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Abstract

We introduce and study diamonds of GL+(2,R)-invariant subvarieties of
Abelian and quadratic differentials, which allow us to recover information on
an invariant subvariety by simultaneously considering two degenerations, and
which provide a new tool for the classification of invariant subvarieties. We
classify a surprisingly rich collection of diamonds where the two degenerations
are contained in “trivial” invariant subvarieties. Our main results have been
applied to classify large collections of invariant subvarieties; the statement of
those results do not involve diamonds, but their proofs rely on them.
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1 Introduction

The GL+(2,R)-orbit closure of a translation surface is a properly immersed smooth
suborbifold [EM18,EMM15] and algebraic variety [Fil16]. Conversely, every sub-
variety of translation surfaces that is GL+(2,R)-invariant and irreducible is an orbit
closure, so we use “invariant subvariety” as a synonym for “orbit closure”, it being
implicit that our subvarieties are irreducible unless otherwise indicated.

This paper concerns the classification of invariant subvarieties. Previous classi-
fication results in genus 2 [McM07], and subsequent classification results in genus
3 and higher, recalled below, give hope for strong, general results, but recently dis-
covered examples [MMW17, EMMW] underscore the difficulty of obtaining such
results.

Here we develop new tools for the classification problem. Our study advances an
emerging paradigm, which is that invariant subvarieties may be studied inductively,
using their boundary. While considering a single degeneration is often insufficient,
we show that one can often completely determine the structure of an invariant sub-
variety from two degenerations that form what we call a diamond. Our methods
provide a framework for further analysis, and our results are crucial ingredients in
two subsequent papers on classification [AWa,AWb].

The broader goal of this paper and the subsequent papers is to realize a portion of
Mirzakhani’s vision for classification: there should be easily verified conditions which
imply that an invariant subvariety is “trivial”, and which are so broadly applicable
that one could say they solve a major portion of the classification problem; see
Remark 1.3 for more details.

1.1 Diamonds

Before discussing our main results (Theorems 1.1 and 1.2) in the next two subsections,
we must introduce the setup.

Given a collection C of parallel cylinders on a translation surface (X,ω), we define
the standard cylinder dilation aCt (X,ω) to be the result of rotating the surface so
the cylinders are horizontal, applying

at =

(
1 0
0 et

)
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only to the cylinders in C, and then applying the inverse rotation. We define

ColC(X,ω) = lim
t→−∞

aCt (X,ω).

This is the result of collapsing the cylinders in C in the direction perpendicular to
their core curves, while keeping their circumferences constant and leaving the rest of
the surface otherwise unchanged. We will be almost exclusively interested in the case
when the collapse causes the surface to degenerate. The limit is taken in the What
You See Is What You Get partial compactification studied in [MW17,CW19].

If (X,ω) is contained in an invariant subvarietyM, there are many choices of C
for which aCt (X,ω) ∈ M for all t ∈ R [Wri15a]. In this case we say the standard
dilation of C remains in M, and we obtain that ColC(X,ω) is contained in an
invariant subvariety MC in the boundary of M.

Suppose now that (X,ω) ∈ M has two collections of cylinders C1 and C2 such
that

1. C1 and C2 are disjoint, and moreover do not share any boundary saddle con-
nections,

2. the standard dilations of each Ci remain in M, and

3. the collapses of each Ci do indeed cause the surface to degenerate.

Motivated by Figure 1.1, we call this data ((X,ω),M,C1,C2) a diamond. In the
first point we view each Ci as a subset of the surface (rather than a set of cylinders
on the surface).

C2 gives rise to a collection of cylinders on ColC1(X,ω), which we denote ColC1(C2),
and similarly with the indices swapped. We may define

ColC1,C2(X,ω) = ColColC2
(C1) ColC2(X,ω) = ColColC1

(C2) ColC1(X,ω),

and this surface is contained in an invariant subvarietyMC1,C2 that is simultaneously
in the boundary ofM,MC1 , andMC2 . (As we specify in Convention 3.21, although
the surfaces in M are typically assumed to be connected, we allow MC1,C2 , and
sometimes MC1 and MC2 , to consist of multi-component surfaces.)

While the surface and cylinders are necessary to codify the relation between these
invariant subvarieties, we think of the essential part of a diamond as the four invariant
subvarieties.

Frequently we will demand that our diamonds be generic; see Definition 3.26.
This is a very mild assumption, and one can always obtain a generic diamond from
a non-generic diamond.

We also consider diamonds of quadratic differentials, which are defined exactly
as above.
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(X,ω) ∈M

ColC1(X,ω) ∈MC1 ColC2(X,ω) ∈MC2

ColC1,C2(X,ω) ∈MC1,C2

Figure 1.1

1.2 Full loci of covers

We now consider (branched) covers of (half) translation surfaces, as defined in Defi-
nition 3.2. We require our covers to be branched only over marked points and zeros.
This is of course not a true restriction, since one can simply declare the branch points
to be marked.

For any cover, and any small deformation of the base, one obtains a deformation
of the cover. Let M and N be invariant subvarieties of Abelian or quadratic differ-
entials. We say thatM is a full locus of covers of N if every surface inM is a cover
of a surface in N in such a way that all deformations of the codomain in N give rise
to covers inM. If N is a connected component of a stratum of Abelian or quadratic
differentials, we simply say that M is a full locus of covers.

Our analysis begins with the Diamond Lemma, see Lemma 2.3. Under the as-
sumption thatMC1 andMC2 consist of covers of (typically lower genus) surfaces, if
additional assumptions hold, the Diamond Lemma implies thatM similarly consists
of covers. This leaves open the possibility that, despite consisting of covers,M could
be an unexpected and complicated invariant subvariety properly contained in a full
locus of covers.

We will say that a cover of translation or half-translation surfaces satisfies As-
sumption CP (for Cylinder Preimage) if the preimage of every cylinder is a union of
cylinders. Here our conventions, stated in Definition 3.10, are crucial: cylinders do
not contain their boundary, and their boundary must be a union of saddle connec-
tions. These conventions imply in particular that if the preimage of a cylinder C is
a union of cylinders, then each cylinder in the preimage has the same height as C.

If Assumption CP is not satisfied, then there must be a preimage of a marked
point or pole that is an unmarked non-singular point. In particular, since we do
not allow branching over unmarked non-singular points, any cover of a translation
surface without marked points automatically satisfies Assumption CP.
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Our first main result is the following.

Theorem 1.1. If ((X,ω),M,C1,C2) forms a generic diamond where MC1 and
MC2 are full loci of covers satisfying Assumption CP and MC1,C2 consists of con-
nected surfaces, then M is a full locus of covers of a stratum of Abelian or quadratic
differentials.

In fact we obtain the conclusion of Theorem 1.1 in most situations where the
surfaces inMC1,C2 , and evenMC1 andMC2 , are disconnected; see Theorem 8.2 for
a more detailed statement. The possibility of disconnected surfaces adds significant
extra difficulty, but is important since connected surfaces can and frequently do
degenerate to disconnected surfaces.

The simple statement of Theorem 1.1 belies surprising subtlety. For example, the
degree of the covers forM can be twice the degree of the covers forMC1 andMC2 ,
as discussed in the proof of Lemma 8.5. And Assumption CP may fail for M, even
though it holds for MC1 and MC2 , as discussed in Remark 8.4.

Part of this subtlety is associated with the example illustrated in Figure 1.2,
showing a diamond where both MC1 and MC2 are strata of quadratic differentials,
but M is not.

We emphasize the generality of Theorem 1.1. If we assumedMC1,C2 does not con-
sist of torus covers and we dealt only with Abelian differentials (excluding quadratic
differentials), the proof would be short. The more general statement, although vastly
more difficult, is crucial for applications and to obtain meaningful insight into the
richness of invariant subvarieties.

1.3 Abelian and quadratic doubles

Diamonds where MC1 and MC2 are full loci of covers not satisfying Assumption
CP are much more difficult to understand, and it seems entirely possible that their
analysis could result in the discovery of new invariant subvarieties. Here we only
begin such an analysis. Our main result in this direction is crucial for the subsequent
papers [AWa,AWb], and, although it only concerns certain degree two covers, it is
broad enough to illustrate an interesting phenomenon which is typically incompatible
with Assumption CP.

For the next definition, we emphasize that we allow strata to parameterize sur-
faces with marked points; we treat marked points as zeros of order zero.

We define an Abelian double to be a full locus of covers of a component of a
stratum of Abelian differentials such that the covering maps have degree two, the
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Figure 1.2: A diamond of quadratic differentials, where both sides are strata but the
top is not. Here M is a codimension 1 hyperelliptic locus locally defined by a = b,
which is equivalent to c = d.

covers are connected, and all preimages of marked points are either singularities or
marked points.

We define a quadratic double to be a full locus of covers of a component of a
stratum of quadratic differentials such that the covering maps are the holonomy
double cover and all preimages of marked points are marked points. The preimage
of a pole may be marked or unmarked. We assume the quadratic differentials have
non-trivial holonomy, so again the covers are connected.

In the Abelian case, different choices of degree two covering map might lead to
different Abelian doubles associated to the same component of a stratum. In the
quadratic case, different choices of which preimages of poles to mark might lead to
different quadratic doubles associated to the same component of a stratum.

While Abelian doubles must satisfy Assumption CP, quadratic doubles can fail
to satisfy this assumption, if not all preimages of poles are marked.

Theorem 1.2. If ((X,ω),M,C1,C2) forms a generic diamond where MC1 and
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MC2 are Abelian or quadratic doubles, then M is a full locus of covers of a stratum
of Abelian or quadratic differentials.

Moreover, M is one of the following: an Abelian or quadratic double, or a codi-
mension one locus in a full locus of double covers of a component of a stratum of
Abelian differentials.

This is an abbreviated form of Theorems 7.1 and 10.1, which describe the codi-
mension one loci that occur.

The interesting phenomenon that appears here but not in Theorem 1.1 is that
MC1 might be an Abelian double while MC2 is a quadratic double; see Figure 1.3.
In this case the degree two covering maps defined on surfaces in MC1 and MC2

Figure 1.3: A diamond whereMC1 is an Abelian double,MC2 is a quadratic double,
and M is neither. The invariant subvariety M is described in Theorem 10.1 case
(3a).

give rise to distinct covering maps on surfaces in MC1,C2 . In fact, MC1,C2 must
be simultaneously an Abelian and quadratic double. Simultaneous Abelian and
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quadratic doubles arise from certain hyperelliptic connected components of strata of
quadratic differentials; see Section 9.2.

1.4 Additional remarks

Context. We start by discussing the relation to previous work.

Remark 1.3. Mirzakhani conjectured a single statement that, if true, would be a
major part of the classification of invariant subvarieties. This conjecture is often
described as “all GL(2,R)-orbit closures of rank at least two are trivial”, and a
version was first recorded in [Wri14, Conjectures 1.6, 1.7]. Here “trivial” should
mean “a locus of covers”, but it was not completely clear at the time the conjecture
was made how to make a precise definition, because it was not known what relations
might be imposed on the branch points of the covering maps. This issue has been
clarified in [Api20, AWc], so that we can now confidently propose that, in the
language above, trivial should mean a full locus of covers of a component of a stratum
of Abelian or quadratic differentials.1

Mirzakhani’s Conjecture was disproven in [MMW17, EMMW], but the coun-
terexamples are all rank two. It is plausible that all invariant subvarieties of rank at
least three might be full loci of covers of connected components of strata of Abelian
or quadratic differentials.

Recent progress on the classification problem includes finiteness results [EFW18,
BHM16,LNW17], strong results in genus 3 [NW14,ANW16,AN16,AN,Ygob]
and for hyperelliptic components [Api18, Api19], and classification of full rank
invariant subvarieties [MW18]. Especially important here will be results considering
cylinder deformations [Wri15a], the boundary of invariant subvarieties [MW17,
CW19], and marked points [Api20,AWc].

Adjacent recent developments include progress on the isoperiodic foliation [McM14,
CDF,Ygoa,Ham18,HW18], compactifications [BCG+18,BCG+,Ben], the unipo-
tent flow [BSW,CSW], and Prym eigenforms [LN18,LN,LM]. Surveys of the field
include [FM14,Zor06,MT02,Wri15b].

1The second author first learned of this conjecture in October 2012. The exact wording of the
conjecture in [Wri14] states only that “every translation surface in M [the invariant subvariety]
covers a quadratic differential (half-translation surface) of smaller genus”, but correspondence and
conversations between Mirzakhani and the second author suggest that a stronger conjecture was
intended, i.e. that the locus of surfaces being covered would be a component of a stratum of Abelian
or quadratic differentials. The stronger version is more in line with the discussion of the conjecture
in [Wri15a,ANW16,AN16,AN,Api18].
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Techniques. The main technique in this paper is induction. Given a hypothet-
ical counterexample to one of our main results, we try to degenerate cylinders
disjoint from C1 and C2 to produce a smaller counterexample. The results of
[MW17,CW19] allow us to understand the invariant subvarieties containing these
degenerations, and the results of [Api20, AWc] prove surprisingly useful whenever
the degenerations produce new marked points. Base cases are handled using di-
verse techniques: some can be ruled out by surprisingly easy numerology powered by
[AEM17]; some are ruled out using marked point results; and some are handled in
various ways using the existence and non-existence of certain cylinder deformations.
For example, sometimes we use a new technique in which we “overcollapse” a col-
lection of cylinders C to produce a deformation that changes the modulus of some
disjoint cylinders D, contradicting a partial generalization of the Veech dichotomy
proved in [MW17] and recalled below in Corollary 3.13. We call this “attacking D
with C”.

Omnipresent in our analysis are Masur and Zorich’s results on generically parallel,
or “hat-homologous”, cylinders and saddle connections on quadratic differentials
[MZ08]. On a generic Abelian differential, all cylinders are simple. In contrast, we
summarize in Theorem 4.8 the five types of cylinders that, according to Masur and
Zorich, may appear on generic quadratic differentials. This richness in behaviour
contributes significantly to the length of this paper.

Beyond showcasing how our new “attacking” technique can be profitably com-
bined with many other techniques, the broader novelty of this paper is that it in-
troduces diamonds as a paradigm for a more systematic study of the classification
problem. Our results are illustrated in our subsequent work [AWa, AWb], where
the statements do not involve diamonds but the proofs rely on them.

Organization. In Section 2, we define generic diamonds and prove the Diamond
Lemma, which is the starting point for all our analysis. Sections 3 and 4 establish
definitions and preliminaries, which the reader may refer back to as necessary.

In Section 5 we classify the easiest diamonds, namely those where one side is a
component of a stratum of Abelian differentials. Before turning to harder diamonds,
in Section 6 we classify certain codimension one invariant subvarieties of quadratic
differentials. This is a key tool for subsequent results, and suggests some open
problems, listed in Subsection 6.6.

Section 7 classifies diamonds where both sides are quadratic doubles. Section 8
proves Theorem 1.1, and concludes in Section 8.6 with related open problems. Section
9 gives preliminaries concerning hyperelliptic strata of quadratic differentials. These
preliminaries are used in Section 10, which completes the proof of Theorem 1.2 by
classifying diamonds where one side is an Abelian double and one side is a quadratic
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double.
This paper is highly modular. In particular, the only statements from each of

Sections 5, 6, and 7 that are used elsewhere in the paper are Proposition 5.1, Theorem
6.1, and Theorem 7.1 respectively. The results from Section 8 are not required
elsewhere in the paper. (We use Lemma 8.31 for convenience once in Section 10, but
the reader may also supply a more direct argument).

Conventions. Cylinders do not include their boundary saddle connection (Defini-
tion 3.10); with important exceptions, most surfaces are assumed to be connected
(Convention 3.21); quadratic differentials are assumed to have non-trivial holonomy
(Convention 4.1); and, for translation covers, the fiber of a marked point must con-
tain a marked point or singular point (Definition 3.2).

Acknowledgments. During the preparation of this paper, the first author was
partially supported by NSF Postdoctoral Fellowship DMS 1803625, and the second
author was partially supported by a Clay Research Fellowship, NSF Grant DMS
1856155, and a Sloan Research Fellowship.

2 The Diamond Lemma

In this section, we establish a versatile result that allows one to conclude that an
orbit closure is a locus of covers. We begin with this topic to immediately illustrate
one of the key ideas in the paper, but some readers may prefer to start instead with
the background material in Sections 3 and 4.

We will use notation that is typical for Abelian differentials, but the results will
apply equally well to quadratic differentials. We build on the definitions of cylinder
collapses and diamonds in Section 1.1.

Given a diamond
((X,ω),M,C1,C2)

where both MC1 and MC2 consist of covers, our goal is to conclude that M is a
locus of covers. So we assume that each ColCi

(X,ω) admits a half translation cover

fi : ColCi
(X,ω)→ (Yi, qi).

Note that fi(ColCi
(Ci+1)) is the closure of a union of cylinders parallel to the cylin-

ders in Ci+1. We will assume that

ColCi
(Ci+1) = f−1

i (fi(ColCi
(Ci+1))).
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This assumption gives that any standard cylinder deformation of ColCi
(Ci+1) on

ColCi
(X,ω) covers the corresponding deformation of the cylinders whose closure is

fi(ColCi
(Ci+1)) on (Yi, qi); see Subsection 3.4 for the definition of “standard”.

Remark 2.1. See Figure 2.1 for an example showing why we use the closure of
ColCi

(Ci+1), keeping in mind the conventions in Definitions 3.2 and 3.10 highlighted
in the introduction. One does not need to use closures if (Yi, qi) does not contain
marked points or poles.

Figure 2.1: An example where ColCi
(Ci+1) is the preimage of its image, but

f−1
i (fi(ColCi

(Ci+1)))−ColCi
(Ci+1) is two saddle connections, each joining a marked

point to itself. Here ColCi
(Ci+1) consists of four cylinders and (Yi, qi) ∈ H(2, 02).

As we will see presently, we get a limiting map

ColColCi
(Ci+1)(fi) : ColColCi

(Ci+1) ColCi
(X,ω)→ Colfi(ColCi

(Ci+1))(Yi, qi).

Here we use Colfi(ColCi
(Ci+1)) to denote the collapse of the collection of cylinders

whose closure is fi(ColCi
(Ci+1)).

Lemma 2.2. Suppose that f : (X,ω)→(Y, η) is a half-translation covering. Let C ⊂
(X,ω) be a collection of parallel cylinders such that f−1(f(C)) = C and C 6= (X,ω).
Then there is a half-translation surface covering map

ColC(f) : ColC(X,ω)→Colf(C)(Y, η)

of the same degree.

Since we will require an explicit understanding of ColC(f), we give an explicit
proof.
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Proof. Notice that
ColC(X,ω)− ColC(C) = (X,ω)−C

and
Colf(C)(Y, η)− Colf(C)(f(C)) = (Y, η)− f(C).

These equalities and the condition that f−1(f(C)) = C implies that we can define
ColC(f) on ColC(X,ω)−ColC(C) to be given by the restriction of f to (X,ω)−C.

ColC(C) is a union of saddle connections. Consider a point p in ColC(C) that
isn’t a singularity or marked point. We can extend the definition of ColC(f) to p as
follows.

The set Col−1
C (p) that collapses to p is a line segment Sp contained in C. This

line segment is mapped by f to a line segment f(Sp) in f(C), and we may define
ColC(f)(p) to be Colf(C)(f(Sp)).

This defines an extension of ColC(f) to the complement of a finite set of points,
on which ColC(f) can be defined by continuity.

Even when they are isomorphic, there isn’t always a canonical way to iden-
tify the codomains of the maps ColColC1

(C2)(f1) and ColColC2
(C1)(f2), because the

codomains may have automorphisms. But they do have the same domain, namely
ColC1,C2(X,ω). We will say that f1 and f2 agree at the base of the diamond if
ColColC1

(C2)(f1) and ColColC2
(C1)(f2) have the same fibers (each fiber of one of these

maps is also a fiber for the other). We will write “Col(f1) = Col(f2)” as shorthand
for this condition.

The main result of this section verifies the intuition that, if these two maps agree,
one should be able to somehow glue them together to obtain a map whose domain
is (X,ω).

Lemma 2.3 (The Diamond Lemma). Given a diamond using the notation above,
with maps fi as above such that

ColCi
(Ci+1) = f−1

i (fi(ColCi
(Ci+1))),

assume that f1 and f2 agree at the base of the diamond.
Then (X,ω) admits a covering map f to a quadratic differential, with Ci =

f−1(f(Ci)), and fi = ColCi
(f).

Corollary 2.4. If additionally the orbit closure of (X,ω) is M, then every surface
in M is a cover of a half translation surface in such a way that each fi is a limit of
associated covering maps.
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Proof. M must be contained in a locus of half-translation covers, since such loci are
closed and invariant.

Proof of Lemma 2.3. Consider the equivalence relation ∼i on ColCi
(X,ω) whose

equivalence classes are exactly the fibers of fi. Roughly speaking, we will “glue
together” ∼1 and ∼2 to get an equivalence relation ∼ on (X,ω), and show that
(X,ω)/∼ has the structure of a quadratic differential.

The definition of the collapse maps implies that we have the inclusions illustrated
in Figure 2.2.

(X,ω)

ColC1(X,ω)− ColC1(C1) ColC2(X,ω)− ColC2(C2)

ColC1,C2(X,ω)− ColC1,C2(C1 ∪C2)

Figure 2.2

Via these inclusions,⋃
i=1,2

(ColCi
(X,ω)− ColCi

(Ci)) = (X,ω)−C1 ∩C2.

We can give the outline of the proof more precicely as follows. We will show in
the next sublemma that ColCi

(X,ω)−ColCi
(Ci) is closed under ∼i. This will allow

us to glue together the equivalence relations on these sets to obtain an equivalence
relation ∼ on (X,ω) minus the finite set C1 ∩C2.

Remark 2.5. The notation ColCi
(Ci) can be understood via the map ColCi

: (X,ω)→
ColCi

(X,ω) that is in general multi-valued. (This map can be viewed in two steps:
An honest collapse map, and then a step that deletes nodes and fills in punctures.
The composition is multi-valued on the subset of (X,ω) that collapses to a node via
the initial honest collapse map. See [CW19] for more discussion.)

Sublemma 2.6. f−1
i (fi(ColCi

(Ci))) = ColCi
(Ci).

Proof. Because the collapse map may be multi-valued, ColCi
(Ci), a priori, is a finite

set of saddle connections and isolated points. Our first claim is that there are no
isolated points. This follows from the fact that gluing in the cylinders of Ci into the
saddle connections of ColCi

(Ci) does not involve the hypothetical isolated points.
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Suppose in order to find a contradiction that the sublemma is false; so

f−1
i (fi(ColCi

(Ci)))− ColCi
(Ci)

contains a saddle connection. Because C1 and C2 do not share boundary saddle
connections, collapsing ColCi

(Ci+1) cannot cause this saddle connection to merge
with ColCi

(Ci). Hence, we get

Col(fi)
−1(Col(fi)(ColColCi

(Ci+1) ColCi
(Ci)))− ColColCi

(Ci+1) ColCi
(Ci)

contains a saddle connection. (Here we write Col(fi) instead of ColColCi
(Ci+1)(fi).)

Since Col(f1) = Col(f2), we get the same statement with Col(fi) replaced with
Col(fi+1); namely that

Col(fi+1)−1(Col(fi+1)(ColColCi
(Ci+1) ColCi

(Ci)))− ColColCi
(Ci+1) ColCi

(Ci)

contains a saddle connection.
Because of the subtle multi-valued nature of the collapse maps, it isn’t clear

whether
ColColC1

(C2) ◦ColC1 = ColColC2
(C1) ◦ColC2 .

Nonetheless, the definition of the collapse maps implies that this commutativity holds
off the preimage of the singular points and marked points in ColC1,C2(X,ω). Hence
we get that

Col(fi+1)−1(Col(fi+1)(ColColCi+1
(Ci) ColCi+1

(Ci)))− ColColCi+1
(Ci) ColCi+1

(Ci)

contains a saddle connection.
Since we have assumed that

ColCi+1
(Ci) = f−1

i+1(fi+1(ColCi+1
(Ci))),

the definition of the Col(fi+1) implies that, at worst up to a finite set of points,

Col(fi+1)−1(Col(fi+1)(ColColCi+1
(Ci) ColCi+1

(Ci))) = ColColCi+1
(Ci) ColCi+1

(Ci),

which is a contradiction.

The image of the inclusion

ColC1,C2(X,ω)− ColC1,C2(C1 ∪C2) ↪→ ColC1(X,ω)
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is equal to
ColC1(X,ω)− ColC1(C1)− ColC1(C2).

Since ColC1(C2) is closed under ∼1 by assumption and ColC1(C1) is closed under
∼1 by Sublemma 2.6, we see that the image of the inclusion is closed under ∼1 (and
similarly on the other side of the diamond).

The assumption that Col(f1) = Col(f2) implies that the restrictions of the ∼i to

ColC1,C2(X,ω)− ColC1,C2(C1 ∪C2)

obtained via these inclusions agree.
Viewing all these sets as subsets of (X,ω), it follows that there is an equivalence

relation ∼ on (X,ω) − C1 ∩ C2 which restricts to ∼i. All of the sets obtained via
the above inclusions are closed under ∼. (Note that C1 ∩C2 is contained in the set
of singularities of (X,ω).)

By construction, ∼ has the property that as a point moves in the complement
of the singularities, each point of the equivalence relation moves with slope ±1 (see
Definition 3.6 for the definition of the “slope” of a point marking). As we review in
the next paragraph, it follows that ((X,ω) \C1 ∩C2)/∼ can be endowed with a half
translation surface structure in such a way that the map

(X,ω) \C1 ∩C2 → ((X,ω) \C1 ∩C2)/∼

is a map of half translation surfaces with punctures. This extends to a half-translation
surface map defined on (X,ω).

The construction of the half translation surface structure on ((X,ω)\C1∩C2)/∼
is very similar to the proof of [AWc, Lemma 2.8], but we review the details here.
The quotient map is a covering map, and restrictions of the quotient map to small
balls where the map is injective can be used to endow the quotient with an atlas of
charts whose transition maps are of the form z 7→ ±z + C. In the neighborhood of
each puncture, the map, being a local isometry, must have a standard form, and we
can fill in the punctures to get a map of closed surfaces.

3 Preliminaries on orbit closures

We will briefly review some facts about invariant subvarieties. In the remainder of
the section, M will denote a connected GL+(2,R)-invariant subvariety and (X,ω)
will be a point in M.
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3.1 Rank and rel

First we recall that the tangent space of M at a point (X,ω) ∈ M is naturally
identified with a subspace of H1(X,Σ;C), where Σ denotes the set of zeros of ω on
X. Let p : H1(X,Σ;C)→H1(X;C) denote the projection from relative to absolute
cohomology. The subspace ker(p)∩T(X,ω)M is called the rel subspace ofM at (X,ω).
We call

rel(M) = dimC ker(p) ∩ T(X,ω)M

the rel of M.
By Avila-Eskin-Möller [AEM17], for any (X,ω) ∈M, p

(
T(X,ω)M

)
is a complex

symplectic vector space, in particular its complex dimension is even. The rank ofM
is defined to be half the complex-dimension of p

(
T(X,ω)M

)
, which is independent of

the choice of (X,ω) ∈M.
An invariant subvarietyM in a stratum of connected genus g Abelian differentials

is called full rank if its rank is g. The main result of [MW18] is the following, where
it is implicit the surfaces do not have marked points.

Theorem 3.1 (Mirzakhani-Wright). Let M be a full rank invariant subvariety.
Then M is either a connected component of a stratum, or the locus of hyperelliptic
translation surfaces therein.

3.2 Field of definition and translation covers

Definition 3.2. A translation covering from (X,ω) to (Y, η) is defined to be a
holomorphic map f : X→Y branched only over singularities and marked points
such that:

1. f ∗η = ω,

2. all marked points on (X,ω) map to marked points on (Y, η), and

3. each marked point on (Y, η) has at least one preimage on (X,ω) that is a
singular or marked point.

A half-translation surface covering, from a translation surface or half-translation sur-
face to a half-translation surface, is defined similarly, with the additional stipulations
that:

4. a marked point may map to a simple pole,

5. but poles need not have a preimage that is a singular or marked point.
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The requirements concerning marked points (especially items 2, 3, and 5) are not
standard, but will be convenient here.

Without item 2, one could deform the domain (X,ω) without changing the
codomain (Y, η); and without item 3 one could deform the codomain without de-
forming the domain (both while remaining in an appropriate locus of covers). So 2
and 3 combined ensure that deformations of the codomain surface correspond locally
to deformations of the covering map, and to deformations of the domain surface
(again remaining in an appropriate locus of covers). Items 4 and 5 give us the
flexibility either to mark preimages of poles or not to.

A translation surface is square-tiled if it is a translation cover of square torus with
only one marked point (so that the cover is branched at most over that one point).
It is called a torus cover if it admits a map to genus one translation surface with any
number of marked points.

The field of definition k(M) of an invariant subvarietyM is the smallest subfield
of R such thatM can be defined by equations in k(M) in any local period coordinate
chart.

Lemma 3.3. If k(M) = Q, then square-tiled surfaces are dense in M.

Proof. Any surface whose period coordinates are contained in Q[i] is in particular
square-tiled. (See [HS06, Section 1.5.2] for a similar proof and discussion.)

Lemma 3.4. M is a locus of torus covers if and only if it has rank 1 and k(M) = Q.

Proof. This follows from the fact that a translation surface is a torus cover if and
only if its absolute periods span a Z-module of rank 2.

We conclude this subsection with the following result of Möller [Möl06, Theorem
2.6] and its extension in Apisa-Wright [AWc, Lemma 3.3]. We emphasize that it
applies to connected surfaces, although later we will use it to get some information
for multi-component surfaces.

Theorem 3.5. Suppose that (X,ω) is not a torus cover. There is a unique transla-
tion surface (Xmin, ωmin) and a translation covering

πXmin
: (X,ω)→ (Xmin, ωmin)

such that any translation cover from (X,ω) to translation surface is a factor of πXmin
.

Additionally, there is a quadratic differential (Qmin, qmin) with a degree 1 or 2
map (Xmin, ωmin) → (Qmin, qmin) such that any map from (X,ω) to a quadratic
differential is a factor of the composite map πQmin

: (X,ω)→ (Qmin, qmin).
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3.3 Point markings

This section recalls some definitions and results from [AWc].
Let M be an invariant subvariety of a stratum H. Define H∗n to be the same

stratum with n-additional marked points, and let π : H∗n → H be the map that
forgets marked points. Define a n-point marking overM to be an invariant subvariety
N ⊂ H∗n such that π(N ) is a dense subset of M.

A 1-point marking overM of the same dimension asM is called a periodic point.
Similarly, if (X,ω) has orbit closure M, a periodic-point on (X,ω) is one such that
(X,ω) is contained in a periodic point for M.

A n-point marking is called irreducible if it is not obtained by combining a k-
point marking and a (n− k)-point marking for some 0 < k < n; see [AWc] for the
precise definition.

Given a point marking, we call a marked point free if it can be deformed freely in
N without changing the unmarked surface or the positions of the other marked point.
Any n-point marking with n > 1 that has a free point is reducible, since it arises
from combining a 1-point marking with the free marked point and an (n− 1)-point
marking arising from the remaining marked points.

Similarly, any n-point marking with n > 1 that has a periodic point is reducible,
since it arises from the 1-point marking giving that periodic point together with an
(n− 1)-point marking arising from the remaining marked points.

For a 2-point marking N over M, one of the following is true:

• dimN = dimM, and both marked points are periodic,

• dimN = dimM+ 2, and both marked points are free,

• dimN = dimM+ 1, one marked point is free and the other is periodic,

• dimN = dimM+ 1 and N is irreducible.

In the last case, fixing the surface inM, there is 1-dimension of freedom to change
the position of the two marked points, and the position of each marked point locally
determines the position of the other. The slope, which we now define, describes the
relative speed at which the two marked points move.

Definition 3.6. LetN be an irreducible 2-point marking overM and let (X,ω; {p1, p2})
denote a generic surface in N . If γi is a path from a zero z to pi for i ∈ {1, 2}, then
there is a constant a such that at all points in N near (X,ω; {p1, p2}),∫

γ1

ω = a

∫
γ2

ω +

∫
γ

ω
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where γ ∈ H1(X,Σ;C) and Σ is the set of zeros and marked points of (X,ω) (ex-
cluding p1, p2). The slope of N is defined to be a or 1/a, whichever is larger.

IfM belongs to a stratum of quadratic differentials, the slope is defined similarly
but is only defined up to sign.

The following is a version of [AWc, Theorem 2.8], which follows immediately
from its proof.

Lemma 3.7 (Apisa-Wright). Suppose that M is an invariant subvariety of Abelian
differentials, but is not a locus of torus covers, and that N is an irreducible 2-point
marking over M. Let (X,ω, {p1, p2}) ∈ N .

If N has slope 1, there is a translation cover f : (X,ω)→(Y, η) to a translation
surface (Y, η) with f(p1) = f(p2).

If N has slope −1, there is a half-translation cover f : (X,ω)→(Y, η) to a
quadratic differential (Y, η) with f(p1) = f(p2).

If M consists of quadratic differentials, and the loci of holonomy double covers
isn’t a locus of torus covers, and the slope of N is ±1, then the same conclusion
holds.

The following is one of the main results of [Api20] for Abelian differentials and
of Apisa-Wright [AWc] for quadratic differentials.

Theorem 3.8 (Apisa, Apisa-Wright). Connected components of strata of Abelian
or quadratic differentials that have rank at least two do not have periodic points
unless they are hyperelliptic components, in which case the periodic points are the
Weierstrass points.

Definition 3.9. Suppose that (X,ω) is an Abelian or quadratic differential with
marked points that belongs to an invariant subvarietyM. Then F(X,ω) will denote
(X,ω) once marked points are forgotten. Similarly, we will define F(M) to be the
invariant subvariety that is the closure of {F(Y, η) : (Y, η) ∈M}.

3.4 Cylinder deformations

In this section we recall some definitions and results from [Wri15a], together with
supplemental results from [MW17].

Definition 3.10. A cylinder on a translation or half-translation surface is an iso-
metric embedding of R/(cZ)× (0, h) into the surface, which is not the restriction of
an isometric embedding of a larger cylinder. The circumference of the cylinder is
defined to be c, and its height is defined to be h.
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The map extends to a map of R/(cZ)×[0, h] to the surface, which is not in general
an embedding. The images of R/(cZ)×{0} and R/(cZ)×{h} are the two boundary
components of the cylinder; they consist of saddle connections, and together they
form the boundary of the cylinder. The multiplicity of a saddle connection in a
component of the boundary is the number of preimages it has in the corresponding
R/(cZ)×{0} or R/(cZ)×{h}; this must be at most 2 (see Figure 4.1 for an example).

Two parallel cylinders on (X,ω) ∈ M are called M-parallel or M-equivalent
if they remain parallel on all nearby surfaces in M. A maximal collection C of
M-parallel cylinders on (X,ω) is called an M-equivalence class.

At all surfaces near (X,ω) inM on which the cylinders in C persist they remain
M-parallel. However, it is possible that at nearby surfaces C is only a subset of an
M-equivalence class. In other words, new cylinders might appear on nearby surfaces
that are M-equivalent to cylinders in C.

If C = {C1, . . . , Cn} is a collection of parallel cylinders on a flat surface (X,ω)
with core curves {γ1, . . . , γn}, then we will say that the core curves are consistently
oriented if their holonomy vectors are positive real multiples of each other.

If C = {C1, . . . , Cn} is an M-equivalence class of cylinders on (X,ω) ∈ M with
consistently oriented core curves {γ1, . . . , γn}, then the standard shear in C is defined
to be

σC :=
n∑
i=1

hiγ
∗
i

where hi denotes the height of cylinder Ci and γ∗i is the intersection number with γi.
The following is the main theorem of [Wri15a], restated in a form closer to [MW17,
Theorem 4.1].

