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1. Introduction

Pick a unit vector v ∈ R2, and consider the dynamical system on the flat torus R2/Z2 defined by ft(z) =
z + tv. This dynamical system is very well understood. For example, if v ∈ Q2, then all trajectories are
closed, and if not, then all trajectories are dense. In fact much more is known.

In an attempt to generalize this example, we see immediately the problem that other closed surfaces do not
possess flat structures. However, we may consider surfaces which are flat outside of a finite number of “cone
type” singularities, around which the angle is an integer multiple of 2π. Such surfaces are called translation
surfaces. For example, the regular octagon with opposite sides identified gives a translation surface of genus
two with one singularity of order 8 · 3π4 = 6π. On such a surface we can again ask about the dynamics of
flow in a given direction.

Translation surfaces arise naturally in the theory of billiards. Other motivations come from physics,
dynamics and Teichmüller theory.

Teichmüller theory considers the space of all complex (or hyperbolic, or conformal) structures on a closed
surface, and quasi-conformal maps between such surfaces. It turns out that the moduli space of translation
surfaces is a sphere bundle over the moduli space of complex structures on the underlying surface. Teichmüller
space has a natural metric called the Teichmüller metric. Geodesic flow in this metric corresponds to a
natural operation on translation surfaces which contracts the vertical direction and expands the horizontal
direction. (Applying this operation to the regular polygon gives a very short and wide squashed octagon.)
Certain very special complex geodesics in Teichmüller space correspond to translation surfaces with the sort
of exceptionally nice dynamical properties we see on the flat torus.

The purpose of this topic is to define Teichmüller space and translation surfaces, give the basic theorems
on these objects and some additional theorems on the dynamics of translation surfaces, and explore some of
the connections between translation surfaces and Teichmüller theory.

2. Teichmüller theory

Definition. The Teichmüller space Teich(Sg) of a closed surface Sg of genus g is the space of all marked
hyperbolic structures on Sg, or equivalently (by uniformization), the space of all marked complex structures
on Sg. More formally, Teich(Sg) is the set of equivalence classes of pairs (X,φ), where φ : S → X is a
homeomorphism and X is a hyperbolic surface. Two pairs (X,φ) and (X ′, φ′) are considered to be equivalent
if there is an isometry I : X → X ′ such that I ◦ φ is isotopic to φ′.

Abelian and quadratic differentials. An abelian differential a differential one form. Locally it looks
like f(z)dz. A quadratic differential locally looks like f(z)(dz)2. In a different coordinate w it may be

expressed as f(z) ·
(
dz
dw

)2
(dw)2. All our differentials will be holomorphic, which means that z must be a

complex coordinate and f must be holomorphic.
Pants and the topology on Teichmüller space. By cutting a hyperbolic surface along a fixed system

of 3g − 3 non-intersecting geodesics, we obtain a decomposition into 2g − 2 pairs of pants, or spheres with
three boundary components. To get a new hyperbolic structure we could change the lengths of the boundary
components, or twist one of a pair of boundary circles before gluing them back together. In fact, given a
fixed pants decomposition every marked hyperbolic structure can be obtained in exactly one such way. So,
to know a hyperbolic structure, we just need to keep track of the lengths of the boundary components (the
length parameters), and the angle we twist by before gluing (the twist parameters). Teichmüller space is
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given the weak topology defined by these 6g − 6 Fenchel-Nielson coordinates, which identify TeichSg up to
homeomorphism as R6g−6.

Teichmüller’s existence and uniqueness theorems
Let f be a map between complex surfaces, smooth outside of a finite number of points. We define the

dilatation of f as

K(f) = sup
z

|fz|+ |fz|
|fz| − |fz|

.

At each point, df takes a circle to an ellipse. The dilatation K(f) is the supremum of the ratios of the major
axis to the minor axis. If the dilatation is finite we say f is quasi-conformal ; if it is 1, then f is conformal.

