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1. Introduction

Main results. Let Tg,n and Mg,n denote the Teichmüller and moduli
space respectively of genus g Riemann surfaces with n marked points.
The Teichmüller metric on these spaces is a natural Finsler metric that
quantifies the failure of two different Riemann surfaces to be confor-
mally equivalent. It is equal to the Kobayashi metric [Roy74], and
hence reflects the intrinsic complex geometry of these spaces.

There is a unique holomorphic and isometric embedding from the
hyperbolic plane to Tg,n whose image passes through any two given
points. The images of such maps, called Teichmüller disks or complex
geodesics, are much studied in relation to the geometry and dynamics
of Riemann surfaces and their moduli spaces.

A complex submanifold of Tg,n is called totally geodesic if it contains
a complex geodesic through any two of its points, and a subvariety of
Mg is called totally geodesic if a component of its preimage in Tg,n

is totally geodesic. Totally geodesic submanifolds of dimension 1 are
exactly the complex geodesics.

Almost every complex geodesic in Tg,n has dense image in Mg,n

[Mas82, Vee82]. We show that higher dimensional totally geodesic
submanifolds are much more rigid.

Theorem 1.1. The image in Mg,n of a totally geodesic complex sub-
manifold of Tg,n of dimension greater than 1 is a closed totally geodesic
subvariety of Mg,n.

One dimensional totally geodesic subvarieties of Mg,n are called Te-
ichmüller curves. There are infinitely many Teichmüller curves in each
Mg,n. We show that higher dimensional totally geodesic submanifolds
are much more rare.

Note: This is a post-publication version which corrects an error pointed out by
Frederik Benirschke and makes a few other clarifications. The error was in a claim
that ΩL is complex analytic. It is actually only clear that it is real analytic, but
this issue can be avoided by making technical changes to the argument. No change
is required to any of the main results. An erratum is also available [Wri].
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Theorem 1.2. There are only finitely many totally geodesic submani-
folds of Mg,n of dimension greater than 1.

Context. One source of totally geodesic submanifolds of Mg,n is cov-
ering constructions, see [MMW17, Section 6] for a definition. The first
example of a totally geodesic submanifold of dimension greater than 1
not coming from a covering construction was given in [MMW17], and
two additional examples appear in [EMMW]. These three examples
are totally geodesic surfaces in M1,3,M1,4 and M2,1 respectively.

Work of Filip implies that any closed totally geodesic submanifold
of Mg,n is in fact a subvariety [Fil16]. Any real submanifold of Tg,n

that contains the Teichmüller disk between any pair of its points must
in fact be a complex submanifold.

The inclusion of a totally geodesic complex submanifold into Te-
ichmüller space must be an isometry for the Kobayashi metrics. An-
tonakoudis has shown that there is no holomorphic isometric immersion
of a bounded symmetric domain of dimension greater than 1 into Te-
ichmüller space [Ant17b], and that any isometry of a complex disk into
Teichmüller space is either holomorphic or antiholomorphic [Ant17a].

Elements of the proofs. If N is a subset of moduli or Teichmüller
space, define QN to be the locus of quadratic differentials which gen-
erate Teichmüller disks contained in N . Typically N will be a totally
geodesic subvariety or submanifold, in which case we may view QN as
the cotangent bundle to N . Note that QN is stratified according to
the number of zeros and poles of the quadratic differential.

For every quadratic differential on a Riemann surface, either the
quadratic differential is the square of an Abelian differential, or there
is a unique double cover on which the lift of the quadratic differential
is the square of an Abelian differential. The double cover is equipped
with an involution. We call the Abelian differential together with this
choice of involution the square root of the quadratic differential.

Let ΩN be the locus of square roots of quadratic differentials in the
largest dimensional stratum of QN . The following ingredient in our
analysis may be of independent interest.

Theorem 1.3. If N is a totally geodesic subvariety of moduli space,
then ΩN is transverse to the isoperiodic foliation.