Theorem 3.11 (Wright). The standard shear σC belongs to the tangent space of M
whenever C is an M-equivalence class.

Notice that when C is a collection of horizontal cylinders, the straight line path
in M determined by the tangent direction σC at (X,ω) determines a family of
translation surfaces formed from (X,ω) by applying(

1 t
0 1

)
for t ∈ R to the cylinders in C on (X,ω) while fixing the rest of the surface. Similarly,
if C is a collection of horizontal cylinders the straight line path inM determined by
the tangent direction iσC at (X,ω) gives the standard dilation in C.
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If C = {C1, . . . , Cn} is an M-equivalence class of cylinders with core curves
{γ1, . . . , γn} on a surface (X,ω) inM, then the twist space of C, denoted Twist(C),
is the collection of complex linear combinations of {γ∗1 , . . . , γ∗n} that belong to the
tangent space of M at (X,ω). Mirzakhani and Wright showed the following partial
converse to Theorem 3.11 [MW17, Theorem 1.5]; see Lemma 6.10 for an alternate
proof.

Theorem 3.12 (Mirzakhani-Wright). Every element of Twist(C) can be written
uniquely as the sum of a multiple of the standard shear on C and an element of
ker(p).

The following is derived from Theorem 3.12 in [MW17, Corollary 1.6].

Corollary 3.13 (Mirzakhani-Wright). M-parallel cylinders in invariant subvarieties
with no rel have a constant ratio of moduli.

Definition 3.14. We will say that a collection of cylinders C = {C1, . . . , Cn} on
(X,ω) is an M-subequivalence class if all of the cylinders in C are M-parallel and
if C is a minimal collection of cylinders such that the standard shear σC belongs to
T(X,ω)M.

Every M-equivalence class is a union of M-subequivalence classes. A related
but different definition of subequivalent was used in [Api19]; our definition is better
suited to the general study of invariant subvarieties. We illustrate the definition with
the following lemma.

Lemma 3.15. If a surface inM has two disjoint non-parallel subequivalence classes,
then M has rank at least two.

The example ofM = H(0, 0) shows that the non-parallel assumption is necessary.

Proof. SupposeM has rank 1. Suppose in order to find a contradiction that (X,ω) ∈
M has two disjoint non-parallel subequivalence classes, C1 and C2.

Then [Wri15a, Theorem 1.5] gives in particular that (X,ω) is periodic in the
C1 direction. Deforming C2 does not change the circumference of the cylinders in
C1, but will change the circumference of some cylinders parallel to C1. This shows
that not all parallel cylinders are M parallel, which contradicts [Wri15a, Theorem
1.10].

As an example, on a surface (X,ω) in a component H of a stratum of Abelian
differentials, two cylinders are equivalent if and only if their core curves are homolo-
gous to each other. However, every cylinder on (X,ω) can be dilated while remaining
in H. Therefore, each H-subequivalence class is a singleton.
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Definition 3.16. A cylinder on a translation surface (X,ω) in M is said to be
generic if all the saddle connections on its boundary remain parallel to the core
curve of the cylinder on all nearby surfaces in M.

Remark 3.17. It is not hard to see that if a cylinder is not generic on (X,ω) then
it becomes generic on almost every surface in a neighborhood of (X,ω) in M. The
generic cylinders in strata of Abelian differentials are simple cylinders, i.e. cylinders
where each component of the boundary consists of a single saddle connection.

Lemma 3.18. Subequivalence classes of generic cylinders in Abelian doubles are
either pairs of simple cylinders or a single complex cylinder.

Per Definition 4.7, a complex cylinder is one with two saddle connections of equal
length on each boundary.

Proof. We have already remarked that subequivalence classes of cylinders in strata of
Abelian differentials are sets containing a single cylinder. Therefore, on an Abelian
double, subequivalence classes of generic cylinders consist of preimages of simple
cylinders, which are either a pair of simple cylinders or a single complex cylinder.
In the case that the stratum being covered has free marked points this uses the
stipulation in the definition of “Abelian double” that the preimage of every free
marked point be marked.

Finally, we will record the following definition for future use.

Definition 3.19. We will say that two cylinders are non-adjacent if they are disjoint
and share no boundary saddle connections. Similarly, we will say that a cylinder is
not adjacent to a saddle connection if the cylinder and saddle connection are disjoint
and the saddle connection is not a boundary saddle connection of the cylinder.

3.5 The boundary of an invariant subvariety

We now discuss results from [MW17, CW19] about the boundary of an invariant
subvariety M.

Let (Xt, ωt), t ∈ (0, 1] be a continuous family of translation surfaces which de-
generates as t → 0. Suppose that it is possible to present (X1, ω1) via polygons in
the plane in such a way that all (Xt, ωt), t ∈ (0, 1] can be presented by changing the
edge vectors of these polygons. Suppose furthermore that, as t → 0, the polygons
converge to limit polygons in such a way that some edges reach 0 length, and all
other edges converge to edges of the limiting polygons. Then

lim
t→0

(Xt, ωt)
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exists in the WYSIWYG partial compactification, and is equal to the surface given by
the limit polygons [MW17, Definition 2.2, Proposition 9,8]; for the specific example
of cylinder degenerations see also [MW17, Lemma 3.1]. This motivates the name
What You See Is What You Get, since in such nice situations the limit is obtained
naively from limiting polygons.

The following is a special case of the main result [MW17] when the limit is
connected, and in [CW19] when it is disconnected.

Theorem 3.20 (Mirzakhani-Wright, Chen-Wright). Suppose a path (Xt, ωt), t ∈
(0, 1] as above is contained an orbit closure M. Then limt→0(Xt, ωt) is contained in
a componentM′ of the boundary ofM, andM′ is locally defined as follows by linear
equations.

Using local coordinates consisting of edge vectors for the polygons defining (X1, ω1),
consider the linear equations locally definingM. Delete (or replace by zero) all terms
corresponding to edges that do not give rise to edges of the limit. These equations
locally define M′.

This again is a naively intuitive statement: After an edge reaches zero length, we
should just plug in 0 for the corresponding variable in the equations defining M in
order to obtain the equations defining M′.

Here we have stated Theorem 3.20 in a simpler way than it is first presented in
[MW17,CW19], since we have no need for the more complicated situation of limits
of arbitrary sequences inM; our presentation here follows “Other points of view” in
[CW19, Section 1]. We have also chosen to use polygonal presentations, which places
a small burden on the reader later in the paper to imagine polygonal presentations.
Readers familiar with [MW17,CW19] will understand that polygonal presentations
are in fact not necessary.

Note that connected surfaces may degenerate to disconnected surfaces.

Convention 3.21. Unless otherwise specified, all surfaces in this paper will be con-
nected. Abelian and quadratic doubles by definition consist of connected surfaces,
so in Theorem 1.2 the invariant subvarieties MC1 and MC2 consist of connected
surfaces; but MC1,C2 might consist of disconnected surfaces. The assumption in
Theorem 1.1 that the surfaces in MC1,C2 are connected implies that the surfaces in
MC1 and MC2 are also connected, but as we indicate in Theorem 8.2 we obtain
the same conclusion in most cases when the surfaces in MC1 and MC2 are possibly
disconnected covers of connected surfaces (in which case it turns out that the surfaces
in MC1,C2 are also possibily disconnected covers of connected surfaces).

We now illustrate some of the ways Theorem 3.20 will be applied throughout the
paper.
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Corollary 3.22. Suppose that C1 and C2 are disjoint subequivalence classes of cylin-
ders on a surface (X,ω) in an invariant subvariety M, that C1 and C2 don’t share
boundary saddle connections, and that the cylinders in C1 are M-generic. If MC2

is the component of the boundary of M containing ColC2(X,ω), then the cylinders
in ColC2(C1) are MC2-generic.

Proof. One can consider polygonal presentations where each cylinder in C1 and C2

is, for example, a union of triangles. There are linear equations defining M that
directly give that all the boundary saddle connections of C1 are generically parallel,
and these give rise to corresponding equations for MC2 .

Corollary 3.23. Similarly, if C is a generic subequivalence class such that Twist(C)
is one dimensional, then the saddle connections in ColC(C) are MC-parallel.

Recall that Twist(C) is defined before Theorem 3.12. The condition that this
space is one dimensional indicates that the only deformation of C that remains in
M is the standard deformation.

Proof. Every saddle connection in ColC(C) arises from a saddle connection in C.
We have assumed that there is a saddle connection in C that is perpendicular to

its core curves. Since the only deformation of C that remains in M is the standard
deformation, every saddle connection in C has holonomy given as a linear combi-
nation of perpendicular cross curve and the circumference. Since the perpendicular
cross curves collapses (has zero holonomy in the limit), this gives the result.

Lemma 3.24. Suppose that M′ consists of connected surfaces and is a codimension
one boundary component of an Abelian (resp. quadratic) double M. Suppose too
that M′ contains a surface of the form ColC(X,ω) where (X,ω) ∈ M and C is a
subequivalence class of cylinders on (X,ω). ThenM′ is an Abelian (resp. quadratic)
double.

Proof. For concreteness we prove this in the Abelian double case. One can pick a
T -invariant triangulation of (X,ω), where T is the translation involution, in such a
way that C is a union of triangles. For each edge v, there is an equation v = Tv
locally definingM. These give rise to equations forM′ showing thatM′ consists of
degree two covers of Abelian differentials.

Since M is a full locus of covers, we get that M′ is also, since any boundary
component of a component of stratum of Abelian differentials is again a component
of stratum of Abelian differentials. The set of marked points on ColC(X,ω) is T
invariant since the set of marked points and zeros on (X,ω) is T -invariant.
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Lemma 3.25. Suppose that (X,ω) is a translation surface in an invariant subvariety
M, and that C is a subequivalence class of cylinders on (X,ω). Let MC be the
component of the boundary containing ColC(X,ω).

Let (Xt, ωt) be a path in the stratum containing (X,ω) with (X0, ω0) = (X,ω)
and along which C not only persists but, for each t, is a rotated and scaled copy of
C on (X,ω) (including all saddle connections in the boundary of C).

Suppose that, in a continuous way depending on t, C can be collapsed using
standard cylinder deformations to give a surface in MC. Then the path lies in M.

Proof. Again consider a triangulation where each cylinder in C is a union of triangles.
Since the standard deformation of C remains in M, one can locally define M

using the following two types of linear equations: those using only edges not in C,
and those using only edges in C. (Here it is important that we view C as an open
subset of the surface, which does not contain the boundary saddle connections.)

The first type of equations hold along the path because, for each t, the collapse
of C lies in MC, and these equations correspond to equations in MC. The second
type of equations hold along the path because C only gets rotated and scaled.

3.6 Generic diamonds

In the sequel we will mainly use the following type of diamond, whose definition
builds on Definitions 3.14 and 3.16:

Definition 3.26. A diamond will be called a generic if

1. each Ci is a subequivalence class of generic cylinders, and

2. MCi
has dimension exactly one less than M for each i ∈ {1, 2}.

In the remainder of this section we explain that given a generic diamond, there
is no harm in assuming the surface has dense orbit, and that generic diamonds are
abundant. We need a few lemmas for this.

Lemma 3.27. Suppose that C1 and C2 are disjoint subequivalence classes of generic
cylinders on (X,ω) in an invariant subvarietyM. Then there is an arbitrarily nearby
surface (X ′′, ω′′) with dense orbit in M on which C1 and C2 persist and remain
subequivalence classes of generic cylinders.

This lemma confronts the possibility that a perturbation may cause a subequiv-
alence class to cease being a subequivalence class; although one can transport the
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standard deformation of the subequivalence class to the deformation, if the ratios
of heights of the cylinders have changed it might no longer be standard. In all the
applications in this paper and its sequels, we will know a priori that this difficulty
cannot occur. Since additionally the proof of the lemma, in general, is a bit technical,
some readers may wish to skip it.

Proof. We will work entirely within a neighborhood U of (X,ω) on which the cylin-
ders in C1 ∪C2 persist and remain generic. (Since Cj consists of generic cylinders,
this can be accomplished by letting U be a neighborhood in which all of the saddle
connections on the boundary of cylinders in C1 ∪ C2 persist.) Let (X ′, ω′) ∈ U be
a surface close to (X,ω) with dense orbit in M. Let Dj be the equivalence class of
Cj.

The cylinders in Dj persist on (X ′, ω′) and remain equivalent to each other, but
additional parallel cylinders may have been created in the passage from (X,ω) to
(X ′, ω′). So we let D′j denote the cylinders on (X ′, ω′) equivalent to those persisting
from Dj, keeping in mind that D′j may have more cylinders than Dj.

Set wj := σDj
−σD′

j
. (Here σD′

j
is the standard shear of D′j ⊂ (X ′, ω′) and σDj

is

the standard shear of Dj ⊂ (X,ω), and we identify the relative cohomology groups
of (X,ω) and (X ′, ω′) via parallel transport.) Let αj be a unit modulus complex
number that is perpendicular to the period of the core curves of D′j, so deforming
(X ′, ω′) in the αjwj direction corresponds to dilating the cylinders without shearing
them and deforming in the iαjwj direction corresponds to twisting the cylinders.

Picking the sign of αj appropriately ensures that, on (X ′, ω′)+αjwj, the cylinders
in Cj have returned to their original heights. (One can think of this as subtracting
off the appropriate multiple of σD′

j
to collapse all the cylinders in D′j, and then

adding the appropriate multiple of σDj
to restore the cylinders in Dj to their original

heights.)
Using the Cylinder Finiteness Theorem of [MW17, Theorem 4.1] or [CW19,

Theorem 5.3], we see that the circumferences of cylinders in D′j are bounded inde-
pendently of the perturbation (X ′, ω′). Since (X ′, ω′) is close to (X,ω), this implies
moreover that any “new” cylinders in D′j that don’t arise from Dj have small height.
These observations can be used to show that (X ′, ω′)+α1w1+α2w2 is close to (X ′, ω′)
and hence also close to (X,ω).

For all sufficiently small real numbers a1 and a2,

(X ′, ω′) + α1w1 + α2w2 + i(α1a1w1 + α2a2w2)

remains in U and has the property that the cylinders in C1 and C2 have the same
heights as on (X,ω) and hence continue to form a subequivalence class. If one of
these surfaces has dense orbit in M, then we are done.
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Suppose therefore that this does not occur. Then there is a proper invariant
subvariety M′ contained in M such that iα1w1 and iα2w2 are tangent to M′ at
(X ′, ω′) + α1w1 + α2w2. This in particular means that (X ′, ω′) is contained in M′,
which contradicts the assumption that it has dense orbit in M.

Lemma 3.28. Suppose that C is a subequivalence class of cylinders on a surface
(X,ω) whose orbit is dense in M. Then, for almost every s, every surface obtained
via a standard shear in C from aCs (X,ω) has dense orbit in M.

Here aCs (X,ω) is the result of dilating the cylinders in C, as in the introduction.

Proof. Pick any s so that the Q-span of the moduli of the cylinders in C on aCs (X,ω)
has trivial intersection with the Q-span of the moduli of all other cylinders parallel
to C.

Fix t ∈ R, and let uCt a
C
s (X,ω) be the result of shearing the cylinders in C on

aCs (X,ω) by t. Since C is a subequivalence class, uCt a
C
s (X,ω) ∈M.

As in [Wri15a, Lemma 3.1] or [MW17, Lemma 4.6], the orbit closure of uCt a
C
s (X,ω)

contains (X,ω). (The proof of the first cited lemma shows that the shear in C re-
mains in the orbit closure of uCt a

C
s (X,ω); the dilation is obtained as a complex

multiple of the shear.) Hence uCt a
C
s (X,ω) has dense orbit in M, since (X,ω) has

dense orbit.

Corollary 3.29. Given a generic diamond ((X,ω),M,C1,C2), there is a pertur-
bation (X ′, ω′) of (X,ω) with subequivalence classes C′i of generic cylinders arising
from deforming Ci such that ((X ′, ω′),M,C′1,C

′
2) is also a generic diamond and the

surface (X ′, ω′) has dense orbit in M.
Furthermore, ColC′

i
(X ′, ω′) is a small perturbation of ColCi

(X,ω), and we have
MCi

=MC′
i
.

Proof. Let si be a saddle connection in Ci perpendicular to the core curves.
By Lemma 3.27, there is a surface (X ′, ω′) with dense orbit inM that is arbitrarily

close to (X,ω) and on which C1 and C2 remain generic subequivalence classes of
cylinders. For clarity, when thinking of these subequivalence classes on (X ′, ω′), we
denote them C′1 and C′2 respectively.

Because the cylinders were generic, each si is still a saddle connection on (X ′, ω′),

and it is contained in C
′
i. However, it may no longer be perpendicular to the core

curves. By applying Lemma 3.28, we may correct this by applying standard cylin-
der deformations to C′1 and C′2 while ensuring that the resulting surface still has
dense orbit. Thus, without loss of generality, we assume that, actually, each si is
perpendicular to the core curves of C′i on (X ′, ω′).
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Since MCi
is a codimension 1 degeneration, all saddle connections parallel to si

that are contained in Ci are generically parallel to each other. Assuming the above
perturbations are small, the corresponding statement holds on the perturbation.

Since MCi
and MC′

i
are both codimension 1 degenerations that degenerate si,

they must be equal.

Almost every surface in M does not have any saddle connections perpendicular
to a cylinder, which is why Lemma 3.28 is required above. Alternatively, one can
avoid this issue by modifying the definition of diamonds, choosing, for each i, a
choice of direction in which there is a saddle connection in Ci, and using cylinder
degenerations that collapse these directions. See [AWa] for details, where we call
the resulting notion skew diamonds. Skew diamonds are just as good as diamonds,
but more flexible, and the only reason we use regular diamonds in this paper is to
avoid the notational annoyance of always having to specify the choice of direction.

Remark 3.30. Keeping Corollary 3.29 in mind, we will frequently assume without
loss of generality that the surface in our generic diamonds has dense orbit.

We close the section with a result that will not be used in this paper, but illus-
trates the ubiquity of diamonds.

Lemma 3.31. Let M be an invariant subvariety of rank at least 2. Then there
exists a surface (X,ω) ∈M with collections C1,C2 of cylinders that form a generic
diamond.

Moreover, up to shearing the Ci, this (X,ω) may be assumed to be any surface
in M on which all parallel saddle connections are M-parallel, and C1 may be any
subequivalence class.

The shearing is not necessary if one uses skew diamonds. Diamonds never exist
when M is rank 1 and has (complex) dimension 2 or 3. If M is rank 1 and has
dimension at least 4, they often but not always exist.

The lemma does not guarantee that theMCi
consist of connected surfaces; even

though we assume (X,ω) is connected, ColC1(X,ω) and ColC2(X,ω) might have
multiple components.

Proof. Start with any (X,ω) ∈ M on which all parallel saddle connections are M-
parallel. (Such surfaces are dense.)

Let D1 be an equivalence class of M-parallel cylinders on (X,ω). Since M
is not rank 1 and parallel saddle connections are M-parallel, the cylinders of D1

do not cover (X,ω). This follows from the proof of [Wri15a, Theorem 1.7], and
can also be established by contradiction as follows. Assume that D1 is horizontal
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and covers (X,ω). By assumption all horizontal saddle connections are M-parallel.
Therefore, any real deformation in M that preserves the length of one horizontal
saddle connection preserves the lengths of all horizontal saddle connections. Such
deformations necessarily belong to Twist(D1), which projects to a one-dimensional
subspace of absolute cohomology by Theorem 3.12. Since the collection of real de-
formations projects to a 2 · rank(M) real-dimensional subspace of p

(
T(X,ω)M

)
, and

since Twist(D1) is by assumption codimension one in the space of real deformations,
we get that M has rank one, which is a contradiction.

Recall from [SW04, Corollary 6] that the horocycle flow orbit closure of any
surface contains a surface covered by horizontal cylinders. Applying this fact as in
[Wri15a, Section 8] or [AWb, Lemma 8.3], we get the existence of a cylinder E
disjoint from D1. Since we have assumed that all parallel saddle connections are
generically parallel, E cannot be parallel to D1. Let D2 be the equivalence class of
E. It is easy to see using the Cylinder Deformation Theorem [Wri15a, Theorem
1.1] that no cylinder of D1 intersects a cylinder of D2; see also [NW14, Proposition
3.2], which is sometimes called the Cylinder Proportion Theorem.

The Cylinder Deformation Theorem implies that the standard dilation in each Di

remains in M. For each i, let Ci be a minimal subset of Di such that the standard
dilation of Ci remains in M. (One expects Ci = Di, since in general there is no
reason to believe that the standard dilation of any strict subset of Di remains inM.)

Now, shear each Di so that Ci contains a saddle connection si perpendicular to
core curves of cylinders in Ci. Replace (X,ω) with this sheared surface.

By definition, C1 and C2 are disjoint. Since they are not parallel, they cannot
share boundary saddle connections. The existence of the si imply that collapsing
either Ci does indeed cause the surface to degenerate. So ((X,ω),M,C1,C2) defines
a diamond.

The Ci are subequivalence classes by definition, so to see that this diamond is
generic it suffices to check that each MCi

has dimension exactly one less than M.
That follows from the main results of [MW17,CW19], as recalled in Theorem 3.20,
using that all the saddle connections in Ci parallel to si areM-parallel to si, which
follows from our original assumption that parallel saddle connections areM-parallel.

4 Preliminaries on strata

Throughout this section Q will denote a connected component of a stratum of
quadratic differentials, possibly with marked points.
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Convention 4.1. For convenience, we will insist that the term “quadratic differ-
ential” will never apply to the square of a holomorphic 1-form. Thus, in our con-
vention, quadratic differentials will never have trivial holonomy. We will however
use “half-translation surface” to mean either an Abelian or quadratic differential, so
half-translation surface may have trivial or non-trivial holonomy.

By Lanneau [Lan04] and Chen-Möller [CM14], aside from a finite explicit col-
lection of strata, every stratum of quadratic differentials is either connected or has
two components that are distinguished by hyperellipticity.

Definition 4.2. Given a component of a stratum of Abelian or quadratic differen-
tials, the hyperelliptic locus therein is the collection of surfaces with a half-translation
map to a genus zero quadratic differential, such that the associated hyperelliptic in-
volution preserves the set of marked points.

A component of a stratum is called hyperelliptic if it coincides with its hyperel-
liptic locus.

We will study hyperelliptic components of strata in detail in Section 9, but for
now we recall the following from [AWc, Lemma 4.5]. When Q is a component of a
stratum of quadratic differentials the following is due to Lanneau [Lan04, Theorem
1]. Recall from Definition 3.9 that if Q has marked points, then F(Q) denotes the
same stratum with marked points forgotten.

Lemma 4.3. The generic element of a component Q of a stratum of Abelian or
quadratic differentials admits a non-bijective half-translation cover to another trans-
lation or half-translation surface if and only if F(Q) is hyperelliptic, in which case
the hyperelliptic involution yields the only such map when Q has rank at least two.

In the sequel we will also need the rank and rel of a stratum of quadratic differ-
entials, which we recall from [AWc, Lemma 4.2].

Lemma 4.4. Let Q(κ) where κ = (k1, . . . , kn) be a stratum of quadratic differentials.
Let modd be the number of odd numbers in κ and meven the number of even numbers.
Let g be the genus. The rank and rel of the component is then

rank(Q) = g +
modd

2
− 1 and rel(Q) = meven.

Since the following result requires a more detailed understanding of hyperelliptic
components, we defer its proof to Section 9 (see Lemma 9.5).
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Lemma 4.5. Let (X,ω) be a generic surface in a quadratic double of a component
Q of a stratum of quadratic differentials. If F(Q) 6= Q(−14), then there is a unique
involution J of derivative −Id such that (X,ω)/J is a generic surface in a component
of a stratum of quadratic differentials.

If F(Q) = Q(−14) and (X,ω) has at least one marked point, then there is a
unique marked-point preserving involution J of derivative −Id such that (X,ω)/J is
a generic surface in a component of a stratum of quadratic differentials.

Definition 4.6. The involution in Lemma 4.5 will be called the holonomy involution.

4.1 Cylinders

We will need to understand what cylinders that are generic in the sense of Definition
3.16 look like in strata of quadratic differentials. Recall our conventions on cylinders,
and the definition of multiplicity, from Definition 3.10.

Definition 4.7. A cylinder on a translation or half-translation surface is called a

1. simple cylinder if each boundary consists of a single saddle connection,

2. half-simple cylinder if one boundary is a single saddle connection, and the other
is two distinct saddle connections of equal length,

3. complex cylinder if each boundary consists of two distinct saddle connections
of equal length,

4. simple envelope if one boundary is a single saddle connection, and the other
boundary is a single saddle connection with multiplicity two,

5. complex envelope if one boundary is two distinct saddle connections of equal
length, and the other boundary is a single saddle connection with multiplicity
two.

See Figure 4.1

The final two possibilities can of course only occur on half-translation surfaces.
Using this language, the following foundational result is a consequence of [MZ08],
as we discuss in Remark 4.10.

Theorem 4.8 (Masur-Zorich). Let C be a generic cylinder on a quadratic differential
in any stratum other than Q(−14). Then:
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Figure 4.1: Top: The five cylinder types of Definition 4.7, drawn as rectangles with
left and right sides identified to give horizontal cylinders. Bottom: The preimage on
the holonomy double cover, if these cylinders appear in a generic quadratic differen-
tial. In possibilities 4 and 5, the preimage can have 0, 1, or 2 marked points. The
bottom right possibility looks different after a half Dehn twist (illustrated in Figure
10.6).

1. C is one of the five possibilities in Definition 4.7.

2. If C has two distinct saddle connections on one of its boundary components,
then cutting those saddle connections disconnects the surface into two pieces,
exactly one of which has trivial linear holonomy. The piece with trivial linear
holonomy is the component that does not contain the interior of the original
cylinder.

3. If C shares a boundary saddle connection with another generic cylinder C ′, and
this saddle connection does not join a marked point to itself, then possibly after
switching C and C ′ we have that C ′ is simple and does not share a boundary
saddle connection with any other cylinder, and C has two saddle connections
in the given boundary component that borders C ′.

Recall that two saddle connections on a quadratic differential are said to be hat-
homologous in a stratum Q of quadratic differentials if they remain parallel at all
nearby half-translation surfaces, or in other words if they are Q-parallel. A tool in
the proof of Theorem 4.8 is the following [MZ08, Theorem 1].
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Figure 4.2: The left and right images indicate the two possible configurations of C
and C ′ in Theorem 4.8 (3). The middle images shows that there may also be another
cylinder adjacent to C.

Theorem 4.9 (Masur-Zorich). Two saddle connections are hat-homologous if and
only if a component of their complement has trivial holonomy. If such a component
exists, it is unique.

Remark 4.10. Since we do not use exactly the same language as Masur and Zorich,
we now explain how Theorem 4.8 is contained in [MZ08]. The assumption that C
is generic implies that all the boundary saddle connections of C are hat-homologous.
Thus Theorem 4.8 follows from the classification of configurations of hat homologous
saddle connections in [MZ08, Theorem 2]. (It can also be obtained more directly.)

Masur and Zorich do not consider marked points, but the statements for surfaces
with marked points can be easily derived from the statements for unmarked surfaces.

We conclude with the following basic observations.

Lemma 4.11. Let Q be a component of a stratum of quadratic differentials and let
C be a generic cylinder on (X, q) ∈ Q containing a saddle connection perpendicular
to its core curve.

1. We have dimQC = dimQ− 1, and QC is a component of a stratum of Abelian
or quadratic differentials.

2. If C is a simple cylinder, simple envelope, or half-simple cylinder, then QC

consists of connected quadratic differentials, and if C is a complex cylinder,
then QC consists of connected Abelian differentials.

3. If Q is hyperelliptic, then so is QC.

Here QC is defined to be the component of the boundary of Q that contains
ColC(X, q).
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Proof. The first claim follows since deformations in Q correspond to deformations in
QC as well as shearing C.

We now discuss the second claim. If C is a simple cylinder, simple envelope,
or half-simple cylinder, it is immediate that ColC(X, q) is connected. To see that
ColC(X, q) has nontrivial holonomy, note that any loop on (X, q) with nontrivial
holonomy can be modified to still have nontrivial holonomy and be disjoint from
the perpendicular saddle connection in C, thus giving rise to a loop with non-trivial
holonomy on ColC(X, q). If C is a complex cylinder, then Theorem 4.8 (2) implies
that cutting either boundary of C produces a translation surface with boundary.
Therefore, ColC(X, q) consists of these two translation surfaces glued together along
their boundary.

The final claim follows because the hyperelliptic involution on (X,ω) degenerates
to a hyperelliptic involution on ColC(X, q)

Corollary 4.12. Suppose M⊂ Q, and C is an M-generic cylinder on (X, q) ∈ Q.
Suppose that C is a simple cylinder, a simple envelope, or a half-simple cylinder.
Then if MC is a component of a stratum of quadratic differentials, then M = Q.

Section 6 is entirely devoted to understanding the extent to which this fails when
C is a complex envelope. Section 6.6 discusses the corresponding unresolved problem
when C is a complex cylinder.

Proof. We first claim that C is in fact Q-generic. This is immediate if C is a simple
cylinder or simple envelope. In the case that C is a half-simple cylinder, note that
ColC(C) consists of two saddle connections that, by Theorem 3.20, areMC-parallel.
SinceMC is a stratum, this means these two saddle connections are hat homologous.
By Theorem 4.9, a component of their complement has trivial holonomy. This implies
that the saddle connections bounding C are hat-homologous, giving the claim.

SinceMC is in the boundary ofM, we have dimMC ≤ dimM−1. Lemma 4.11
gives dimMC = dimQ− 1, so we get that dimM = dimQ and hence M = Q.

4.2 Hyperelliptic components of strata

Cylinder types are restricted in hyperelliptic components.

Lemma 4.13. Suppose that Q 6= Q(−14) is hyperelliptic. Then every generic cylin-
der is a complex envelope, complex cylinder, or simple cylinder.

The hyperelliptic involution acts by translations on complex envelopes and complex
cylinders and by rotation on simple cylinders.
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By Definition 3.10, cylinders do not include their boundary, so all cylinders have
trivial holonomy. A translation preserves holonomy on the cylinder, and a rotation
negates it.

Proof. The hyperelliptic involution fixes each cylinder, and either preserves holonomy
in that cylinder or negates it. Half-simple cylinders and simple envelopes have no such
involution symmetry. A simple cylinder only has a nontrivial rotation involution; it
does not have a translation involution. Conversely a complex envelope has only a
translation involution.

Complex cylinders have both types of symmetry. Masur-Zorich (Theorem 4.8)
implies that deleting the cylinder’s core curve disconnects the surface into two com-
ponents. The hyperelliptic involution must fix each component, so it must fix each
boundary component of the complex cylinder. Hence the involution must act as a
translation on complex cylinders.

By Kontsevich-Zorich [KZ03], the only strata of Abelian differentials that have
hyperelliptic components are H(2g − 2) and H(g − 1, g − 1), where g is any positive
integer. We will denote these components by Hhyp(2g − 2) and Hhyp(g − 1, g − 1).
Given a surface in one of these strata, its quotient by the hyperelliptic involution is
a genus zero quadratic differential with a single zero when g > 1; when g = 1 the
quotient belongs to Q(−14) or Q(−14, 0) in the case of H(0) and H(0, 0) respectively.

Lemma 4.14. In a hyperelliptic component of a stratum of Abelian differentials, two
distinct saddle connections are generically parallel if and only if they are exchanged
by the hyperelliptic involution.

Proof. Suppose that s and s′ are distinct generically parallel saddle connections on
a translation surface (X,ω) that belongs to a hyperelliptic component of a stratum.
Let J denote the hyperelliptic involution on (X,ω). Since the claim is obvious in
H(0) and H(0, 0), suppose for notational clarity that (X,ω) has genus at least two.
Suppose in order to derive a contradiction that J(s) 6= s′.

It follows that s/J and s′/J are distinct generically parallel saddle connections
on (X,ω)/J , which is a genus zero quadratic differential with a single zero. (There
is a zero of positive order on (X,ω)/J since (X,ω) has genus at least 2.)

By Masur-Zorich (Theorem 4.9), a component of their complement has trivial
linear holonomy. Since (X,ω)/J has genus zero, this component is a cylinder whose
core curve is necessarily nullhomologous. However, this contradicts the fact that the
unique zero of (X,ω)/J lies on both s/J and s′/J , because these saddle connections
lie on opposite sides of the cylinder.
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Lemma 4.15. Suppose that s is a saddle connection that is not fixed by the hyperel-
liptic involution J on a translation surface in a hyperelliptic component of a stratum
of Abelian differentials. Cutting along s and J(s) divides the translation surface into
two components that are both fixed by J .

Proof. Since s and J(s) are generically parallel, they are homologous, and so cutting
them divides the translation surface into two components. The two components must
be fixed by J since J negates holonomy.

Recall that subequivalence classes are defined in Definition 3.14.

Lemma 4.16. Let C be a subequivalence class of generic cylinders on a generic
surface (X,ω) in a quadratic double M. If ColC(X,ω) is disconnected, then MC

is an antidiagonal embedding of a component H of a stratum of Abelian differential
into H×H defined by (X,ω) 7→ ((X,±ω), (X,∓ω)).

The marked-point preserving affine symmetry group of generic surfaces in MC

is Z/2Z if H is not hyperelliptic and Z/2Z× Z/2Z if H is hyperelliptic.

Remark 4.17. In the case that H is hyperelliptic, by Lemma 4.14, two saddle con-
nections on a surface inMC are generically parallel if and only if they are exchanged
by elements of the affine symmetry group.

Proof. Let J denote the holonomy involution on (X,ω). By Lemma 4.11, if ColC(X,ω)
is disconnected, then C/J is a complex cylinder or a complex envelope. It follows
that ColC/J ((X,ω)/J) is generic in a component H of a stratum of Abelian differ-
entials. (See Remark 6.2 for illustrations of the two ways to degenerate a complex
cylinder.) Notice that ColC(J) is an involution with derivative −I on ColC(X,ω).
This involution necessarily exchanges the connected components of ColC(X,ω) and
has derivative −I, implying that MC is an antidiagonal embedding of H in H×H.

Notice that each component of ColC(X,ω) has a zero or marked point. By
Lemma 4.3, the generic surface in a stratum of Abelian differentials with a zero or
marked point has a marked-point preserving affine symmetry group that is either
trivial (if the stratum is not hyperelliptic) or Z/2Z if the stratum is hyperelliptic.
This establishes the final statement.

4.3 S-paths

Definition 4.18. Two saddle connections are said to be disjoint if they have no
intersection points in their interiors.
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Definition 4.19. Given a collection of disjoint saddle connections S on a translation
surface (X,ω) belonging to a stratum H, an S-path is continuous map γ : [0, 1]→ H
such that γ(0) = (X,ω) and the saddle connections in S remain disjoint saddle
connections on each γ(t).

Given a pair S of homologous saddle connections on a connected translation
surface (X,ω), cutting them produces two connected components each with two
equal length boundary saddle connections. Gluing together the two boundary saddle
connections of each component, we may obtain a surface (XS, ωS) with two connected
components. On (XS, ωS), there is a pair S ′ of saddle connections, one on each
component, resulting from gluing the boundary saddle connections.

Similarly, given a collection S of n pairwise disjoint pairs of homologous saddle
connections, cutting and re-gluing gives a translation surface (XS, ωS) with n + 1
connected components and with a collection S ′ of n+ 1 pairs of saddle connections.

