ A) < 3ε

or

λ(Uk ∩ A) < 3ε and λ(Vk ∩ A) > 1− 3ε.

We proceed by contradiction, assuming there exists an infinite sequence
of ki so that

3ε < λ(Uki ∩ A) < 1− 3ε.

By Lemma 7.7 we have that if ki is large enough,

λ

(x, j) ∈ Uk ∩ A :

∣∣∣∣∣∣ 1

qnki

qnki
−1∑

`=0

χA(T `ki(x, j))− λ(A ∩ Uk)

∣∣∣∣∣∣ < ε




> 3ε− ε = 2ε.

For all large enough k we have that

λ({(x, j) : T `(x, j) 6= T `k(x, j) for some 0 ≤ ` ≤ qnk
}) < ε.

Indeed, this set consists of qnk
intervals of length λ(∪∞`=k+1J

′
`), so its

measure goes to zero by Inequality (7.0.2) and Assumption 4.
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So, for all large enough i, for a set of points in A of measure at least
ε, we have

qnki
−1∑

`=0

χA(T `(x, j)) ∈ (3ε− ε, 1− 3ε+ ε).

This contradicts the T invariance of A.
Since lim

k→∞
λ(Uk−1∆Uk) = 0 the property that λ(Uk ∩ A) is almost 0

or almost 1 is eventually constant (in k). Without loss of generality,
suppose λ(Uk ∩ A) > 1 − 2ε for all large enough k. Since this is true
for all ε > 0, and since µ projects to Lebesgue, it follows that µ is the
weak-* limit of the uniform measure on the Uk.

Step 2: Let p = (x, i) be a point that is µ generic and that is
contained in infinitely many S`. Thus there are infinitely many times
` for which the orbit of p is disjoint from U` for time qn`+1−1. (As
we remarked at the beginning of this section, this is the case when
p ∈ S`+1 ∩V` ∩U`+1. Note the “index shift” by one: to get disjointness
from U` for a long time, we use points in S`+1.)

By the existence of a density point for the set A, there must be some
interval I ∈ S1 × Z2 such that µ(I) ≥ 0.99λ(I). Hence for large k, Vk
contains at most 0.1 of the λ measure of I. The projection of Vk ∩ I to
S1 thus has measure at most 0.1λ(I), and consists of o(qnk+1

) intervals
(Lemma 7.6). Now assume the orbit segment of length of qnk+1−1 of
(x, i) is disjoint from Uk. Because qnk+1−1 >

1
3
qnk+1

by Denjoy-Koksma,
the orbit of x up to time qnk+1−1 spends at most 0.2λ(I) of its time in
the projection of I to S1.

Hence

lim inf
N→∞

1

N

N−1∑
i=0

χI(T
ip) ≤ .2λ(I),

since
∑N−1

i=0 χI(T
ip) is bounded by a Birkhoff sum of the characteristic

function of the projection of I ∩ Vk to S1.
Thus for p, the liminf of the Birkhoff sums of χI is at most 0.2λ(I),

which is a contradiction to Birkhoff’s ergodic theorem, and the facts
that p is µ generic and µ(I) ≥ 0.99λ(I). �

Before completing the proof of Proposition 7.1, we first require a well
known and straightforward result, whose proof is included for conve-
nience:

Lemma 7.8 (Quasi-indendent Borel-Cantelli). Let Ai be measurable
subsets of a space with a measure λ of total mass 1. If there exists
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C > 0 such that λ(Ai∩Aj) > Cλ(Ai)λ(Aj) and
∑∞

i=1 λ(Ai) =∞, then

λ
( ∞
∩
n=1

∞
∪
i=n

Ai

)
> 0.

Proof. Let BN,M = ∪Mi=NAi. If
∑M

i=N λ(Ai) <
1
2C

then for any j /∈
[N,M ] we have that

λ(Aj \BN,M) ≥ λ(Aj)−
N∑
i=M

Cλ(Aj)λ(Ai) >
1

2
λ(Aj).