Theorem 1.3 is equivalent to saying that there is no nonconstant
path in ΩN along which absolute periods of the Abelian differentials
are locally constant. See [McM14] for a definition of the isoperiodic
foliation, which is also known as the kernel foliation, the absolute period
foliation, and the rel foliation.
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The proof of Theorem 1.3 uses results on cylinder deformations from
[Wri15] and a classical result on Jenkins-Strebel differentials. Theo-
rem 1.2 follows from Theorem 1.3 and recent finiteness results of Eskin-
Filip-Wright [EFW].

The proof of Theorem 1.1 also uses Theorem 1.3 and results of
[EFW]. A key tool is the computation of the algebraic hull of the
Kontsevich-Zorich cocycle from [EFW].

Acknowledgements. This paper was inspired by comments of Curt
McMullen, who in particular suggested the possibility that Theorem
1.1 might be true. The author thanks Ben Dozier, Alex Eskin, Simion
Filip, Steve Kerckhoff, Vlad Markovic, Curt McMullen, Ronen Mukamel,
and Mike Wolf for helpful conversations.

This research was carried out in part at the ICERM conference “Cy-
cles on Moduli Spaces, Geometric Invariant Theory, and Dynamics”,
and was conducted during the period while the author served as a Clay
Research Fellow.

2. Proof of Theorems 1.2 and 1.3

We use notation consistent with [MMW17]. We assume some famil-
iarity with recent results on the GL(2,R) action on the Hodge bundle.

If N is a totally geodesic subvariety of moduli space, ΩN is an exam-
ple of an affine invariant submanifold; these are subvarieties of a stra-
tum of ΩMg′ (for some g′ > 0) that are locally equal to a finite union
of subspaces defined over R in period coordinates [EMM15, Fil16].
The tangent space ΩN(Y, ω) to an affine invariant submanifold ΩN at
a point (Y, ω) is a subspace of relative cohomology H1(Y,Σ,C), where
Σ is the set of zeros of ω. Let p denote the map from relative to abso-
lute cohomology. The rank is defined to be half the dimension of p of
the tangent space [Wri14]. This is an integer because p of the tangent
space is symplectic [AEM17].
To prove Theorem 1.3 we will compare the dimension of ΩN to that

of N , using the following two results to get a lower bound on the
dimension of N .
An affine subspace is any translation of a vector subspace. A Jenkins-

Strebel differential is an Abelian or quadratic differential that is the
union of horizontal cylinders and their boundaries; these are also known
as horizontally periodic differentials. Unless specified other, all refer-
ences to (co)dimensions will be over C.

Theorem 2.1. Any affine invariant submanifold ΩN of rank r con-
tains a set of Jenkins-Strebel differentials whose image in local period
coordinates is a open subset of an affine subspace S of codimension r,
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such that circumferences of horizontal cylinders are constant on this
subset.

The affine subspace S is the translate of a subspace L such that p(L)
is a Lagrangian in p(ΩN(Y, ω)) and such that ker(p) ∩ ΩN(Y, ω) ⊂ L.
This L is the subspace of ΩN(Y, ω) which vanishes on the core curves
of all horizontal cylinders.

Theorem 2.1 can be viewed as a black box coming from [Wri15],
however we provide specific references to [Wri15].

Proof. [Wri15, Theorem 1.10] asserts the existence of a horizontally
periodic (Y, ω) ∈ N such that the core curves of the horizontal cylin-
ders span a subspace of the dual space of ΩN(Y, ω) of dimension r.
The subspace L is the subspace of ΩN(Y, ω) that annihilates all these
core curves. Deforming (Y, ω) in any direction in L, the periods of
the core curves of the horizontal cylinders remain constant. Hence all
the horizontal cylinders of (Y, ω) persist on any such sufficiently small
deformation, and remain horizontal and of constant circumference.

The proof of [Wri15, Theorem 1.10] in [Wri15, Section 8] gives
that for the (Y, ω) that is specially chosen in the proof, any sufficiently
small deformation of (Y, ω) in the direction in L does not create any
new cylinders. Indeed, [Wri15, Section 8] gives that any such deforma-
tion can be obtained by certain cylinder deformations of the horizontal
cylinders of (Y, ω). Thus these deformations remain Jenkins-Strebel.