Lemma 4.20. Let S be a collection of pairwise disjoint pairs of homologous saddle
connections on a translation surface (X,ω), and let γ′ be a S ′-path with γ′(0) =
(XS, ωS). Then there is an associated S-path γ such that

1. γ(0) = (X,ω),

2. for all t, γ(t)S and γ′(t) are equal up to individually rotating and scaling con-
nected components.

Here γ(t)S is the result of cutting and regluing the saddle connections in S on
the translation surface γ(t).

Proof. By induction, it suffices to consider the case when S consists of a single pair of
homologous saddle connections. In this case, γ(t) can be defined by first rotating and
scaling one of the components of γ′(t) so the two saddle connections in S have the
same holonomy, and then cutting and re-gluing to obtain a connected surface.

5 Diamonds with a stratum of Abelian differen-

tials

The purpose of this section is to prove the following, where we use the notation F
from Definition 3.9 for forgetting marked points.

Proposition 5.1. Let ((X,ω),M,C1,C2) be a generic diamond of Abelian differ-
entials. Suppose that MC1 is a component of a stratum of connected Abelian differ-
entials. Then:
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1. MC2 cannot be an Abelian double.

2. If MC2 is a component of a stratum of Abelian differentials, so is M.

3. If MC2 is a quadratic double, then M has rank at least two, and either

(a) M is a non-hyperelliptic component of a stratum of Abelian differentials
with no marked points, or

(b) F(M) is a hyperelliptic component and there is at most one free marked
point on surfaces in M with the remaining marked points the empty set
or a collection of one marked point fixed or two marked points exchanged
by the hyperelliptic involution, or

(c) F(M) is a codimension one hyperelliptic locus and there is at most one
marked point, which is free.

Proof of Proposition 5.1 parts (1) and (2). Since the diamond is generic, ColC1(C2)
is a subequivalence class of generic cylinders on ColC1(X,ω). SinceMC1 is a compo-
nent of a stratum of Abelian differentials it follows that ColC1(C2) consists of a single
simple cylinder. Since collapsing a simple cylinder on a connected surface produces
a connected surface, it follows that MC1,C2 is a locus of connected surfaces. It is
necessarily also a component of a stratum of Abelian differentials.

Since no locus is both a component of a stratum of Abelian differentials and an
Abelian double, we see that MC2 is not an Abelian double. This establishes (1).

Similarly, if MC2 is also a component of a stratum of Abelian differentials, then
both C1 and C2 are simple cylinders. Since gluing a simple cylinder into a generic
surface in a stratum of Abelian differentials produces another generic surface in a
stratum of Abelian differentials, this proves (2).

The rest of this section is devoted to the case when MC2 is a quadratic double.
Recall that subequivalence classes are defined in Definition 3.14.

Proof of Proposition 5.1 part (3). Since MC1,C2 is both a component of a stratum
of Abelian differentials and a quadratic double,MC1,C2 is a hyperelliptic component
of a stratum of Abelian differentials by Lemma 4.3. The marked points on surfaces
inMC1,C2 must be free (sinceMC1,C2 is a component of a stratum) and fixed by the
hyperelliptic involution (since MC1,C2 is a quadratic double). This implies that the
surfaces in MC1,C2 have no marked points except when MC1,C2 is H(0) or H(0, 0).

It follows that the hyperelliptic involution is the unique marked point preserv-
ing involution on the generic surface in MC1,C2 . Letting J2 denote the holonomy
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involution on ColC2(X,ω) we have that ColColC2
(C1)(J2) must be the hyperelliptic

involution.

Sublemma 5.2. M has rank at least two. Moreover, if MC1,C2 has rank one, then
ColC1,C2(C1) and ColC1,C2(C2) are not generically parallel.

Proof. We prove the second statement first. Assume MC1,C2 has rank one. Since it
is hyperelliptic, MC1,C2 is either H(0) or H(0, 0).

Suppose that ColC1,C2(C1) and ColC1,C2(C2) are generically parallel. Since H(0)
does not have pairs of generically parallel saddle connections, this implies that
MC1,C2 = H(0, 0) and that each of ColC1,C2(C1) and ColC1,C2(C2) is a single saddle
connection that joins a marked point to itself. However, ColC1,C2(C1) is fixed by the
hyperelliptic involution on ColC1,C2(X,ω) since ColC2(C1) is fixed by the holonomy
involution on ColC2(X,ω). This is a contradiction since in H(0, 0) a saddle connec-
tion joining a marked point to itself is not fixed by the hyperelliptic involution.

We now use the second statement to prove the first statement. If M is rank
one, then so is MC1,C2 . Since C1 and C2 are not parallel, Lemma 3.15 gives a
contradiction.

Sublemma 5.3. C1 consists of one or two simple cylinders. If the cylinders are
adjacent, then the only singularity or marked point on their common boundary is a
single periodic marked point.

Proof. The largest number of homologous saddle connections on a surface inMC1,C2

is two since in hyperelliptic components of strata of Abelian differentials two saddle
connections are homologous if and only if they are exchanged by the hyperelliptic
involution by Lemma 4.14. Therefore, ColC1,C2(Ci) is a collection of at most two
saddle connections.

ColC2(C1) is a subequivalence class of generic cylinders in ColC2(X,ω), which is
a surface in a quadratic double. Since ColC1,C2(C1) consists of at most two saddle
connections, using Masur-Zorich (Theorem 4.8) and examining the bottom of Figure
4.1, it follows that ColC2(C1) is either

1. two simple nonadjacent cylinders or

2. a simple cylinder or a complex cylinder that has possibly been divided into two
cylinders by marking the preimage of n ≤ 2 poles on its core curve.

(Following our conventions, in the second case it is correct to say these n points lie on
the boundary of ColC2(C1), but we emphasize they lie in between the two cylinders
of ColC2(C1) and on the interior of a cylinder in F(ColC2(X,ω)).)
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If C1 consists of two simple nonadjacent cylinders there is nothing more to prove;
so suppose that we are in the second case.

We now show that, when C2 is glued into ColC2(C2) to obtain (X,ω) from
ColC2(X,ω), the n marked points on the boundary of ColC2(C1) remain marked
points on (X,ω); so the n marked points on ColC2(X,ω) arise from n marked points
on (X,ω). To see this, notice that ColC2(C2) does not contain a saddle connection
that belongs to the boundary of C1 nor does it contain a saddle connection that
intersects a cylinder in ColC2(C1).

Let P denote the n marked points on the boundary of C1. If n > 0, then since
the two cylinders in C1 have generically identical heights, it follows that the points
in P are periodic points. Let F ′(X,ω) be the translation surface (X,ω) once the
points in P have been forgotten. Let F ′(Ci) denote the images of the cylinders in
Ci on this surface.

We will now show that F ′(C1) is not a complex cylinder. Since ColC1,C2(C1)
consists of two saddle connections that are exchanged by the hyperelliptic involution
we have that ColColC2

(C1)/J2 (ColC2(C1)/J2) consists of a single saddle connection.
As discussed in Remark 6.2, since ColC2(C1)/J2 is a generic complex envelope, this
implies that ColC1,C2(X,ω) is disconnected, which is a contradiction.

It remains to show that |P | ≤ 1 when F ′(C1) is a simple cylinder. If not, then,
letting Z denote the zeros of ω, ColC1,C2(P ) contains a periodic point that is not
contained in ColC1,C2(Z) (see the cylinder labelled 4 in Figure 4.1). Strata do not
have such periodic points, so this is a contradiction.

We now verify the proposition up to determining the number of free marked
points. Let H be the connected component of the stratum containing M.

Sublemma 5.4. One of the following occurs:

1. M = H (if C1 is a single simple cylinder, then this case occurs).

2. F(M) = F(H) is a hyperelliptic component and all marked points are free on
surfaces in M except for a collection of either one marked point fixed or two
marked points exchanged by the hyperelliptic involution.

3. F(M) is a codimension one hyperelliptic locus in F(H) and all marked points
in M are free.

Proof. If C1 consists of a single simple cylinder, M = H, so suppose (by Sublemma
5.3), that C1 consists of two simple cylinders.

Then ColC1(C1) consists of one or two saddle connections and, if two, then two
generically parallel ones. Since the only generically parallel saddle connections in a
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stratum of Abelian differentials are homologous ones it follows that the two cylinders
in C1 are homologous on (X,ω). It follows that M is defined by a single equation
relating the heights of the two cylinders in C1 and hence M is codimension one in
H.

Suppose first that F(M) = F(H). Keeping in mind thatM has rank at least two
(by Sublemma 5.2) and that M⊂ H is codimension 1, [Api20, Theorem 1.5] gives
that F(M) is a hyperelliptic component and the marked points are as described in
(2).

Suppose finally that F(M) 6= F(H). SinceM is codimension 1 in H, this implies
that F(M) is codimension one in F(H) and that all the marked points inM are free.
By Mirzakhani-Wright [MW18] (recalled in Theorem 3.1), F(M) is a hyperelliptic
locus of F(H). So M is as described in (3).

Let Q denote the collection of free marked points on (X,ω). It remains to see
that Q contains no marked points when F(H) is non-hyperelliptic and at most one
point otherwise.

Sublemma 5.5. ColC2(Q) contains no free marked points.

Proof. Suppose not in order to deduce a contradiction. A quadratic double can only
contain free marked points if it is H(0) or H(0, 0). If this occurs, then ColC2(C1) and
hence C1 consists of a single simple cylinder, implying that M = H by Sublemma
5.4.

SinceM has rank at least two, andMC2 coincides with H(0, 0) or H(0) and has
dimension exactly one less thanM, it follows thatM = H(2). This is a contradiction
since it implies that Q is empty.

Since the marked points in Q are free, whenever one collides with a zero it is a
codimension one degeneration. Since MC2 has dimension exactly one less than M,
at most one point in Q can coincide with a zero on ColC2(X,ω). This shows that Q
contains at most one point (by Sublemma 5.5) and that when Q contains one point,
ColC2(X,ω) is formed by moving that point into a zero, which shows that F(M) =
F(MC2). When F(M) is nonhyperelliptic this cannot occur (by Lemma 4.3) since
MC2 is a quadratic double. So Q is empty when F(M) is nonhyperelliptic.

6 Gluing in a complex envelope

The main result of the section is the following.
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Theorem 6.1. Suppose that (Z, ζ) is contained in an invariant subvariety M of
quadratic differentials, and C is an M-generic cylinder on (Z, ζ) that is a complex
envelope, and that the standard dilation of C remains in M.

IfMC is a component of a stratum of Abelian or quadratic differentials, then one
of the following occurs:

1. M is a component of a stratum, or

2. F(M) is a hyperelliptic component of a stratum and all marked points on (X, q)
are free except for a pair of points on the boundary of C that are exchanged by
the hyperelliptic involution, or

3. F(M) is a codimension one hyperelliptic locus in a non-hyperelliptic connected
component of a stratum and all marked points are free.

The latter two cases occurs if and only if F (ColC(Z, ζ)) belongs to a hyperelliptic
component of a stratum of quadratic differentials and ColC(C) is a single saddle
connection that is generically fixed by the hyperelliptic involution.

Recall that generic cylinders were defined in Definition 3.16, complex envelopes
were defined in Definition 4.7, the notation F for forgetting marked points was
defined in Definition 3.9, and hyperelliptic loci were defined in Definition 4.2.

Remark 6.2. There are two ways to collapse a complex envelope, illustrated in Figure
6.1. In one, ColC(C) is a single saddle connection. In the other, ColC(C) consists of

Figure 6.1: The two ways of collapsing a complex envelope (left and right). The top
illustrates the envelope before collapse, and the bottom illustrates after the collapse.

two saddle connections that each connect a singularity or marked point to a pole.
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WhenM is a component of a stratum of quadratic differentials, Theorem 4.8 gives
that the complement of C has trivial holonomy. In this case, the first degeneration
has trivial holonomy. Of course the second degeneration has non-trivial holonomy
because it has simple poles. Hence, when M is a component of a stratum, the two
degenerations of C can be distinguished by the corresponding degeneration on the
holonomy double cover of (X, q). The first degeneration disconnects the holonomy
double cover, while the second leaves it connected.

We will prove Theorem 6.1 primarily by considering an operation that reverses
one of the collapses of C. Given a quadratic differential (Q, q) in a stratum Q with a
saddle connection s, cutting s produces a surface with two parallel boundary saddle
connections of equal length, s1 and s2. Now, consider a parallelogram with one edge
parallel to and of the same length as s. Glue in the parallelogram as in Figure 6.2
to obtain a new quadratic differential. We say that this quadratic differential is the
result of gluing in a complex envelope to s, keeping in mind that the result depends
on the choice of parallelogram.

Figure 6.2

We now define an invariant subvariety Ms as follows. If there is an invariant
subvariety locally defined by the equation s1 = s2, then we define Ms to be this
invariant subvariety. Otherwise, we defineMs to be the connected component of the
stratum that contains the result of gluing in a complex envelope to s.

Most of the section will involve proving the following, where, following Convention
4.1, the quadratic differential is implicitly assumed to have non-trivial holonomy.

Theorem 6.3. Let s be a saddle connection on a quadratic differential (Q, q), and let
Q be the connected component of a stratum containing (Q, q). If F(Q) is hyperelliptic
and s is generically fixed by the hyperelliptic involution, then one of the following
occurs:

1. F(Ms) is a hyperelliptic component of a stratum and all marked points are free
except for a pair of points on the boundary of the glued-in complex envelope that
are exchanged by the hyperelliptic involution, or
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2. F(Ms) is a codimension one hyperelliptic locus in a non-hyperelliptic connected
component of a stratum and all marked points are free.

Otherwise, Ms is a connected component of a stratum.

Remark 6.4. The analogue of Theorem 6.3 for Abelian differentials is trivial. Indeed,
if (Q, q) had trivial linear holonomy, then s1 and s2 would be hat-homologous, so
the equation s1 = s2 would be vacuous and Ms would be a whole component of a
stratum.

However, in this section, because of our assumption that (Q, q) has non-trivial
holonomy, Masur-Zorich (Theorem 4.9) gives that the s1 and s2 are not hat-homologous
and hence that the equation s1 = s2 is not vacuous.

Remark 6.5. Being generically fixed by the hyperelliptic involution means that on all
surfaces in a neighborhood of (Q, q), s is fixed by the hyperelliptic involution. This
condition is not satisfied if an endpoint of s is a marked point, so the theorem gives
that in this case Ms is a connected component of a stratum.

Remark 6.6. Let (Q′, q′) be a quadratic differential formed by gluing in a complex
envelope to the saddle connection s on a quadratic differential (Q, q) in a stratum Q.
If s connects a singularity of order a to itself, then write Q = Q(a, κ). If s connects
two singularities of order a and b, then write Q = Q(a, b, κ). From Figure 6.2, it
is clear that the surface (Q′, q′) belongs to the stratum Q(a + 2,−12, κ) in the first
case and Q(a + 1, b + 1,−12, κ) in the second. This shows that gluing in a complex
envelope increases the dimension of the stratum by two.

Proof of Theorem 6.1 given Theorem 6.3. Let us begin with the first type of collapse,
illustrated on the left of Figure 6.1. If ColC(Z, ζ) has trivial holonomy, then M is a
stratum of quadratic differentials by Remark 6.4.

To complete our analysis of the first type of collapse, we now consider the case
when ColC(Z, ζ) has nontrivial holonomy. Remark 6.6 gives that the stratum con-
taining (Z, ζ) has dimension two greater than the stratum containing ColC(Z, ζ).
Since M has dimension one greater than MC, we get that M is codimension 1 in
a component of a stratum. The equation s1 = s2 holds on M (because C is M-
generic) and this equation is non-trivial by Remark 6.4. Hence M is locally defined
by s1 = s2. Theorem 6.3 now gives the result.

Now we conclude by considering the second type of collapse, illustrated on the
right of Figure 6.1. As in the proofs of Lemma 4.11 and Corollary 4.12, we get that
M is a connected component of a stratum.

We now give the proof of the easy part of Theorem 6.3.
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Lemma 6.7. Suppose F(Q) is hyperelliptic and s is generically fixed by the hyper-
elliptic involution. Then one of the following occurs:

1. F(Ms) is a hyperelliptic component of a stratum and all marked points are
free except for a pair of points on the boundary of C that are exchanged by the
hyperelliptic involution, or

2. F(Ms) is a codimension one hyperelliptic locus in a non-hyperelliptic connected
component of a stratum and all marked points are free.

Proof. The involution extends to the result of gluing in a complex envelope, by taking
the involution on the glued-in parallelogram to be rotation by π. The quotient can
be seen explicitly to be genus 0 since it is the result of gluing in a simple envelope
to a genus 0 surface. Thus, F(Ms) is contained in a hyperelliptic locus.

If either endpoint of s is a pole then both are since s is fixed by the hyperelliptic
involution and no pole is.

If both endpoints of s are poles, F(Ms) = F(Q) is a hyperelliptic component of
a stratum and all marked points on (X, q) are free except for a pair of points on the
boundary of C that are exchanged by the hyperelliptic involution.

If neither endpoint of s is a pole, then the saddle connections s1 and s2 do not have
marked points as endpoints. The stratum containing F(Ms) cannot be hyperelliptic
since, if that were the case, the equation s1 = s2 would be vacuous, contradicting
Remark 6.4. SinceMs is defined by s1 = s2, F(Ms) is as well. Therefore F(Ms) is
a codimension one hyperelliptic locus in F(Q).

6.1 Preliminaries on horizontally periodic surfaces

The purpose of this section is to establish the following variant of [Wri15a, Theorem
1.10]. It applies to Abelian or quadratic differentials, but we use the notation of
Abelian differentials.

Proposition 6.8. Suppose that (X,ω) is an Abelian or quadratic differential that is
contained in an invariant subvarietyM with field of definition k(M) = Q. Let s be a
horizontal saddle connection on (X,ω). Then there are horizontally periodic surfaces
(X ′, ω′) arbitrarily close to (X,ω) on which s persists and remains horizontal and
for which the following hold:

1. The number of horizontal cylinders is at least rank(M) + rel(M)− 1.
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2. The core curves of the horizontal cylinders span a subspace of T(X′,ω′)(M))∗ of
dimension at least rank(M).

3. The number of horizontal cylinders is at least rank(M). (This is an improve-
ment on the first bound if rel(M) = 0.)

4. If s is generically parallel to one of the horizontal cylinders, then there are at
least rank(M) + rel(M) many horizontal cylinders.

Here V ∗ denotes the dual of a vector space V .

Proof. We will work entirely with Abelian differentials, but the proof will imply the
same bounds for quadratic differentials by taking holonomy double covers.

Let (X,ω) ∈ M be horizontally periodic. Define the twist space of (X,ω), de-
noted Twist((X,ω),M), to be the intersection of T(X,ω)M with the span of the duals
of the core curves of horizontal cylinders, using the duality between the homology of
the punctured surface and relative cohomology, as in [MW17, Section 4.1].

The dimension of the twist space is a lower bound for the number of cylinders
on (X,ω). If M consists of holonomy double covers of quadratic differentials, its
dimension also gives a lower bound for the number of cylinders on the associated
quadratic differential.

The cylinder preserving space of (X,ω), denoted Pres((X,ω),M), is the subspace
of T(X,ω)M that evaluates to zero on the core curves of the horizontal cylinders. Note
that

Twist((X,ω),M) ⊂ Pres((X,ω),M).

Consider also Press((X,ω),M), which we define to be the subspace of Pres((X,ω),M)
that evaluates to 0 on s, and note that

Twist((X,ω),M) ⊂ Press((X,ω),M).

Since k(M) = Q, Lemma 3.3 implies that square-tiled surfaces are dense in M.
So it is possible to deform (X,ω) to a nearby horizontally periodic surface (X ′, ω′)
on which s persists and remains horizontal. Let (X ′, ω′) be such a deformation with
as many horizontal cylinders as possible.

Lemma 6.9. Twist((X ′, ω′),M) = Press((X
′, ω′),M).

Proof. Otherwise, as in [Wri15a, Sublemma 8.7], it is possible to deform (X ′, ω′) to
some surface (X ′′, ω′′) on which the horizontal cylinders of (X ′, ω′) persist and stay
horizontal but don’t cover (X ′′, ω′′), and where s persists and is horizontal. Since
square-tiled surfaces are dense, we may assume this (X ′′, ω′′) is horizontally periodic.
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Since the horizontal cylinders from (X ′, ω′) don’t cover the surface, there must be
more horizontal cylinders on (X ′′, ω′′), which is a contradiction.

Let d be the dimension of the span in p(T(X′,ω′)M)∗ (or equivalently in (T(X′,ω′)M)∗)
of the core curves of the horizontal cylinders. As discussed in [Wri15a, Proof of The-
orem 1.10], we have d ≤ rankM.

Note that [Wri15a, Lemma 8.8] states

dim Pres((X ′, ω′),M) = dimM− d. (6.1.1)

We also have the following, which applies to any horizontally periodic surface.

Lemma 6.10. dim p(Twist((X ′, ω′),M)) = d.

The d = 1 case of Lemma 6.10 is essentially equivalent to Theorem 3.12, and it
is possible to extract from the proof of Lemma 6.10 a shorter proof of Theorem 3.12
than was given in [MW17].

Proof. First we will show dim p(Twist((X ′, ω′),M)) ≤ d. We start with a purely
linear algebraic statement, where we use use notation that suggests how it will be
applied.

Sublemma 6.11. Let H1 be a symplectic vector space, and let (H1)∗ be its dual
space. Consider the isomorphism PDH : H1 → (H1)∗ given by

η 7→ 〈η, ·〉,

where 〈·, ·〉 is the symplectic pairing on H1. Let T ⊂ H1 be a symplectic subspace,
so, similarly, we have an isomorphism PDT : T → T ∗ defined by the same formula.

Let resT : (H1)∗ → T ∗ be the restriction to T map. Let projT be the projec-
tion onto T whose kernel is the symplectic perp of T . Then the following diagram
commutes.

H1 (H1)∗

T T ∗

PDH

projT resT

PDT

The proof of this statement is left to the reader. We now apply this statement
with H1 = H1(X ′,R) and T = p(T(X′,ω′)(M)) ∩ H1(X ′,R). In this case (H1)∗ is
H1(X,R) and PDH is the Poincare duality isomorphism.
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Let R ⊂ H1(X,R) be the subspace spanned by the core curves of horizontal
cylinders. By definition, d = dim resT (R).

Also by definition, p(Twist((X ′, ω′),M)) is contained in the (complexification of)
PD−1

H (R) ∩ T .
The commutative diagram above gives that

resT (R) ⊃ PDT ◦ projT (PD−1
H (R) ∩ T ).

Since projT is injective on T and since PDT is an isomorphism, we get

d = dimR ≥ dimPD−1
H (R) ∩ T ≥ dim p(Twist((X ′, ω′),M)),

which is exactly the desired inequality.
Next we will show that dim p(Twist((X ′, ω′),M)) ≥ d. If two cylinders are M-

equivalent then their core curves are collinear in T ∗ (by [Wri15a, Lemma 4.7]).
Therefore, the span of the core curves of anM-equivalence class C in T ∗ is precisely
the line generated by resT ◦ PDH (p(σC)). Recall that σC is the standard shear in
C. Since σC belongs to Twist((X ′, ω′),M) for every equivalence class of horizon-
tal cylinders C, we have shown that PDT ◦ projT (p(Twist((X ′, ω′),M))) contains
resT (R) (this uses Sublemma 6.11). Since projT is injective on T and since PDT is
an isomorphism, we have the desired inequality.

A corollary of Lemma 6.10 is that

dim Twist((X ′, ω′),M) ≤ d+ (dimM− 2 rankM). (6.1.2)

Lemma 6.10 may be viewed as an improvement of [Wri15a, Lemma 8.10], and
inequality (6.1.2) an improvement of [Wri15a, Corollary 8.11].

If Press((X
′, ω′),M) = Pres((X ′, ω′),M), then Lemma 6.9 and Equation (6.1.1)

give that
dim Twist((X ′, ω′)) = dimM− d.

Since d ≤ rankM, this shows that there are at least dimM− rankM cylinders.
Conditional on Press((X

′, ω′),M) = Pres((X ′, ω′),M), this gives the first, third, and
fourth claims; Inequality (6.1.2) gives d = rankM, which gives the second claim.

So we may now assume that Press((X
′, ω′) is codimension 1 in Pres((X ′, ω′),M).

Lemma 6.9 and Equation (6.1.1) give that

dim Twist((X ′, ω′) = dimM− d− 1.

Since d ≤ rankM, this gives the first claim.
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Combining this with Inequality (6.1.2), we get 2d ≥ 2 rank(M)− 1, which, since
d ≤ rank(M) is an integer, implies d = rank(M). This gives the second claim. Since
there must be d many horizontal cylinders, this also gives the third claim.

For the fourth claim, note that if s is M is generically parallel to one of the
horizontal cylinders, then s is automatically zero on all of Pres((X ′, ω′),M), so we
are in the case of Press((X

′, ω′),M) = Pres((X ′, ω′),M) where we obtained the
improved bound.

6.2 Abundance of diamonds

We now prove the following, which will power an inductive approach to the non-
hyperelliptic case of Theorem 6.3. Recall that multiplicity and boundary components
of cylinders are defined in Definition 3.10, and {s}-paths are defined in Definition
4.19.

Proposition 6.12. Let (X, q) belong to a stratum Q of quadratic differentials without
marked points such that Q has rank at least two and is not Q(12,−12) or Q(2, 12).
Then for any saddle connection s on (X, q) there is an {s}-path to another surface
(X ′, q′) in Q where there are two generic cylinders C1 and C2 such that the following
statements about C1 and C2 hold:

1. They do not intersect and do not have any boundary saddle connections in
common.

2. They are one of the following: a simple cylinder, a simple envelope, a half-
simple cylinder.

3. They do not intersect s.

Proof. Assume without loss of generality that s is horizontal. By Proposition 6.8,
after passing to nearby surface, we may suppose without loss of generality that (X, q)
is horizontally periodic with at least

max(rank(Q) + rel(Q)− 1, rank(Q))

horizontal cylinders. Let C denote the collection of horizontal cylinders. Again
without loss of generality, after passing to an arbitrarily close surface, we may suppose
that every cylinder in C is generic (outside of certain low dimensional strata, this
will cause (X, q) to no longer be horizontally periodic).
Case 1: C contains a complex envelope C.
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Without loss of generality, C is horizontal and contains a vertical saddle connec-
tion that joins a pole to a zero. By Masur-Zorich (Theorem 4.8), ColC(X, q) has
trivial holonomy and hence is contained in a stratum H of Abelian differentials.

If H = H(0n) then either the saddle connection in ColC(C) connects a zero to
itself, and hence Q = Q(2,−12, 0n−1), or it connects two distinct zeros, and hence
Q = Q(12,−12, 0n−2). Since (X, q) does not have marked points and does not belong
to a rank one stratum or to Q(12,−12), we have a contradiction.

Therefore, H has rank at least two. So Proposition 6.8 allows us to obtain a
nearby surface with two simple cylinders that are disjoint from each other and from
ColC(s). These two cylinders remain cylinders at surfaces in Q near ColC(X, q).

(Since the core curves of these cylinders are not nullhomologous on ColC(X, q)
the same is true on nearby surfaces in Q. By Masur-Zorich (Theorem 4.8), this
implies that the two cylinders are generically simple as desired.)

Since the surface does not have marked points, two simple cylinders cannot share
boundary saddle connections.
Case 2: C contains a complex cylinder C.

By Masur-Zorich (Theorem 4.8), the surface (X, q) − C consists of two disjoint
translation surfaces with boundary. So all cylinders in C other than C are simple.
Since there are no marked points, no two of the simple cylinders can share boundary
saddle connections. IfM has rank at least 3, or has rank 2 and rel at least 2, C has
at least three cylinders, and we are done. So assume M is rank 2 and rel 0 or 1.

Denote the components of (X, q)−C by Σ1 and Σ2, and suppose without loss of
generality that Σ1 does not contain s. Let Σglue

i denote Σi with its boundary saddle
connections identified. If Σglue

1 belongs to a rank two stratum, then by Proposition
6.8, Σ1 contains two disjoint simple cylinders, giving the result.

Therefore, using this fact and the assumption that (X, q) has no marked points,
Σglue

1 belongs to either H(0) or H(0, 0).
Case 2a: Σglue

1 belongs to H(0).
In this case, Σ1 is covered by a simple cylinder C1 and hence C1 and C are

generically parallel to each other (they are glued to each other as in the surface on
the right of Figure 4.2). In particular, Q has rel at least 1 (this can be seen by
applying either Theorem 3.12 or Lemma 4.4). Since Q has rank at least two, it
follows from Proposition 6.8 (2) that C has three cylinders.
Case 2b: Σglue

1 belongs to H(0, 0).
Since (X, q) has no marked points, C must be glued to Σ1 along a saddle connec-

tion that joins the two distinct marked points of Σglue
1 .

It follows that the Σ1 side of the complex cylinder has two zeros of order 1. We
have thatQ = Q(1, 1, κ) where κ is a collection of positive integers (having a complex
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cylinder precludes the possibility of having poles and we have assumed that surfaces
in Q have no marked points). Since Q has rank two it follows from Lemma 4.4 that

2 = g +
modd

2
− 1,

where g is the genus of X and modd is the number of odd order zeros of q. Because
there is a complex cylinder, g ≥ 2. Since we know modd ≥ 2, actually g = 2 and κ
consists entirely of even integers. Since the sum of the orders of the zeros is 4g − 4,
this implies that κ = (2), which contradicts our assumption that Q 6= Q(2, 1, 1).
Case 3: C does not contain complex cylinders or complex envelopes.

Proposition 6.8 (2) gives that C contains a pair of non-parallel cylinders. This
pair proves the result.

6.3 Proof of Theorem 6.3 when F(Q) is hyperelliptic

The main result of the subsection will be the proof of Theorem 6.3 in the case that
F(Q) is a hyperelliptic component of a stratum of quadratic differentials.

Proposition 6.13. Theorem 6.3 holds when F(Q) is a hyperelliptic component.

We begin with some special cases.

Lemma 6.14. Let (Q, q) be a surface in Q = Q(−14, 0) or Q = Q(−14, 02) and let
s be a saddle connection. Suppose that Ms is proper. Then s must be fixed by a
hyperelliptic involution.

Remark 6.15. Notice that Q(−14) is the unique hyperelliptic stratum of quadratic
differentials for which the hyperelliptic involution is not unique (see Lemma 9.3).
Moreover, any saddle connection joining two poles is fixed by some hyperelliptic
involution.

Proof. Suppose, in order to find a contradiction, that s is a saddle connection that
is not generically fixed by a hyperelliptic involution and that Ms is proper. By
Remark 6.15, s does not join two poles. Suppose without loss of generality that s is
horizontal.

Suppose first that s is a saddle connection on a surface in Q(−14, 0) joining the
marked point to itself. Gluing in a complex envelope to s produces a surface in
Q(2,−16). Suppose that Ms is proper, which means that, letting s1 and s2 be the
two saddle connections in the boundary of the complex envelope that do not end at
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a pole,Ms is defined by the equation s1 = s2. This implies that all three horizontal
cylinders are generically parallel in Ms; see Figure 6.3 (left). Since each of these
cylinders forms its own subequivalence class, it follows by Theorem 3.12 that Ms

has rel at least 2 since the twist space corresponding to the collection of horizontal
cylinders has dimension at least 3. This contradicts the fact thatMs is contained in
Q(2,−16) which only has rel 1 by Lemma 4.4. Note that this argument also handles
the case where s joins a marked point to itself on Q(−14, 02).

Suppose next that s is a saddle connection on a surface in Q(−14, 0) joining a
marked point to a pole. Gluing in a complex envelope to such a slit produces a
surface in Q(1, 0,−15); see Figure 6.3 (right). This stratum has rank 2 and rel 1 by
Lemma 4.4. Since Ms has codimension one, it is necessarily rank two rel zero, but
this implies that if (X,ω) is a surface in Ms with dense GL+(2,R)-orbit, then the
marked point on (X,ω) is a periodic point and F(X,ω) has dense orbit in Q(1,−15).
This contradicts Theorem 3.8, which states that non-hyperelliptic components of
strata of rank at least 2 do not admit periodic points. Note that Q(1,−15) is not
hyperelliptic by the classification of hyperelliptic connected components [Lan04],
recalled in Section 9. Note that this argument also handles the case where s joins a
marked point to a pole on Q(−14, 02).

Figure 6.3: Gluing in a complex envelope to surfaces in Q = Q(−14, 0) and Q =
Q(−14, 02)

Suppose finally that s joins two distinct marked points together in Q(−14, 02),
begin by perturbing the surface so that s lies in a periodic direction and not on
a separatrix. Moving one endpoint in this periodic direction causes one endpoint
to eventually collide with the other. Let Q denote the component of the stratum
that contains Ms. The previously described deformation is a degeneration of Q to
a codimension one boundary stratum Q′ and hence, by Lemma 3.25, a degeneration
of Ms to boundary component M′

s. By Theorem 3.20, M′
s has dimension one less

thanMs. It follows thatM′
s is a proper invariant subvariety that contains a surface
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formed by gluing in a complex envelope to a saddle connection s on a surface in
Q(−14, 0) that joins a marked point to itself. This contradicts the results of the
preceding paragraphs.

Lemma 6.16. Let (Q, q) be a surface in Q = Q(2,−12) and let s be a saddle
connection. Suppose that Ms is proper. Then s must be fixed by the hyperelliptic
involution.

Proof. Suppose not to a contradiction and suppose without loss of generality that s
is horizontal. There are three kinds of saddle connections on a surface in Q(2,−12):
ones that join two poles, ones that join a zero and a pole, and ones that join a zero
to itself.

SinceQ(2,−12) has one component, which is hyperelliptic, there is a half-translation
double cover φ : (Q, q) → (S2, q′) from (Q, q) to an element (S2, q′) of Q(−14, 0);
this map is branched over three poles and one marked point (for a reference for these
facts on hyperelliptic components see Section 9).

There is at most one saddle connection in any given direction joining two given
poles. Hence, any such saddle connection must be fixed by the hyperelliptic involu-
tion. Therefore, we may assume s does not join two poles.

Suppose now that s joins a zero to itself and that s is not fixed by the hyperelliptic
involution. Since s is not fixed by the hyperelliptic involution, φ(s) is a saddle
connection joining the marked point to itself on (S2, q′). Phrased differently, on
F(S2, q′), φ(s) is a core curve of a cylinder. Since Q(−14, 0) is rank one by Lemma
4.4, it follows from [Wri15a, Theorem 1.5] that (S2, q′) is horizontally periodic.
(This claim is also immediate from the fact that the holonomy double cover of a
surface in Q(−14, 0) is a flat torus with marked points).

It follows that (Q, q) is horizontally periodic. As in Lemma 6.14, if a complex
envelope is glued into s with the stipulation that its boundary saddle connections are
all generically parallel to each other, then all horizontal saddle connections on the
resulting surface must be generically parallel to each other. This implies thatMs is
rank one. The dimension of Ms is 4 (one greater than the dimension of Q(2,−12)),
so Ms must have rel 2. But, by Remark 6.6, Ms ⊂ Q(4,−14), which has rel 1,
giving a contradiction.

Suppose finally that s joins a zero to a pole. By Remark 6.6, gluing in a complex
envelope to such a slit produces a surface in Q(3, 0,−13), which is rank two rel one
by Lemma 4.4. Since Ms has codimension one, it is necessarily rank two rel zero,
but this implies that the marked point is not free, which, as in the proof of Lemma
6.14, is a contradiction to the main theorem of Apisa-Wright [AWc] (Theorem 3.8).
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This uses the fact that Q(3,−13) is not hyperelliptic (see for example Figure 9.1 and
the surrounding discussion in Section 9). For an illustration of the construction in
this paragraph and the previous one see Figure 6.4.