Because
∑
λ(Ai) = ∞, we have λ(BN,∞) ≥ 1

4C
for all N . Because

we are in a finite measure space it follows that
∞
∩
n=1

∞
∪
i=n

Ai has positive

measure, which proves the claim. �

Proof of Proposition 7.1. Now we complete the proof of the proposi-

tion. By Lemmas 7.3 and 7.8, we have λ
( ∞
∩
n=1

∞
∪
i=n

Si

)
> 0. Thus the set

of points in infinitely many Sk has positive Lebesgue measure. Note
(x, i) ∈ Sk depends only on x and being in infinitely many Si is almost
everywhere R invariant. This is because the difference between Si and
T (Si) is at most two intervals of size 〈〈qni

α〉〉, so the difference between
∞
∩
n=1

∞
∪
i=n

Si and T
( ∞
∩
n=1

∞
∪
i=n

Si

)
has size bounded by

∑∞
j=i 2〈〈qnj

α〉〉 for all i

and hence must be measure zero. Indeed, T
( ∞
∩
n=1

∞
∪
i=n

Si

)
=
∞
∩
n=1

∞
∪
i=n

T (Si)

and
∞
∩
n=1

∞
∪
i=n

Si \
( ∞
∩
n=1

∞
∪
i=n

T (Si)
)
⊂ ∪∞i=jSi \ T (Si) for all j.

So, by the ergodicity of R, almost every point is in infinitely many
Si. By Proposition 7.4 this completes the proof. �

8. Mixing of the suspension flow

The purpose of this section is to prove Theorem 1.2, by proving that
the flow over T with roof function f , which we denote F t : Z → Z,
is mixing. This section shows that if T is a multi-interval exchange
transformation that is ergodic with respect to Lebesgue measure, and
f is an integrable function with f(x) ≥ 1 for all x, and such that
f and T satisfy Theorem 6.1, then the suspension flow over T with
roof function f is mixing. The fact that estimates like Theorem 6.1 are
sufficient for mixing is standard, see for example the sufficient condition
for mixing in [Koc03, Theorem 2.1]. See also [Ulc07,Rav17].

Lemma 8.1. For all large enough M , there is a set I(M) of disjoint
subintervals of G(M) such that each interval has size between 1

M
√

log(M)
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and 2

M
√

log(M)
, and consists entirely of points p so that whenever N ∈

[1
2
M, 2M ] we have

3

4
NC ≤

N−1∑
i=0

f(T ip) ≤ 4

3
NC,

where C =
∫
f , and such that the union of the intervals of I(M) has

measure going to 1.

Proof. For all large enough M , G(M) is the disjoint union of intervals
of length at least 2

M
√

log(M)
and it can be divided into disjoint intervals

of length between 1

M
√

log(M)
and 2

M
√

log(M)
. Let I(M) be the set of

these disjoint intervals and consider I ∈ I(M).

By Theorem 6.1 (5), if p ∈ G(M), then |f ′(T ip)| = o(M
√

log(M))

for all 0 ≤ i ≤ 2M+5
√

log(M). Since the poles of f ′ are of the form 1
x
,

it follows that if p ∈ G(M), then T ip avoids at 1

M
√

log(M)
neighborhood

of the singularities of f for 0 ≤ i ≤ 2M + 5
√
M . Let B denote the

1

M
√

log(M)
neighborhood of the singularities of f . Because the poles of

f are logarithmic,

Var(f |Bc) = O(log(M log(M)
1
2 )) = O(log(M)).

By an argument as in Corollary 5.4, for any N ∈ [1
2
M, 2M ] we have

N∑
i=0

f(T ip)−N
∫
f = O(log(N)2).

The Mean Value (which we may apply because by our construction

of G(M),
∑2M−1

i=0 f ◦ T i is continuous on I) and Theorem 6.1 part (3)
give that if p satisfies the above bound, then all points in I (which by
definition of I(M) have distance at most 2

M
√

log(M)
to p) satisfy the

weaker bound in the lemma statement for M large enough. �

We now wish to study the curve FCM(I), where I is a fixed interval
in I(M). To this end, if p ∈ I, let N(p,M) denote the unique integer
such that

N(p,M)−1∑
i=0

f(T ip) ≤ CM <

N(p,M)∑
i=0

f(T ip).

So N(p,M) is the number of times F t(p) returns to the base up to time
t = CM , counting t = 0. In the remainder of the section we will write
N(p) in place of N(p,M) because M will be clear from context.
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Lemma 8.2. For M large enough, for every interval I ∈ I(M) and
any point (p, y) ∈ Z with p ∈ I,

FCM(I)

over the interval I 3 p lies within o(1) of a segment of a vertical tra-

jectory of length between
√

log(M)/4 and 5
√

log(M). Moreover, this
is true in a parametrized sense: the graph is piecewise C1 with slope
within o(M

√
log(M)) of a constant sM,I at every point.