The proof of [Wri15, Theorem 1.10] gives that p(L) is Lagrangian.
Since L has codimension r and p(L) has dimension r, it follows that
ker(p) ∩ ΩN(Y, ω) ⊂ L. □

Problems on the existence and uniqueness of Jenkins-Strebel differ-
entials have been extensively studied, see for example [Gar77,HM79,
Jen57, Liu04, Str84, Wol95]. Here we require only the following
uniqueness result. See for example Theorem 20.3 and the remarks af-
ter Lemma 20.3 in [Str84] for an expository account of the argument.

Lemma 2.2. Let X ∈ Mg,n be a Riemann surface. If two Jenkins-
Strebel differentials q, q′ on X have the same core curves of cylinders,
and corresponding cylinders have the same circumference, then q = q′.

For the convenience of the reader, we include a proof.

Proof. Let cylinders on q be Ci, and the corresponding cylinders on q′

be C ′
i. Let their circumferences be ci, and their heights be hi and h′

i

respectively.
Note that

√
|q| locally gives the flat metric on q, and |q| the flat

area form. If we pick coordinates x + iy on C ′
i so |q′| = dxdy and
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q = f(x, y)dxdy and C ′
i is identified with [0, ci] × [0, hi] (with an edge

identification to glue the rectangle into a cylinder), then we get

ci ≤
∫ ci

0

√
|f(x, y)|dx

for any y ∈ [0, h′
i], with equality if and only if the horizontal circle in

C ′
i at height y is also a horizontal circle in Ci. This is true because

horizontal closed trajectories of Ci are geodesics for the metric
√
|q|.

Hence

cih
′
i ≤

∫
C′

i

√
|f(x, y)|dxdy.

Now we use Cauchy-Schwarz with functions
√
|f(x, y)| and 1 to get

(h′
ici)

2 ≤

(∫
C′

i

√
|f(x, y)|dxdy

)2

≤ h′
ici

∫
C′

i

|f(x, y)|dxdy = h′
ici

∫
C′

i

|q|.

Dividing by h′
ici and summing we get∑

h′
ici ≤

∑∫
C′

i

|q|.

Because q′ is Jenkins-Strebel, the C ′
i cover the whole surface, so

∑∫
C′

i
|q|

is the area of |q|. Since the area of |q| is
∑

hici, we get∑
h′
ici ≤

∑
hici.

By symmetry (reversing the roles of q and q′), we get equality here.
Hence q and q′ have the same area, and so they have the same norm
for the Teichmüller Finsler metric on the cotangent space to Mg,n. The
same argument gives that any convex combination of q and q′ has the
same norm. This forces q = q′ since the unit ball of the Teichmüller
metric is strictly convex. □

A point of ΩN consists of a translation surface (Y, ω) and an invo-
lution J that negates ω, such that Y/J ∈ N . There is a map from ΩN
to QN , because ω2 defines a quadratic differential on Y/J . In turn
there is a forgetful map from QN to Mg,n obtained by forgetting the
quadratic differential but remembering the location of the poles. We
will refer frequently to the composite of these two maps, which gives
a map ΩN to Mg,n. For notational simplicity we will omit J from
our notation; there is no harm for our arguments in assuming it is the
only involution on Y negating ω, as our arguments would not be any
different were this not to be the case.
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Proof of Theorem 1.3. Suppose N has dimension d. Since N is totally
geodesic, there is a d − 1 dimensional family of complex geodesics in
N passing through each point of N , so we get that QN has dimension
2d. Hence ΩN also has dimension 2d.