Figure 6.4: Gluing in a complex envelope to surfaces in Q = Q(2,−12). The saddle
connection s is labelled in red as is the complex envelope that is glued in.

Proof of Proposition 6.13. By Lemma 6.7, if s is generically fixed by the hyperelliptic
involution then Proposition 6.13 holds. Therefore suppose in order to find a contra-
diction that s is not fixed by the hyperelliptic involution but that Ms is proper.
Suppose moreover that the component Q of the stratum of quadratic differentials
containing (Q, q) is the smallest dimensional stratum for which this occurs.

We begin by observing that this implies that if Q has any marked points, they
are at endpoints of s. Otherwise, [MW17] can be used to show that forgetting
the marked points that aren’t at endpoints of s gives rise to a smaller example. In
particular, we see that there are at most 2 marked points.

We also observe that, by Lemma 6.14, F(Q) 6= Q(−14). By Lemma 9.3, this
implies that on F(Q, q) there is a unique hyperelliptic involution, which we will
denote J .

55



Sublemma 6.17. Let C be a simple cylinder on (Q, q) whose boundary does not
contain marked points. Then C intersects s or the boundary of C consists precisely
of s and J(s).

Proof. Suppose not and let C = {C}. We will show that collapsing C gives rise to
a smaller example, contradicting our minimality assumption.

By Lemma 4.11, QC is a stratum of connected quadratic differentials of dimension
one less than Q that contains ColC(Q, q). Since QC belongs to the boundary of Q,
where F(Q) is a hyperelliptic component, it follows that F(QC) is a hyperelliptic
component as well.

By assumption, s remains a saddle connection on ColC(Q, q), since it does not
intersect C. Since the boundary of C does not contain marked points, J(C) = C
and so ColC(J) is well-defined. The construction of ColC(J) shows, since s 6= J(s)
and since s and J(s) do not intersect C (except possibly at endpoints), that

ColC(J)(ColC(s)) 6= ColC(s).

Note that if J(C) 6= C (which can only happen if, contrary to our hypothesis, the
boundary of C contained a marked points) then there are examples where ColC(s)
is fixed by the hyperelliptic involution); see Figure 6.5 for an illustration.

Figure 6.5: In the case when s is contained in a cylinder of F(Q, q) fixed by J and s
has a marked point as an endpoint, if C is the part of the cylinder not intersecting
s, then collapsing C can cause s to become fixed by the hyperelliptic involution.
Note that in this example, J(s) is not a saddle connection since it has an unmarked
endpoint.

It is clear that ColC(J) is a hyperelliptic involution. A priori, if F(ColC(Q, q)) ∈
Q(−14), there could be a different hyperelliptic involution that fixed ColC(s), but
we now breifly explain why this does not occur. Indeed, the only saddle connections
on a surface in Q(−14, 0n) that are generically fixed by a hyperelliptic involution
are those that go from a pole to another pole. Since ColC(J) fixes ColC(C), this
saddle connection is a pole-pole saddle connection. So, if a different hyperelliptic
involution fixes the saddle connection ColC(s), then ColC(s) is also a pole-pole saddle
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Figure 6.6: A surface in Q(2,−12) (left) degenerates to a surface in Q(−14) (right).
On the left surface, the hyperelliptic involution is unique and does not fix s. On the
right surface, the hyperelliptic involution is not unique.

connection. See Figure 6.6. In this case (Q, q) belongs to Q(2,−12) and the situation
is ruled out by Lemma 6.16.

We now know that ColC(s) is not fixed by any hyperelliptic involution. Let
C′ denote the cylinder corresponding to C on the surface in Ms formed by gluing
in a complex envelope to s. The dimension of Ms is one more than that of Q.
Similarly, the dimension of (Ms)C′ is one greater than that of QC. However, by
Remark 6.6, gluing in a complex envelope increases the dimension of a stratum of
quadratic differentials by two; which shows that (Ms)C′ is codimension one in the
stratum containing it. Since (Ms)C′ = (MC)ColC(s), we have a contradiction to the
minimality assumption.

Sublemma 6.18. Q has no marked points.

Proof. As observed above, any marked point is an endpoint of s. We will proceed
by contradiction.
Case 1: Both endpoints of s are distinct marked points. In this case, we
can move one endpoint to a zero to find a smaller counterexample, contradicting our
assumption that Q is the smallest counterexample.
Case 2: Exactly one endpoint of s is a marked point. Call the endpoint
that is a marked point p, and the other end point z, so z is a zero or pole. Perhaps
perturbing the surface we can send p into a zero or pole z′ not equal to z or J(z).
Such a zero always exists for hyperelliptic components (see Figure 9.1 in Section
9). Again we have reduced to a smaller counterexample where s remains a saddle
connection that is not fixed by the hyperelliptic involution. (Note that this proof
implicitly but crucially uses the uniqueness of the hyperelliptic involution, since we
need to send p into a zero or pole that does not equal to z or its image under any
hyperelliptic involution.)
Case 3: Both endpoints of s are the same marked point. In this case, s
is contained in a cylinder C. If C has a boundary that consists of one multiplicity
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one saddle connection, we can move the marked point so s becomes this saddle
connection. Since C is fixed by the hyperelliptic involution, this saddle connection
cannot be fixed by the involution, so again we obtain the same contradiction.

Otherwise, C is a complex cylinder or complex envelope. Its complement has
trivial holonomy by Masur-Zorich, so there is a simple cylinder in its complement,
which contradicts Sublemma 6.17.

We now conclude the proof of Proposition 6.13.
By Lemma 3.3, since k(Q) = Q, horizontally periodic surfaces are dense in Q.

Let U be a small neighborhood of (Q, q) and let (Q1, q1) ∈ U be a half-translation
surface such that the following holds:

1. (Q1, q1) is horizontally periodic.

2. s remains horizontal on (Q1, q1) and remains a saddle connection at all points
in U .

3. There are maximally many horizontal cylinders on (Q1, q1) subject to the con-
dition that s remain horizontal and that (Q1, q1) belongs to U .

Let C denote the collection of horizontal cylinders on (Q1, q1). Let (Q2, q2) be a
surface in U where all the cylinders in C persist and are generic. Recall that, by
Lemma 4.13, a generic cylinder in a hyperelliptic component different from Q(−14)
is one of the following: a simple cylinder, complex cylinder, or complex envelope.

By Sublemma 6.17, if there is a simple cylinder disjoint from s and J(s), then its
boundary consists of s and J(s). It follows that the only generic cylinders disjoint
from s and J(s) (including their boundaries) are complex cylinders and complex
envelopes. We will derive a contradiction.
Case 1: One of the cylinders in C is a complex cylinder on (Q2, q2).

By Masur-Zorich (Theorem 4.8), cutting along the two boundaries of the complex
cylinder disconnects the surface into three surfaces with boundary, all of which have
trivial linear holonomy. Since each component is fixed by the hyperelliptic involution,
s and J(s) both lie in the same component. The other component that is not the
interior of the original cylinder contains a simple cylinder that does not contain s in
its boundary, giving a contradiction.
Case 2: One of the cylinders in C is a complex envelope on (Q2, q2).

Let C denote the complex envelope. Let D be any other cylinder in C. By
assumption, for all surfaces in U , D does not intersect s.

By Masur-Zorich, specifically Theorem 4.8 (3), D must be simple on (Q2, q2).
Hence its boundary consists of s and J(s). This shows that C contains only one
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cylinder apart from C since otherwise there would be two simple cylinders D and
D′, both of which would have boundary s and J(s), implying that Q = H(0, 0) and
contradicting the assumption that Q is a stratum of quadratic differentials.

Therefore, C contains exactly two cylinders, one of which (i.e. D) is generically
parallel to s. Since there are maximally many horizontal cylinders on (Q1, q1) sub-
ject to the condition that s remain horizontal, it follows from Proposition 6.8 that
rank(Q) + rel(Q) ≤ 2.

First suppose that rank(Q) = 2. Recalling the formula for rank and rel given in
Lemma 4.4, we have meven = 0 and

g +
modd

2
− 1 = 2,

where modd and meven are the number of odd and even order zeros (and poles)
respectively. Since there are two poles (in the simple envelope), modd ≥ 2. Since a
quadratic differential cannot have 2 poles and no other zeros, we get g = 0,modd = 6
or g = 1,modd = 4. By the classification of hyperelliptic connected components
[Lan04], recalled in Section 9, Q = Q(12,−12).

Since (Q1, q1) is horizontally periodic and belongs to Q(12,−12) it has four hori-
zontal saddle connections. One joins two poles to each other and forms a boundary
of C. Two more - s and J(s) - form the boundary of D. Therefore, one boundary
of C consists of a saddle connection σ along with s and J(s). See Figure 6.7 for a
depiction of (Q2, q2); the saddle connection with a single arrowhead on it corresponds
to σ.

Figure 6.7: The surface (Q2, q2)

We may deform (Q1, q1) through a continuum of horizontally periodic surfaces by
lengthening s and J(s) (i.e. adding a positive real number t to each of their periods)
while shrinking σ (i.e. subtracting 2t from its period). When the period of σ reaches
zero we have arrived at a surface in Q(2,−12). As in Sublemma 6.17, gluing in a
complex envelope to s on the surface we constructed in Q(2,−12) would produce a
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proper orbit closure, contradicting our choice of Q and also contradicting Lemma
6.16.

Next suppose rank(Q) = 1. In this case we can assume (Q2, q2) = (Q1, q1), and
this surface is a complex envelope (namely C) glued to a simple cylinder (namely
D), so Q = Q(2,−12). This cannot occur by Lemma 6.16.
Case 3: All cylinders in C are simple on (Q2, q2).

By Sublemma 6.17, since the cylinders in C do not intersect s, the boundary of
each cylinder in C consists of s and J(s). Therefore, either C contains one cylinder
and (Q2, q2) belongs to H(0) or it contains two and (Q2, q2) belongs to H(0, 0). In
either case, we have contradicted the assumption that Q is a stratum of quadratic
differentials.

6.4 The Hyperelliptic Diamond Lemma

We now turn to diamonds whose sides are hyperelliptic components of strata of
quadratic differentials together with marked points, prove a result that will be applied
in the proof of Sublemma 6.27 below. Specifically we make the following assumption.

Assumption 6.19. Let M be an invariant subvariety in a stratum of quadratic
differentials. Suppose that (X, q) belongs to M and that the collection of cylinders
C1 and C2 forms a generic diamond satisfying the following conditions:

1. MC1 and MC2 are components of strata of connected quadratic differentials.

2. F(MC1) and F(MC2) are hyperelliptic components of strata different from
Q(−14).

3. The hyperelliptic involutions on F (ColC1,C2(X, q)) obtained from those on F (ColC1(X, q))
and F (ColC2(X, q)) agree (this trivially holds unless MC1,C2 = Q(−14, 0n) for
some integer n).

Remark 6.20. Since the diamond is generic condition (1) implies that C1 and C2

each consist of a single cylinder. We will abuse notation and allow Ci to denote
these single cylinders.

At first glance this situation seems like one in which the Diamond Lemma can
be immediately applied. After all, we have a diamond in which the sides admit
hyperelliptic involutions (at least up to forgetting marked points) and where these
involutions agree at the base of the diamond. However, we have not assumed the
ColCi

(Cj) are invariant under the hyperelliptic involution, so we must consider if the
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“preimage of the image” assumption in the Diamond Lemma is satisfied. It turns
out this would be automatically satisfied if there were no marked points, but the
caveat “up to forgetting marked points” prevents the Diamond Lemma from being
used to conclude that F(M) is a hyperelliptic component of a stratum. To see what
goes wrong, consider the example in Figure 6.8.

Figure 6.8: Form a half-translation surface (X, q) as follows: take a quadratic differ-
ential (X ′, q′) in a hyperelliptic component, choose a saddle connection s on (X ′, q′)
that is fixed by the hyperelliptic involution, slit s, and glue in the flat subsurface on
the left. The resulting surface is no longer hyperelliptic since the subsurface with
boundary that was spliced into (X ′, q′) is not fixed by an involution. Nevertheless,
degenerating C1 and C2 produce surfaces that, after forgetting marked points, be-
long to hyperelliptic components. Notice that degenerating C1 produces a simple
cylinder (once marked points are forgotten) that contains ColC1(C2) but on which
ColC1(C2) is not fixed by the hyperelliptic involution.

We will now isolate the behavior that prevents F(M) from being a hyperelliptic
component.

Definition 6.21. Given a cylinder C on a half-translation surface (Y, η) with marked
points, we will let F(C) denote the cylinder on F(Y, η) that contains the image of
C. Say that C1 and C2 are in a bad configuration if, perhaps after relabeling the
cylinders, on F(ColC1(X, q)), F(ColC1(C2)) is a generically simple cylinder that
strictly contains ColC1(C2) (see Figure 6.8). Otherwise, say that C1 and C2 are in
a good configuration.

Remark 6.22. The definition implies that C2 is simple. It does not require that C1

is simple (although it is possible to show using Assumption 6.19 that it must be).

We show now that bad configurations are precisely the obstacle to F(M) being
a hyperelliptic component.
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Lemma 6.23. Under Assumption 6.19, if C1 and C2 are in a good configuration
then F(M) is contained in a hyperelliptic locus.

Proof. Let Ti denote the hyperelliptic involution on ColCi
(X, q) (this exists by As-

sumption 6.19 (2)). We note that (by Lemma 9.3) this is uniquely defined since
F(MCi

) 6= Q(−14).

Sublemma 6.24. ColC1(C2) is fixed by T1. Moreover, ColC1(C2)/T1 is a simple
cylinder or simple envelope. The analogous statement holds for ColC2(C1).

Proof. If F (ColC1(C2)) = ColC1(C2) then the result is immediate. Suppose there-
fore that F (ColC1(C2)) strictly contains ColC1(C2).

Since C1 and C2 are in a good configuration, F (ColC1(C2)) is not a generically
simple cylinder. By Lemma 4.13, on an unmarked surface in a hyperelliptic com-
ponent different from Q(−14), the hyperelliptic involution acts by translation on all
cylinders except for generically simple cylinders, on which it acts by rotation. Since
(by Assumption 6.19 (2)), F(MC1) 6= Q(−14) we have that T1 acts by translation
on F(ColC1(C2)) and hence that it fixes ColC1(C2); see Figure 6.9 for an example.

Figure 6.9: The proof of Sublemma 6.24.

Now we will turn to the second claim. Since the diamond is generic, all the saddle
connections on the boundary of C1 and C2 are generically parallel to the cylinders
they border. The same holds in MC2 and MC1 respectively by Corollary 3.22. By
Assumption 6.19 (1) and (2), F(MC1) is a hyperelliptic component, which implies
that ColC1(C2)/T1 is a generic cylinder in a genus zero stratum. This stratum is
different from Q(−14), so ColC1(C2)/T1 is a simple cylinder or simple envelope.

Since ColC1(C2) is fixed by T1 and ColC2(C1) is fixed by T2, the involutions
ColColC1

(C2)(T1) and ColColC2
(C1)(T2) are well-defined (by Lemma 2.2) and equal (by

Assumption 6.19 (3)). Let T denote this involution on ColC1,C2(X, q).
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By the Diamond Lemma (Lemma 2.3) there is an involution T0 on (X, q) that
preserves each Ci and such that ColCi

(T0) = Ti. Notice that the hypotheses of the
Diamond Lemma are met since Col(T1) = Col(T2) and by Sublemma 6.24.

By slightly nudging (X, q), we may suppose that (X, q) has dense orbit in M
and that C1 and C2 remain cylinders in a good configuration. Therefore, it suffices
to show that (X, q)/T0 is a quadratic differential on a sphere (rather than a higher
genus surface).

By the proof of the Diamond Lemma, (X, q)/T0 is formed by gluing the cylinder
C1/T0 into ColC1(C1)/T1 on ColC1(X, q)/T1. Since C1/T0 is a simple cylinder or
simple envelope (by Sublemma 6.24), ColC1(C1)/T1 is a single saddle connection on
a sphere, ColC1(X, q)/T1. Gluing in an envelope to a sphere produces a sphere, so it
remains to consider the case where C1/T0 is a simple cylinder.

Gluing in a simple cylinder to a sphere produces a sphere provided that the simple
cylinder is glued into a closed loop. A saddle connection on a sphere is a closed loop
if and only if cutting it disconnects the surface. Therefore, it suffices to show that
cutting ColC1(C1)/T1 disconnects ColC1(X, q)/T1.

Since ColC2(C1)/T2 is a cylinder on a sphere, we have that cutting it discon-
nects the surface. Hence cutting ColC1,C2(C1)/T also disconnects ColC1,C2(X, q)/T .
One of the resulting components contains ColC1,C2(C2)/T . Since ColC1(X, q)/T1 is
formed by gluing ColC1(C2)/T1 into ColC1,C2(C2)/T we see that cutting ColC1(C1)/T1

on ColC1(X, q)/T1 still disconnects the surface as desired.

6.5 Conclusion of the proof of Theorem 6.3

Proof of Theorem 6.3: The result when F(Q) is hyperelliptic has already been es-
tablished in Proposition 6.13. Suppose in order to find a contradiction that Q is the
smallest dimensional component of a stratum of quadratic differentials for which the
statement fails, i.e. that there is a surface (X, q) ∈ Q with a saddle connection s so
that Ms is not a component of a stratum. Note that F(Q) is not hyperelliptic. If
Q had marked points, then, as in the proof of Sublemma 6.18, it would be possible
to move them into the zeros (or poles) and hence contradict the minimality of Q.
Hence Q has no marked points, so F(Q) = Q.

Sublemma 6.25. Suppose that C is a generic cylinder on (X, q) that does not
intersect s and which is one of the following: a simple cylinder, a simple envelope, or
a half-simple cylinder. Suppose also that if s is a multiplicity one boundary component
of C then C is a simple cylinder. Then F(ColC(X, q)) belongs to a hyperelliptic
component of a stratum of connected quadratic differentials and ColC(s) is generically
fixed by the hyperelliptic involution on ColC(X, q).
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Recall that the condition that s is a multiplicity one boundary component of C
means that one boundary consists entirely of s, and that s occurs only once in that
boundary (ruling out the possibility that s joins two simple poles). See Figure 6.10.

Figure 6.10: When C is a half simple cylinder (left) or a simple envelope (right), the
assumptions in Sublemma 6.25 do not allow s to be the highlighted saddle connection.

Proof. The assumption that C is a simple cylinder, simple envelope, or half-simple
cylinder is included to guarantee that ColC(X, q) has non-trivial holonomy. The
assumption that if s is a multiplicity one boundary component of C then C is a simple
cylinder is included so s gives a single saddle connection on ColC(X, q), instead of
being split into two. See Figure 6.10.

Let (Y, qY ) be the surface belonging toMs formed by gluing in a complex envelope
to s on (X, q). Let C1 be the cylinder corresponding to C on (Y, qY ) and let C2

denote the complex envelope that was glued in. By Corollary 4.12, (Ms)C1
remains

a proper invariant subvariety of the stratum of quadratic differentials containing it.
Since it contains ColC1(Y, qY ), which is the result of gluing in the complex envelope
ColC1(C2) to ColC(X, q), the minimality assumption on the dimension of Q implies
that F(ColC(X, q)) belongs to a hyperelliptic component of a stratum of connected
quadratic differentials and s is generically fixed by the hyperelliptic involution on
ColC(X, q).

We now show the following:

Sublemma 6.26. There is an {s}-path from (X, q) to a half-translation surface
(X ′, q′) with cylinders C1 and C2 that form a generic diamond, where

1. C1 and C2 are each a simple cylinder, a simple envelope, or a half-simple
cylinder,

2. s doesn’t intersect Ci, and

3. if s is a multiplicity one boundary component of Ci then Ci is a simple cylinder.

Proof. We will derive this from Proposition 6.12. That proposition excludes rank 1
strata, Q(2, 1, 1), and Q(1, 1,−1,−1), but these strata need not be considered since
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they are connected (by Lanneau [Lan08, Theorem 1.2]) and hence hyperelliptic (see
Section 9).

Proposition 6.12 thus gives (X ′, q′) together with cylinders C1 and C2 that are
each a simple cylinder, a simple envelope, or a half-simple cylinder, such that the Ci

don’t share boundary saddle connections and don’t intersect s.
It suffices to show the final claim. Suppose without loss of generality that s is in

the boundary of C1. Hence s is not in the boundary of C2. Applying Sublemma 6.25
to C2, we see that F(ColC2(X,ω)) is hyperelliptic and ColC2(s) is generically fixed by
the hyperelliptic involution. Since ColC2(s) is generically fixed by the hyperelliptic
involution, it cannot have marked points as endpoints (see Remark 6.5).

In a hyperelliptic stratum without marked points, every cylinder is a simple
cylinder, a complex cylinder, or a complex envelope (by Lemma 4.13). Since all
marked points are free in a stratum, and C1 is generic, we see that if ColC2(C1) is
not simple then it must be contained in a complex cylinder or complex envelope and
have one boundary component consisting of a loop from a marked point to itself; see
Figure 6.11. In this case s must be on the other side of C1, so s is not a multiplicity

Figure 6.11: Left: ColC2(C1) contained in a complex envelope. Right: ColC2(C1)
contained in a complex cylinder. Both show a possibility for ColC2(s) allowed for in
the proof of Sublemma 6.26 (but one can show that the right possibility does not
occur).

one boundary component.

Let C1 and C2 denote the cylinders produced by Sublemma 6.26. These cylin-
ders satisfy (1) of Assumption 6.19. By Sublemma 6.25, F(QC1) and F(QC2) are
hyperelliptic components and ColCi

(s) is fixed by a hyperelliptic involution Ji on
ColCi

(X, q) for i ∈ {1, 2}.
We now show that J1 and J2 agree on ColC1,C2(X, q). Indeed, the hypotheses on

C1 and C2 imply that ColC1,C2(s) is a single saddle connection. Since ColCi
(s) is

fixed by Ji, it follows that ColC1,C2(s) is fixed by both Col(J1) and Col(J2), implying
that these two involutions are equal.
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Hence part (3) of Assumption 6.19 holds. Therefore, Assumption 6.19 is satisfied
unless F(QC1) or F(QC2) isQ(−14). By the Hyperelliptic Diamond Lemma (Lemma
6.23), since Q is assumed to be a nonhyperelliptic component of a stratum, one of
the two possibilities occur:

1. at least one of F(QC1) and F(QC2) is Q(−14), or

2. the previous possibility does not occur, but C1 and C2 are in a bad configura-
tion (see Definition 6.21).

We will now rule out the second case.

Sublemma 6.27. At least one of F(QC1) and F(QC2) is Q(−14).

Proof. Suppose not. The previous discussion implies that C1 and C2 are in a bad
configuration. In particular, suppose that ColC1(X, q) contains a marked point and
that F(ColC1(C2)) is a simple cylinder (see Definition 6.21 for the definition of F of
a cylinder). Set S1 := ColC1(C1).

By Corollary 3.23, the saddle connections in S1 are generically parallel to each
other (notice that since Ci consists of a single cylinder, Twist(Ci) is one-dimensional).
Moreover, there is a saddle connection in S1 whose endpoint is a marked point and
that is not a closed loop joining the marked point to itself (the marked point borders
ColC1(C2) on one side and the saddle connections in S1 do not intersect ColC1(C2)
by assumption, and saddle connections in S1 are not boundary saddle connections
of ColC1(C2)). A saddle connection that joins a marked point to a distinct point
cannot be generically parallel to any other saddle connection. Therefore, S1 is a
single saddle connection, ruling out the possibility that C1 is a half-simple cylinder.
So C1 is a simple cylinder or simple envelope.

Since ColC1(s) is generically fixed by the hyperelliptic involution on ColC1(X, q)
(see Sublemma 6.25) we have that ColC1(s) does not have any marked points as
endpoints by Remark 6.5.
Case 1: S1 is not contained entirely in F(ColC1(C2)).

In this case, it is possible to retract the saddle connection S1 until it lies entirely
outside of F(ColC1(C2)) (see Figure 6.12). This deformation does not change the
fact that ColC1(s) is a saddle connection since ColC1(s) does not have marked points
as endpoints. In this way, ColC1(C2) has now expanded to be the simple cylinder
F(ColC1(C2)) that does not intersect ColC1(s).

Notice that now C1 and C2 do not form a bad configuration. As in Figure 6.13,
we see that even after collapsing C2 there is a zero (not just a marked point) on
either side of C1. Lemma 6.23 yields the contradiction that F(Q) is hyperelliptic.
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Figure 6.12: Retracting S1

Figure 6.13: Cylinders on the deformation of (X, q) (illustrated when C1 is simple).

Case 2: S1 is contained entirely in F(ColC1(C2)) and joins a marked point
on the boundary of ColC1(C2) to another marked point in the interior of
F(ColC1(C2)).

In this case, there is a simple cylinder C3 on (X, q) such that ColC1(C3) lies
between the second marked point and the top boundary of F(ColC1(C2)) (see Figure
6.14).

Figure 6.14: An illustration of ColC1(C3) in F(ColC1(C2)).

Since the hyperelliptic involution acts on F(ColC1(C2)) by rotation, and since
ColC1(s) is fixed by the hyperelliptic involution on ColC1(X, q) it follows that if s
intersects C3 then it would intersect C2, which is a contradiction. Therefore, C3 is
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a simple cylinder on (X, q) that is disjoint from s.
Since C2 and C3 are both simple they do not border each other in (X, q), since

(X, q) has no marked points. It is easy to see that collapsing one or the other cannot
cause the other to border a marked point so these cylinders do not form a bad
configuration.

Notice that neither ColC2(X, q) nor ColC3(X, q) belong to Q(−14, 0n) for any
integer n. This is clear since F (ColC1,C2,C3(X, q)) belongs to the same stratum of
quadratic differentials as F(ColC1(X, q)) which we have assumed is not Q(−14). By
the hyperelliptic Diamond Lemma (Lemma 6.23) using C2 and C3, we see that Q is
hyperelliptic, which is a contradiction.
Case 3: S1 is contained entirely in F(ColC1(C2)) and joins a marked point on
the boundary of ColC1(C2) to a singularity on the boundary of F(ColC1(C2));
ColC1(s) is not a boundary component of F(ColC1(C2)).

Since ColC1(s) is generically fixed by the hyperelliptic involution, if ColC1(s)
intersects F(ColC1(C2)) then it crosses it and in particular, s must intersect C2

which is a contradiction. Letting p be the marked point that is an endpoint of S1 we
see that since ColC1(s) does not intersect F(ColC1(C2)) and since it is not a boundary
saddle connection that it is possible to move p out of F(ColC1(C2)) while keeping S1

a saddle connection and ensuring that along this movement S1 and ColC1(s) remain
disjoint (see Figure 6.15). We conclude that F(Q) is hyperelliptic as in Case 1.

Figure 6.15: Moving the marked point p produces two cylinders that are no longer
in a bad configuration.

Case 4: S1 is contained entirely in F(ColC1(C2)) and joins a marked point on
the boundary of ColC1(C2) to a singularity on the boundary of F(ColC1(C2));
ColC1(s) is a boundary component of F(ColC1(C2)).

The hyperelliptic involution acts on F(ColC1(C2)) by rotation. Since ColC1(s) is
a boundary component of F(ColC1(C2)) it follows that it is simultaneously the top
and bottom boundary of F(C2) since ColC1(s) is fixed by the hyperelliptic involu-
tion. Therefore, ColC1(X, q) belongs to H(0, 0), contradicting our assumption that
ColC1(X, q) has non-trivial holonomy.
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The proof of Sublemma 6.27 is now complete.

It now suffices to suppose without loss of generality that ColC1(X, q) belongs to
Q(−14, 0n) for some integer n. Since QC1 has dimension one less than Q (Lemma
4.11), which has rank at least two (since all rank 1 strata are hyperelliptic), it follows
that n ≥ 1. Since C1 is a simple cylinder, simple envelope, or half-simple cylinder and
since (X, q) has no marked points, n ≤ 2. By Sublemma 6.25, ColC1(s) is generically
fixed by a hyperelliptic involution and hence it joins two poles (by Remark 6.5).

Set S1 := ColC1(C1). The saddle connections in S1 are all generically parallel to
each other by Corollary 3.23. We will now do a case analysis to derive a contradiction.

Case 1: S1 contains a saddle connection that goes from a marked point
to itself. See the right part of Figure 6.16. This case does not occur, because it
implies that on the original surface C1 and C2 share boundary saddle connections.

Figure 6.16: Cases 1 and 3 in the final case analysis of the proof of Theorem 6.3.

At this point we may assume that S1 contains a saddle connection that joins a
marked point to a distinct point. Since no other saddle connection is generically
parallel to such a saddle connection, it follows that S1 is a singleton. This implies
that C1 is a simple cylinder or simple envelope (S1 would need to consist of two
saddle connections if C1 were a half-simple cylinder).

Case 2: S1 goes from a pole to a marked point. See the top of Figure 6.17.
The four possibilities for the surfaces in Ms that gluing in a complex envelope

could produce are recorded in Figure 6.17. They are obtained via the following
analysis: On the top of Figure 6.17, the saddle connection s could be the top saddle
connection or the bottom one. Additionally, C1 can be a simple cylinder or a simple
envelope. Hence we get four possibilities for the surface obtained by gluing in a
complex envelope to (X, q).

Since Ms is assumed to be a proper subvariety, it is defined in local period
coordinates by the equation that states that the two boundary saddle connections
of the complex horizontal envelope have the same periods. In the top two cases
in Figure 6.17, these equations imply that the marked point shown is a periodic
point. In the bottom two cases, the equations imply that there is a irreducible pair
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Figure 6.17: Four possible surfaces in Ms. (In fact the top right picture isn’t valid
since C1 isn’t a simple envelope, but we treat it on equal footing with the other
examples and derive a contradiction in all cases.)

of marked points. However, by Apisa-Wright [AWc] (restated as Lemma 3.7 and 3.8
in Section 3) there are no such point markings in non-hyperelliptic strata of quadratic
differentials and so we have reached a contradiction.

Case 3: S1 joins distinct marked points. See the left part of Figure 6.16. Let
(X ′, q′) denote the result of gluing in a complex envelope to s on (X, q). Let Q′ be
the stratum containing (X ′, q′). Assume without loss of generality that ColC1(C2)
is horizontal on ColC1(X, q). Since s joins two poles and does not cross C2 on
ColC1(X, q) it must also be a horizontal saddle connection.

As in Figure 6.18, it is possible to move one of the endpoints of S1 into a pole
while preserving the property that S1 is a saddle connection that does not intersect
ColC1(s). This degeneration remains well-defined on (X, q) and (X ′, q′), reducing to
Case 2 and hence giving a contradiction.
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Figure 6.18: The final argument in Case 3.

6.6 Open problems

Here are some possible next steps.

Problem 6.28. Prove a version of Theorem 6.3 that considers the result of gluing
in a complex cylinder (rather than an envelope) to a pair of hat homologous saddle
connections (rather than a single saddle connection).

Here one should keep in mind that there are in fact two ways to glue a complex
envelope into a pair {s1, s2} of equal length saddle connections. The more natural
way is to glue each boundary component to one boundary saddle connection arising
from s1 and one arising from s2; this can be done so that degenerating the complex
cylinder gives the original surface. The other way is to glue each boundary component
of the complex cylinder to the pair of boundary saddle connections obtained by
cutting either s1 or s2. In either case, one is interested in a possible codimension one
orbit closure defined by the condition that the four saddle connections bounding the
complex cylinder have equal length.

The following problems are more ambitious.

Problem 6.29. Classify codimension one invariant subvarieties of components of
quadratic differentials of rank at least 2.

Problem 6.30. Classify invariant subvarieties M of components of quadratic dif-
ferentials Q with rank(M) = rank(Q) ≥ 2.

One of the invariant subvarieties M constructed in [EMMW] is contained in a
locus of double covers of a component Q of quadratic differentials with dimM =
dimQ− 1 and rankM = rankQ, so these last two problems are highly non-trivial.
The main result of [AWb] implies a solution to Problem 6.30 in the case when the
stratum has at least six odd order zeros (or poles).
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7 Diamonds with quadratic doubles

The following is the main result of the section. We use the notation F from Definition
3.9 for forgetting marked points.

Theorem 7.1. Let ((X,ω),M,C1,C2) be a generic diamond of Abelian differentials.
Suppose that MC1 and MC2 are quadratic doubles corresponding to components Q1

and Q2 of strata of quadratic differentials respectively.
If ColC1,C2(X,ω) is connected, then M is a quadratic double.
More generally, making no assumption on the connectedness of ColC1,C2(X,ω),

F(M) is either a quadratic double or the locus in a quadratic double that corresponds
to the preimage of a codimension one hyperelliptic locus in the corresponding stratum
of quadratic differentials. The marked points on (X,ω) consist of fixed points of the
holonomy involution and pairs of points consisting of a non-periodic point and its
image under the holonomy involution, with no further constraints.

See Figure 1.2 for an example where M is not a quadratic double.

Remark 7.2. When F(M) corresponds to a codimension one hyperelliptic locus,
the generic surface in F(M) admits a four-to-one map to a generic surface in a
genus zero stratum of quadratic differentials; moreover, Q1 and Q2 are hyperelliptic
components.

Remark 7.3. To recall our standing assumptions, M is permitted to have marked
points. So are Q1 and Q2 provided that the marked points are free. Since MC1

and MC2 are quadratic doubles, our definition requires that all preimages of a free
marked point be marked. The preimage of a pole may or may not be marked.

Remark 7.4. Recall that all surfaces are assumed to be connected unless otherwise
stated. In particular, the surfaces in MC1 and MC2 are connected. However, it is
not necessarily the case that the surfaces in ColC1,C2(M) are connected.

Recall also that, following Convention 4.1, quadratic differentials are assumed to
have non-trivial holonomy.

We will defer the proof of Theorem 7.1 until after the proof of the following
related result.

Theorem 7.5. Suppose that M is an invariant subvariety in a component Q of
a stratum of quadratic differentials. Let ((X, q),M,C1,C2) be a generic diamond
where MC1 and MC2 are components Q1 and Q2 of strata of quadratic differentials
respectively. Then F(M) is either F(Q) or a codimension one hyperelliptic locus in
F(Q). The marked points on surfaces in M are free.
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Moreover, if ColC1,C2(X, q) has nontrivial linear holonomy then M is a compo-
nent of a stratum of quadratic differentials.

Proof. We begin with the following reduction. Recall the types of cylinders from
Definition 4.7.

Sublemma 7.6. Suppose that C1 and C2 are both singletons containing either a
complex cylinder or a complex envelope. Then the cylinder in Ci does not border a
marked point in (X, q), nor does ColCi+1

(Ci) border one in ColCi+1
(X, q). Moreover,

all marked points on (X, q) ∈M are free.

Proof. Since the diamond is generic, specifically by Definition 3.26 (1), the saddle
connections on the boundary of ColCi+1

(Ci) are generically parallel to ColCi+1
(Ci).

Since all marked points on ColCi+1
(X, q) are free and since each boundary of ColCi+1

(Ci)
consists of either two saddle connections or a single saddle connection joining two
poles, it follows that the boundary of ColCi+1

(Ci) does not contain any marked
points.

We will now see that the boundary of Ci does not contain any marked points.
This follows since if z were such a point, then ColCi+1

(z) would be a marked point
contained in the boundary of ColCi+1

(Ci), which cannot occur.
Therefore, if p is a marked point on (X, q) it lies in the complement of the

closures of the cylinders in C1 and C2. Therefore, p is free since ColC1(p) is free on
ColC1(X, q).

We now reduce to a special case of the situation considered in the previous sub-
lemma.

Sublemma 7.7. If C1 or C2 is not a complex cylinder, then F(M) is either F(Q)
or a codimension one hyperelliptic locus in F(Q) and the marked points on surfaces
in M are free.