If there are quadratic differentials qX and qY on X and Y so that f : X → Y takes the zeros of qX to
those of qY , and if furthermore f sends the horizontal (resp. vertical) foliation of qX to the corresponding

foliation of qY with stretch factor
√
K (resp. 1/

√
K), we say that f is a Teichmüller mapping with horizontal

stretch factor K.
Teichmüller’s theorems give that every homotopy class of quasi-conformal maps between between complex

surfaces contains a unique map minimizing dilatation, and furthermore this map is a Teichmüller mapping.
The uniqueness is approached first through the analogous problem for rectangles, Grötzch’s problem,

which admits a beautiful elementary solution. To get the general statement, time averages of the relevant
derivative are considered.

We will outline the set up for the more difficult proof of existence. Fix a point X ∈ Teich(S). Given a
quadratic differentials q, we define its norm as ‖q‖ =

∫
X
|q|. In order to get a possible value for a dilatation,

if q is in the unit ball of quadratic differentials QD1(X) we define

K(q) =
1 + ‖q‖
1− ‖q‖

.

We define a map

Ψ : QD1 → Teich(S)

by sending q to the terminal surface of the Teichmüller mapping with initial differential q and horizontal
stretch factor K(q).

It is not too hard to see that Ψ is proper. The Measurable Riemann mapping theorem gives that it is
continuous and by the uniqueness theorem we already know that it is injective. Using invariance of domain
we get that the image of Ψ must therefore be closed and open, hence its range is all of Teich(S).

Suppose that (X,φ), (Y, ψ) ∈ Teich(S). Let f be the unique Teichmüller mapping homotopic to ψ−1 ◦ φ.
The Teichmüller distance from (X,φ) to (Y, ψ) is defined as 1

2 log(K(f)).
The mapping class group and moduli space. The mapping class group of a surface S (of genus g) is

defined as Mod(S) = Homeo+(S)/Homeo+0 (S). Here Homeo+0 (S) is the connected component of the identity
in the group of self homeomorphisms which preserve orientation. Mod(S) acts naturally on Teich(S) by
changing the marking: f(X,φ) = (X,φ ◦ f). The quotient Mg is moduli space, and can be shown to be an
orbifold finitely covered by a manifold.

If S is a torus, then Teich(S) is isometric to hyperbolic space, Mod(S) = SL2(Z), and moduli space is
the modular surface.

3. Translation surfaces

Definition. A translation surface is a flat surface with trivial linear holonomy. Away from a finite
number of singularities, it has an atlas of charts whose transition functions are translations of R2, and each
singularity has a cone angle that is a multiple of 2π.

Since R2 can be identified with C, and the abelian differential dz is invariant under translations, every
translation surface has an underlying complex structure with an abelian differential. Away from the singu-
larities, the complex charts are simply the flat charts. At a singularity with cone angle (k+ 1)2π, the charts
are given using the map z → zk, and the abelian differential has a zero of order k.

The fact that every translation surface has a complex structure is our first hint at connections to Te-
ichmüller theory.
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Conversely, given a complex surface X with a non-zero abelian differential ω, the transverse foliations
defined as the kernels of the real and imaginary parts of ω give horizontal and vertical foliations of X, and
hence define a flat structure. A zero of order k of ω has a cone angle of 2(k + 1)π.

Consider a set of polygons in the complex plane, with instructions to glue each edge to some parallel
edge. After gluing the appropriate edges, we obtain a translation surface, whose abelian differential on each
polygon is just dz. Conversely, given a translation surface, it is possible to cut into finitely many polygons.

A translation surface has a natural flow in the vertical direction. Inside of a polygon in the complex plane,
this flow at time t is just translation by it. We are concerned with the long term behavior of this flow. For
example, we wish to know if it has invariant subsets of non-trivial measure, that is, if it is ergodic.

Rational billiards. One motivation for studying translation surfaces comes from rational billiards, the
study of the straight line flow in a polygon whose angles are rational multiples of π. When the straight line
hits an edge, it bounces back in such a way that angle of incidence equals angle of reflection; we do not
consider paths that hit vertices.