Let r be the rank of ΩN . By definition rank is at most half the
dimension of ΩN , so r ≤ d. By Theorem 2.1 there is a 2d − r di-
mensional family of Jenkins-Strebel differentials in ΩN , and hence also
QN , with constant circumferences. By Lemma 2.2 we see that the di-
mension of N is at least 2d− r. The inequalities 2d− r ≤ d and r ≤ d
give r = d. By definition of rank, it follows that the projection of the
tangent space of ΩN to absolute cohomology has the same dimension
as ΩN . Since leaves of the isoperiodic foliation are tangent to the ker-
nel of this projection, we get that ΩN is transverse to the isoperiodic
foliation. □

Proof of Theorem 1.2 given Theorem 1.3. It is proved in [EFW] that
each stratum of Abelian differentials contains at most finitely many
affine invariant submanifolds of rank at least 2. By Theorem 1.3, if N
is a totally geodesic submanifold of dimension at least 2, then ΩN has
rank at least 2.

Since ΩN determines N , and there are a finite list of strata that may
contain ΩN for N a totally geodesic submanifold of Mg,n, the result
follows. □

3. Proof of Theorem 1.1

This section requires the results and arguments from the previous
section.

Let Ñ be a totally geodesic submanifold of Tg,n of (complex) dimen-

sion d > 1. Let N denote the projection of Ñ to moduli space. Let QN
be the closure of QN . Note that QN and QN are GL(2,R) invariant.
The goal of this section is to show that QN = QN , which implies N is
closed and hence establishes Theorem 1.1. In order to find a contradic-
tion, we assume QN ̸= QN . By [EMM15], each stratum of QN is an
affine invariant submanifold. Since QN is properly contained in QN ,
we see that QN must have real dimension strictly greater than 4d.

The rough idea of the proof of Theorem 1.1 is to consider all tangent
spaces of totally geodesic submanifolds of dimension d through each
point of N . Some version of this gives an equivariant subvariety of a
Grassmanian bundle. Using [EFW] we wish to show this subvariety is
very large, so roughly speaking there are totally geodesic submanifolds
of N through every point and in so many directions that we are able to
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obtain a contradiction. The first step is to show that there is at least
one totally geodesic submanifold through each point of N .

Lemma 3.1. Suppose that Lk are totally geodesic submanifolds of Tg,n

of constant dimension, and that Xk ∈ Lk converge to X. Let Pk denote
the cotangent space to Lk at Xk, and suppose that Pk converge to a
subspace P of the cotangent space of Tg,n at X. Then there is a totally
geodesic submanifold of Tg,n that passes through X and whose cotangent
space at X is P .

Proof. Let L be the set of all limit points of sequences Yk with Yk ∈ Lk.
If limYk and limY ′

k are two such points of L, then since the complex
geodesic from Yk to Y ′

k lies in Lk, we get that the complex geodesic
from limYk to limY ′

k lies in L. (This can for example be proven as in
the last paragraph of this proof.)

Let Q1Tg,n be the bundle of quadratic differentials over Tg,n of norm
less than 1. There is a well known continuous map E : Q1Tg,n → Tg,n

that maps (Y, q) to the unique Riemann surface Y ′ such that there
is a Teichmüller mapping Y → Y ′ with initial quadratic differential
q and stretch factor (1 + ∥q∥)/(1 − ∥q∥). The restriction of E to the
quadratic differentials of norm less than 1 on any fixed Riemann surface
is a homeomorphism to Tg,n. See for example [FM12, Chapter 11] for
a review of this material.

Since Lk is totally geodesic, it contains the image of Pk under E. By
invariance of domain, this image is a real manifold of real dimension
equal to the real dimension of Pk, so we see that Lk is equal to the
image of Pk.
The restriction of E to the preimage in Q1Tg,n of any compact subset

of Tg,n (under the standard projection Q1Tg,n → Tg,n) is a proper map.
Hence we get that L is the image of P under E. By invariance of
domain, L is a real manifold of dimension equal to the real dimension of
P . Since L is totally geodesic, Lmust in fact be a complex submanifold.

□

Corollary 3.2. For every (X, q) ∈ QN there is at least one d dimen-
sional totally geodesic submanifold L such that the Teichmüller disk
generated by q is contained in L and QL ⊂ QN .

Note that L is not assumed to be closed (a priori it may be dense in
N), and it is not assumed to be unique.