Remark 8.3. In Lemma 8.2, the variable M plays the role of the “main”
variable in the o(·) notation, which was denoted N in Remark 5.3.

Proof. In this proof we assume p ∈ I. The previous lemma gives that∑ 1
2
M+1

i=0 f(T ip) < CM and
∑2M−1

i=0 f(T ip) > CM and so we may as-
sume 1

2
M ≤ N(p) ≤ 2M .

Because F t is the flow over the piecewise isometry T with roof func-
tion f , which is differentiable on T i(I) for all 0 ≤ i ≤ 2M , the vertical
length of FCM(I) is ∫

I

N(p)−1∑
i=0

f ′(T ip)dp,

which, using Theorem 6.1 (3), that I is an interval in G(M), of length
at most 2

M
√

log(M)
, and N(p) ≤ 2M , has size at most

∫
I

(∣∣∣∣∣
2M∑
i=0

f ′(T ip)dp

∣∣∣∣∣
)
≤ 2

2M log(2M) + o(2M log(M))

M
√

log(M)

≤ 5
√

log(M)

for M sufficiently large.
Similarly, because N(p) ≥ 1

2
M, if M is sufficiently large∣∣∣∣∣∣

∫
I

N(p)−1∑
i=0

f ′(T ip)dx

∣∣∣∣∣∣ ≥
1
2
M log(1

2
M) + o(M log(M))

M
√

log(M)
>

√
log(M)

4
.

Now, since FCM(I) has length at most 5
√

log(M), and the roof
function f is always at least 1, it follows that FCM(I) can hit the base

at most 5
√

log(M) times. That is, if p and p′ are any two points in I,
then

(8.0.1) |N(p)−N(p′)| ≤ 5
√

log(M).
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Now let N = N(p) for any point p ∈ I, and let p′ ∈ I be another
point. Define

s =

N(p)−1∑
i=0

f ′(T ip).

By Theorem 6.1 part (3) we have s = ±N log(N) + o(N logN). By
Theorem 6.1 part (4) and the Mean Value Theorem, (which we may

apply because by our construction of G(M),
∑j

i=0 f ◦ T i is continuous
and differentiable on I for any 0 ≤ j ≤ 2M) we have that∣∣∣∣∣∣s−

N(p)−1∑
i=0

f ′(T ip′)

∣∣∣∣∣∣ ≤ 2o(log(N)
1
3N2)

M
√

log(M)
≤ o((log(N))

1
3
− 1

2N)

and by (8.0.1) and Theorem 6.1 part (5) we have∣∣∣∣∣∣
N(p′)−1∑
i=0

f ′(T ip′)−
N(p)−1∑
i=0

f ′(T ip′)

∣∣∣∣∣∣ = o(N
√

log(N)).

We get that the given graph is piecewise C1 with slope within o(M
√

log(M))
of s at every point. This completes the proof (with sM,I this s). �

Let Λ denote 2 dimensional Lebesgue probability measure on Z, the
suspension of T by f . Let R be a rectangle, by which we mean a
rectangle contained strictly under the graph of f . Say that a point
(p, y) ∈ Z is (L, ε, R) good if every vertical line V through (p, y) of
length at least L has

|mV (V ∩R)− Λ(R)| ≤ ε,

where mV is the 1 dimensional Lebesgue probability measure on V .

Lemma 8.4. For fixed ε and R, the set of points that are (L, ε, R) good
has measure going to 1 as L→∞.

Proof. This follows from ergodicity of the flow. �

Lemma 8.5. Let R and R′ be two rectangles. Then

lim
t→∞

Λ(R ∩ F t(R′))→ Λ(R)Λ(R′).

Proof. Let ε > 0 be arbitrarily small and in particular much smaller
than the height and width of R. Let Rs be the set of points in R that
have distance at least ε/50 to the boundary of R, and let Rb be an ε/50
neighbourhood of R. (“s” and “b” stand for “smaller” and “bigger”.)

Let H denote the y-coordinate of the top edge of R′. For notational
simplicity, we assume the bottom edge of R′ has y-coordinate 0. (The
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general case is analogous.) Define DL to be the set of points (p, y)
such that all F h(p, y) with 0 ≤ h ≤ H are both (L, ε/100, Rs) and
(L, ε/100, Rb) good. Pick L large enough such that DL has Λ-measure
at least 1− ε/100.