If additionally ColC1,C2(X, q) has nontrivial linear holonomy, then M is a com-
ponent of a stratum of quadratic differentials.

Proof. By Definition 3.26 (1), ColCi+1
(Ci) is a subequivalence class of generic cylin-

ders on ColCi+1
(X, q), and so, by Masur-Zorich (Theorem 4.8), ColCi+1

(Ci) is one of
the following: a simple cylinder, a simple envelope, a half-simple cylinder, a complex
cylinder, or a complex envelope. The same is true for Ci.

Suppose first, perhaps after re-indexing, that C1 is one of the first three types.
Then M = Q by Corollary 4.12.
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If, again perhaps after re-indexing, C1 is a complex envelope, then F(M) is either
F(Q) or a codimension one hyperelliptic locus in it by Theorem 6.1. Moreover, by
Sublemma 7.6, all the marked points on (X, q) are free.

Finally, we suppose ColC1,C2(X, q) has nontrivial holonomy and prove M is a
component of a stratum. It suffices to consider the case when C1 is a complex
envelope. Applying Remark 6.2 to the complex envelope ColC2(C1), we see that that
ColC1,C2(C1) consists of two distinct saddle connections that have poles as endpoints,
since otherwise ColC1,C2(X,ω) has trivial holonomy. Hence we get that ColC1(C1)
consists of two saddle connections. The final statement of Theorem 6.1, applied to
the complex envelope C1, now gives that M is a component of a stratum.

Continuing with the proof of Theorem 7.5, we may now assume that each Ci

is a single complex cylinder. By Masur-Zorich (Theorem 4.8 (2)), if C is a generic
complex cylinder on a quadratic differential (Y, qY ) then ColC(Y, qY ) has trivial linear
holonomy. Therefore, we are now exclusively in a situation where ColC1,C2(X, q) has
trivial linear holonomy, which implies that we have established the final claim of
Theorem 7.5.

Suppose that Theorem 7.5 is false and assume that ((X, q),M,C1,C2) is a coun-
terexample with the dimension ofM as small as possible. By Sublemma 7.6 we may
suppose without loss of generality that (X, q) has no marked points. We will get a
contradiction in one of two ways:

• in some cases, by considering the result of degenerating two different simple
cylinders, we will argue that actually M isn’t a counterexample to Theorem
7.5 (this is the n = 3 case below), or

• in some cases the assumption that M has smallest dimension will lead to a
precise description of surfaces in a degeneration ofM, and an easy numerology
argument will give a contradiction (this in the n = 4 case below).

Since ColCi+1
(Ci) is a complex cylinder, for each i, ColC1,C2(Ci) is a pair of saddle

connections on ColC1,C2(X, q). Observe that

(X, q)− (C1 ∪C2) and ColC1,C2(X, q)− (ColC1,C2(C1) ∪ ColC1,C2(C2))

are almost equal. (The left surface is the metric completion of the right surface; the
right surface is “missing its boundary saddle connections”.) In particular, they have
the same number of components. Let n denote the number of components.

Sublemma 7.8. Either n = 4, or n = 3 and there is one component bounded by
ColC1,C2(C1), one component bounded by ColC1,C2(C2), and one component bounded
by both.
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Proof. Since ColC1,C2(X, q) has trivial holonomy, so must each of the n-components;
so each of the n components has at least two boundary saddle connections. After
cutting four saddle connections in ColC1,C2(C1)∪ColC1,C2(C2), there are 8 boundary
saddle connections on the resulting surface with boundary. So n ≤ 8/2.

We proceed in two cases. Suppose first that both saddle connections in ColC1,C2(C2)
lie on the same component of ColC1,C2(X, q) − ColC1,C2(C1). In this case, we see
that there is a component of ColC1,C2(X, q)− (ColC1,C2(C1) ∪ ColC1,C2(C2)) that is
bounded entirely by ColC1,C2(C1), and also a component that is bounded entirely by
ColC1,C2(C2). Since there must be at least one other component, we get the result.

Suppose next that ColC1,C2(C2) has one saddle connection on each component
of ColC1,C2(X, q)− ColC1,C2(C1). Since the two saddle connections in ColC1,C2(C2)
are generically parallel, it follows that ColC1,C2(C1) and ColC1,C2(C2) are generically
parallel to each other. (For example, if ColC1,C2(C1) is horizontal, one can shear each
component of ColC1,C2(X, q) − ColC1,C2(C1) individually to see that ColC1,C2(C2)
must also be horizontal.)

Hence the four saddle connections in ColC1,C2(C1) ∪ ColC1,C2(C2) are pairwise
homologous (since MC1,C2 is a stratum of Abelian differentials, generically parallel
saddle connections are homologous). So cutting them disconnects the surface into
four components.

Let (Σj)
n
j=1 denote the translation surfaces with boundary that comprise the

components of (X, q)− (C1 ∪C2).
For our next observation we will assume that on (X, q), all parallel saddle con-

nections are generically parallel (this assumption holds on a full measure set ofM).

Sublemma 7.9. Whenever Σj has two boundary saddle connections, it contains a
simple cylinder C, andMC is a proper invariant subvariety in a stratum of connected
quadratic differentials.

If either C 6= Σj, or C = Σj and both boundary components of C are boundary
saddle connections of the same Ci, then

(ColC(X, q),MC ,ColC(C1),ColC(C2))

is a generic diamond and both (MC)ColC(Ci) are components of strata of quadratic
differentials.

Proof. Whenever Σj has two boundary saddle connections, we can glue those two
boundary saddle connections to get a single saddle connection on a translation surface
Σglue
j without boundary.
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Every translation surface has a cylinder disjoint from any given saddle connection.
Applying this to Σglue

j , we get a cylinder C. Our genericity assumption implies C
must be simple, since generically all cylinders on Abelian differentials are simple.
Since C is simple, ifMC was a full component of a stratum of quadratic differentials,
M would be as well; hence MC is proper.

Now assume either that C 6= Σj or that C = Σj and both boundary components
of C are boundary saddle connections of the same Ci. This assumption is precisely
what is required to ensure that ColC(C1) and ColC(C2) do not share boundary saddle
connections, which is a requirement of diamonds. (If C = Σj had one boundary
component from C1 and one from C2, then ColC(C1) and ColC(C2) would both
have ColC(C) in their boundary.)

It is now easy to see that collapsing C gives rise to another generic diamond.
Since MCi

is a component of a stratum, so is (MC)ColC(Ci) = (MCi
)ColCi

(C).

Case 1: n = 3.
If n = 3, then by Sublemma 7.8 there are two values of j ∈ {1, 2, 3} for which Σj

has exactly two boundary saddle connections. Suppose that these subsurfaces are
Σ1 and Σ2. See Figure 7.1.

Figure 7.1: An example with n = 3 that must be ruled out. The equations a = a′

and b = b′ are all equivalent, and a priori might locally define a counterexample to
Theorem 7.5.

Applying Sublemma 7.9 twice, we find simple cylinders D1 and D2 contained in
Σ1 and Σ2 respectively. If necessary re-index so that the boundary saddle connections
of Σi belong to Ci for i ∈ {1, 2}.

Sublemma 7.10. F(MDi
) is a codimension one hyperelliptic locus and, letting Ji

denote the hyperelliptic involution on F(ColDi
(X, q)), Ji fixes ColDi

(Cj) for i and j
in {1, 2}.
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Proof. By symmetry of hypotheses, it suffices to prove the statement for i = 1. By
Sublemma 7.9,

(ColD1(X, q),MD1 ,ColD1(C1),ColD1(C2))

is a generic diamond. By our minimality assumption on the dimension of M, The-
orem 7.5 holds for this generic diamond. So, since Sublemma 7.9 gives that MD1 is
proper, we get that F(MD1) is a codimension one hyperelliptic locus and all marked
points in F(QD1) are free. This proves the first claim.

ColD1(Cj) is a MD1-generic complex cylinder or complex envelope for both j,
and since all marked points are free it cannot have marked points in its boundary.
(The possibility of a complex envelope occurs when D1 = Σ1.) In either case the
hyperelliptic involution must fix both ColD1(Cj), since generic genus zero quadratic
differentials cannot have complex cylinders or envelopes.

Since Ji fixes ColDi
(Cj) it follows2 that Ji fixes ColDi

(Σj) as well for all i and
j. Since (X, q) has no marked points, it follows that J1 is an involution on the
subsurface (X, q)− Σ1 = ColD1(X, q)− ColD1(Σ1).

Notice that ColDi
(Σj) is isometric to Σj when i 6= j. Notice that the restriction

of J1 and J2 to ColD1,D2(Σ3) are identical since both preserve this subsurface and
exchange the two saddle connections on the boundary of this subsurface that lie in
the boundary of C1. By defining an involution J that acts by J1 on (X, q) − Σ1

and J2 on (X, q)−Σ2 we have a well-defined involution since we have already shown
that J1 and J2 agree on the overlap (this proof is the same as the argument in the
Diamond Lemma (Lemma 2.3), which we could also appeal to here).

It is easy to see that the quotient of (X, q) by this involution is a sphere (for
instance since (X, q)/J is a connected sum of three spheres since Ci/J is a simple
cylinder and since Σi/J is a sphere with boundary). This shows thatM is contained
in a hyperelliptic locus. Since MD1 has codimension one in the stratum containing
it, the same is true of M since (X, q) is formed by attaching a simple cylinder to
ColD1(X, q). Since we have assumed that there are no marked points on (X, q), it
follows thatM is a codimension one hyperelliptic locus inQ, which is a contradiction.
Case 2: n = 4.

By successively applying Sublemma 7.9 and then collapsing the simple cylinder
thereby produced we may reduce to a surface (X, q) on which every subsurface in
(Σj)

4
j=1 is a simple cylinder. We will show that this is not possible. Unlike in the

previous case we will not worry about whether collapsing a simple cylinder takes us

2This is because ColDi
(Σj) can be identified with a component of ColDi

(X, q)−ColDi
(C1∪C2).

Each cylinder in ColDi(C1∪C2) is fixed by Ji and each component of ColDi(X, q)−ColDi(C1∪C2)
is uniquely determined by which cylinders in C1 ∪C2 it borders.
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to a hyperelliptic locus since, regardless of whether it does, we will rule out this case
entirely.

Whenever a boundary component of a complex cylinder shares two boundary
saddle connections with (not necessarily distinct) simple cylinders, that boundary
contains a single singularity and the singularity has order two. This shows that
(X, q) belongs to Q(24), which has rank two rel four by Lemma 4.4.

Since the boundary of every cylinder in (Σj)
4
j=1 is glued into the boundary saddle

connections of either C1 or C2 we see that all six of these cylinders are parallel to
each other. We suppose without loss of generality that they are all horizontal, see
Figure 7.2. Since MC1 is a component of a stratum, it follows by Theorem 3.20

Figure 7.2: Examples of surfaces that are ruled out in the n = 4 case.

that the standard shear for every horizontal cylinder belongs to the tangent space of
M. Under the projection p to absolute cohomology3, the six dimensional subspace
of the tangent space spanned by these shears projects to an isotropic subspace of
p
(
T(X,q)M

)
. This isotropic subspace has dimension at most two since Q(24) has

rank two. This shows that the dimension of ker(p) ∩ T(X,q)M, which by definition
is rel(M), is at least four. Since Q(24) has rel four, this shows that rel(M) = 4.
Therefore, the six dimensional subspace generated by standard shears in horizontal
cylinders projects to a two dimensional Lagrangian subspace p

(
T(X,q)M

)
, which

shows, by definition of rank, thatM has rank at least two. Therefore,M must have
rank two rel four and hence coincide with Q(24) contradicting our assumption that
it is proper.

The idea of the proof of Theorem 7.1 is now to use the Diamond Lemma to reduce
to Theorem 7.5.

3Tacitly we will work with the holonomy double cover ofM so that the tangent space is a subset
of cohomology.
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Proof of Theorem 7.1: By perturbing, we may suppose without loss of generality
that (X,ω) has dense orbit in M (see Remark 3.30). Let fi : ColCi

(X,ω)→(Yi, qi)
denote the quotient by the holonomy involution.

Lemma 7.11. (X,ω) is a double cover of a quadratic differential via a map f sat-
isfying ColCi

(f) = fi.

Proof. By the Diamond Lemma (Lemma 2.3), it suffices to show that f1 and f2 agree

on the base of the diamond and that f−1
i

(
fi

(
ColCi

(Ci+1)
))

= ColCi
(Ci+1). The

second of these two conditions holds for any quadratic double since ColCi
(Ci+1) is a

subequivalence class and fi is the quotient by the holonomy involution.
The first condition (agreement at the base of the diamond) is slightly more com-

plicated. If ColC1,C2(M) is a locus of connected surfaces, then it is a quadratic double
(by Lemma 3.24) with at least one marked point or zero. In this case, by Lemma 4.5,
the holonomy involution is unique on ColC1,C2(M) and hence f1 and f2 agree at the
base. Suppose therefore that the surfaces in ColC1,C2(M) are disconnected. Then
by Lemma 4.16, ColC1,C2(M) is the anti-diagonal embedding of a component H′ of
a stratum of Abelian differentials into H′ ×H′ and there is still a unique holonomy
involution. Hence, in either case, f1 and f2 agree at the base.

In order to deduce that (X,ω) belongs to a quadratic double we must check in
particular that for any marked point on f (X,ω), both of its preimages under f are
marked on (X,ω). Say that p is a marked point on (X,ω) and suppose that p is not
fixed by the holonomy involution on (X,ω).

If p does not belong to the closure of a cylinder in C1, then p remains a marked
point, which we denote ColC1(p), on ColC1(X,ω). Since ColC1(f) = f1, ColC1(p) is
not fixed by the holonomy involution on ColC1(X,ω). By assumption, both marked
points in f−1

1 (f1(ColC1(p))) are marked on ColC1(X,ω). Since ColC1(f) = f1, both
points in f−1(f(p)) are marked on (X,ω).

Therefore, we must only consider marked points that belong to the boundary of a
cylinder in C1 and to the boundary of a cylinder in C2. However, since the cylinder
in C1 and C2 are disjoint, no such marked points exist. Note that a cone point of
cone angle greater than 2π may lie on the boundary of two disjoint cylinders, but
a marked point, which is a cone point of cone angle exactly equal to 2π, cannot.
This concludes the proof that M is contained in a quadratic double (since we have
assumed that (X,ω) has dense orbit this follows by Corollary 2.4).

LetM′ denote the GL+(2,R)-orbit closure of f(X,ω). Phrased differently,M′ is
the collection of surfaces inM after modding out by the holonomy involution. Then

(f(X,ω),M′, f(C1), f(C2))
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forms a generic diamond where (M′)f(Ci) are components of strata of quadratic
differentials for i ∈ {1, 2}. The result now follows from Theorem 7.5. Notice that
ColC1,C2(X,ω) is disconnected if and only if Colf(C1),f(C2) (f(X,ω)) has trivial linear
holonomy.

8 Diamonds of full loci of covers

The goal of this section is to prove Theorem 1.1, but we will work in a more gen-
eral setup, not requiring that ColC1,C2(X,ω) or even the ColCi

(X,ω) are connected.
Theorem 1.1 is a special case of the following result. We say that two maps have the
same fibers if every fiber of one is a fiber of the other.

The following assumption will be in effect throughout this section.

Assumption 8.1. Suppose ((X,ω),M,C1,C2) forms a generic diamond whereMC1

and MC2 are full loci of covers satisfying Assumption CP, and where we allow the
covers to be disconnected as long as the surfaces they cover are connected. Let fi
denote the covering map defined on ColCi

(X,ω).

Theorem 8.2. Under Assumption 8.1, M is a full locus of covers of a stratum of
Abelian or quadratic differentials, except possibly if ColC1,C2(X,ω) is disconnected
and one of the following occurs:

1. The codomains of the Col(fi) are equal and contained in a hyperelliptic stra-
tum of Abelian or quadratic differentials without marked points or in H(0) or
H(0, 0); the codomain of at least one fi has non-trivial holonomy; and Col(f1)
and Col(f2) do not have the same fibers but their restrictions to each component
do have the same fibers.

2. Up to re-indexing the codomain of Col(f1) is H(0); the codomain of f1 has
non-trivial holonomy; and the codomain of Col(f2) is Q(−14).

The following example clarifies the first exceptional case. (We will see that essen-
tially the same phenomenon also gives rise to the second exceptional case.) Addition-
ally, it might be helpful to compare to the discussion before the Diamond Lemma
(Lemma 2.3) and keep in mind we do not have a canonical identification of the
codomains of Col(f1) and Col(f2).

Example 8.3. Let Y be a surface, and let τ : Y → Y be a bijection that isn’t the
identity. Let Y ′ denote two different copies of Y . Let w1 : Y ′ → Y be the map
that identifies the two components via the identity map from Y to itself, and let
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w2 : Y ′ → Y be the map that identifies the two components via τ . Then w1 and w2

have the same fibers when restricted to each connected component, since each fiber
of the restriction is a single point; but w1 and w2 do not have the same fibers.

The two exceptional cases of Theorem 8.2 are especially interesting, and we hope
they will be studied in the future. We do not have any reason to believe that the
conclusion does not hold in the two exceptional cases, but until they are analyzed
the possibility remains that they may be associated with surprising new invariant
subvarieties.

8.1 Preliminaries

Remark 8.4. Before beginning our analysis, we first briefly sketch an example of a
diamond ((X,ω),M,C1,C2) where Assumption CP fails forM, but holds forMC1

and MC2 . Pick M to be a quadratic double where all but exactly two preimages
of poles are marked. Let (X,ω) be a generic surface in M. The quotient by the
holonomy involution does not satisfy Assumption CP, since an envelope containing
these two poles will lift to a cylinder of twice the height. (Envelopes are defined in
Definition 4.7.) Pick the Ci so that MC1 and MC2 are quadratic doubles with all
but exactly one preimage of poles marked, which ensures that Assumption CP does
hold for MC1 and MC2 .

We will prove Theorem 8.2 primarily by applying the following.

Lemma 8.5. If Col(f1) = Col(f2), then M is a full locus of covers of a stratum of
Abelian or quadratic differentials.

Recall that we write “Col(f1) = Col(f2)” as a short form for “Col(f1) and Col(f2)
agree at the base of the diamond”, in the sense of Section 2.

In the proof of Theorem 8.2, most of the work will be verifying the assumption
in Lemma 8.5 that Col(f1) = Col(f2). There is only one very special situation (the
final case in the proof of Lemma 8.24) where we will have Col(f1) 6= Col(f2) and
hence will have to establish that M is a full locus of covers by other arguments.

Proof of Lemma 8.5. By Assumption CP,

f−1
i (fi (ColCi

(Cj))) = ColCi
(Cj)

for any i 6= j. By hypothesis, Col(f1) = Col(f2), so the Diamond Lemma (Lemma
2.3) implies that there is a (half)-translation cover f : (X,ω)→(Z, ζ) such that
ColCi

(f) = fi.
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LetM′ denote the orbit closure of f(X,ω). Then (M′, f(X,ω), f(C1), f(C2)) is
a generic diamond where M′

f(C1) and M′
f(C2) are components of strata of Abelian

or quadratic differentials.
Suppose first that M′

f(C1) is a component of a stratum of Abelian differentials
and that M′

f(C2) is a component of a stratum of quadratic differentials. Since
subequivalence classes of cylinders in strata of Abelian differentials are singletons,
Colf(C1)(f(C2)) is a single simple cylinder. Therefore, M′ is the result of gluing in
a simple cylinder to a component of a stratum of quadratic differentials and so M′

is itself a component of a stratum of quadratic differentials by Corollary 4.12. This
proves the result because M is a full locus of covers of M′.

We may suppose now that M′
f(C1) and M′

f(C2) are both components of strata
of Abelian differentials or both components of strata of quadratic differentials. By
Proposition 5.1 and Theorem 7.5,M′ is either a stratum or a full locus of degree two
covers of a genus zero stratum. In the first case the map f proves that M is a full
locus of covers, and in the second case f composed with the hyperelliptic involution
proves that M is a full locus of covers.

The following two basic lemmas are foundational to our analysis.

Lemma 8.6. Both Col(f1) and Col(f2), whose domains are the surface ColC1,C2(X,ω)
in MC1,C2, satisfy Assumption CP.

Proof. If Assumption CP fails for a surface in MC1,C2 for Col(fi), then it fails in
MCi

after almost completely collapsing ColCi
(Ci+1), since heights of cylinders vary

continuously.

Lemma 8.7. The codomain of each Col(fi) is connected.

Proof. By assumption, fi(ColCi
(Cj)) is a generic cylinder with respect to the stratum

in which fi(ColCi
(X,ω)) lies. (Generic cylinders are defined in Definition 3.16.) If

it is a stratum of Abelian differentials, every generic cylinder is simple; if it is a
stratum of quadratic differentials, the generic cylinders are given by Theorem 4.8.
In either case, it is easy to see that collapsing a generic cylinder for a stratum does
not disconnect the surface. Hence, Colfi(ColCi

(Cj))(fi(ColCi
(X,ω)) is a connected

surface.

We wish to apply Lemma 8.5 in situations where we only know that Col(f1) and
Col(f2) have the same fibers after restriction to each component of ColC1,C2(X,ω),
but first we must clarify a subtle issue with marked points.
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Warning 8.8. In general (without Assumption CP), the restriction of the Col(fi) to
a component of ColC1,C2(X,ω) might not be a covering map in the sense of Definition
3.2, because there may be a marked point in the codomain all of whose preimages on
a given component are non-singular unmarked points. (The preimage under Col(fi)
of a marked point must contain a singular point or a marked point, but possibly not
on every connected component of ColC1,C2(X,ω).)

However, we now explain that this warning does not apply under the assumptions
of Theorem 8.2.

Lemma 8.9. The restriction of Col(fi) to each component satisfies Definition 3.2.

Proof. By Lemma 8.6, Col(fi) satisfies Assumption CP. We may assume the codomain
of Col(fi) is a generic surface in its stratum, and hence if it contains a marked point
p then p lies in the interior of some cylinder C on F (Col(fi) (ColC1,C2(X,ω))). By
Assumption CP, each component of the preimage of C must contain a preimage of
p that is a marked point or singular point.

We can now explain how Lemma 8.5 can be applied when only the restrictions of
the Col(fi) to connected components are understood.

Lemma 8.10. If the restriction of Col(f1) and Col(f2) to each connected compo-
nent of ColC1,C2(X,ω) have the same fibers, then M is a full locus of covers of a
component of a stratum Abelian or quadratic differentials, except possibly in first
exceptional case of Theorem 8.2.

Proof. By Lemma 8.6, it suffices to show that, except possibly in first exceptional
case of Theorem 8.2, Col(f1) = Col(f2).

The codomain of each Col(fi) is a generic surface in a stratum. For each compo-
nent of ColC1,C2(X,ω) we obtain an half-translation map identifying the codomain
of Col(f1) with the codomain of Col(f2), since both are quotients of the same compo-
nent by the same equivalence relation (points are equivalent if they are in the same
fiber). We now make two observations:

1. By Lemma 8.9, the identification map (which depends on the choice of a com-
ponent of ColC1,C2(X,ω)) between the codomain of Col(f1) and the codomain
of Col(f2) sends marked points to marked points.

2. If the codomain of fi has trivial holonomy, then the codomain of Col(fi) is
naturally an Abelian (rather than quadratic) differential, and Col(fi) preserves
holonomy (sends northward pointing tangent vectors to northward pointing
tangent vectors).

83



Remark 8.11. In the second observation, it is not enough to assume the codomain of
Col(fi) has trivial holonomy; in this case we cannot guarantee that Col(fi) preserves
holonomy. There are two choices of square-roots of a quadratic differential with
trivial holonomy. For each component of ColC1,C2(X,ω), one can pick a choice of
the square-root so that Col(fi) restricted to this component preserves holonomy; but
there is no guarantee that the choices corresponding to different components are the
same.

We must now show that either the identifications between the codomains of each
Col(fi) obtained from each component of ColC1,C2(X,ω) agree, or that we are in
first exceptional case of Theorem 8.2. Note that if the identifications do not agree,
by composing them we obtain a non-trivial half-translation surface automorphism of
the codomain.

If the codomains of f1 and f2 both have trivial holonomy, then the identification is
holonomy preserving by the second point above. The generic element of a stratum of
Abelian differentials does not have any translation automorphisms preserving marked
points (this follows from Lemma 4.3 in genus greater than 1, and a direct analysis
in genus 1). Hence Col(f1) = Col(f2).

The only components of strata where the generic surface has a half-translation
automorphism preserving marked points are hyperelliptic connected components of
surfaces without marked points, H(0), and H(0, 0). This follows when the rank of
a stratum is at least two by Lemma 4.3; when the stratum is Abelian and rank
one, the stratum must be a quadratic double that coincides with H(0n) for some
positive integer n, and these strata are precisely H(0) and H(0, 0); when the stratum
is quadratic and rank one this is essentially Lemma 9.3.

The proof of Theorem 8.2 will now proceed in cases according to the size of
MC1,C2 .

8.2 Higher rank

The proof of Theorem 8.2 when MC1,C2 has rank at least 2 will be easy once we
have established the following.

Proposition 8.12. Let (X0, ω0) be a connected translation surface that isn’t a torus
cover. Then (X0, ω0) admits at most one map to a generic surface in a stratum of
Abelian or quadratic differentials satisfying Assumption CP, in that any two such
maps have the same fibers.

The following example clarifies how crucial Assumption CP is in Proposition 8.12.
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Example 8.13. For any N , there is a translation surface that isn’t a torus cover but
has at least N different maps to generic surfaces in strata of quadratic differentials.
Indeed, consider (Q, q) a generic surface in the genus zero stratum Q(N −3,−1N+1).
Denote the poles by z1, . . . , zN+1. For each i ∈ {1, . . . , N + 1}, let (Qi, qi) be the
unique degree two cover of (Q, q) branched over all of the poles except zi; if N is odd
it is additionally branched over the zero of order N − 3. As we recall in Section 9,
Lanneau showed that the (Qi, qi) lie in hyperelliptic connected components defined
in [Lan04]. Basic covering space theory gives the existence of a translation surface
cover of (Q, q) which is a common cover of all the (Qi, qi).

Proof of Proposition 8.12. By Möller (Theorem 3.5), there is a unique half-translation
cover

πQmin
: (X0, ω0)→(Qmin, qmin)

such that any other half-translation cover from (X0, ω0) to a half-translation surface
is a factor of πQmin

.
By Lemma 4.3, any quotient of (X0, ω0) that is generic in its stratum is either

(Qmin, qmin) or a degree two cover of (Qmin, qmin) that lies in a hyperelliptic stratum
after forgetting marked points.

Lemma 8.14. If πQmin
factors through a map to a surface S that is generic in

a stratum which, after forgetting marked points, is a hyperelliptic component of a
stratum of Abelian or quadratic differentials, then πQmin

does not satisfy Assumption
CP.

Proof. Suppose not in order to derive a contradiction. Since (Qmin, qmin) has genus
0, it must have at least two poles. In fact it has at least two poles whose preimage
in S are non-singular points: when S is an Abelian differential, we can pick any two
poles; and when it is a quadratic differential this follows from the classification of
hyperelliptic components reviewed in Section 9.

Deforming if necessary, we can assume that these two poles are contained in an
envelope. Considering the preimage in S of this envelope, Assumption CP implies
that the preimage of at least one of these two poles is marked; otherwise the preimage
of the envelope has at least twice the height of the envelope. However, the preimages
of the poles are fixed by the involution, and in particular cannot be free marked
points. This contradicts the fact that S is generic, since all marked points must be
free in strata.
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Lemma 8.15. If πQmin
factors through a map π satisfying Assumption CP and

whose codomain is a surface S that has dense orbit in a stratum and such that
F(S) is contained in a hyperelliptic component of a stratum of Abelian or quadratic
differentials, then π is the unique such map.

Proof. The map S → (Qmin, qmin) is a degree two cover of a sphere, and is hence
determined by its branched points. Our approach is to first determine which poles
and marked points are branched, and then show that the remaining branching data
can be recovered from the classification of hyperelliptic components.

Sublemma 8.16. The map S → (Qmin, qmin) is branched over a pole z of (Qmin, qmin)
if and only if π−1

Qmin
(z) does not contain a singular point or a marked point.

Proof. First suppose S → (Qmin, qmin) is not branched over z. We want to show
that the preimage of z under πQmin

contains a singularity or marked point. To do
this, as in the proof of Lemma 8.14, it suffices to show that the two preimages of
z on S are contained in an envelope. This envelope can be constructed by lifting
an envelope from (Qmin, qmin) to S that contains z and a branched pole. (Such an
envelope exists since there are poles that are branch points for the quotient by the
hyperelliptic involution S→(Qmin, qmin) and since, for a genus zero surface, it is
particularly easy to see that any two poles belong to a single envelope for a generic
surface).

Next suppose that S → (Qmin, qmin) is branched over z. The preimage p of z
on S is therefore not a singularity of the flat metric. Since p is a fixed point of an
involution on S, it is a periodic point.

Since S has dense orbit in a stratum, the only marked points on S are free points.
The only stratum in which a free point is simultaneously a periodic point is H(0).
Since we have assumed that (X0, ω0) is not a torus cover, we see that p is not marked
on S.

By our conventions on (half)-translation covers (see Definition 3.2) we get that
π−1
Qmin

(z) consists entirely of non-singular unmarked points, as desired.

Sublemma 8.17. The map S → (Qmin, qmin) is branched over a marked point z of
(Qmin, qmin) if and only if π−1

Qmin
(z) consists entirely of singularities (zeros of positive

order).

Proof. If the map S → (Qmin, qmin) is branched over z, then z has a single preimage
on S, which is a cone point of angle 4π. Since S → (Qmin, qmin) is a factor of
πQmin

, we see that π−1
Qmin

(z) consists entirely of cone points with cone angles that are
multiples of 4π.
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So suppose the map S → (Qmin, qmin) is not branched over z; hence the preimage
of z on S consists of two non-singular points. We claim that exactly one preimage
of z is a marked point. Indeed, at least one preimage must be marked by Definition
3.2. And if both were marked, then since these two points are interchanged by the
hyperelliptic involution, and since S is generic in its stratum, and since all marked
points are free in strata, this gives a contradiction. (This uses that the stratum of S
is not H(0, 0), which is true because (X0, ω0) is not a torus cover.)

Hence exactly one preimage of z is marked on S; let z′ be the preimage that is
unmarked. The preimages on (X0, ω0) of z′ must consist of unmarked non-singular
points by Definition 3.2, giving the result.

The classification of hyperelliptic components (see Lemma 9.2 for the quadratic
case) gives that (Qmin, qmin) has either one or two zeros (that aren’t poles or marked
points). The case where there are no zeros only occurs when F(Qmin, qmin) belongs
toQ(−14), which cannot occur here since (X0, ω0) is not a torus cover. If (Qmin, qmin)
has two zeros (that aren’t marked points or poles), the classification gives that there
is a unique degree two cover of (Qmin, qmin) that is contained in a hyperelliptic
component after forgetting marked points. (The double covers of (Qmin, qmin) that
belong to hyperelliptic components are uniquely specified, when there are two zeros,
since, whether or not a zero is a branch point is determined by its parity, as in
Lemma 9.2; all the poles are branch points; and none of the marked points are
branched points. When there are fewer than two zeros there may be choices for
which poles and marked points belong to the branch locus as in Example 8.13.)

So assume there is exactly one zero (that isn’t a pole or marked point). Since
the number of branch points of a degree two cover is even, Sublemmas 8.16 and 8.17
exactly determine the branch points of S → (Qmin, qmin). Since a degree two cover
of a sphere is determined by its branch points, this gives the result.

We will now see that the proof of Proposition 8.12 is complete. Suppose first
that πQmin

satisfies Assumption CP. By Lemma 8.14, there is no factor of πQmin

with image S that has dense orbit in a stratum and such that F(S) belongs to a
hyperelliptic component of a stratum of Abelian or quadratic differentials. However,
any map from (X0, ω0) to a surface S with dense orbit in a stratum is either πQmin

or has the property that F(S) belongs to a hyperelliptic component of a stratum
of Abelian or quadratic differentials. Hence, πQmin

is the unique (half)-translation
cover defined on (X0, ω0) that satisfies Assumption CP and whose image has dense
orbit in its stratum.

Suppose now that πQmin
does not satisfy Assumption CP, but that there is some

(half)-translation cover from (X0, ω0) to a surface S satisfying Assumption CP such
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that S has dense orbit in a stratum. As before, F(S) belongs to a hyperelliptic
component of a stratum of Abelian or quadratic differentials, and (Qmin, qmin) is the
quotient by the hyperelliptic involution. Hence π is unique by Lemma 8.15.

Proof of Theorem 8.2 when MC1,C2 has rank at least 2. The cover ColC1,C2(X,ω) might
not be connected, but each of its components covers the connected surface

Colfi(ColCi
(Cj))(fi(ColCi

(X,ω)).

We first remark that rank is defined in exactly the same way for invariant sub-
varieties of multi-component surfaces. So the rank ofMC1,C2 is equal to the rank of
the invariant subvariety of connected surfaces covered by surfaces in MC1,C2 . (One
could take this as the definition of the rank of MC1,C2 for the purposes of this sec-
tion. Although we do not require this fact, we remark that rank is an integer even for
invariant subvarieties of multicomponent surfaces by the results in [CW19, Section
7].)

Hence we can assume that none of the components of ColC1,C2(X,ω) are torus
covers (by Lemma 3.4).

Proposition 8.12 gives that the restrictions of Col(f1) and Col(f2) to any con-
nected component of ColC1,C2(X,ω) have the same fibers. Hence the result follows
from Lemma 8.10.

8.3 Rank 1, not dimension 2

Proposition 8.18. IfMC1,C2 is rank one, then either Col(f1) = Col(f2) or, possibly
after re-indexing, the codomain of f1 is an Abelian differential, and we can write
Col(fi) = gi ◦ g, where

g : ColC1,C2(X,ω)→(Y, η)

is a translation surface covering map to a flat torus with three or four marked points
that differ by two torsion and no other marked points, g1 is the unique four-to-one
translation surface covering map from (Y, η) to a surface in H(0), and g2 is the
quotient by an involution fixing the marked points (see Figure 8.1), except possibly
in the two exceptional cases of Theorem 8.2.

Since the orbit closure of a flat torus with three or four two-torsion points marked
is rank 1 and dimension 2, Proposition 8.18 and Lemma 8.5 imply Theorem 8.2 when
MC1,C2 has rank 1 and dimension greater than 2.

Before we begin the proof, it is helpful to recall that a connected surface (Z, η) is
a translation cover of a torus if and only if its Z-module Λabs ⊂ C of absolute periods
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Figure 8.1: The exceptional case in Proposition 8.18. Up to reindexing, the codomain
of Col(f1) is in H(0) and the codomain of Col(f2) is in Q(−14).

is a rank 2 lattice, in which case every translation map to a torus is given by

p 7→
∫
γp

ω + Λ ∈ C/Λ,

where Λ is a lattice (rank two Z-submodule of C) containing Λabs, and γp is a path
from a fixed basepoint to p.

Proof. The rank 1 strata of dimension 2 + n are

H(0n+1),Q(−14, 0n),Q(2,−12, 0n−1), and Q(2, 2, 0n−2).

Here n + 1 is also the maximum number of horizontal cylinders on a horizontally
periodic surface in these strata; and almost every surface in these strata has n + 1
cylinders in every cylinder direction. Both Col(f1) and Col(f2) have a codomain that
is one of these strata, where 2 + n is the dimension of MC1,C2 .