Translation surfaces arise from the following insight. Instead of bouncing off a wall, we may reproduce
the polygon in mirror image on the other side of edge, and let the flow continue straight through the wall
into another copy of the polygon. Formally, fix the polygon P and let G be the linear part of the group of
affine isometries generated by reflections in the edges of P . Since the billiard is rational, G is finite. We
associate to P the translation surface given by the polygons gP, g ∈ G with expected edge identifications,
and we say that the translation surface comes from a billiard.
SL2(R) action. This action is easiest to see with the definition of a translation surface (X,ω) as a set of

polygons with pairs of parallel sides identified. In this case A ∈ SL2(R) acts on (X,ω) simply by acting on
each polygon linearly and preserving the edge identifications. In either of the two definitions, A acts by post-
composition with coordinate charts. The stabilizer of this action is SL2(X,ω), and its image in PSL2(R) is
defined as the Veech group. If Aff+(X,ω) is the set of affine orientation preserving automorphisms of (X,ω),
then SL2(X,ω) is the group of derivatives of elements of Aff+(X,ω).

Strata. The moduli space of abelian differentials forms a Cg vector bundle over the moduli spaceMg of
Riemann surfaces. Any holomorphic one form ω in a fiber has 2g − 2 zeros, counted with multiplicity. If α
is a unordered partition of 2g − 2, define the stratum H(α) to be set of ω whose zeros have multiplicities
given by α. Fix α. The size of a set of singular points Σ of (X,ω) ∈ H(α) is constant, say |Σ| = n. We can
pick a basis for H1(X,Σ;Z) ∼= Z2g+n−1. Integrating ω over this basis gives a map H(α) → C2g+n−1. This
map gives local holonomy coordinates for the stratum, proving that it is a manifold. In these coordinates,
SL2(R) acts naturally on each copy of C, so the pullback of the Lebesgue measure gives a SL2(R)–invariant
measure on the stratum. Similarly, an invariant measure can be obtained on the unit norm part H1(α) of
H(α). This measure can be shown to be finite.

In summary, H1(α) is a non-compact manifold with a finite invariant measure. It is sometimes referred
to as the unit hyperboloid in H(α).

4. Ergodic theory

Definitions. For the moment, let (X,µ) be a probability space and let gt : X → X be a one parameter
group of measure preserving transformations. Take f ∈ L1(X). The Birkhoff ergodic theorem gives that the
time averages

f̂(x) = lim
T→∞

∫ T

−T
f(gt(x))dt

exist for almost all x and that ‖f‖1 = ‖f̂‖1.
We say that gt is ergodic if the only measurable gt invariant subset have either full or null measure. In

this case, we recall that the Birkhoff ergodic theorem gives that the time averages of an L1 function are
equal to its space average.

We say that gt is uniquely ergodic if µ is the only Borel measure with respect to which gt is ergodic.
Ergodicity of Teichmüller flow. The Teichmüller flow on the moduli space of abelian differentials is

the portion of the SL2(R) action given by gt = diag(et, e−t). This action is ergodic on each stratum.
An interval exchange map is a map f : I → I of an interval I that admits a partition into smaller intervals

on which f is simply a translation. Let I be a horizontal interval on a translation surface (X,ω), whose
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interior does not contain any singularities. It is common to pick I so that the left endpoint is a singularity.
The Poincaré recurrence theorem gives that every vertical trajectory leaving I comes back to I or hits a
singularity. For x ∈ I, let f(x) be the first point where the vertical trajectory leaving I returns to I.

A finite number of vertical trajectories from I will hit singularities before returning to I. By removing
the corresponding points of I we partition I into intervals, and get that f is an interval exchange map.
Assume the vertical flow is minimal. By extending rectangles up from these intervals, we get a zippered
rectangle decomposition of (X,ω). The interval exchange map f and the heights of the rectangles determine
the surface, and surface depends continuously on this data.

We can now summarize a proof of ergodicity of Teichmüller flow.

(1) First assume that (X,ω) and (X ′, ω′) have the same vertical foliations, and have uniquely ergodic
vertical foliations. Pick an interval as above. The first return maps f of (X,ω) and (X ′, ω′) will be
the same, but the heights of the rectangles might be different.

(2) Consider a very long vertical path, starting at I. Because of unique ergodicity, the number of times
this path hits each subinterval of I is in proportion to its length. Hence the length of the path is
approximately proportional to the number of times that it crosses I. Pick a subinterval I ′ of I that
is small enough that every trajectory leaving I ′ is very long. We get a new interval exchange map
f ′. The length of each path leaving I ′ is approximately proportional to the number of times that it
crosses I before returning to I ′. This depends on f and not (X,ω).