Let M0 be large enough so that

• for all M ≥M0 we have
√

log(M)/4 > max(L,H),
• the o(1) error in Lemma 8.2 is less than ε/100,
• the union of the intervals in I(M) has λ-measure at least 1 −
ε/100,
• the error in Theorem 6.1 parts (3) and (5) are less than ε/1000,
• 2H/(M0

√
logM0) < ε/1000

Claim. If t ≥ 10CM0, M = b t
C
c, I ∈ I(M) and there exists p ∈ I

such that F tp ∈ DL , then for any 0 ≤ h ≤ H we have∣∣∣∣ 1

λ(I)

∫
I

χR(F t+hp)dp− Λ(R)

∣∣∣∣ < ε/10.

Proof of claim. By Lemma 8.2, there exists a vertical trajectory, V0

through FCMp, that approximates FCM(I), as a parametrized curve, to
within ε/100. Now, 0 ≤ t+h−CM ≤ h+C and so by using Theorem
6.1 (5) and the Mean Value Theorem we have that the vertical line
V = F h+t−CM(V0) approximates FCM+h+(t−CM)(I), to within ε/50,
and observe

mV (Rs ∩ V ) ≤ 1

λ(I)

∫
I

χR(F t+hp)dp ≤ mV (Rb ∩ V ).

Since F tp ∈ DL, the claim has been established.
Now consider (p, y) ∈ R′. Let t > 10CM0 and let M = b t

C
c. Set

Pt = F−t(DL) ∩ {(p, y) ∈ Z : p ∈ I for some I ∈ I(M)}.

Let IR′(M) = {I ∈ I(M) : I ⊂ R′} and observe that this occu-
pies most of the bottom horizontal segment of R′ (for large M) and
what is missing is contained in G(M)c. Similarly, for 0 ≤ h ≤ H,
∪I∈IR′ (M)F

h(I) occupies most of the horizontal coordinate h slice of
R′.

Λ(R ∩ F tR′) =
∑

I∈IR′ (M)

∫ H

0

∫
I

χR(F tF hp)dpdh+O (Hλ (G(M)c)) .
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Furthermore,

Λ(R ∩ F tR′) =

∫ H

0

∑
I∈IR′ (M):FhI∩Pt 6=∅

∫
I

χR(F tF hp)dpdh+

O (Hλ (G(M)c)) +O(Λ(Dc
L)).

Applying the claim, we have that for each summand, the inside integral
is λ(I)Λ(R) +O(ελ(I)). This establishes the lemma.

�

Since it is enough to prove mixing for rectangles, this proves Theorem
1.2.

9. A mixing flow on a surface with non-degenerated
fixed points

As we remarked after the statement of Theorem 1.2, the T and f
constructed thus far do not satisfy the technical conditions to corre-
spond to a smooth flow. In this final section, we modify them to prove
Theorem 1.1.

Define x∞ = α−
∑∞

i=1〈〈qni−1α〉〉 and xk = α−
∑k

i=1〈〈qni−1α〉〉. We
now define another IET

T̂ : S1 × Z2 × Z2 → S1 × Z2 × Z2

by

T̂ (x, i, j) = (R(x), i+ χJ(R(x)), j + χJ+x∞(R(x))).

Recall the J is defined at the start of Section 4. The key observation
about T̂ is that its restriction to the first and second coordinates is T ,
and its restriction to the first and third coordinates is a “translate”
of T by x∞. Our choice of x∞ was motivated by the proof of Theo-
rem 9.5 below, which gives that T̂ is uniquely ergodic. Observe that
Assumption 2 implies that the intervals J and x∞ + J are disjoint.

Define the roof function

f̂(x, i, j) = 1 + | log(d(x,R−10))|+ | log(d(x,R−1|J |)|
+ | log(d(x,R−1x∞))|+ | log(d(x,R−1|J |+ x∞))|
+ χ{1}(j)| log(d(x,R−10))|.

The first two lines put logarithmic singularities of equal weight (co-

efficient) over all discontinuities of T̂ , and the third line introduces
additional weight to the singularity over one pair of the discontinuities.

The purpose of this section is to show

Theorem 9.1. The flow over T̂ with roof function f̂ is mixing.
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At the end of this section, we will use this to conclude Theorem 1.1.