Without loss of generality we may assume that ColC1,C2(X,ω) has the maximum
number of horizontal cylinders of any surface contained inMC1,C2 . Let (Yi, ηi) denote
the codomain of Col(fi).
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Lemma 8.19. If n = 0 and (Y1, η1) and (Y2, η2) belong to different strata, then
Col(f1) and Col(f2) both factor through a map g as in the statement of Proposition
8.18, except possibly in the second exceptional case of Theorem 8.2.

Proof. Up to reindexing suppose without loss of generality that (Y1, η1) ∈ H(0) and
(Y2, η2) ∈ Q(−14). Keeping in mind the statement of the second exceptional case of
Theorem 8.2, we may assume that the codomain of f1 has trivial holonomy.

Let (Y, η) be the holonomy double cover of (Y2, η2). So the map

Col(f2) : ColC1,C2(X,ω)→ (Y2, η2)

factors through a translation surface covering map

g : ColC1,C2(X,ω)→(Y, η).

Thus, (Y, η) is a torus, and we mark the image under g of all the singularities and
marked points of ColC1,C2(X,ω). By Assumption CP, there are either three or four
marked points on (Y, η), and by construction the difference of any two of these is
two torsion.

Sublemma 8.20. If a connected surface (Z, ζ) admits a translation map to a surface
in H(0) satisfying Assumption CP, then this map is unique.

We emphasize that the map is assumed to preserve holonomy.

Proof. We will show that any such map must be the quotient by the lattice of relative
periods.

Every map to a torus is the quotient by some lattice Λ ⊂ C containing the lattice
of absolute periods. If the codomain is in H(0), then (in total generality for any
translation map to a torus) Λ must in fact contain the lattice of relative periods.

If the map was the quotient by a lattice strictly containing the lattice of relative
periods, the map would non-trivially factor through another map to a surface in
H(0), and Assumption CP would not hold. This is because, for any non-identity
map from a surface in H(0) to a surface in H(0), Assumption CP does not hold.

Define g1 to be the unique degree four translation covering map from (Y, η) to
a surface in H(0). The map g1 satisfies Assumption CP, and the map g satisfies
Assumption CP, so we conclude that the map g1 ◦ g satisfies Assumption CP. Hence
Sublemma 8.20, applied to the restriction of the various maps to the connected
components of ColC1,C2(X,ω), implies that Col(f1) = g1 ◦ g.
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Lemma 8.21. If n > 0, the codomains of Col(f1) and Col(f2) lie in the same
stratum.

Proof. We first claim that if n > 1 and one codomain lies in H(0n+1), then so does
the other. This will be true even if the codomains of one or both fi does not have
trivial holonomy (in which case we do not know that Col(fi) preserves holonomy).

If one codomain lies in H(0n+1), then if C and D are horizontal cylinders on
a component of ColC1,C2(X,ω), and the top of C shares a saddle connection with
the bottom of D, then the top of every cylinder subequivalent to C on the same
component shares a saddle connection with the bottom of a cylinder subequivalent
to D. (Recall that subequivalence classes are defined in Definition 3.14.) Since n > 1,
it is not possible that the bottom of a cylinder subequivalent to C shares a saddle
connection with the top of a cylinder subequivalent to D on the same component.

In contrast, for any pair of adjacent cylinders C,D on the holonomy double
cover of a quadratic differential, if the top of C shares a saddle connection with the
bottom of D, then the opposite is true for J(C) and J(D), where J is the holonomy
involution. It follows that for any locus of covers satisfying Assumption CP of a rank
1 stratum of quadratic differentials, there are subequivalence classes that border each
other both top-to-bottom and bottom-to-top on the same component. This proves
the first claim.

The remainder of the proof will proceed by considering the number of self-adjacent
subequivalence classes, where we define a self-adjacent subequivalence class to be a
subequivalence class that contains a pair of (here automatically distinct) cylinders
that share a boundary saddle connection.

When n = 1, given a surface in H(02) with as many horizontal cylinders as
possible, every cover has 0 self-adjacent subequivalence classes of horizontal cylinders,
whereas covers of such surfaces in Q(2,−12) or Q(−14, 0) have 1 or 2 respectively,
as illustrated in Figure 8.2.

When n > 1, covers of Q(2, 2, 0n−2),Q(2,−12, 0n−1) or Q(−14, 0n) have 0, 1, or
2 respectively.

The previous two lemmas show that we can assume that Col(f1) and Col(f2) have
codomains belonging to the same stratum. If we can show that these two maps have
the same fibers on each component of ColC1,C2(X,ω), then we may conclude with
Lemma 8.10. We will break up this task according to which stratum the codomain
of Col(fi) belongs.

Lemma 8.22. Suppose that (Y1, η1) and (Y2, η2) both belong to H(0n+1) or both
belong to Q(−14, 0n) for some n ≥ 0. Then Col(f1) and Col(f2) have the same fibers
on each component of ColC1,C2(X,ω).
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Figure 8.2: Left: The holonomy double cover of a surface in Q(2,−12), with one
self-adjacent subequivalence class highlighted. (At least one of the two points la-
belled with an x should be marked, so the quotient map satisfies Assumption CP.)
Right: The holonomy double cover of a surface in Q(−14, 0), with two self-adjacent
subequivalence classes highlighted. (At least three of the four points labelled with
an x should be marked, so the quotient map satisfies Assumption CP.)

Proof. Without loss of generality assume that ColC1,C2(X,ω) is horizontally and ver-
tically periodic with n+1 subequivalence classes of cylinders in both those directions.
Let {x1, . . . , xn+1} denote the heights of the cylinders in the vertical subequivalence
classes and {y1, . . . , yn+1} the heights of the ones in the horizontal subequivalence
classes.

Case 1: both (Yi, ηi) belong to H(0n+1). First assume both Col(fi) preserve
holonomy.

Each subequivalence class of cylinders on one of the (Yi, ηi) must consist of a
single cylinder, which by Assumption CP must have the same height as each of the
cylinders in the corresponding subequivalence class on ColC1,C2(X,ω). Hence, if

Λ = spanZ

(∑
xk, i

∑
yk

)
⊂ C,

then (Yi, ηi) = C/Λ, and the restriction of Col(fi) to any component of ColC1,C2(X,ω)
must be the quotient by the lattice Λ. Such quotients are in general well defined up
to post-composition with translations, but there are no translations preserving all
cylinders on generic surfaces in H(0n+1). Hence, Col(f1) = Col(f2).

Now we confront the possibility that the Col(fi) might not preserve holonomy.
Even in this case, the restriction of Col(fi) to each component must be the above
map up to post-composing with rotation by π, giving the result.

Case 2: both (Yi, ηi) belong to Q(−14, 0n). In this case Col(fi) can be written as
φi ◦ τi where φi is a map from ColC1,C2(X,ω) to a torus (the holonomy double cover
of (Yi, ηi)) and τi is the quotient by the holonomy involution, which is the unique
involution that fixes the three or four two-torsion points that are the preimages of
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poles on (Yi, ηi). Since the φi are maps to holonomy double covers, they are holonomy
preserving.

It suffices to show that the restriction of φ1 and φ2 to any component of ColC1,C2(X,ω)
have the same fibers. Since each subequivalence class on the torus (the holonomy
double cover of (Yi, ηi)) has two cylinders (interchanged by the holonomy involution)
the torus is C/2Λ, where

2Λ = spanZ

(
2
∑

xk, 2i
∑

yk

)
⊂ C.

This allows us to conclude as above. (It is worth noting that the n = 0 case has
an extra subtlety, since the holonomy double cover of surfaces in Q(−14) with all
preimages of poles marked does have translation involutions preserving subequiva-
lence classes. The possibility of post-composing with such a translation involution
creates some ambiguity for the map to the holononomy double cover; but after quo-
tienting by the holonomy involution this does not change the fibers of the map.)

Lemma 8.23. Suppose that (Y1, η1) and (Y2, η2) both belong to Q(2,−12, 0n−1) for
some n > 0 or both belong to Q(22, 0n−2) for some n > 1. Then Col(f1) and Col(f2)
have the same fibers on each component of ColC1,C2(X,ω).

Proof. Because we have assumed ColC1,C2(X,ω) has n+ 1 horizontal subequivalence
classes of cylinders, it follows that (Yi, ηi) and F(Yi, ηi) also have the maximum
number of horizontal cylinders for surfaces in their strata.

A short argument using Theorem 4.8 implies that, for each of the two strata
Q(2,−12) and Q(22), there is only one possibility for how the horizontal cylinders
are connected to each other on a surface with as many horizontal cylinders as possible;
see Figure 8.6 for Q(2,−12) and Figure 8.3 for Q(22). (In other words, for each of
these two strata there is just one cylinder diagram with as many cylinders as possible;
see, for example, [ANW16, Section 3] for a precise definition.)

Figure 8.3: A surface in Q(22).
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Notice that on F(Yi, ηi) there is a unique longest horizontal cylinder; call its
length 2`i. The other horizontal cylinders have length `i.

Let di denote the degree of Col(fi). It follows that there are two kinds of sube-
quivalence class of horizontal cylinders on ColC1,C2(X,ω): those where the sums of
the lengths of the core curves of its elements is di`i and those where this sum is
2di`i. Call these two kinds of subequivalence classes “short” and “long” respectively.
Notice that any saddle connection that lies in the boundary of cylinders in both a
short and long subequivalence class has length `i for i ∈ {1, 2}. This shows that
`1 = `2 and hence that d1 = d2.

By Assumption CP, subequivalent cylinders on ColC1,C2(X,ω) have identical
heights. If {h1, . . . , hm} is a list of heights of horizontal long subequivalence classes,
then the unique longest horizontal cylinder on F(Yi, ηi) has height h1 + · · ·+ hm.

When (Y1, η1) ∈ Q(2,−12, 0n−1), if {hm+1, . . . , hn+1} is a list of heights of hori-
zontal short subequivalence classes then the height of the unique shortest horizontal
cylinder on F(Yi, ηi) is

∑n+1
j=m+1 hj.

When (Y1, η1) ∈ Q(22, 0n−2), there are three horizontal cylinders on F(Yi, ηi), one
of circumference 2` and two more of circumference `. The complement of the long
cylinder on F(Yi, ηi) has two connected components, namely the two short cylinders.
Similarly, the short subequivalence classes of horizontal cylinders on ColC1,C2(X,ω)
are naturally partitioned into two “clusters”, with subequivalence classes belonging to
the same cluster if they contain cylinders in the same component of the complement
of the union of the long subequivalence classes. The height of a short cylinder on
F(Yi, ηi) is the sum of the heights of the subequivalence classes on (Yi, ηi) in the
corresponding cluster.

By shearing the horizontal subequivalence classes of cylinders on ColC1,C2(X,ω)
we can ensure that each subequivalence class contains a cylinder that contains a
vertical cross curve, in which case the same is true on (Yi, ηi) and hence also F(Yi, ηi).
Since the circumference (` or 2`) and heights (computed as above) of the cylinders
on F(Yi, ηi) are known, we conclude that F(Y1, η1) = F(Y2, η2).

We now know that both Col(fi) are branched covers of F(Y1, η1) = F(Y2, η2),
although we do not know yet that the branch locus is the same.

Let ColC1,C2(X,ω)′ denote a connected component of ColC1,C2(X,ω). Our goal
is to show that Col(f1) and Col(f2) have the same fibers on ColC1,C2(X,ω)′.

On F(Y1, η1) = F(Y2, η2), consider a tangent vector v based at a zero (of order
2) that points into a short subequivalence class in a direction parallel to the verti-
cal foliation. For each short subequivalence class, there are two such v, which are
exchanged by the hyperelliptic involution.

Let v̂ be a preimage of v on ColC1,C2(X,ω)′ (via either map). Its base is on the
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boundary of a long subequivalence class, and it points into a short subequivalence
class in the cluster corresponding to the cylinder that v points into. Consequently,
both Col(f1) and Col(f2) map v̂ to either v or to its image under the hyperelliptic
involution. Composing by this involution if necessary, we may assume that both map
v̂ to v.

Since Col(f1) and Col(f2) are half-translation coverings, they are equal on a
neighborhood of v̂. By analytic continuation, they agree on the connected component
of ColC1,C2(X,ω)′ containing v̂.

By Lemmas 8.19 and 8.21, the codomains of Col(f1) and Col(f2) are the same
except possibly in the exceptional case mentioned in Proposition 8.18 or in the sec-
ond exceptional case of Theorem 8.2. Lemmas 8.22 and 8.23 imply that when the
codomains coincide the restrictions of Col(f1) and Col(f2) to any component of
ColC1,C2(X,ω) have the same fibers and hence Col(f1) = Col(f2) except possibly in
first exceptional case of Theorem 8.2 (by Lemma 8.10). This concludes the proof of
Proposition 8.18.

8.4 Rank 1, dimension 2

The only remaining case is the following, since the other cases when MC1,C2 has
rank 1, dimension 2 follow from Proposition 8.18.

Lemma 8.24. Suppose that the codomain of f1 is an Abelian differential and that
we can write Col(fi) = gi ◦ g, where

g : ColC1,C2(X,ω)→(Y, η)

is a translation cover to a flat torus with three or four two-torsion points marked and
no other marked points, g1 is the unique four-to-one translation cover from (Y, η)
to a surface in in H(0), and g2 is the quotient by an involution fixing the marked
points (see Figure 8.1). Then M is a full locus of covers of a stratum of Abelian or
quadratic differentials. In fact M contains degree 2 deg(g) covers of the surfaces in
the Prym locus of H(4) illustrated in Figure 8.10.

Moreover, this statement holds even if the “Assumption CP” restriction on MC2

is replaced by the slightly weaker assumption that MC2 is a full locus of covers and
that ColC2(C1) is the full preimage of its image under f2.

The final statement is not used in this paper; it follows from the proof of the first
statement and will be used in [AWa].

95



Remark 8.25. The quadratic double of Q(−14) with three or four preimages of poles
marked is the only quadratic double that is a full locus of covers of a stratum of
Abelian differentials via maps of degree greater than two that satisfy Assumption
CP. This explains the occurrence of this special case (Lemma 8.24).

Proof. Since it has rank 1 rel 1, MC1 is a full locus of covers of H(0, 0). Similarly,
MC2 is a full locus of covers of Q(−14, 0) or Q(2,−12).
Case 1: MC2 is a full locus of covers of Q(−14, 0).

Since C1 and C2 are disjoint and non-adjacent and since ColC2(C1) is the full
preimage of its image, f2(ColC2(C1)) and f2(ColC2(C2)) are disjoint and non-adjacent.
Therefore, f2(ColC2(C2)) either consists of a single saddle connection joining a pole
to another pole or a single saddle connection joining the marked point to a pole.
In either case, f2(ColC2(C2)), and hence Col(f2)(ColC1,C2(C2)) consists of exactly
one saddle connection (see Figure 8.4). It follows that g(ColC1,C2(C2)) consists of at
most two saddle connections.

Figure 8.4: On the left is the picture of the quadratic differential f2(ColC2(X,ω))
and on the right is its holonomy double cover

The fact that g(ColC1,C2(C2)) consists of at most two saddle connections con-
tradicts the fact that ColC1(C2) and hence ColC1,C2(C2) is the full preimage of its
image under f1 (resp. Col(f1)). Notice that the preimage of any saddle connection
under g1 must contain at least three saddle connections, whereas g(ColC1,C2(C2))
consists of at most two saddle connections; see Figure 8.5.
Case 2: MC2 is a full locus of covers of Q(2,−12).

In Q(2,−12), every subequivalence class of generic cylinders is either a single
simple cylinder or a single complex envelope. Suppose first that f2(ColC2(C1)) is a
complex envelope, for example the larger horizontal cylinder in Figure 8.6 (left).

Because it is contained in the complement of f2(ColC2(C1)), we see that f2(ColC2(C2))
contains one saddle collection. We now arrive at a contradiction as in the previous
case. Indeed, it follows that g(ColC1,C2(C2)) consists of at most two saddle con-
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Figure 8.5: The preimage of a saddle connection under g1 has three saddle connec-
tions if the (Y, η) ∈ H(03) (left) or four if (Y, η) ∈ H(04) (right).

nections, contradicting the fact that ColC1(C2) and hence ColC1,C2(C2) is the full
preimage of its image under f1.

Figure 8.6: On the left is the picture of the quadratic differential f2(ColC2(X,ω))
and on the right its holonomy double cover. On the left surface, degenerating the
longer horizontal cylinder gives a surface in Q(−14).

Suppose therefore that f2(ColC2(C1)) is a single simple cylinder, for example the
smaller horizontal cylinder in Figure 8.6. Without loss of generality we suppose that
it is horizontal.

Because ColC1,C2(C2) is the preimage of its image under Col(f1), it follows that
g(ColC1,C2(C2)) is a collection of three or four saddle connections, as in Figure 8.5.
Without loss of generality we suppose that these saddle connections are vertical
and that at least two of them have unit length. Moreover, since ColC1(C2) is a
subequivalence class consisting of cylinders of the same height (by Assumption CP),
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assume also that the cylinders in C2 have height one.

Figure 8.7: g(ColC1,C2(X,ω)). The middle point may or may not be marked.

At this point we understand that ColC1,C2(X,ω) is a cover of the surface in Figure
8.7 (via the map g), and we understand the effect of gluing in either the cylinders
in C1 or C2 separately; see Figures 8.8 and 8.9. Combining this understanding, we
get that (X,ω) almost looks like a cover of the surface depicted in Figure 8.10 (left),
except that the missing horizontal edges may be glued in such a way that (X,ω)
doesn’t cover any surface.

Sublemma 8.26. The surface (X,ω) is a cover of the surface in the Prym locus in

H(4) illustrated in Figure 8.10 (right) if and only if after applying u :=

(
1 0
1 1

)
to

C2 there are no horizontal cylinders in the complement of C1 that border C1 on both
their top and bottom boundary.

Proof. Let S be the union of the horizontal saddle connections contained in C2. After
deleting S, (X,ω) is a cover of the surface (W,w) depicted in Figure 8.10 (left). (We
emphasize that (W,w) is not a closed surface, since the horizontal segments on the
top and bottom of the squares labeled 2 have been deleted.) This allows us to label
the components C2 − S as “top” or “bottom” according to their image on (W,w).
The desired cover exists if and only if the top components are glued to other top
components and similarly for bottom components.

If this does not occur, then after applying u to C2, there will be a horizontal
cylinder bordering C1 on its top and bottom boundary.

Suppose in order to derive a contradiction that (X,ω) is not a cover of a surface
in a Prym locus in H(4). Let D denote the horizontal cylinders in the complement
of C1. After perhaps replacing (X,ω) by a surface where u has been applied to
cylinders in C2, we may assume that there is a cylinder in D that borders C1 along
its top and bottom boundary.
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Figure 8.8: If w and its preimage are deleted, the map f1 then factors through the
right surface (which is not a closed surface); in this sense we can say ColC1(X,ω)
“almost” looks like a cover of the right surface.

We note that since C2 has been sheared, ColC2(X,ω) is now a different surface
than the one previously given the same name and which belonged to a cover of a
stratum of quadratic differentials. Moreover, the orbit closure MC2 of ColC2(X,ω)
may also have changed; however, it is still a rank one rel one invariant subvariety.
We begin with the following sublemma.

Sublemma 8.27. All the cylinders in D have unit height.

Remark 8.28. If all the preimage of all marked points under f2 were marked this
would be immediate, but, a priori, shearing C2 may have created horizontal cylinders
of height two. Compare to Figure 8.5.

Proof. Notice that whileMC2 has changed by shearing C2,MC1 has not. Therefore,
ColC1(X,ω) still admits a map to a surface in H(0, 0) that satisfies Assumption CP.
This proves the claim.
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Figure 8.9: The map f2 factors through the holonomy double cover of its codomain.

Let Γ denote the directed graph formed as follows. The vertices of Γ are cylinders
in D. There is a directed edge from cylinder D1 to a cylinder D2 if the top boundary
of ColC2(D1) includes a saddle connection on the bottom boundary of ColC2(D2).

Sublemma 8.29. There are no directed loops in Γ.

Proof. Consider the rel deformation (for instance the linear combination of the stan-
dard shears in ColC2(C1) and ColC2(D)) in MC2 of ColC2(X,ω) that increases the
heights of cylinders in ColC2(C1) and decreases the height of those in ColC2(D).

Given a directed loop of Γ, we can construct an absolute cycle γ on ColC2(X,ω) as
follows. Start with a cylinder corresponding to a vertex on the directed loop. Travel
along the core curve (in either direction), and then vertically up into the cylinder
that appears next in the directed loop. Continue in this way until returning to the
starting cylinder, and then travel along the core curve to close up the path to a loop.
See Figure 8.11 for an illustration in the simplest possible case.

The period of the absolute homology class given by γ changes under the above
rel deformation, giving a contradiction.

Therefore, there are cylinders in D that are terminal in Γ, i.e. that have no
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Figure 8.10: Left: The cylinders labelled 1 correspond to C1, and the rectangles
labelled 2 correspond to C2. Right: A surface in the Prym locus in H(4).

Figure 8.11: The proof of Sublemma 8.29, illustrated in a case where the map g has
degree 1. In this case Γ has only one vertex.

outgoing directed edges. We will call these cylinders terminal cylinders.
Note that a terminal cylinder only has its top boundary bordering C1. Indeed, if a

saddle connection in its bottom boundary bordered C1, going vertically up from this
saddle connection would show that the cylinder isn’t terminal (this uses Sublemma
8.27).

The following claim will immediately yield a contradiction. Recall that boundary
components of cylinders are defined in Definition 3.10.

Sublemma 8.30. All cylinders in D have exactly one boundary component that
borders a cylinder in C1.

Proof. We can see this by “overcollapsing C1 to attack cylinders in D” as follows.
Note first thatM has rank at least 2 (by Lemma 3.15) and that dimM = 4 (by

definition of generic diamond, Definition 3.26 (2)), so we see thatM has rank 2 and
rel 0.
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Shear C1 so that it does not contain a vertical saddle connection, then vertically
collapse it to make the height of the cylinders in C1 zero. Since no zeros have collided
at this point, we may continue this vertical collapse deformation, which moves the
singularities on the boundary of C1 into the interiors of cylinders in D. See Figure
8.12.

Figure 8.12: The proof of Sublemma 8.30.

Each terminal cylinder in D borders C1 only along one boundary component.
Suppose in order to find a contradiction that there is a cylinder in D that borders
C1 along both its top and bottom boundary components. By Sublemma 8.27, all
cylinders in D have identical heights. So, along the the previously described over-
collapse deformation, the ratio of moduli of two cylinders under consideration is not
constant, which contradicts Lemma 3.13.

This contradicts our assumption that there is a cylinder in D that borders C1

along its top and bottom boundary.

8.5 A special case

We record a slight strengthening of Theorem 1.1 in a special case where many of the
difficulties of the proof do not occur.

Lemma 8.31. Suppose that ((X,ω),M,C1,C2) is a generic diamond and thatMC1

andMC2 are full loci of covers of strata of Abelian differentials that satisfy Assump-
tion CP. Then M is a full locus of covers of a stratum of Abelian differentials. If
f (resp fi) denotes the cover on (X,ω) (resp. ColCi

(X,ω)), then Ci = f−1(f(Ci))
and ColCi

(f) = fi.

Proof. Let fi : ColCi
(X,ω)→(Yi, ηi) be the covers that certify that MCi

is a full
locus of covers satisfying Assumption CP. As noted in Section 8.2, the surfaces
Colfi(ColCi

(Cj))(fi(ColCi
(X,ω)) are connected.
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IfMC1,C2 has rank at least two, then, working on each component of ColC1,C2(X,ω),
we see by Theorem 3.5 and Lemma 4.3 that there is a unique translation cover from
ColC1,C2(X,ω) to a generic surface in a stratum of Abelian differentials. This implies
that Col(f1) = Col(f2).

IfMC1,C2 has rank one, then the fibers of Col(f1) and Col(f2) are the same when
restricted to each component of ColC1,C2(X,ω) (by Lemma 8.22). Therefore, by a
small subset of the proof of Lemma 8.10 (and using the fact that the codomains of f1

and f2 have trivial holonomy, which is not the case in the first exception to Theorem
8.2) we have that Col(f1) = Col(f2).

As in Lemma 8.5, there is a translation cover f : (X,ω)→(Y, η) and the re-
duced diamond ((Y, η),M′, f(C1), f(C2)) is a generic diamond where both M′

f(Ci)

are strata of Abelian differentials and hence both f(Ci) are simple cylinders. This
implies thatM′ is a stratum of Abelian differentials where the degrees of the covers
with domain (X,ω) and ColCi

(X,ω) are all the same. Since f is constructed using
the Diamond Lemma (Lemma 2.3), it is immediate that ColCi

(f) = fi.

It seems likely that in this case f satisfies Assumption CP, but we have not
checked this.

8.6 Open problems

As previously indicated, we think the following problem is especially interesting:

Problem 8.32. Determine if the conclusion of Theorem 8.2 holds even in the two
exceptional cases.

It would be very interesting to prove a version of Theorem 1.1 without Assumption
CP. One of the strongest versions one could hope for would be the following, which
replaces Assumption CP with one of the assumptions in Diamond Lemma.

Conjecture 8.33 (The Strong Diamond Conjecture). Suppose ((X,ω),M,C1,C2)
forms a generic diamond where MC1 and MC2 are full loci of covers, with covering
maps fi (as in Section 2) such that ColCi

(Ci+1) = f−1
i (fi(ColCi

(Ci+1))). Then M
is a full locus of covers.

We state this as a conjecture to be provocative, and because Theorems 1.1 and
1.2, as well as the general scarcity of known orbit closures, provide some evidence for
it. But it is plausible that the conjecture might be false, and that efforts to prove it
might lead to the discovery of new orbit closures.
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As in the proof of Lemma 8.5, the results in this paper imply that the conjecture
holds if f1 and f2 agree at the base of the diamond. But this does not always hold
even in the more restrictive situation of Theorem 1.2.

A good first step towards Conjecture 8.33 would be the following:

Problem 8.34. Determine if Conjecture 8.33 is true when both f1 and f2 have
degree 2.

In comparison to Theorem 1.2, the main difference would be that, in the new
setting, fibers of f1 or f2 could consists of one marked point and one unmarked
point.

In a different direction, it would be interesting to analyze diamonds where the
surfaces in MC1 and MC2 cover disconnected surfaces. In this setting one might
a priori arrive in a situation where the projection of MCi

to any component is a
full locus of covers (and hence is “trivial”) but MCi

itself is not. This possibility is
closely related to the following definition and conjecture, which indicate that in fact
we do not believe this is possible.

Fix n > 1. For each i ∈ {1, . . . , n}, let Si be a component of a stratum of
Abelian or quadratic differentials. For simplicity we will assume there are no marked
points, although one desires a statement with marked points allowed as well. Define
a quasi-diagonal in

∏
Si to be a prime invariant subvariety

M⊂
∏
Si

whose projection to each factor is dominant. Here prime means that M is not a
product; see [CW19].

Say that a quasi-diagonal is trivial if one of the following holds.

1. For all i, j, we have Si = Sj. At each point of M all n components are equal
up to rotation by π and rescaling.

2. For all i, j, either Si = Sj, or one of {Si,Sj} is a hyperelliptic component,
and the other is the associated genus zero stratum. At each point of M, all
n components are equal up to rotation by π, rescaling, and quotienting by the
hyperelliptic involution.

Conjecture 8.35 (The Quasi-diagonal Conjecture). All quasi-diagonals of rank at
least two are trivial.
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If this conjecture could be proved as stated, a version with marked points would
follow immediately from the results of [AWc]. The connection with diamonds is
that MC1 or MC2 might consist of covers of disconnected surfaces, where the set
of disconnected surfaces being covered is a quasi-diagonal. Conjecture 8.35 is also
related to joinings of Masur-Veech measures.

9 Hyperelliptic components

In this section we will summarize facts about hyperelliptic components of strata. To
start, let us restate Lemma 4.3 for convenience.

Lemma 9.1. The generic element of a component Q of a stratum of Abelian or
quadratic differentials admits a non-bijective half-translation cover to another trans-
lation or half-translation surface if and only if F(Q) is hyperelliptic, in which case
the hyperelliptic involution yields the only such map when Q has rank at least two.

9.1 Hyperelliptic components of quadratic differentials

Fix a, b ≥ −1, and consider a surface (S, q) ∈ Q(a, b,−1a+b+4) with a zero of order a
labelled and a zero of order b labelled. (This labelling is not required if a and b are
distinct and not −1. We allow a = 0 or b = 0, which correspond to marked points.)

The fundamental group of S minus the set of singular points and marked points is
generated by loops around the punctures. Let φhyp be the map from the fundamental
group to Z/2 that maps the loops around the a+ b+ 4 unlabelled poles to 1, maps
the loop around a to a+ 1 mod 2, and maps the loop around b to b+ 1 mod 2. Let
φhol be the the map that sends the loop around each singularity to the order of the
zero mod 2; this is the holonomy representation of (S, q).

Let (X,ω) be the regular Z/2× Z/2 cover of (S, q) corresponding to ker(φhyp) ∩
ker(φhol); it is easy to see that this cover has trivial holonomy. Let J denote the invo-
lution of (X,ω) whose quotient is the cover of (S, q) corresponding to ker(φhyp), and
let T denote the involution whose quotient corresponds to ker(φhol). By construction,
J and T commute. We immediately obtain the following, where we define

a(1) =

{
{a, a} a odd

{2a+ 2} a even
, a(2) =

{
{a+ 1} a odd

{a
2
, a

2
} a even

for any integer a ≥ −1.

Lemma 9.2. As indicated in Figure 9.1,

105



• (X,ω) ∈ H(a+ 1, a+ 1, b+ 1, b+ 1),

• (X,ω)/J ∈ Q(a(1), b(1)),

• (X,ω)/JT ∈ Q(2a+ 2, 2b+ 2,−12a+2b+8),

• (X,ω)/T ∈ H(a(2), b(2)).

H(a+ 1, a+ 1, b+ 1, b+ 1)

Qhyp(a(1), b(1)) Q(2a+ 2, 2b+ 2,−12a+2b+8) H(a(2), b(2))

Q(a, b,−1a+b+4)

modTmod J
mod JT

Figure 9.1: The set a(i) gives the orders of the preimages of the zero of order a, and
similarly for b(i). Warning: when a = −1 (resp. b = −1), then marking the points
corresponding to a+ 1 and 2a+ 2 (resp. b+ 1 and 2b+ 2) is sometimes optional.

In particular,

1. (X,ω)/T is the holonomy double cover of (S, q),

2. (X,ω) is the holonomy double cover of (X,ω)/J ,

3. (X,ω)/JT has genus zero, so JT is a hyperelliptic involution.

As indicated in Figure 9.1, (X,ω)/J is contained in a hyperelliptic connected
component, and moreover Lanneau [Lan04, Definition 1] proved that all hyperel-
liptic components of strata of quadratic differentials are obtained in this way. More
precisely, Lanneau proved that any surface in a hyperelliptic component of a stratum
of quadratic differentials can be obtained as the cover of a surface in Q(a, b,−1a+b+4)
for some a, b ≥ −1 corresponding to φhyp.

We now make some basic uniqueness observations, which are very intuitive but
nonetheless require verification.

Lemma 9.3. Suppose that Q := Qhyp(a(1), b(1)) 6= Q(−14). Then the maps in
{id, J, T, JT} are the only affine self-maps of derivative ±Id for a generic surface
in a quadratic double of Q. In particular, a generic surface in a quadratic double of
Q has a unique hyperelliptic involution.
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The hyperelliptic involution is JT , which was proven above to be a hyperelliptic
involution.

Remark 9.4. When (X,ω) belongs to quadratic double of Q(−14) and precisely two
preimages of poles are marked on (X,ω) the result continues to hold if the affine
symmetries are required to preserve the collection of marked points. An affine sym-
metry has derivative ±Id and may either fix or exchange the two marked points on
(X,ω). These four possibilities each correspond to an affine symmetry.

Proof. Let (X,ω) be a generic surface in a quadratic double ofQ, letG = {id, J, T, JT},
and let H be the collection of all affine self-maps of derivative ±Id.

As seen in Figure 9.1, (X,ω)/G is a generic surface in a genus zero stratum
Q′ = Q(a, b,−1a+b+4). If G 6= H, then there is a non-bijective half-translation
cover (X,ω)/G→(X,ω)/H. By Lemma 9.1, F(Q′) is hyperelliptic and hence equal
to Q(−14), which is the only hyperelliptic genus zero stratum. This shows that
a, b ∈ {0,−1} and so Q = Q(2,−12) or Q = Q(2, 2).

In both cases, (X,ω) contains a subequivalence class C consisting of a pair of
isometric simple cylinders. By perturbing (using the standard dilation in C) we
may suppose without loss of generality that there are no cylinders on (X,ω) that
are parallel and isometric to those in C. Therefore, every element of H preserves
the cylinders in C. Since every element of H is a holomorphic self-map of X, two
elements of H are equal if their action on C is identical. The only possible actions of
an element of H on C is that it fixes or exchanges the two cylinders and has derivative
±Id. These four possibilities correspond to the four elements of G, showing that
G = H as desired.

We now provide a proof of Lemma 4.5 that we previously deferred. We restate
the lemma here for convenience.

Lemma 9.5. Let (X,ω) be a generic surface in a quadratic double of a component
Q of a stratum of quadratic differentials. If F(Q) 6= Q(−14), then there is a unique
involution J of derivative −Id such that (X,ω)/J is a generic surface in a component
of a stratum of quadratic differentials.

If F(Q) = Q(−14) and (X,ω) has at least one marked point, then there is a
unique marked-point preserving involution J of derivative −Id such that (X,ω)/J is
a generic surface in a component of a stratum of quadratic differentials.

Proof. Suppose in order to derive a contradiction that (X,ω) is a generic surface in
a quadratic double of Q where F(Q) 6= Q(−14) and where there are two involutions,
J1 and J2, of derivative −Id such that (X,ω)/Ji is a generic surface in a component
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of a stratum of quadratic differentials. Suppose that (X,ω)/J1 is a generic surface in
Q. It admits a non-bijective half-translation cover, (X,ω)/J1→(X,ω)/〈J1, J2〉 and
so (by Lemma 9.1) F(Q) is a hyperelliptic component. Since F(Q) 6= Q(−14) there
are exactly two affine self-maps of (X,ω) of derivative −Id (by Lemma 9.3). Using
the notation of Lemma 9.3 we will denote these involutions by J and JT and note
that there are integers a and b both greater than or equal to −1 such that F(X,ω)/J
belongs to Qhyp(a(1), b(1)) and F(X,ω)/JT belongs to Q(2a + 2, 2b + 2,−12a+2b+8).
Since F(X,ω)/JT is a generic genus zero surface that admits a map to a surface in
Q(a, b,−1a+b+4) we have by Lemma 9.1 that a = b = −1 (the only hyperelliptic genus
zero stratum is Q(−14)). This contradicts the assumption that F(Q) 6= Q(−14).

Suppose now that (X,ω) belongs to a quadratic double of Q where F(Q) =
Q(−14). This implies that (X,ω) is a flat torus equipped with an involution J of
derivative −Id that preserves the marked points on (X,ω) and where J-invariance
is the only constraint on these marked points. Suppose that J ′ is also an involution
of derivative −Id that preserves the set of marked points and such that (X,ω)/J ′ is
a generic surface in a component of a stratum of quadratic differentials. We wish to
show that J = J ′.

If (X,ω) contains a slope −1 irreducible pair of marked points then it is possible
to move these marked points while fixing all others. This shows that J ′ would have
to preserve this pair of points and hence J ′ = J . If (X,ω) contains no slope −1
irreducible pair of marked points, then all of its marked points are fixed points of J .
If J 6= J ′ then the fixed points of J ′ are disjoint from the fixed points of J and so
the fixed points of J map to periodic marked points on (X,ω)/J ′ contradicting the
fact that this surface is generic in a stratum of quadratic differentials.