(3) Consider the zippered rectangle decompositions of (X,ω) and (X ′, ω′). The ratio of the lengths
of corresponding rectangles in the two translation surfaces will be very close to 1. Apply gt for
large t. The result is zippered rectangles with the same interval exchanges and very close heights of
rectangles. Hence gt(X,ω) and gt(X

′, ω′) are close.
(4) Show that gt(X,ω) and gt(X

′, ω′) stay close for larger t. If f is a uniformly continuous function,
conclude that the time averages starting from (X,ω) and (X ′, ω′) are the same.

(5) Mimic the proof that ergodicity of geodesic flow on a finite volume hyperbolic surface is ergodic. Use
the fact that almost every translation surface has uniquely ergodic vertical foliation. To connect a
generic pair of translation surfaces, an intermediate differential is defined whose transverse foliations
are the vertical foliations of the original two differentials.

Masur’s criterion for unique ergodicity. Masur’s criterion, proven using the technique of renormal-
ization in dynamics, gives that if the vertical flow on (X,ω) is not uniquely ergodic then gt(X,ω) is divergent,
that is, it eventual leaves every compact set (and does not come back).

For example, if (X,ω) has a saddle connection in the vertical direction, we would not expect unique
ergodicity. Indeed since the length of this saddle connection goes to zero, gt(X,ω) eventually leaves every
compact set.

The ergodic theory of translation surfaces. For a general translation surface, Masur has shown that
almost every direction is uniquely ergodic, and a dense but countable set of directions are periodic. The first
result uses Masur’s criterion above. The second result uses the compactification of moduli space.

A much easier result is that for all but a countable set of directions (the directions with saddle connections),
directional flow is minimal, that is, has dense orbits. The closure of an orbit can be seen to be a subsurface
whose boundary, if it is non-empty, is the union of saddle connections. These saddle connections must be
in the direction of the flow. Thus by flowing in a direction with no saddle connections, we ensure that all
orbits are dense.

The Veech alternative. Let (X,ω) be a translation surface and Γ be its Veech group. The Veech
alternative states that if Γ is a lattice (we say (X,ω) is a lattice surface) then for every direction θ either:

• rθ(X,ω) admits a complete cylinder decomposition, a decomposition into finitely many cylinders.
We say rθ(X,ω) is completely periodic. Furthermore in this case the moduli of the cylinders are
rationally related.

• The vertical flow on rθ(X,ω) is uniquely ergodic.

The dichotomy of completely periodic versus uniquely ergodic is called optimal dynamics. Here is a sketch
of the proof.

(1) Assume θ = 0 and the flow is not uniquely ergodic. By Masur’s criterion, gt(X,ω) diverges to infinity
on the finite volume hyperbolic surface H/Γ inside of the moduli space of abelian differentials.
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(2) Hence gt(X,ω) goes to infinity along a cusp corresponding to a parabolic g ∈ SL2(X,ω). There
is a diffeomorphism φ of (X,ω) whose derivative is constantly g. Replacing φ with a power, we
may assume that φ fixes the singularities of (X,ω). We may rotate the surface so that g is upper
triangular.

(3) φ is the identity on vertical trajectories leaving singularities, hence on the closure on these singular-
ities. Closures of trajectories are sub-manifolds with boundary, so each vertical trajectory leaving a
singularity is a saddle connection. These saddle connections bound cylinders.

Smillie’s theorem. In the case of regular polygons with opposite edges identified, elementary computa-
tions using the theory of Fuchsian groups show that Γ is a triangle group. However, when Γ is not generated
by rotations and parabolics, for example when H/Γ has positive genus, then Γ cannot be computed by hand,
even up to finite index. So a more abstract tool is required to identify lattice surfaces.

This tool, Smillie’s theorem, says that if the SL2(R) orbit of of (X,ω) is closed, then Γ is a lattice. Here
is an outline of a proof.

(1) Write B = SL2(R) · (X,ω), and assume B is closed. Denote horocycle flow by ut. The map
SL2(R)/SL(X,ω)→ B is a homeomorphism.