Lemma 3.3. Let L be a totally geodesic submanifold of Mg,n. We
assume L is complete but not closed. Then ΩL is locally a countable
union of subsets that are real analytic in period coordinates.
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Proof. It is equivalent to show that the intersection of QL with a stra-
tum is locally real analytic. (By definition, ΩL lies in a single stratum.)
A quadratic differential (X, q) is in QL if and only if g(X, q) is in L
(after forgetting the quadratic differential) for all g ∈ GL(2,R). Since
the GL(2,R) action on each stratum is real analytic and L is complex
analytic, this gives that QL is locally defined by an (a priori infinite)
set of real analytic equations. □

We remark that we get a countable union because L may not be
closed, so a neighbourhood of a point may contain countably many
“slices” of L. Each “slice” is real analytic. We also remark that one
should keep in mind that the map q → q/|q| sending quadratic differ-
entials to Beltrami differentials is not complex analytic.

Consider the bundle over ΩN whose fiber over a point (Y, ω) consists
of all real subspaces of the real vector space ΩN(Y, ω) of real dimension
4d that contain spanC(Re(ω), Im(ω)). We emphasize that ΩN(Y, ω) is
of course a complex vector space, but we are choosing to view it as
a real vector space, and that our subspaces of real dimension 4d are

not necessarily complex subspaces. We let R̂ be the total space of this

bundle, and denote fibers by R̂(Y, ω).

Given V ∈ R̂(Y, ω) and h ∈ GL(2,R), there is a natural real linear
map

h∗ : ΩN(Y, ω) → ΩNh(Y, ω),

which is obtained by using the flat connection to view both domain
and range as subspaces of H1(Y,Σ,R) ⊗ C and letting h ∈ GL(2,R)
act trivially on the first factor and via its usual linear action on the
second factor C ≃ R2.
For any real linear subspace W of a complex vector space, we define

WC = W + iW to be the smallest complex vector subspace containing
W . So in particular,

(h∗V )C = h∗V + ih∗V

is the smallest complex vector subspace of ΩNh(Y, ω) containing h∗V .
We let Dπh(Y,ω) denote the derivative of the natural map

π : ΩN → Mg,n

at h(Y, ω).

With these definitions in place, we now consider the subset R̂′ of R̂
consisting of those subspaces V such that

dimCDπh(Y,ω)(h∗V )C ≤ d
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for all h ∈ GL+(2,R). Roughly speaking, we have V ∈ R̂′(Y, ω) if,
from a certain limited point of view, V might plausibly be associated
with a d-dimensional totally geodesic submanifold of Mg,n (like the L
in Corollary 3.2).

We now define R and R′ to be the sub-bundles of R̂ and R̂′ respec-
tively where we additionally require the V to be closed under taking
real and imaginary parts. (These are the subspaces defined by real
linear equations in suitable complex coordinates.)

Lemma 3.4. R′ is closed in R, and R̂′ is closed in R̂.

Proof. This follows directly from the definition, since having rank at
most d is a closed condition. □

Lemma 3.5. If L is a totally geodesic complex manifold and (Y, ω) is
a smooth point of ΩL and V is the tangent space to ΩL at (Y, ω), then

(Y, ω, V ) ∈ R̂′.

Proof. This is immediate from the definition, because a map to a man-
ifold of dimension d can have rank at most d. Here we keep in mind
that since ΩL is a real analytic variety of dimension 4d, its tangent
space at any smooth point is a real subspace of dimension 4d. □

Lemma 3.6. Every fiber of R̂′ is nonempty.

Proof. This follows from Corollary 3.2 and Lemmas 3.3 and 3.5, keeping
in mind that the smooth points of a real analytic variety are dense. □

Note that the definitions imply that R̂′ andR′ areGL(2,R) invariant.