9.2 Simultaneous quadratic and Abelian doubles

Lemma 9.6. An invariant subvariety M is both a quadratic and an Abelian double
if and only if it is a quadratic double of Qhyp(a(1),−12) where a ≥ −1 is an integer;
if a = −1 then either the surfaces in M have no marked points or the preimages of
both poles in a(1) are the only marked points. Otherwise, the surfaces in M have no
marked points.

Remark 9.7. By Figure 9.1, when a > −1, M is an Abelian double of Hhyp(a(2)).
When a = −1, if the surfaces inM have marked points thenM is an Abelian double
of H(0); if not, then M is an Abelian double of H(∅).

Proof. Suppose thatM is an Abelian double of H and a quadratic double of Q. Let
(X,ω) be a generic surface inM with involutions J and T such that (X,ω)/T (resp.
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(X,ω)/J) is a generic surface in H (resp. Q).

Sublemma 9.8. Any marked points on (X,ω) are preimages of poles on (X,ω)/J .
When F(Q) 6= Q(−14) there are no marked points at all. In all cases F(Q) = Q.

Proof. If the marked points on (X,ω) include a slope −1 irreducible pair of points,
then we may move these points while fixing all others. Since the collection of marked
points must be fixed by T (since (X,ω) belongs to an Abelian double), these two
points must be exchanged by T and hence form a slope +1 irreducible pair of marked
points, a contradiction. Since (X,ω) belongs to a quadratic double and does not
contain a slope −1 irreducible pair of points, the only marked points are preimages
of poles.

When F(Q) 6= Q(−14), (X,ω) is not a torus. Abelian doubles that are not loci
of tori cannot contain periodic points as marked points.

Suppose first thatQ 6= Q(−14). The existence of the map (X,ω)/J→(X,ω)/〈J, T 〉
implies (by Lemma 9.1) that Q is hyperelliptic and hence that Q = Qhyp

(
a(1), b(1)

)
for some integers a ≥ b ≥ −1. By Lemma 9.3, the affine symmetries of (X,ω) of
derivative ±Id are exactly those in {id, J, T, JT}.

As illustrated in Figure 9.1, (X,ω)/T , which is a generic surface in H, is hyperel-
liptic and belongs to H

(
a(2), b(2)

)
. Notice that when a or b is zero the points in a(2)

(resp. b(2)) must be marked since they are branch points of the map (X,ω)→(X,ω)/T
(see Figure 9.1).

Sublemma 9.9. The marked points on (X,ω)/T are invariant by the hyperelliptic
involution.

Proof. As illustrated in Figure 9.1, since J and T commute, J induces an involution
on (X,ω)/T that is the hyperelliptic involution. The set of marked points on (X,ω)
are invariant by J since (X,ω) belongs to a quadratic double. Therefore, the set of
marked points on (X,ω)/T are invariant by the hyperelliptic involution.

The only strata of genus g translation surfaces, including those with marked
points, in which the generic surface is hyperelliptic and in which the marked points
are invariant by the hyperelliptic involution areHhyp(2g−2) andHhyp(g−1, g−1). In
the latter case the two singularities of the metric are exchanged by the hyperelliptic
involution. Since the set points in a(2) is invariant by the hyperelliptic involution
(see Figure 9.1) the points in b(2) cannot be marked and so b = −1. This shows that
Q = Q(a(1),−12) with the preimages of poles unmarked.

Suppose now that Q = Q(−14). By Sublemma 9.8, the only marked points on
(X,ω) are preimages of poles and so M, and hence also H, has rank one rel zero.
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The only strata of Abelian differentials that have rank one rel zero are H(∅) and
H(0) implying that (X,ω) has either no marked points or exactly two preimages of
poles on (X,ω)/J marked.

Corollary 9.10. Suppose that M is a quadratic and Abelian double and that M 6=
H(∅). When M is not rank one rel zero, the generic surface in M has exactly four
affine self-maps of derivative ±Id (they are the ones in Lemma 9.3). When M is
rank one rel zero, the same statement holds if the affine self-maps are required to
preserve the set of marked points.

Proof. This is an immediate application of Lemma 9.6 and 9.3 with Remark 9.4
being used in the case that M has rank one rel zero.

9.3 Cylinders in hyperelliptic components of Abelian differ-
entials

Recall the definition of S-path from Definition 4.19. We conclude this section by
showing the following.

Lemma 9.11. Let (X,ω) be a surface in Hhyp(2g− 2) or Hhyp(g− 1, g− 1), exclud-
ing H(0) but allowing H(0, 0). Let S be a collection of one or two disjoint saddle
connections, each of which is fixed by the hyperelliptic involution. Then there is an
S-path γ starting at (X,ω) such that on γ(1) there is a simple cylinder that does not
intersect a saddle connection in S or contain one in its boundary.

Proof. Let H denote the stratum containing (X,ω). We begin with the following
general observation.

Sublemma 9.12. Suppose (X,ω) /∈ H(0) has an involution negating ω, and consider
any triangulation of (X,ω) invariant under the involution. Then any triangle in this
triangulation has at least one edge not fixed by the involution.

Here invariant means that the involution takes each triangle to another triangle.

Proof of Sublemma 9.12: Let T be a triangle in an invariant triangulation, and let
T ′ be its image under the involution. If all three edges are fixed, then T and T ′ share
three edges and (X,ω) ∈ H(0).

We construct an invariant triangulation by iteratively picking saddle connections
to add to the triangulation as follows, keeping in mind that any maximal collection
of pairwise disjoint saddle connections is a triangulation.
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Begin with S. Pick any saddle connection disjoint from those already chosen.
Add it to the collection of saddle connections already chosen, and, if the new saddle
connection isn’t fixed by the involution, add its image under the involution to the
triangulation.

Now, having constructed an invariant triangulation containing S, we appeal to
Sublemma 9.12 to find a saddle connection s disjoint from S, such that s is not
fixed by the involution. Let s′ be the image of s under the involution. By Lemma
4.15, cutting s ∪ s′ disconnects the surface into two components. One of the two
components, call it Σ, contains at most one saddle connection in S.

Assume that we picked s and Σ as above to minimize the number of triangles in Σ.
We will show that Σ must be a simple cylinder. If Σ consists of two triangles, these
two triangles form the desired cylinder. Otherwise, we can find a triangle in Σ not on
the boundary of Σ. This triangle has an edge t not fixed by the involution. Cutting
t and its image t′ again disconnects the surface. The component not containing s∪s′
has fewer triangles than Σ and still contains at most one of saddle connection in S,
contradicting our choice of s.

If Σ contains neither saddle connection in S, then we are done (without having
had to deform our original surface), by choosing Σ to be the simple cylinder disjoint
from the saddle connections in S. Therefore, we may suppose that S contains two
saddle connections, one of which is contained in Σ. Let Σ′ denote the translation
surface with boundary that is the complement of Σ.

Let H ∈ {Hhyp(2g− 2),Hhyp(g− 1, g− 1)} be the stratum containing (X,ω). We
proceed by induction on the dimension of H.
Base Case: H = H(0, 0)

As we have already seen, for H(0, 0) we have an invariant triangulation that
contains two saddle connections s and s′ that are exchanged by the hyperelliptic
involution. Cutting along them produces two simple cylinders Σ and Σ′, each of
which contains exactly one saddle connection from S.

The desired S-path can be obtained by individually twisting Σ and Σ′ while fixing
the unmarked surface F(X,ω) until both saddle connections in S are nearly parallel
to a cylinder direction on F(X,ω), so there is simple cylinder that is disjoint from
(and nearly parallel to) both elements of S.
Inductive Step

Let Σ′glue denote Σ′ with its boundary saddle connections glued together to form
a translation surface without boundary. Let H′ be the component of the stratum of
Abelian differentials containing Σ′glue. Another way of forming Σ′glue is by collapsing Σ
on (X,ω). Since Σ is a simple cylinder this shows thatH′ is a hyperelliptic component
that has dimension exactly one less than H. Since H has complex dimension at least
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four, it follows that H′ has complex dimension at least three and therefore is not
H(0). Hence we can apply the induction hypothesis.

Let S ′ denote the union of the saddle connection from S contained in Σ′ and the
saddle connection coming from the gluing of the boundary of Σ′. This is a set of
at most two saddle connections fixed by the hyperelliptic involution. By hypothesis
there is an S ′-path γ starting at Σ′glue such that γ(1) contains a simple cylinder
disjoint from S ′.

Since our original surface (X,ω) can be formed by gluing together Σglue and Σ′glue,
it follows by Lemma 4.20, that there is a S ∪ {s, s′} path γ̃ starting at (X,ω) and
such that γ̃(1) contains a simple cylinder in Σ′ that does not intersect an element of
S.

10 Diamonds with Abelian and quadratic doubles

In this section we will classify the invariant subvarieties where one side is an Abelian
double and the other is a quadratic double. In all figures in the sequel, all unlabelled
sides of polygons will be tacitly identified with their opposites. We use the notation
F from Definition 3.9 for forgetting marked points.

Theorem 10.1. Let ((X,ω),M,C1,C2) be a generic diamond of Abelian differen-
tials. Suppose that MC1 is an Abelian double and that MC2 is a quadratic double.
Then M is one of the following:

1. An Abelian double. See Figure 10.1i.

2. A quadratic double. See Figure 10.1ii.

(i) Abelian double case (ii) Quadratic double case

Figure 10.1: An illustration of possibilities (1) and (2) of Theorem 10.1.

3. A full locus of double covers of a codimension one locus N in a component of
a stratum of Abelian differentials H0. One of the following occurs:
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(a) F(N ) is a codimension one hyperelliptic locus in F(H0); in this case
ColC1,C2(X,ω) is disconnected and surfaces in N either have no marked
points or one free marked point. See Figure 10.2.

Figure 10.2: An illustration of possibility (3a) of Theorem 10.1. Collapsing the pair of
simple cylinders labelled W gives an example of possibility (3b) with ColC1,C2(X,ω)
disconnected. If the examples in the previous two sentences are additionally modified
by collapsing the horizontal cylinders below those labelled C2, new examples of (3a)
and (3b) are formed where the surfaces in N have no free marked points.

(b) F(N ) = F(H0), F(H0) is a hyperelliptic component of rank at least two,
and surfaces in N have at most three marked points at most one of which
is free. See Figures 10.2, 10.3, 10.13, 10.14, 10.15, and see Theorem
10.60 for additional information in this case.

Remark 10.2. Recall that, by our definition of translation cover (Definition 3.2),
every unbranched marked point must have a preimage that is marked.

With Theorem 10.1 in hand, the proof of Theorem 1.2 is complete.

Proof of Theorem 1.2. If both MC1 and MC2 are Abelian doubles, then Lemma
8.31 gives that M is a full locus of double covers. We claim that moreover M is an
Abelian double; to show this we must show that for each marked point p ∈ (X,ω),
the point T (p) is also marked, where T is the involution whose quotient is the double
cover. Indeed, p can be on the boundary of at most one of the Ci, so without loss
of generality assume it is not in the boundary of C1. Let T1 be the involution on
ColC1(X,ω), and recall from the final claim of Lemma 8.31 that ColC1(T ) = T1.
Because MC1 is an Abelian double we have that T1(ColC1(p)) is marked. Since

T1(ColC1(p)) = ColC1(T (p)),
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it follows that T (p) is marked, because p is not on the boundary of C1 and (X,ω) is
obtained from ColC1(X,ω) by gluing in C1.

If bothMC1 andMC2 are quadratic doubles, then Theorem 1.2 is an abbreviated
form of Theorem 7.1. In the remaining case, it is an abbreviated form of Theorem
10.1. In both cases one should keep in mind that a degree two cover of a hyperelliptic
surfaces can be viewed as a degree four cover of a genus zero surface.

Remark 10.3. In Figure 10.2, if we apply half a Dehn-twist to the cylinder C2, then
we obtain a diamond with connected base surface. However, we lose the property
thatMC2 is a quadratic double. This can be seen since, by Masur-Zorich (Theorem
4.8) if MC2 is a quadratic double, then cutting out a generically parallel pair of
disjoint complex cylinders creates four connected components. However, if C2 is
given half a Dehn-twisted before collapsing, then cutting out ColC2(C1) produces
only three connected components.

Remark 10.4. There is an interesting special case of case (3a), whereM is a locus that
is simultaneously a holonomy double cover of codimension one hyperelliptic locus in
a stratum of quadratic differentials and a translation double cover of a codimension
one hyperelliptic locus in a stratum of Abelian differentials. In Figure 10.2, collapsing
the horizontal cylinder below the one labelled C2 yields an example. When the rank
of M is at least two, it is not hard to see that this case occurs precisely when the
quotient by the translation involution does not have a free marked point. The proof
of this claim is identical to that of Theorem 10.60 (3b-1).

We will now summarize the notation that we will adopt in the remainder of the
section, and recall a few basic facts.

1. The surface ColC1(X,ω) admits a translation involution T1 such that ColC1(X,ω)/T1

is a generic surface in a component H1 of a stratum of connected Abelian dif-
ferentials.

2. The surface ColC2(X,ω) admits a half-translation involution J2 such that
ColC2(X,ω)/J2 is a generic surface in a component Q2 of a stratum of con-
nected quadratic differentials.

3. On ColC1,C2(X,ω), define J := ColColC2
(C1)(J2) and T := ColColC1

(C2)(T1).

4. MC1,C2 is a full locus of (possibly disconnected) covers of the stratum

H := (H1)ColC1
(C2)/T1
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and a full locus of (possibly disconnected) covers of the stratum

Q := (Q2)ColC2
(C1)/J2 .

If ColC1,C2(X,ω) is connected then MC1,C2 is simultaneously an Abelian and
quadratic double.

5. We will presently show that H is hyperelliptic; let τ denote the hyperelliptic
involution on ColC1,C2(X,ω)/T .

Lemma 10.5. The surface ColC1,C2(X,ω)/T is connected and, letting g denote its
genus, H = Hhyp(2g − 2) or H = Hhyp(g − 1, g − 1).

When g > 1, for the generic surface in MC1,C2, the only affine symmetries of
derivative ±Id are the four in {id, J, T, JT}; the same statement holds when g = 1
for marked point preserving symmetries. In particular, J and T commute.

The involution J descends to the hyperelliptic involution on (X,ω)/T .

Proof. Since ColC1(C2) is a subequivalence class of generic cylinders, ColC1(C2)/T1

is a subequivalence class of generic cylinders on a surface in H1 and hence a single
simple cylinder (see Remark 3.17). Collapsing simple cylinders cannot disconnect a
surface, so the surfaces in H are connected. Thus, ColC1,C2(X,ω)/T is connected.

We note that once we know that J and T commute and that H is a hyperelliptic
component, we will have that J induces a marked point preserving involution of
derivative −Id on ColC1,C2(X,ω)/T , which must be the hyperelliptic involution (for
instance, by the uniqueness of the holonomy involution, as described in Lemma 4.5).

If ColC1,C2(X,ω) is connected, then MC1,C2 is an Abelian double of H and a
quadratic double of Q. By Lemma 9.6, H = Hhyp(a(2)) and Q = Qhyp(a(1),−12)
where a ≥ −1 is an integer. The claim about affine symmetries holds by Corollary
9.10.

If ColC1,C2(X,ω) is disconnected, then, by Lemma 4.16, MC1,C2 is the antidiag-
onal embedding of H into H ×H. When g > 1, there is an involution on a generic
surface in MC1,C2 that fixes each component if and only if F(H) is hyperelliptic;
when g > 1 this involution is unique (by Lemma 4.3), which implies the claim about
affine symmetries when g > 1. The corresponding claim when g = 1 follows directly
from Lemma 4.16.

It remains to show that, when ColC1,C2(X,ω) is disconnected, H = Hhyp(2g− 2)
or Hhyp(g − 1, g − 1). This amounts to showing that there are no marked points on
ColC1,C2(X,ω)/T when g > 1 and at most two when g = 1.
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Since ColC1,C2(X,ω) belongs to the boundary of an Abelian double, the only
constraint on the marked points is that they are partitioned into pairs of points
exchanged by T . This implies that the marked points on ColC1,C2(X,ω)/T are free.
Since ColC1,C2(X,ω) belongs to the boundary of a quadratic double, the set of marked
points must be preserved by J . Hence, the set of marked points on ColC1,C2(X,ω)/T
is invariant under τ . This implies that either g > 1 and there are no marked points
or g = 1 and H = H(0) or H = H(0, 0).

Lemma 10.6. Two saddle connections on ColC1,C2(X,ω) are generically parallel if
and only if there is an element of {id, J, T, JT} taking one to the other.

Proof. Two saddle connections on a surface in a hyperelliptic stratum are generically
parallel if and only if they are exchanged by the hyperelliptic involution (Lemma
4.14). Since ColC1,C2(X,ω)/T is such a surface, with J descending to the hyperel-
liptic involution on it (by Lemma 10.5), the result follows.

Definition 10.7. We will say that M has extra symmetry if at least one of the
following occurs:

1. There is a translation involution T2 on F(ColC2(X,ω)) such that ColColC2
(C1)(T2) =

T and T2 (ColC2(C1)) = ColC2(C1).

2. There is a half-translation involution J1 on F(ColC1(X,ω)) such that ColColC1
(C2)(J1) =

J and J2 (ColC1(C2)) = ColC1(C2).

We will call T2 (resp. J1) an extension of T (resp. J). We do not require the
extensions to preserve the collection of marked points; this is in contrast to the
definition of Abelian and quadratic doubles, which requires T1 and J2 to preserve the
set of marked points.

While the previous figures in this section all contain examples whereM has extra
symmetry, Figure 10.3 shows a case where M has no extra symmetry.

Remark 10.8. The proof of Theorem 10.1 will show thatM must have extra symme-
try except sometimes in Case (3b). The examples with extra symmetry are analyzed
in Section 10.4, and the remaining instances of Case (3b) involve marked points (see
Lemma 10.38 and Figure 10.3).

In the sequel, we will make the following assumption (there is no loss of generality
by Remark 3.30).

Assumption 10.9. (X,ω) has dense GL+(2,R)-orbit in M.
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Figure 10.3: Another illustration of Theorem 10.1 (3b). Yet another example can
be obtained by gluing the segments labelled A and B together in the other possible
way. Notice that there is no extra symmetry in this diamond.

10.1 Basic structural results

Lemma 10.10. C2 consists of either a pair of simple cylinders or a single complex
cylinder.

Moreover, if ColC1,C2(C2) is J-invariant, then there is an involution J1 on ColC1(X,ω)
that is an extension of J and that preserves the set of marked points; in particular,
M has extra symmetry.

Proof. By Definition 3.26 (1), ColC1(C2) is a subequivalence class of generic cylinders
(recall that subequivalence classes are defined in Definition 3.14). By Lemma 3.18,
sinceMC1 is an Abelian double, ColC1(C2) is either a single complex cylinder or two
isometric simple cylinders with disjoint boundaries on ColC1(X,ω). This establishes
the first claim.

If ColC1,C2(C2) is J-invariant, then since ColC1(X,ω) is formed by gluing in
ColC1(C2) - a pair of simple cylinders or a single complex cylinder - to the pair of sad-
dle connections comprising ColC1,C2(C2), the J-involution extends to ColC1(X,ω).

Lemma 10.11. ColC1,C2(C2)/T and ColC1,C2(C1)/T are disjoint.
Moreover, ColC1,C2(C1)/T is τ -invariant and, in the case where M has no extra

symmetry, ColC1,C2(C2)/T is not.

Proof. Since ColC1,C2(C2) is T -invariant, it is the full preimage of ColC1,C2(C2)/T .
It follows that ColC1,C2(C2)/T and ColC1,C2(C1)/T are disjoint, since ColC1,C2(C2)
and ColC1,C2(C1) are disjoint.

Since ColC2(C1) is fixed by J1, ColC1,C2(C1) is fixed by J . Since J and T commute
on ColC1,C2(X,ω), the J-involution descends to τ on ColC1,C2(X,ω)/T . Therefore,
ColC1,C2(C1)/T is fixed by τ .
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Similarly, if ColC1,C2(C2)/T were fixed by τ then ColC1,C2(C2) would be J-
invariant, implying that M has extra symmetry by Lemma 10.10.

Corollary 10.12. Each component of the following surface is fixed by τ ,

ColC1,C2(X,ω)/T − ((ColC1,C2(C1 ∪C2)) /T ∪ τ (ColC1,C2(C2)/T )) .

Moreover, when M has no extra symmetry, there are |ColC1,C2(C1)/T | + 1 com-
ponents where |ColC1,C2(C1)/T | ∈ {1, 2} is the number of saddle connections in
ColC1,C2(C1)/T .

Proof. By Lemma 10.5, ColC1,C2(X,ω)/T belongs toHhyp(2g−2) orHhyp(g−1, g−1)
for some g.

By Lemma 4.14, the generically parallel saddle connections in a hyperelliptic
component of a stratum of Abelian differentials are precisely the ones exchanged by
the hyperelliptic involution. Therefore, each ColC1,C2(Ci)/T is either a single saddle
connection or a pair of saddle connections exchanged by the hyperelliptic involution.

We now make some basic observations.

1. By Lemma 4.15, if s is any saddle connection on ColC1,C2(X,ω)/T that is not
fixed by the hyperelliptic involution τ then cutting along s and τ(s) disconnects
the surface into two subsurfaces with boundary, each fixed by the hyperelliptic
involution.

2. Similarly, cutting two disjoint pairs of exchanged saddle connections discon-
nects the surface into three components, each fixed by the hyperelliptic invo-
lution.

3. By Lemma 4.14, cutting two saddle connections that are not exchanged does
not disconnect the surface.

4. Similarly, after cutting one exchanged pair of saddle connections, additionally
cutting another saddle connection does not further disconnect the surface.

This implies the first claim.
Assume thatM has no extra symmetry. By Lemmas 10.10 and 10.11, ColC1,C2(C2)/T

is a single saddle connection not fixed by the hyperelliptic involution, so cutting it
and its image under τ disconnects the surface into two components.

The set ColC1,C2(C1)/T is fixed by τ , so the final claim follows from the basic
observations above.
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Definition 10.13. When |ColC1,C2(C1)/T | = 2 and ColC1,C2(C2)/T is not τ -
invariant, the surface in the statement of Corollary 10.12 has three components.
We will label them as follows:

1. Σ1 is the subsurface whose boundary is ColC1,C2(C1)/T .

2. Σ2 is the subsurface whose boundary is ColC1,C2(C2)/T ∪ τ (ColC1,C2(C2)/T ).

3. Σ3 is the remaining subsurface.

The preimage of Σi in ColC1,C2(X,ω) will be denoted Σ̃i for i ∈ {1, 2, 3}. In the

sequel, we will use Σ̃top
i to refer to the corresponding subsurface on (X,ω).

An equivalent definition of Σ2, which we will use even in the case where |ColC1,C2(C1)/T | =
1 as long as we continue to have that ColC1,C2(C2)/T is not τ -invariant, is that it is
the component of

ColC1,C2(X,ω)/T − (ColC1,C2(C2)/T ∪ τ (ColC1,C2(C2)/T ))

that does not contain ColC1,C2(C1)/T .

Lemma 10.14. If ColC1,C2(C2)/T is not τ -invariant, then M has rank at least two
and ColC1,C2(X,ω)/T has marked points if and only if it belongs to H(0, 0).

If M has no extra symmetry, then the previous two conclusions hold and addi-
tionally ColC1,C2(X,ω) has no marked points.

Proof. By Lemma 10.5, ColC1,C2(X,ω)/T belongs toHhyp(2g−2) orHhyp(g−1, g−1)
for some g. All claims are immediate when g > 1. So suppose that g = 1.

When M has no extra symmetry, ColC1,C2(C2)/T is not τ -invariant by Lemma
10.11. So suppose that ColC1,C2(C2)/T is not τ -invariant.

Suppose first that ColC1,C2(X,ω)/T belongs to H(0). Then every saddle con-
nection on ColC1,C2(X,ω)/T is fixed by τ . This contradicts our assumption on
ColC1,C2(C2)/T . Therefore, ColC1,C2(X,ω)/T belongs to H(0, 0).

Since ColC1,C2(C2)/T is not τ -invariant, it consists of a saddle connection s that
joins a marked point to itself. Since ColC1,C2(C1)/T is τ -invariant and disjoint from
ColC1,C2(C2)/T (by Lemma 10.11), we see that ColC1,C2(C1)/T consists of saddle
connections disjoint from s and τ(s). Every such saddle connection joins the two
marked points and is fixed by τ . Since the saddle connections in ColC1,C2(C1)/T are
all generically parallel, it follows that it is a single saddle connection fixed by τ , and
which is not generically parallel to s.
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In particular, C1 and C2 are subequivalence classes of disjoint non-parallel cylin-
ders, which implies that M has rank at least two by Lemma 3.15. We have es-
tablished the first sentence of the claim, so we suppose now that M has no extra
symmetry. We wish to show that ColC1,C2(X,ω) contains no marked points.

Because ColC1,C2(X,ω)/T /∈ H(0), if ColC1,C2(X,ω) is connected, then it has no
marked points by Lemma 9.6.

Suppose therefore that ColC1,C2(X,ω) is disconnected. In particular, this means,
by Lemma 10.5, that ColC1,C2(X,ω) consists of two disjoint copies of ColC1,C2(X,ω)/T
that are exchanged by both T and J . This means that ColC1,C2(C1) consists of two
saddle connections exchanged by T on two disjoint copies of ColC1,C2(X,ω)/T (this
follows since ColC1,C2(C1)/T is a single saddle connection and since ColC1,C2(C1)
must contain at least two saddle connections since it is J-invariant and since ColC1,C2(X,ω)
consists of two components that are exchanged by J). By Masur-Zorich (Theorem
4.8; see also Figure 4.1), ColC2(C1)/J2 is a complex envelope, as we now explain.
By Masur-Zorich (Theorem 4.8) since ColC2(C1) is a subequivalence class of generic
cylinders whose collapse disconnects the surface it must be the preimage of a com-
plex envelope or complex cylinder. In the latter case, ColC2(C1) contains four saddle
connections. So we see that ColC2(C1)/J2 must be a complex envelope.

Let P be the preimages of the poles on this complex envelope that are marked
on ColC2(X,ω). Let F ′ (ColC2(X,ω)) denote ColC2(X,ω) with the points in P for-
gotten and let F ′(ColC2(C1)) denote the image of ColC2(C1) on this surface. Since
F ′ (ColC2(X,ω)) is formed by gluing in a complex cylinder - F ′ (ColC2(C1)) - to
two saddle connections exchanged by T , it follows that the T involution extends (in
the sense of Definition 10.7) to a translation involution T2 on ColC2(X,ω) such that
T2(ColC2(C1)) = ColC2(C1) and so ColColC2

(C1)(T2) = T . This is the definition of
having extra symmetry, which contradicts the assumption that M does not have
extra symmetry.

10.2 The Collapsing Lemma

In this section we will prove the main technical lemma for the sequel. Recall that
cylinder adjacency was defined in Definition 3.19.

Lemma 10.15. Let C ⊂ ColC1,C2(X,ω)/T be a simple cylinder that is not adjacent

to the saddle connections in ColC1,C2(C1 ∪ C2)/T . Let C̃ be the preimage of C on

ColC1,C2(X,ω), and let C̃top be the corresponding cylinders on (X,ω). Then, after

perhaps performing a half Dehn-twist in C̃top,(
ColC̃top

(X,ω),MC̃top
,ColC̃top

(C1),ColC̃top
(C2)

)
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is a generic diamond whereMC̃top,C1
(resp. MC̃top,C2

) is an Abelian (resp. quadratic)
double.

Proof. We begin by showing that the indicated 4-tuple is a generic diamond. First,
since C is not adjacent to the saddle connections in ColC1,C2(C1∪C2)/T , the saddle
connections in ColC1,C2(C1 ∪C2)/T remain distinct when C is collapsed, that is no
two merge, and so ColC̃top

(C1) and ColC̃top
(C2) continue to neither intersect nor share

boundary saddle connections. Moreover, ColC̃top
(Ci) remains a subequivalence class,

which verifies Definition 3.26 (1). The following sublemma will verify Definition 3.26
(2); which completes the verification that we have a generic diamond.

Sublemma 10.16.
(
MC̃top

)
Col

C̃top
(Ci)

has dimension exactly one less than MC̃top
.

Proof. Since C is a simple cylinder on ColC1,C2(X,ω)/T , the dimension ofMC1,C2,C̃top

is exactly one less than that ofMC1,C2 . SinceMC1,C2,C̃top
belongs to the boundary of

MC̃top,C1
and MC̃top,C2

, it follows that these two invariant subvarieties have dimen-
sion exactly one less than MC1 and MC2 respectively. This implies that MC̃top,Ci

has dimension exactly one less than MC̃top
.

By Lemma 3.24,MC̃top,C1
(resp. MC̃top,C2

) is an Abelian (resp. quadratic) double
if the surfaces they contain are connected, which is what we will now show.

Suppose first that ColC1,C2(X,ω) is disconnected. Then C̃ is a union of two simple
cylinders, one on each component of ColC1,C2(X,ω). Therefore, ColC1,C2,C̃top

(X,ω)

also has two connected components exchanged by the translation involution ColC̃(T ).
Since gluing in Ci to the saddle connections in ColC1,C2(Ci) causes ColC1,C2(X,ω)
to become connected, the same holds for gluing in Ci to

ColC1,C2,C̃top
(Ci) ⊂ ColC1,C2,C̃top

(X,ω).

Suppose now that ColC1,C2(X,ω) is connected. If ColC1,C2,C̃top
(X,ω) remains

connected, then we are done. Otherwise, C̃ is a complex cylinder and it is easy to
see that performing a half-Dehn twist in C̃top causes ColC1,C2,C̃top

(X,ω) to remain
connected as desired.

Definition 10.17. A slit torus is a translation surfaces with boundary formed by
cutting a line segment between two distinct points in a flat torus. We will say that a
subsurface with boundary of a translation surface is a parallelogram if it is isometric
to a parallelogram in the plane.
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Corollary 10.18. Let Σ be a component of

ColC1,C2(X,ω)/T − ((ColC1,C2(C1 ∪C2)) /T ∪ τ (ColC1,C2(C2)/T )) .

Let S denote the boundary saddle connections of Σ. Suppose that Σ is not a cylinder
or parallelogram. Let Σ̃ and S̃ denote the preimages of Σ and S respectively on
ColC1,C2(X,ω). Let Σ̃top be the subsurface isometric to Σ̃ on (X,ω) and S̃top its
boundary saddle connections.

Then there is an S̃top-path γ : [0, 1]→M such that:

1. The component of γ(t) − S̃top corresponding to the complement of Σ̃top is a

rotated and scaled copy of the complement of Σ̃top on (X,ω).

2. There is a subequivalence class of cylinders C̃top on the component of γ(1)

corresponding to Σ̃top such that ColC1,C2(C̃top)/T is a simple cylinder that is
not adjacent to the saddle connections in ColC1,C2(C1 ∪C2)/T .

By Lemma 10.15, after perhaps performing a half Dehn-twist in C̃top,(
ColC̃top

(X,ω),MC̃top
,ColC̃top

(C1),ColC̃top
(C2)

)
is a generic diamond where MC̃top,C1

and MC̃top,C2
are Abelian (resp. quadratic)

doubles.

Proof. By Corollary 10.12, Σ is a subsurface with boundary that is fixed by the hy-
perelliptic involution. Let Σglue be the translation surface formed by gluing together
boundary saddle connections of Σ exchanged by the hyperelliptic involution. The
resulting surface belongs to a hyperelliptic component of a stratum of Abelian dif-
ferentials by Lemma 9.1. On Σglue let Sglue denote the saddle connections that were
identified on the boundary of Σ to form Σglue. The set Sglue contains at most two
saddle connections each of which is fixed by the hyperelliptic involution.

By Lemma 9.11, if Σglue does not belong to H(0), then we can find an Sglue-path
γ0 such that on γ0(1) there is a simple cylinder C that is not adjacent to Sglue. By
Lemma 4.20, there is an S-path γ1 : [0, 1]→H where γ1(0) = ColC1,C2(X,ω)/T and
C is a simple cylinder, not adjacent to S, in Σ on γ1(1). By Lemma 4.20, on γ1(t)
the complement of Σ is a rotated and scaled copy of the complement of Σ on γ1(0).

Let γ2 : [0, 1]→MC1,C2 be the corresponding S̃-path in MC1,C2 .
Let λi : [0, 1]→C× be the scalar such that the period of a saddle connection in

ColC1,C2(Ci) on γ2(t) is λi(t) times its period on γ2(0). Let γ(t) denote the surface
formed by gluing λi(t) ·Ci into the saddle connections in ColC1,C2(Ci) on γ2(t). By
Lemma 3.25, γ(t) belongs to M for all t.
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Corollary 10.19 (The Collapsing Lemma). Under the hypotheses of Corollary 10.18,
we may iterate the collapsing in Corollary 10.18 to replace the generic diamond
((X,ω),M,C1,C2) with another generic diamond ((X ′, ω′),M′,C′1,C

′
2, ) where the

following hold:

1. M′
C′

1
is an Abelian double.

2. M′
C′

2
is a quadratic double

3. There is a subsurface Σ̃′top of (X ′, ω′) such that (X,ω)− Σ̃top is a rotated and

scaled copy of (X ′, ω′)− Σ̃′top. Under this rotation and scaling, C′i corresponds
to Ci for i ∈ {1, 2}.

4. Letting J ′ = Col(J) and T ′ = Col(T ) we have that Σ′ := ColC′
1,C

′
2
(Σ̃′top)/T

′ is
a cylinder if |S| = 2 and a parallelogram if |S| = 4. Moreover, if |S| = 2 and
Σ is not a cylinder, we can alternatively arrange for Σ′ to be a slit torus.

5. |ColC′
1,C

′
2
(C′1)/T ′| = |ColC1,C2(C1)/T |.

6. |ColC′
1,C

′
2
(C′2)/T ′∪Col(τ)(ColC′

1,C
′
2
(C′2)/T ′)| = |ColC1,C2(C2)/T∪τ(ColC1,C2(C2)/T )|.

Proof. The only statements that are not immediate are the final sentence of (4), (5)
and (6). We will prove these sequentially.

Using the notation introduced in the proof of Corollary 10.18, Σglue belongs to a
hyperelliptic component of a stratum of Abelian differentials. Therefore, ColC(Σglue)
also belongs to a hyperelliptic component. Specifically, if Σglue belongs to H(2g− 2)
(resp. H(g−1, g−1)), then ColC(Σglue) belongs to H(g−2, g−2) (resp. H(2g−2)).
Notice that, when |S| = 2, Σglue belongs to H(0) if and only if Σ is a cylinder. When
this is not the case, we can stop the iterated collapsing when (Σ′)glue belongs to
H(0, 0). When |S| = 2 this is equivalent to saying that Σ′ is a slit torus. This proves
the final sentence of (4).

Both (5) and (6) follow immediately from the fact that, in Corollary 10.18, C is
not adjacent to the saddle connections in ColC1,C2(C1 ∪C2)/T (since C is a simple
cylinder on a surface in a hyperelliptic component, C is fixed by the hyperelliptic
involution and hence is not adjacent to τ (ColC1,C2(C2)/T ) either; note that these
claims would not necessarily hold if C were not fixed by the hyperelliptic involution,
as in Figure 6.5).
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10.3 Weak translation symmetry

We begin with the following simple lemma.

Lemma 10.20. Suppose that C is a subequivalence class of cylinders on a surface
(Y, η) in an invariant subvariety N . Suppose that f is a translation involution on
(Y, η) that remains defined on all surfaces in a neighborhood of (Y, η) in N . Then if
every boundary of every cylinder in C contains a singularity of the flat metric (not
simply a marked point), then C is f -invariant.