Non-minimal approximants. Define

T̂`(x, i, j) = (R(x), χ[0,
∑`

k=1 2〈〈qnk
α〉〉)(R(x)), χ[0,

∑`
k=1 2〈〈qnk

α〉〉)+x∞(R(x))).

Define the following subsets of S1 × Z2 × Z2,

U1
k = {(x, i, j) : (x, i) ∈ Uk}, V 1

k = {(x, i, j) : (x, i) ∈ Vk},
U2
k = {(x, i, j) : (x− x∞, j) ∈ Uk}, V 2

k = {(x, i, j) : (x− x∞, j) ∈ Vk}.
Recall that Uk and Vk are defined after Lemma 4.1. A corollary of

Lemma 4.3 is the following.

Corollary 9.2. The above four sets are all T̂k invariant.

Note that all of the sets

U1
k ∩ U2

k , U1
k ∩ V 2

k , V 1
k ∩ U2

k , V 1
k ∩ V 2

k

are invariant and project bijectively to S1. Since R is minimal, we
see that each of these four sets is minimal. Since S1 × Z2 × Z2 is the
disjoint union of these four sets, the minimal components of T̂k are
exactly these four sets.

Before we continue, we note some estimates.

Lemma 9.3. The following hold for all large enough `.

(1) 〈〈qn`−1α〉〉 > 4〈〈qn`
α〉〉.

(2) d(x`, x∞) < 1
2
〈〈qn`

α〉〉.
(3) If N = 1 +

∑`
i=0 qni−1, then 1

3
qn`
≤ N < qn`

.

Proof. The first claim follows from Theorem 2.2, since

〈〈qn`−1α〉〉 >
1

2qn`

>
4

qn`+1

> 4〈〈qn`
α〉〉,

where we have used that, given our assumptions, qn`+1 > 8qn`
.

The second claim follows from the fact that

d(x`, x∞) =
∞∑

k=`+1

2 |〈〈qnk−1α〉〉|

≤
∞∑

k=`+1

2

qnk

≤ 4

qn`+1

≤ 1

2
〈〈qn`

α〉〉

and the exponential growth of the qj (compare to the start of proof of
Theorem 6.1).

The upper bound in the third claim follows by noting that As-
sumption 3 from Section 3 gives that qn`−1

≥
∑`−1

i=1 qni−1 and so N <
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qn`−1
+ qn`−1. The lower bound is obtained by noting N ≥ qn`−1 and

qn`
≤ (an`

+ 1)qn`−1 and then using Assumption 9. �

Unique ergodicity. Before proving unique ergodicity we need the fol-

lowing lemma. Recall J ′` =
[∑`−1

k=1 2〈〈qnk
α〉〉,

∑`−1
k=1 2〈〈qnk

α〉〉+ 〈〈qn`
α〉〉
)
.

Lemma 9.4. For all large enough ` the intervals

Ri(x∞ + J ′`), i = 0, . . . , qn`

are disjoint from each other and [0, 1
2
〈〈qn`

α〉〉) and [1− 〈〈qn`
α〉〉, 1).

For large enough `, ∪qn`−1

i=0 Ri(J ′`) is disjoint from x∞+J ′` and x∞+J ′′` .

Proof. Compare to the proof of Lemma 4.2. We will use Lemma 9.3
several times.

Set N = 1+
∑`

i=1 qni−1 and N0 = 2
∑`−1

k=1 qnk
. Note that the intervals

Ri(x` + J ′`), i = 0, . . . , qn`

and [0, 〈〈qn`
α〉〉) and [1−〈〈qn`

α〉〉, 1) are contained in an orbit of length
N0 +N + 2qn`

of an interval of size 〈〈qn`
α〉〉.

By Assumption 3, N0 < qn`
, so N0+N+2qn`

< 4qn`
. By Assumption

4, we have 4qn`
< an`+1qn`

< qn`+1, so in particular we conclude that
N0 +N + 2qn`

< qn`+1.
Hence, by the separation property, the above intervals are disjoint.

Since x` − 1
2
〈〈qn`

α〉〉 < x∞ < x`, the intervals Ri(x∞ + J ′`) are disjoint

from each other and [0, 1
2
〈〈qn`

α〉〉) and [1− 〈〈qn`
α〉〉, 1).