Lemma 3.7. Let U be a connected neighbourhood of a point p ∈ Ca,
let M be a complex manifold, and let f : U → M be complex analytic.
For any k and d, let Vk,d be the set of real subspaces V of the tangent
space to Ca at p of real dimension k such that for all h ∈ GL(2,R) in
a neighbourhood of the identity, dimC Dfhp(h∗V )C ≤ d. Then

(1) Vk,d(p) is a subvariety of the Grassmanian of subspaces of R2a

of dimension k, and
(2) in coordinates provided by the Plücker embedding, Vk,d(p) is de-

fined by a (possibly infinite) set of polynomials that vary real
analytically with p ∈ U .

Corollary 3.8. The fibers of R̂′ and R′ are real varieties.

Proof of Lemma 3.7. For the moment we think of p as fixed. Let S be
the set of k planes through p equipped with a choice of basis for the
tangent space to the k plane at p. It is equivalent to show that the set
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of (V, v1, . . . , vk) ∈ S for which dimCDfhp(h∗V )C ≥ d+1 for arbitrarily
small h is a Zariski open subset of S.

We may assume M = Cb. Using the basis h∗v1, . . . , h∗vk for h∗V ,
we may consider Dfhp restricted to h∗V as a (complex) matrix whose
entries are real analytic functions on a neighborhood V of the identity
in GL(2,R). If dimC Dfhp(h∗V )C ≥ d + 1, then there is is some d + 1
by d + 1 minor of this matrix whose determinant ρ is not identically
zero.

Since ρ is nonzero, there is some ℓ so that the ℓ-th multivariate
Taylor polynomial ρℓ of ρ centered at the identity in V ⊂ GL(2,R)
is also nonzero. Each coefficient of ρℓ can be viewed as a polynomial
function on S. (This polynomial depends on all partial derivatives of
order at most ℓ+1 of f at p. Since f and p are fixed, all these numbers
may be viewed as constants.) Let c : S → C be one of the nonzero
coefficients of ρℓ.

(V, v1, . . . , vk) is contained in the Zariski open set defined by c ̸= 0.
On this set, ρℓ ̸= 0 and hence ρ ̸= 0, and hence the rank of the
derivative of f restricted to an appropriate k-plane is at least d+ 1 at
some point. This proves the first statement.

For the second statement, note that ρℓ is an analytic function of
p. □

Lemma 3.9. Every fiber of R′ is non-empty.

Proof. Consider a point (Y, ω) whose orbit is dense in N and a W ∈
R̂′(Y, η). For clarity, assume (Y, ω) is Lyapunov generic, although a
weaker assumption suffices. Write

WC = spanC(Re(ω), Im(ω))⊕Q,

where the two factors are symplectically orthogonal after applying p.
Let gt = diag(et, e−t) denote Teichmüller geodesic flow. Since λ2 < 1,
the Hodge norms of the imaginary parts of vectors in Q get contracted
under (gt)∗. In contrast, the Hodge norms of the real parts of vectors in
Q grow. Thus, it is helpful to write Q = Qim⊕Qgood, where Qim is the
subspace of vectors with zero real part and Qgood is any real subspace
of Q which is a complement. Note that there exists an ϵ > 0 such that
every non-zero vector w in Qgood has ∥Re(w)∥ > ϵ∥ Im(w)∥.

For every (Y ′, ω′) ∈ N , we can find a sequence tn → ∞ such that
gtn(Y, ω) → (Y ′, ω′). We can also assume that the subspaces (gtn)∗W

converge to a subspace Z in R̂′, using compactness. Similarly, we
can assume that the subspaces (gtn)∗Qgood converge to a real subspace
Zgood of Z. The Hodge norm comments above imply that every vector
in Zgood has zero imaginary part.
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By definition, Q is a complex subspace of complex dimension at least
2d − 2. Hence Qgood has real dimension at least 2d − 2, and of course
the limit Zgood has the same dimension as Qgood. Let Z

′ be a subspace
of Zgood of real dimension 2d − 2. Let V = spanC(Re(ω

′), Im(ω′)) ⊕
(Z ′ ⊗ C). We see that V ∈ R′. □

From now on we will use r to denote the rank of ΩN , and b will
denote dimC ker(p)∩ΩN(Y, η) for any (Y, η) ∈ ΩN . Thus 2r+ b is the
dimension of ΩN .