(2) Get a locally finite G invariant measure µ on G · (X,ω).
(3) Pick an everywhere positive continuous function f ∈ L1(µ). Define

Sn = {y ∈ B : lim inf
T→∞

f(uty)dt ≥ 1

n
}.

Note that Sn has finite measure and is ut invariant and closed.
(4) Use quantitative recurrence of horocycle flow to show that for some n, µ(Sn) > 0.
(5) A Mautner type theorem holds: Any vector in L2(µ) that is fixed by ut is fixed by all of SL2(R).

Apply this theorem to the indicator function of Sn to get that Sn is all of B.
(6) We have found a SL2(R)–invariant finite measure on SL2(R)/SL(X,ω), so SL(X,ω) must be a

lattice.

Teichmüller disks. Suppose (X,ω) is a lattice surface. Pick a point in Teichmüller space corresponding
to X, and consider the geodesic through X given by ω2. The complexification of this geodesic is a SL2(R)–
orbit, and its image in Mg space is closed.

When the projection toMg of a complex geodesic in Teichmüller space is closed, we call it a Teichmüller
curve. Smillie’s theorem gives that lattice surfaces correspond to Teichmüller curves.

Since the SL2(R) action on strata is ergodic, typically the projection of a closed geodesic toMg is dense.
Teichmüller geodesics are very rare. They are totally geodesic subspaces ofMg. This fact can be shown using
the following observation and the KAK decomposition. The geodesic flow gt on hyperbolic space moves
points a distance of t. On a translation surface (X,ω), gt acts as a Teichmüller mapping with dilatation e2t.
Hence the Teichmüller distance between (X,ω) and gt(X,ω) is 1

2 log e2t = t.

5. Recent work and hopes for the future.

Some central problems. A Teichmüller curve is primitive if it does not arise via a branched cover.
One central problem is the classification of primitive Teichmüller curves.

Masur and others have shown that the growth of the number of saddle connections, and the number
of cylinders, is bounded quadratically above and below, and is in many instances exactly quadratic. The
calculation of associated constants is a central problem.

There are numerous results which hold for almost every translation surface. Since billiards are measure
zero in translation surfaces, this is a enormous obstacle for the application of the theory of translations
surfaces to billiards. A Ratner’s theorem might allow precise description on the sets where these statements
fail; hopefully new theorems could be proven on these sets. In fact, a Ratner’s theorem has been called a
hoped for “magic wand” [10].

There are many other open problems which are seemingly more elementary. For example, the problem
of determining when two surfaces are in the same SL2(R) orbit is open, even when the surfaces are square
tiled. It is completely unknown which groups arise as Veech groups, although it is known that infinitely
generated groups do occur.
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Success in genus 2. For a lattice surface one might hope for symmetries in the underlying complex
surface. It turns out that symmetries are more apparent on the much better behaved Jacobian.

If (X,ω) ∈ H(2), then Jac(X) of a lattice surface (X,ω) admits real multiplication by the trace field k of
the Veech group. That is, there is a linear map k→ End(Jac(X))⊗ Q. Furthermore, ω is an eigenform for
this real multiplication.

Jacobians are principally polarized abelian varieties. The moduli space of principally polarized abelian
varieties admitting real multiplication by a given totally real number field is a Hilbert modular variety.
McMullen showed that all primitive Teichmüller curves in H(2) lie on countably many Hilbert modular
surfaces, and in doing so identified a new infinite family of primitive Teichmüller curves given by L–shaped
billiard tables.

McMullen also shown that when the Veech group of a genus two translation surface contains a hyperbolic,
then the limit set of the Veech group is the entire circle. This result gives an infinite family of translation
surfaces with infinitely generated Veech group. This work involves defining a quantity called the Galois
flux of an interval exchange map and also a translation surface, which measures the growth of the Galois
conjugates of a first return map. Other tools involve Diophantine properties of square roots and surgery on
foliations.

Other work of McMullen and separately Calta has given other successes in genus 2, even Ratner’s theorem.
Calta’s approach uses the J–invariant, a generalization of the SAF invariant for interval exchange maps.
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