We now prove the final claim. Note that by Theorem 2.2 (1), x`+J
′
` =

RN(J ′`). The intervals in {Ri(J ′`)}
qn`
−1

i=0 are 〈〈qn`−1α〉〉 − 〈〈qn`
α〉〉 sep-

arated because their left endpoints are 〈〈qn`−1α〉〉 separated by The-
orem 2.2 (4) and the intervals have length 〈〈qn`

α〉〉). So, RN(J ′`) is
the unique element of this orbit segment within 〈〈qn`−1α〉〉 − 〈〈qn`

α〉〉
of x` + J ′`. Combining these two facts and the fact that d(x∞, x`) <
〈〈qn`−1α〉〉 − 〈〈qn`

α〉〉, N is the unique i ∈ {0, ..., qn`
− 1} such that

Ri(J ′`) ∩ (x∞ + J ′`) 6= ∅. Since N > qn`−1 we have treated x∞ + J ′`.
Because J ′′` = 〈〈qn`

α〉〉 + J ′`, we have that x∞ + J ′′` is a subset of a
3〈〈qn`

α〉〉 neighborhood of RN(J ′′` ). Since any orbit of length qn`−1
is 〈〈qn`−1α〉〉 separated and 〈〈qn`−1α〉〉 − 3〈〈qn`

α〉〉 > 0 we have that
Ri(J ′`)∩ (x∞+J ′′` ) = ∅ for all i satisfying 0 < |N − i| < qn`

, completing
the proof of the lemma. �

Theorem 9.5. T̂ is uniquely ergodic.

Proof. This is similar to the proof that T is uniquely ergodic. We will
outline the additional considerations that are required.
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Since T is uniquely ergodic, T̂ has at most two ergodic components,
each of which project to Lebesgue under the projection (x, i, j) 7→ (x, i)
to the first two coordinates, and also under the projection (x, i, j) 7→
(x, j) to the first and third coordinates. If there are two ergodic
measures, they must be exchanged under the involutions (x, i, j) 7→
(x, i+ 1, j) and (x, i, j) 7→ (x, i, j + 1), and hence invariant under their
product (x, i + 1, j + 1). In fact one of the two measures must be the
weak-* limit of Lebesgue on E` = (U1

` ∩V 2
` )∪ (V 1

` ∩U2
` ), and the other

must be the limit of F` = (U1
` ∩ U2

` ) ∪ (V 1
` ∩ V 2

` ).
The proof now follows as for T , with S` replaced by

∪qn`−2−1
i=0 Ri(J ′`)× Z2 × Z2.

Note that, as in the beginning of Section 7, we have 1
3
qn`−1 ≤ qn`−2 ≤

1
2
qn`−1. Thus by the previous lemma, this set consists of points p such

that the orbit of p of length qn`−2 is entirely in E` ∪ F`−1 or entirely in
F` ∪ E`−1. So we may repeat the last half of the proof of Proposition
7.4. �

Birkhoff sums. We now outline the relevant changes to the proof of
Theorem 6.1.

To set up context, the appropriate version of Lemma 4.2 is Lemma
9.4. With this, Theorem 4.4 can be modified to

Theorem 9.6. For each integer ` ≥ 1, the following properties hold.

(1) U2
` contains

[0,
1

2
〈〈qn`

α〉〉)× Z2 × {0} and [1− 〈〈qn`
α〉〉, 1)× Z2 × {1}.

(2)

πS1(U
2
` \ U2

`−1) = ∪qn`−1

i=0 Ri(J ′` + x∞).

We next observe that Lemma 5.6 can be modified to be

Lemma 9.7. Set g(x) = 1/x. For any k with qnk
≤ N and any

x ∈ [0, 1) we have,

N−1∑
i=0

g(Rix)χ[ 1
2
〈〈qnk−1

α〉〉,1)(R
ix) = o(N log(N))

and ∣∣∣∣∣
N−1∑
i=0

g′(Rix)χ[ 1
2
〈〈qnk−1

α〉〉,1)(R
ix)

∣∣∣∣∣ = O(N2).

With Lemma 9.4 in mind, we can modify Lemma 5.8 to be
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Lemma 9.8. Set g(x) = 1/x. For any ` such that qn`
< N , let S be an

orbit of length qn`
of an interval of length 〈〈qn`

α〉〉. Assume S is disjoint

from [0, 1
2
〈〈qn`

α〉〉), and x is any point disjoint from ∪
√
an`+1qn`

i=0 R−i(S).
Then

N−1∑
i=0

g(Rix)χS(Rix) = o(N log(N))

and ∣∣∣∣∣
N−1∑
i=0

g′(Rix)χS(Rix)

∣∣∣∣∣ = o(N2 log(N)
1
3 ).