Lemma 3.10. For almost every (Y, ω) ∈ ΩN , the following holds:
R′(Y, ω) does not contain any subspaces contained in

ker(p) + spanC(Re(ω), Im(ω)).

If 2d ≥ b+ 2, then there is a subspace V in R(Y, ω) such that

(1) V /∈ R′(Y, ω),
(2) ker(p) ∩ ΩN(Y, η) ⊂ V , and
(3) p(V ) can be either expressed as the sum of spanC(Re(ω), Im(ω))

and an isotropic subspace (if 2d ≤ b + r + 1), or it contains a
Lagrangian subspace of p(ΩN(Y, η)) (if 2d ≥ b+ r + 1).

We think of the lemma as concerning subspaces in R(Y, ω) where the
symplectic form is “as degenerate as possible” given the restriction of
being in R(Y, ω).

Proof. By Theorem 2.1 there exists (Y0, ω0) ∈ ΩN and an affine sub-
space S of ΩN(Y0, ω0) that contains ω0, has dimension r+b, and has the
property that if S0 is a neighbourhood of ω0 in S, so S0 can be viewed
as a subset of the stratum, then all the surfaces in S0 are horizontally
periodic with corresponding cylinders of the same circumference. By
Lemma 2.2, the map S0 to Mg,n is injective. By the Constant Rank
Theorem (a corollary of the Inverse Function Theorem), since the map
S0 → Mg,n is injective, the derivative must have rank at least r + b
at some point. Replacing (Y0, ω0) by a nearby point in S0 if necessary,
we may assume that the derivative of S0 → Mg,n has rank r + b at
(Y0, ω0). That is, that derivative is injective.

Recall from the statement of Theorem 2.1 that S = ω0 + L, where
L is the subspace of ΩN(Y0, ω0) which is zero on all core curves of
horizontal cylinders. Let CS = L + Cω0 be the subspace spanned by
S. Since ω0 /∈ L, CS has dimension r + b + 1. The subspace CS is
seen to be closed under real and imaginary parts, because L is and
Im(ω0) ∈ L.

Now, consider any (Y, ω) ∈ ΩN with dense orbit. To prove the first
claim, suppose R′(Y, ω) contains a subspace V contained in ker(p) +
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spanC(Re(ω), Im(ω)). Using that R′ is closed and taking a limit, we can
obtain a subspace V0 ∈ R′(Y0, ω0) contained in ker(p)+spanC(Re(ω0), Im(ω0)).

Noting that V0 ⊂ CS gives a contradiction, because V0 ∈ R′(Y0, ω0)
implies the dimension ofDπ(Y0,ω0)(V0) is at most d, but V0 ⊂ CS implies
Dπ(Y0,ω0)(V0) has dimension at least dim(V0)−1 = 2d−1, and we have
assumed d > 1.
To prove the second claim, suppose that R′(Y, ω) contains every V

in R(Y, ω) such that

(1) ker(p) ∩ ΩN(Y, η) ⊂ V , and
(2) p(V ) can be either expressed as the sum of spanC(Re(ω), Im(ω))

and an isotropic subspace (if 2d ≤ b + r + 1), or it contains a
Lagrangian subspace of p(ΩN(Y, η)) (if 2d ≥ b+ r + 1).

Again by taking limits, it follows that R′(Y0, ω0) contains every V0

in R(Y0, ω0) such that

(1) ker(p) ∩ ΩN(Y0, η0) ⊂ V0, and
(2) p(V0) can be either expressed as the sum of spanC(Re(ω0), Im(ω0))

and an isotropic subspace (if 2d ≤ b + r + 1), or it contains a
Lagrangian subspace of p(ΩN(Y0, η0)) (if 2d ≥ b+ r + 1).