We now outline the straightforward modifications to Theorem 6.1.
Let Q̂M be the points within distance 1

M(log(M))
1
12

of the singularities of

f̂ . Let

B̂S1(M) =

2M+5
√

log(M)⋃
i=0

R−i(Q̂M)

∪
2M+5

√
log(M)⋃

i=0

R−i(x∞ + ∪∞i=`+1J`)

∪

√
an`+1qn`⋃
i=−qn`

R−i(x∞ + J ′`).

The changes to the proof of Claims 1 and 2 are obvious changes to
the measure estimates.

Claim 3 requires the most substantive changes. We assume p ∈ V 2
`

(the case of p ∈ U2
` is analogous). As before, because of cancellations

and our choice of B̂S1 we may restrict our attention to χ{1}(j)(g(−x)−
g(x)). Recall g(x) = 1

〈〈x〉〉 . By Lemma 9.7 we may restrict to [0, 1
2
〈〈qn`−1

α〉〉)×
Z2 × {1} which by Theorem 9.6 is entirely contained in V 2

`−1. Then in
place of Lemma 5.8 we invoke Lemma 9.8.

Claim 4 is analogous to Claim 3.
The change to Claim 5 is straightforward.
Claim 6 is straightforward.
This proves the analogue of Theorem 6.1. Since we have already

proven unique ergodicity of T̂ (Theorem 9.5), mixing for the suspension
flow now follows as in the previous section for T and f .

A flow on a surface. The flat surface pictured in Figure 9.1 has 8
cone points, each with angle 4π. This flow is C∞ away from the cone



A MIXING FLOW ON A SURFACE 41

Figure 9.1. A union of slit tori. Unmarked opposite
sides are identified. The height and base of each paral-
lelogram is one, and the shear is by α. All of the labelled
intervals have length |J |, and in each parallelogram the
second interval is equal to the first translated by x∞.

points. By appropriately slowing down the flow near these fixed points–
a standard procedure explained in detail in [CF11, Section 7]–one can
obtain a C∞ flow on this surface that has non-degenerated fixed points
at the 8 distinguished points points, and such that the first return time
function h satisfies that h− f̂ , h′ − f̂ ′, h′′ − f̂ ′′ are bounded. Because
Birkhoff sums of a bounded function over orbit segments of length N
are O(N), all estimates in this paper hold with f̂ replaced with h.
Hence the above arguments show that the C∞ flow we have produced
is mixing. Note that the fixed point represented by an open circle
contributes twice the shearing as the others.

The first return map of the flow (either the straight line flow on the
translation surface or the C∞ flow that it is a reparametrization of it) to
the union of the four intervals at the bottom of the four parallelograms
is T̂ .
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A saddle connection is a trajectory of the flow that connects singu-
larities of the flat surface. By the definition of the skew product, points
in S1 × Z2 × Z2 with the same S1 coordinate cannot have that their
forward orbits intersect. So to show that there does not exist a saddle
connection, it suffices to show that the forward T̂ orbits each element
of {x∞ − α, x∞ + |J | − α,−α, 1 − α + |J |} × Z2 × Z2 are infinite and
distinct. This is straightforward to check from the construction. This
verifies that the flow does not have saddle connections and completes
the proof of Theorem 1.1.

Remark 9.9. In the introduction, we remarked that there are non-
minimal smooth flows with finitely many non-degenerate fixed points
on surfaces of genus 3 and 4 such that one minimal component sees only
one side of a fixed point. To obtain such a flow, start with two flat tori
(translation surfaces of genus 1), and cut a slit in each, parallel and of
the same length. Each torus now has a boundary circle consisting of
two intervals. We may obtain a genus 3 surface as follows: Glue one
boundary interval from one of the tori to a boundary interval on the
other torus. Glue the remaining two intervals to each other using an
IET with permutation on {1, 2, 3, 4, 5} that fixes 1, 3 and 5 and swaps 2
and 4. This gives a genus three translation surface with 4 singularities
of cone angle 4π. A genus 4 translation surface can be obtained using
a second slit disjoint from and parallel to the first, using the typical
gluing without non-trivial IETs. One can obtain the desired smooth
flows as a time change from straight line flow in the direction of the
slits.

Figure 9.2. The genus 3 surface constructed in Remark 9.9.
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