If 2d ≤ b + r + 1, then CS contains such a subspace V0, because
2d ≥ b+ 2, and we obtain a contradiction as before. If 2d > b+ r + 1,
then CS is contained in such a subspace V0. We obtain a contradiction
by noting that dimDπ(Y0,ω0)(V0) ≥ r + b since CS is contained in V0,
and dimDπ(Y0,ω0)(V0) ≤ d since V0 ∈ R′(Y0, ω0). This implies r+ b ≤ d
and hence 2r+ b ≤ 2d, which contradicts our assumption that 2r+ b >
2d. □

We now give the result of [EFW] that we will use, phrased in a way
to suit our present purpose. It can be viewed as a black box. Define
G(Y, ω) to be the subgroup of GL(ΩN(Y, ω)) that acts trivially on
ker(p)∩ΩN(Y, ω), preserves the tautological plane span(Re(ω), Im(ω)),
and induces a symplectic linear transformation of p(ΩN(Y, ω)).

Remark 3.11. There exists a basis for ΩN(Y, ω) beginning with a basis
for ker(p) ∩ ΩN(Y, ω) followed by Re(ω), Im(ω) with respect to which
G(Y, ω) can be informally specified as I 0 ∗

0 SL(2,R) 0
0 0 Sp(2r − 2,R)

 ,

where r is the rank and I is an identity matrix.

Theorem 3.12 (Eskin-Filip-Wright). Let ΩN be any affine invariant
submanifold, and let T be its tangent bundle. Let V be a measurable
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equivariant vector subbundle of any tensor power construction of T
and its dual. Then, for almost every (Y, ω) ∈ ΩN , the fiber V (Y, ω) is
invariant under G(Y, ω).

Note by definition ΩN(Y, ω) is the fiber of T at (Y, ω), and hence
any linear transformation of ΩN(Y, ω) induces a linear transformation
of any tensor power of this vector space or its dual.

Corollary 3.13. Let R′(Y, ω) be a subvariety of R(Y, ω) for all (Y, ω) ∈
ΩN that is equivariant and that is defined in the Plücker embedding
as the set of zeros of a (possibly infinite) set of polynomials that vary
analytically. Then at almost every (Y, ω), the fiber R′(Y, ω) is invariant
under G(Y, ω).

Proof of Corollary. Recall that the Plücker embedding of the Grassma-
nian of 2d dimensional subspaces in ΩN(Y, ω) maps each such subspace
to a line in P(Λ2dΩN(Y, ω)). Degree D homogeneous polynomials on
this projective space are elements of the D-th symmetric power of the
dual of Λ2dΩN(Y, ω). Both exterior and symmetric powers of a vector
space are subspaces of tensor powers of that vector space.

Let R′
D(Y, ω) be the subvariety of R(Y, ω) defined by those homoge-

neous polynomials of degree D that vanish on R′(Y, ω). On the comple-
ment of a invariant analytic subvariety, the span of these polynomials
has constant dimension. We thus get that the equivariant subbundle
defined by these polynomials is invariant under G(Y, ω), and hence
R′

D(Y, ω) is invariant under G(Y, ω).
R′(Y, ω) is the intersection of all the R′

D(Y, ω). The intersection of
G(Y, ω) invariant sets must be G(Y, ω) invariant. □

Lemma 3.14. If 2d ≤ b + 2, then for almost every (Y, ω), the fiber
R′(Y, ω) contains a subspace of ker(p) + spanC(Re(ω), Im(ω)).

If 2d ≥ b+2, then for almost every (Y, ω), the fiber R′(Y, ω) contains
all V ∈ R(Y, ω) such that

(1) ker(p) ∩ ΩN(Y, η) ⊂ V , and
(2) p(V ) can be either expressed as the sum of spanC(Re(ω), Im(ω))

and an isotropic subspace (if 2d ≤ b + r + 1), or it contains a
Lagrangian subspace of p(ΩN(Y, η)) (if 2d ≥ b+ r + 1).

Proof. This follows from Corollary 3.13, because any nonempty closed
subset of R(Y, ω) invariant under G(Y, ω) must contain all such sub-
spaces S ′. Since R′ is closed, if this is true almost everywhere then in
fact it is true everywhere. □

Proof of Theorem 1.1. Lemma 3.10 contradicts Lemma 3.14. □
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