Remark 10.21. The hypothesis that f remains defined on all surfaces in a neighbor-
hood of (Y, η) holds whenever (Y, η) has dense orbit in N .

Proof. Since we have not assumed that f preserves the marked points on (Y, η), f
does not necessarily take cylinders to cylinders. However, f does have this property
on F(Y, η). By assumption, after forgetting the marked points in (Y, η), the cylinders
in C remain cylinders (in particular, they are still maximal). Therefore, it suffices to
prove the claim on F(Y, η) where we can assume that f takes cylinders to cylinders.

Since f remains defined in a neighborhood of (Y, η) and since C is a subequiv-
alence class of cylinders, we may apply the standard dilation in C to pass to an
arbitrarily close surface (Y ′, η′) where the cylinders in C have moduli that are dis-
tinct from those of any parallel cylinder. It is now clear that f preserves C as
desired.

Recall that by Assumption 10.9, (X,ω) has a dense orbit in M. We make the
following standing assumption for this subsection:

Assumption 10.22. There is a translation involution T0 on (X,ω) such that (X,ω)/T0

is not a translation cover of degree greater than one of another surface.

T0 is not assumed to respect marked points or to preserve Ci, so Assumption
10.22 does not imply that M has extra symmetry in the sense of Definition 10.7.
Indeed, the main results of this subsection, Lemmas 10.23 and 10.28, will determine
the extent to which T0 preserves Ci and the collection of marked points. The results
in the remainder of this subsection will only be used in Subsections 10.4 and 10.8.

It may be useful to recall that the slope of an irreducible pair of marked points
is defined in Definition 3.6.

Lemma 10.23. C2 is T0-invariant and T0 preserves the set of marked points on its
boundary.

Moreover, there are no free marked points on (X,ω), and the boundary of C2

contains all marked points that are part of an irreducible pair of points of slope +1.
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Proof. We begin by establishing the claim that C2 is T0-invariant. By Lemma 10.20,
the claim can only fail if there is a cylinder in C2 that has a boundary that contains
no singularities of the flat metric - only marked points. For convenience, we assume
C2 is horizontal.

Sublemma 10.24. Suppose that p is a marked point on the top (resp. bottom)
boundary of a cylinder in C2. Then both ColC1(p) and p′ := T1(ColC1(p)) are marked
points.

Each of these marked points is on the top (resp. bottom) of a cylinder in ColC1(C2),
and there are no other singularities or marked points in the top (resp. bottom) of
cylinders in ColC1(C2).

Proof. ColC1(p) remains a marked point since the point p cannot belong to the
boundary of C1, since C1 and C2 are disjoint.

By definition of Abelian double, p′ = T1(ColC1(p)) is also marked. Since ColC1(C2)
is a subequivalence class, it is T1 invariant. Hence, the fact that ColC1(p) is on the
top (resp. bottom) of a cylinder in ColC1(C2) implies the same statement for p′.

The final claim follows because the cylinders in C2 are generic.

Sublemma 10.25. Under the same assumptions as Sublemma 10.24, if there is a
marked point q on the boundary of C2 such that ColC1(q) = p′, then the cylinders in
C2 are T0 invariant and T0(p) = q.

Proof. Let q be a marked point, without loss of generality on the top boundary
of C2, such that ColC1(q) = p′. By Sublemma 10.24, the only marked points or
zeros on the top boundary of cylinders in C2 are the points in {p, q}, which are an
irreducible pair of slope +1. By Lemma 3.7, p and q are mapped to the same point
on (Xmin, ωmin) (see Theorem 3.5 where this is defined). By Assumption 10.22,
(Xmin, ωmin) = (X,ω)/T0 so we see that p = T0(q). Therefore, T0 preserves the
top boundary of cylinders in C2 and, since C2 contains either one cylinder or two
isometric cylinders, preserves C2 as well.

Sublemma 10.26. Suppose that p is a marked point contained on the top bound-
ary of a cylinder in C2, then the top boundaries of cylinders in C2 do not contain
singularities of the flat metric, only a pair of marked points exchanged by T0.

Proof. We will adopt the notation of Sublemma 10.24. We first argue that the claim
is true if ColC1(C1) does not have p′ as an endpoint. Indeed, in this case gluing in
C1 to ColC1(X,ω) does not affect p′, so there is a corresponding marked point q on
(X,ω) with ColC1(q) = p′. The second statement of Sublemma 10.24 gives that p
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and q are the only marked points on the top boundary of C2, and Sublemma 10.25
gives that q = T0(p).

Suppose therefore, in order to derive a contradiction, that ColC1(C1) has p′ as an
endpoint. Since saddle connections in ColC1(C1) are generically parallel and cannot
have ColC1(p) as an endpoint we see that ColC1(C1) consists of a single saddle
connection (since MC1 is an Abelian double, ColC1(p) and p′ can be moved as a
pair while fixing the underlying surface and position of all other marked points). By
Masur-Zorich (Theorem 4.8), ColC2(C1)/J2 is a simple envelope. It follows that C1

consists of either a single simple cylinder (in which case we will let P denote the
empty set) or a pair of adjacent simple cylinders whose common boundary contains
a marked point P . Let F ′(X,ω) denote (X,ω) with the points in P forgotten and
let F ′(C1) denote the image of C1 on F ′(X,ω). The image is a simple cylinder.

We will show that F ′(C1) has singularities of the metric on both of its boundaries.
If not, then one boundary of F ′(C1) contains a marked point, and it is easy to see
that, up to a cylinder deformation, ColC1(X,ω) is simply (X,ω) with some marked
points forgotten. This contradicts the fact that the top boundary of C2 contains a
singularity of the metric and ColC1(C2) does not (by Sublemma 10.24).

Since C1 is a subequivalence class and since F ′(C1) is a simple cylinder with
singularities on both of its boundaries, it follows from Lemma 10.20 that T0 fixes
F ′(C1), which is impossible since F ′(C1) is a simple cylinder.

Therefore, if the top (resp. bottom) boundary of C2 contains a marked point p,
then that entire boundary does not contain a singularity of the flat metric (by Sub-
lemma 10.26) and so C2 is T0 invariant and the entire top (resp. bottom) boundary
of C2 only contains saddle connections with endpoints in {p, T0(p)} (by Sublemma
10.25). In particular, T0 preserves the collection of boundary saddle connections on
C2. If no boundary of C2 contains a marked point, then it is clear that T0(C2) = C2

by Lemma 10.20.
Now we turn to the second claim. First we observe that by Assumption 10.22,

(Xmin, ωmin) = (X,ω)/T0 and so by Apisa-Wright (Lemma 3.7), any irreducible pair
of points of slope +1 is a pair of points exchanged by T0.

Suppose that there is a marked point p on (X,ω) that is either free or such that
T0(p) is also marked. Suppose to a contradiction that p does not belong to the
boundary of C2. By T0-invariance of C2, T0(p) also does not belong to the boundary
of C2.

When p is free, ColC2(p) remains a free point; otherwise, {ColC2(p),ColC2(T0(p))}
is a slope +1 irreducible pair of marked points (the fact that these points remain
marked points follows from the fact that they do not belong to the boundary of
C2). Such collections of marked points are not permitted on a generic surface, e.g.
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ColC2(X,ω), in a quadratic double. This is a contradiction. (Note that there must
be at least one marked point or singularity not in {ColC2(p),ColC2(T0(p))}, namely
one of the endpoints of ColC2(C2), which rules out the possibility thatMC2 is H(0)
or the locus in H(0, 0) where difference of the two marked points is two-torsion.)

Corollary 10.27. When C1 is T0-invariant, ColC1(T0) = T1.

The T0-invariance of C1 is required to define ColC1(T0).

Proof. By Lemma 10.23, ColC1(T0) preserves ColC1(C2) and the saddle connections
on its boundary. By Lemma 10.10, ColC1(C2) is either a pair of simple cylinders or
a complex cylinder, so there is a unique translation involution on ColC1(X,ω) with
this property. Since T1 also has this property we have that ColC1(T0) = T1.

Lemma 10.28. C1 is either T0-invariant or contains a slope −1 irreducible pair of
marked points in its boundary.

For an example of the second possibility, see Figure 10.3.

Proof. If the boundary of C1 contained no marked points then C1 would be T0

invariant by Lemma 10.20. Suppose therefore that p is a marked point contained in
the boundary of a cylinder in C1. By Lemma 10.23, p cannot be a free point or part
of a slope +1 irreducible pair of marked points. By [AWc, Theorem 1.3], if p is not
free, then either p is periodic or there is a marked point p′ such that {p, p′} is a slope
±1 irreducible pair (in fact the cited result says that there is another point p′ that
has the same image as p in a map to a quadratic differential).

We begin by showing that, if p and p′ are a slope −1 pair with p on the boundary
of C1, then p′ also belongs to the boundary of C1. If not, then ColC1(p

′) remains
a marked point on ColC1(X,ω) and either {ColC1(p),ColC1(p

′)} is a slope −1 irre-
ducible pair of marked points or ColC1(p

′) is a periodic point. However, surfaces in
Abelian doubles, such as ColC1(X,ω), do not have such collections of marked points,
provided that the Abelian double is not a double of H(0) (which is not the case here
since MC1 contains MC1,C2 in its boundary, whereas the boundary of a rank one
rel zero invariant subvariety contains no finite area translation surfaces). So we have
a contradiction. Therefore, the slope −1 irreducible pair {p, p′} is contained in the
boundary of C1.

By the preceding paragraph it remains only to consider the case that the only
marked points on the boundary of C1, the collection of which we denote by R, are
periodic points. We will now show that C1 is T0-invariant. Since ColC2(C1) is a
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subequivalence class of generic cylinders in a quadratic double with a periodic point
in its boundary, it follows that ColC2(C1)/J2 is a generic envelope and the periodic
points, including those in ColC2(R), are preimages of poles. Let F ′(X,ω) denote
(X,ω) with the points in R forgotten and let F ′(C1) denote the image of C1 under
this map. It is then clear that F ′(C1) is a single cylinder whose boundary does not
contain marked points and hence which is fixed by T0 by Lemma 10.20.

10.4 Extra symmetry case

The goal of this subsection is to show that if M has extra symmetry, then M is
as described in Theorem 10.1. We begin with the following special case, which can
occur even when M does not have extra symmetry (see Figures 10.3 and 10.15).

Lemma 10.29. If M has rank at least two and the boundary of C1 contains a slope
−1 irreducible pair of marked points, then M is as in Theorem 10.1 (3b).

Proof. Recall that by Assumption 10.9, (X,ω) has a dense orbit in M. By Apisa-
Wright (Lemma 3.7) sinceM has rank at least two and since (X,ω) contains a slope
−1 irreducible pair of marked points, (X,ω) admits a map to a quadratic differential.

Since ColC2(C1) is a generic subequivalence class with a slope −1 irreducible
pair of points on its boundary in a quadratic double, our explicit understanding of
such subequivalence classes implies that collapsing ColC2(C1) is, up to a cylinder
deformation, the same as forgetting the pair of marked points. The same holds when
collapsing C1 on (X,ω).

We will now establish the three claims made in Theorem 10.1 (3b).

• By Theorem 3.5, the generic surface inH1 - the stratum containing ColC1(X,ω)/T1

- also admits a map to a quadratic differential and hence F(H1) is hyperelliptic
by Lemma 4.3.

• Since ColC1(X,ω) is, up to a cylinder deformation, simply (X,ω) with the
slope −1 pair of marked points forgotten, it follows that M is a full locus of
covers of a locus N in a component of a stratum of Abelian differentials H0

where F(N ) = F(H0) = F(H1) is hyperelliptic. The slope −1 irreducible pair
must correspond to a pair of points on surfaces in N that are exchanged by the
hyperelliptic involution, and in fact N must be exactly the locus in H0 where
this pair of marked points is exchanged by the involution. In particular, N has
codimension 1.
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• Since ColC1,C2(X,ω)/T belongs to Hhyp(2g− 2) or Hhyp(g− 1, g− 1) for some
g ≥ 1 this shows that there is at most one free marked point on ColC1(X,ω)/T1

and hence on surfaces in N .

Lemma 10.30. Suppose that J extends to ColC1(X,ω) in the sense of Definition
10.7. Then one of the following holds:

1. M is a quadratic double,

2. M is as in Theorem 10.1 (3b), or

3. T extends to ColC2(X,ω) in the sense of Definition 10.7.

Proof. Let J1 denote the extension of J to ColC1(X,ω). By the Diamond Lemma
(Lemma 2.3), there is an involution J0 on F(X,ω) such that (X,ω)/J0 is a surface
in a component Q′ of a stratum of quadratic differentials.

To proceed, one might be tempted to try to show thatMC1 is a quadratic double.
However, as illustrated in Figure 10.13 (after applying a half-Dehn twist to the
cylinders labelled C1) this is not necessarily the case, which requires us to use a
slightly more involved argument.

By Lemma 10.10, ColC1(C2) either contains one complex cylinder or two simple
cylinders; and J1 preserves the collection of saddle connections on the boundary of
ColC1(C2). Therefore, ColC1(C2)/J1 is one of the following: a complex envelope, a
single simple cylinder, or a pair of isometric simple envelopes. We will single out the
case where ColC1(C2)/J1 is a pair of isometric simple envelopes for special attention.

Sublemma 10.31. If ColC1(C2)/J1 is a pair of simple envelopes, then either M is
as in Theorem 10.1 (3b) or T extends to ColC2(X,ω) in the sense of Definition 10.7.

For an illustration of a diamond where this phenomenon occurs, see Figure 10.3.
It is necessary to modify the figure by collapsing the horizontal cylinder above C2

after performing a half Dehn twist in it.

Proof. The assumption on C2 implies that ColC2(C2)/J2 is a pair of generically
parallel saddle connections, each with one endpoint at a pole. By Masur-Zorich
(Theorem 4.9), the complement of ColC2(C2)/J2 is a connected translation surface.
The main consequences of this that will be used are the following:

1. ColC2(X,ω)− ColC2(C2) is disconnected.

2. ColC2(C1)/J2 is a simple cylinder. So ColC2(C1), and hence also C1, consists
of a pair of simple cylinders.
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3. The two components of ColC1,C2(X,ω) − ColC1,C2(C2) are exchanged by T ,
since ColC1,C2(C2) is a pair of saddle connections exchanged by T .

If ColC1,C2(C1) consists of two saddle connections exchanged by T , then since
ColC2(C1) is a pair of simple cylinders, there is an involution T2 on ColC2(X,ω)
such that Col(T2) = T and T2(ColC2(C1)) = ColC2(C1). Therefore we may assume
that ColC1,C2(C1) consists of two saddle connections that are J-invariant but not
T -invariant.

Denote the image of ColC1,C2(C1) on ColC1,C2(X,ω)/T by ColC1,C2(C1)/T , even
though ColC1,C2(C1) is not T -invariant. This image consists of two saddle con-
nections, which by Lemma 4.14, must be exchanged by the hyperelliptic involution.
Cutting these saddle connections disconnects ColC1,C2(X,ω)/T into two components.
Let Σ denote the component that does not contain ColC1,C2(C2)/T , keeping in mind

that ColC1,C2(C2)/T is a single saddle connection. The preimage Σ̃ ⊂ ColC1,C2(X,ω)
of Σ consists of two components each isometric to Σ, by the observation (3) above.

Before proceeding we will prove thatM has rank at least two. If this were not the
case, then ColC1,C2(C1) and ColC1,C2(C2) would be generically parallel to each other
(for instance by Lemma 3.15). Hence the saddle connections in ColC1,C2(C1)/T and
ColC1,C2(C2)/T would all be generically parallel to each other. Since ColC1,C2(C1)/T
is a set of two saddle connections exchanged by the hyperelliptic involution, Lemma
4.14 gives that there cannot be any other saddle connection generically parallel to
ColC1,C2(C1)/T , so we get a contradiction.

Our strategy is to show that, when Σ is a simple cylinder, there is a slope −1
irreducible pair of marked points on the boundary of C1 (and so we can conclude by
Lemma 10.29), and otherwise to deduce a contradiction.

Case 1: Σ is a simple cylinder. Then Σ̃ is a pair of simple cylinders. Let C3 de-
note the corresponding pair of simple cylinders on ColC1(X,ω), so ColColC1

(C2)(C3) =

Σ̃. It is possible to find such cylinders since the subsurface Σ does not contain the
saddle connection in ColC1,C2(C2)/T .

Therefore, (X,ω) can be formed by gluing in a pair of simple cylinders, those in
C1, to the boundary of the pair of simple cylinders in C3. This produces a slope −1
irreducible pair of marked points on the boundary of C1, so we are done by Lemma
10.29.

Case 2: Σ is not a simple cylinder. We will derive a contradiction.
ColC1,C2(X,ω)/T −ColC1,C2(C1)/T has two components, and ColC1,C2(C2)/T is

a single saddle connection. Hence ColC1,C2(X,ω)/T −ColC1,C2(C1 ∪C2)/T also has
two components. Let Σ′ denote the one that is not Σ.
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By the Collapsing Lemma (Corollary 10.19), we may assume that Σ is a slit torus
and Σ′ is a parallelogram (these were defined in Definition 10.17).

We will now prove that the surface ColC1,C2(X,ω) is as depicted in Figure 10.4
(left). To start, since ColC1,C2(X,ω)/T = Σ ∪ Σ′ is obtained by gluing a parallelo-
gram into a slit torus, we see that ColC1,C2(X,ω)/T ∈ H(2). This surface is depicted
in Figure 10.4 (right).

Figure 10.4: An illustration of ColC1,C2(X,ω) in Case 2.

The parallelogram Σ′ has its boundary comprised of the saddle connections in
ColC1,C2(C1)/T and ColC1,C2(C2)/T , as in Figure 10.4. The saddle connections in
ColC1,C2(C2) are exchanged by T and cutting them disconnects the surface into two
surfaces with boundary that are exchanged by T and isometric to ColC1,C2(X,ω)/T−
ColC1,C2(C2)/T . Since C1 and C2 both consist of simple cylinders (for C1 this follows
by (2) and for C2 it follows by assumption), it follows that (X,ω) is the surface shown
in Figure 10.5 (top).

We now claim that M has no rel. Using Figure 10.5, one may check that M
is contained in the quadratic double of Q(8,−14), which has rank three rel one (by
Lemma 4.4). Since MC1,C2 is an Abelian double of H(2), MC1,C2 has complex
dimension four and so, by definition of generic diamond (Definition 3.26 (2)), M
has complex dimension six. Since M is contained in an invariant subvariety of rank
three rel one, M has rank three rel zero, as desired.

We’re now going to describe a deformation of the surface in which we use the
cylinders in C1 to “attack” those in C2, resulting in a family of surfaces where the
modulus of one of the two cylinders in C2 changes but not other. This will be a
contradiction since M has rel zero (see for instance Theorem 3.12).

We will describe this deformation by making reference to Figure 10.5. While
keeping all other edges constant, take the corner of the cylinders in C1 and move
it into the subsurface labelled Σ̃′ as shown in Figure 10.12. Continue moving these
corners into C2. It is clear that two corners enter one cylinder in C2, changing its

131



Figure 10.5: An illustration of overcollapsing C1 to derive a contradiction in Sub-
lemma 10.31. The upper part of the figure is (X,ω), and the lower part is the
“attack” deformation in the final paragraph of the proof.

modulus, but not the other. This is the desired deformation, which produces the
desired contradiction.

Letting M′ denote the orbit closure of (X,ω)/J0 we have that

((X,ω)/J0,M′,C1/J0,C2/J0)

is a generic diamond where C2/J0 is either a simple cylinder or complex envelope.
(The final possibility for C2/J0 - a pair of isometric simple envelopes - has been dealt
with in Sublemma 10.31.)

When C2/J0 is a simple cylinder, since ColC2(X,ω)/J2 is a generic surface in Q2,
Corollary 4.12 gives thatM′ = Q′. When C2/J0 is a complex envelope, Theorem 6.1
gives that one of the following occurs: M′ = Q′, F(M′) = F(Q′) is a hyperelliptic
component and all marked points on surfaces in M′ are free except for one pair of
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points in the boundary of C2/J0 exchanged by the hyperelliptic involution, or F(M′)
is a codimension one hyperelliptic locus in F(Q′) (which is non-hyperelliptic) and all
marked points are free.

Sublemma 10.32. The collection of marked points on (X,ω) is invariant under J0

and no marked points are contained in the boundary of C2.

Proof. Let p be a marked point on (X,ω). Suppose first that p does not belong to C2.
Then ColC2(p) does not belong to ColC2(C2). Notice that ColC2(C2) is J2-invariant
since C2 is J0-invariant (which in turn follows from ColC1(C2) being J1-invariant). So
J2(ColC2(p)) is disjoint from ColC2(C2) and marked since ColC2(X,ω) is a quadratic
double. It follows that J0(p) is also a marked point on (X,ω).

Now suppose to a contradiction that p does belong to the closure of C2. By our
conventions, p lies in the boundary of C2; a marked point by definition cannot be on
the interior of a cylinder.

Since C2 is fixed by J0 it follows that J0(p) is marked since, by Lemma 10.10,
J1 and hence J0 preserves the collection of saddle connections on the boundary of
ColC1(C2) (resp. C2). But then {ColC1(p), J1 (ColC1(p))} is a slope −1 irreducible
pair of marked points on ColC1(X,ω). Such collections of marked points do not exist
on surfaces in Abelian doubles, so we have a contradiction.

By Sublemma 10.32, if F(M′) = F(Q′) then M′ = Q′ and M is a quadratic
double. We will assume for the remainder of the proof that F(M′) is a codimension
one hyperelliptic locus in F(Q′), which implies that there is a translation involution
T0 on (X,ω) (since half translation maps between quadratic differentials induce maps
between their holonomy double covers).

Since any component of a rank one stratum of quadratic differentials is hyper-
elliptic, our assumption implies that F(Q′) has rank at least two. Since F(M′) is
codimension one in F(Q′) it follows that F(M′), M′, and M all have rank at least
two. Therefore, (X,ω)/T0 belongs to a quadratic double of a genus zero stratum of
rank at least two. Since no genus zero stratum of rank at least two is hyperelliptic it
follows from Lemma 4.3 that (X,ω)/T0 is not a translation cover of degree greater
than one of another surface. We have shown that Assumption 10.22 is satisfied.

By Lemma 10.28, either C1 is T0-invariant or (X,ω) contains a slope −1 irre-
ducible pair of marked points contained in the boundary of C1. In the latter case, we
are done by Lemma 10.29. In the former case, ColC1(T0) = T1 (by Corollary 10.27)
and C2 is T0-invariant (by Lemma 10.23), implying that T2 := ColC2(T0) is defined,
Col(T2) = T , and T2(ColC2(C1)) = ColC2(C1).
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Proposition 10.33. If M has extra symmetry, then it is as in Theorem 10.1.

Proof. By Lemma 10.30, it remains to study the case where there is an involution
T2 on F(ColC2(X,ω)) such that Col(T2) = T and T2(ColC2(C1)) = ColC2(C1).

By the Diamond Lemma (Lemma 2.3),M is a locus of translation double covers.
Let T0 denote the translation involution on F(X,ω). (Even though we do not by
default assume that involutions preserve marked points, we use F here to emphasize
that marked points need not be preserved.)

LetM′ denote the orbit closure of (X,ω)/T0 and let H′ denote the component of
the stratum of Abelian differentials containing it. Then ((X,ω)/T0,M′,C1/T0,C2/T0)
is a generic diamond where M′

C1/T0
= H1.

Sublemma 10.34. M′
C2/T0

is a quadratic double.

Proof. We begin by showing that J2 and T2 commute. Notice that ColC2(X,ω) −
ColC2(C1) is isometric to ColC1,C2(X,ω)−ColC1,C2(C1) and that under this identifi-
cation the restriction of J2 and T2 agree with the restriction of J and T respectively.
This shows that J2 and T2 commute on an open set (since this is true of J and T by
Lemma 10.5) and hence they must commute since they are holomorphic maps.

Since the set of marked points (and zeros) on ColC2(X,ω) is J2 invariant, and
since J2 and T2 commute, the set of marked points is also invariant on ColC2(X,ω)/T2

by the involution induced by J2. Since ColC2(X,ω)/T2 has a degree two map to the
quadratic differential ColC2(X,ω)/〈J2, T2〉, we get that ColC2(X,ω)/T2 is contained
in a quadratic double.

By perturbing we may assume that ColC2(X,ω) is generic in MC2 . This im-
plies that ColC2(X,ω)/J2 has dense GL+(2,R)-orbit in its stratum. The same
must hold for ColC2(X,ω)/〈J2, T2〉 since it is the image of ColC2(X,ω)/J2. Since
ColC2(X,ω)/T2 is the holonomy double cover of a quadratic differential with dense
orbit in its stratum, i.e. ColC2(X,ω)/〈J2, T2〉, M′

C2/T0
is a quadratic double.

By Proposition 5.1,M′ (and hence alsoM) has rank at least two and one of the
following occurs:

1. M′ = H′ and there is at most one marked point on surfaces in M′.

2. F(M′) = F(H′) is a hyperelliptic component and there is at most one free
marked point on surfaces in M′ with the remaining marked points being a
collection of either one marked point fixed or two marked points exchanged by
the hyperelliptic involution.
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3. F(M′) is a codimension one hyperelliptic locus in F(H′) and there is at most
one marked point, which is free.

In the second possibility listed above, M is described by Theorem 10.1 (3b).

Sublemma 10.35. All preimages of any free marked point on (X,ω)/T0 are marked
on (X,ω). Thus, when M′ = H′, M is an Abelian double.

Proof. Suppose that there is a marked point on (X,ω)/T0 and that its preimages
contain marked points. Suppose too that exactly one preimage is marked and call
this point p.

Suppose first that p does not lie on the boundary of C2. Since p is free, ColC2(p)
is a free marked point in a quadratic double. Such a point only exists in H(0, 0)
- the quadratic double coming from Q(−14, 0) with no preimages of poles marked.
Therefore,MC2 = H(0, 0) and ColC2(C2) would be a saddle connection starting and
ending at the marked point that isn’t p. This implies that ColC2(C2) is a boundary
saddle connection of ColC2(C1), which is a contradiction. Therefore, p must lie on
the boundary of C2.

However, p must also lie on the boundary of C1 since otherwise ColC1(p) would
be a free marked point in an Abelian double. However, no marked point lies on the
boundaries of two disjoint cylinders that don’t share boundary saddle connections.

Sublemma 10.36. When F(M′) is a codimension one hyperelliptic locus, M is as
in (3a) of Theorem 10.1.

Proof. By Sublemma 10.35, it remains to show that ColC1,C2(X,ω) is disconnected.
If (X,ω)/T0 contains a marked point p (which would necessarily be free), then it
cannot belong to the boundary of C1/T0 since if it did then ColC1(X,ω)/T1 would
be formed by colliding the marked point with a singularity and hence would be a
surface in a codimension one hyperelliptic locus and hence not a generic surface in
H1 as required.

Since the generic cylinders on a genus zero half-translation surface, are simple
cylinders and simple envelopes, it follows that C1/T0 is either a simple cylinder or
two simple cylinders with disjoint boundaries. Since F(M′) 6= H′ it follows that
C1/T0 is not a simple cylinder (gluing in a simple cylinder to a generic surface in a
component of a stratum of Abelian differentials produces a component of a stratum
of Abelian differentials).

Thus, C1/T0 consists of two simple cylinders with disjoint boundary. Since C1/T0

does not contain a marked point in its boundary and since C1 consists of at most two
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cylinders, C1 is a pair of complex cylinders with disjoint boundary. The same is true
of ColC2(C1) and so by Masur-Zorich (Theorem 4.8), ColC1,C2(X,ω) is disconnected.

The proof of Proposition 10.33 is now complete.

10.5 When C1 consists of half-simple or complex cylinders

The goal of this subsection is to show that Theorem 10.1 holds when C1 consists of
half-simple or complex cylinders. Lemmas 10.38, 10.40, and 10.42 will each be used
once in a later subsection.

Before we begin, we point out that when C1 consists of two adjacent complex
cylinders, ColC1,C2(C1) might consist of 2, 3, or 4 saddle connections; see Figure
10.6.

Figure 10.6: A half Dehn twist applied to the bottom right possibility in Figure 4.1
moves the two preimages of poles, which can be marked or unmarked.

Lemma 10.37. If C1 is a pair of non-adjacent complex cylinders, thenM has extra
symmetry.

Proof. Since ColC1,C2(C1) consists of four generically parallel saddle connections, by
Lemma 10.6 there is a saddle connection s such that ColC1,C2(C1) = {s, Ts, Js, JTs}.
Since J2 exchanges the two cylinders in ColC2(C1), there are only two possibilities for
how the two complex cylinders in C1 could be glued into the four saddle connections
of ColC1,C2(C1) to form ColC2(X,ω). These are illustrated in Figure 10.7, and we
observe that in both casesM has extra symmetry since the T involution extends to
ColC2(X,ω). (In the right subfigure, the extension of the T -involution exchanges the
two cylinders in ColC2(C1); in the left subfigure, it fixes each individual cylinder in
ColC2(C1).)

Lemma 10.38. Suppose that ColC2(C1) consists of two non-adjacent cylinders each
of which contains a boundary component that is made up of a single saddle connection
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Figure 10.7: Gluing in a pair of non-adjacent complex cylinders produces extra
symmetry.

joining a marked point to itself. Then either M has extra symmetry or is as in
Theorem 10.1 (3b).

Proof. Suppose that M has no extra symmetry. This implies by Lemma 10.14 that
ColC1,C2(X,ω) has no marked points. Therefore, for each cylinder in ColC2(C1)
there is a unique boundary component that is made up of a single saddle connection
joining a marked point to itself, since if there were two then there would be a marked
point on ColC1,C2(X,ω). Let C be the (one or two) cylinders bordering ColC2(C1)
along these unique boundary components. Since ColC2(C1) is J2-invariant, so is C.

Define C′ := ColColC2
(C1)(C). We will show that C′/T consists of a single cylinder.

(Even though C′ need not be T -invariant, we will use the notation C′/T to denote its
image in the quotient.) If not, then C consists of two cylinders exchanged by J2 (this
follows since J2 must exchange the unique boundary components of the cylinders in
ColC2(C1) and hence exchange the two cylinders bordering them). Therefore, the
cylinders in C′ consist of two cylinders exchanged by J . Thus, the hyperelliptic
involution exchanges the two cylinders in C′/T , which contradicts the fact that the
hyperelliptic involution fixes all cylinders.

Therefore, C′/T is a single cylinder with one component of its boundary consisting
of a single saddle connection. Since C′/T and ColC1,C2(C1)/T are fixed by the
hyperelliptic involution (which exchanges the two boundaries of C′/T ), it follows
that the boundary saddle connections of C′/T are exactly the saddle connections in
ColC1,C2(C1)/T . Therefore, C′/T consists of one simple cylinder.

Since, by Lemma 10.11, ColC1,C2(C2)/T consists of a single saddle connection
that is not fixed by the hyperelliptic involution and that is disjoint from ColC1,C2(C1)/T
it follows that ColC1,C2(C2)/T does not intersect C′/T . To see this, notice that any
saddle connection contained in a simple cylinder must be fixed by the hyperelliptic
involution.

Since ColC2(C2) does not intersect ColC2(C1) or C, it follows that C1 contains a
slope −1 irreducible pair of marked points in its boundary, because we have assumed
that ColC2(C1) has such a pair, and since (X,ω) is formed by gluing the cylinders
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in C2 into ColC2(C2). Noting that M has rank at least two since it has no extra
symmetry (by Lemma 10.14), Lemma 10.29 implies that M is as in Theorem 10.1
(3b).

Lemma 10.39. If C1 is a pair of non-adjacent half-simple cylinders, then either M
has extra symmetry or is as in Theorem 10.1 (3b).

Proof. Suppose that M does not have extra symmetry. Let s and s′ be two saddle
connections in ColC1,C2(C1) corresponding to the boundary of one of the cylinders
in C1. These saddle connections must meet at a point p such that the angle be-
tween them is π (either measured clockwise or counterclockwise but not necessar-
ily both; without loss of generality suppose that the angle measured clockwise is
π). Since s and s′ are MC1,C2-generically parallel, by Lemma 10.6 it follows that
s′ ∈ {Js, JTs, Ts}. If s′ = Js or s′ = JTs, then p is a fixed point of J or JT respec-
tively. Since J and JT act by −I in a neighborhood of p, and since the clockwise
angle between s and s′ is π, it would follow that p is a marked point, contradicting
Lemma 10.14.

Therefore, s = Ts′. This implies that s and s′ also meet at Tp and that the angle
between them there measured clockwise is also π. This implies that s and s′ form
the bottom boundary of a cylinder. Passing from ColC1,C2(X,ω) to ColC2(X,ω),
which involves cutting along s and s′ and gluing in a half-simple cylinder, necessarily
produces marked points on ColC2(X,ω) (see Figure 10.8) and we are done by Lemma
10.38.

Figure 10.8: Gluing in a half-simple cylinder to the boundary of a cylinder produces
marked points.

138



Lemma 10.40. If the cylinders in C1 are adjacent, then the zeros on their common
boundary are a collection P of marked points.

Let F ′(X,ω) and F ′(C1) denote (X,ω) and C1 respectively once the marked
points in P are forgotten. Let M′ denote its orbit closure. The collection of marked
points P are periodic on F ′(X,ω).

If M has no extra symmetry, then collapsing C1 causes P to merge with other
zeros or marked points and (F ′(X,ω),M′,F ′(C1),C2) is a generic diamond with
M′
F ′(C1) and M′

C2
an Abelian (resp. quadratic) double.

Remark 10.41. Notice that F ′(X,ω) may still have marked points. The statement
that the collection of points P is periodic on F ′(X,ω) means that M and M′ have
the same dimension. For instance, if F ′(X,ω) is a generic surface in a hyperellip-
tic component with a point p marked, then the image of p under the hyperelliptic
involution would be a periodic point for F ′(X,ω).

Proof. By Masur-Zorich (Theorem 4.8), if the cylinders in ColC2(C1) are adjacent,
then the zeros on their common boundary are a collection of at most two preimages
of poles. Since ColC2(C2) is disjoint from ColC2(C1), it follows that the zeros on the
common boundaries of the cylinders in C1 remain a collection P of marked points on
(X,ω). Since the two cylinders in ColC2(C1) haveMC2-generically identical heights,
the cylinders in C1 have M-generically identical heights, from which it follows that
the marked points in P are periodic on F ′(X,ω).

Suppose now that M has no extra symmetry. It is easy to see ColC2 (F ′(X,ω))
remains a generic surface in a quadratic double (the preimages of poles that were
marked before are simply not marked now). We will now show that ColF ′(C1) (F ′(X,ω)) =
ColC1(X,ω). It suffices to show that all the points in ColC1(P ) are marked points
or singularities on ColC1 (F ′(X,ω)). If this is not the case, then ColC1,C2(P ) is a
collection of marked points on ColC1,C2(X,ω), which contradicts Lemma 10.14.

Lemma 10.42. If M has no extra symmetry and ColC1,C2(C1)/T is a single saddle
connection then ColC1,C2(C1) is also a single saddle connection.

Proof. Suppose that ColC1,C2(C1)/T is a single saddle connection and that ColC1,C2(C1)
has more than one saddle connection. (Again, even though ColC1,C2(C1) is not as-
sumed to be T -invariant, we use ColC1,C2(C1)/T to denote its image in ColC1,C2(X,ω).)
It follows that ColC1,C2(C1) consists of two saddle connections exchanged by T .

By Lemma 10.14, ColC1,C2(X,ω) does not contain marked points. Therefore, by
Theorem 4.8 (see Figure 4.1), C1 consists of either a pair of simple cylinders or a
single complex cylinder with at most n preimages of poles marked along its core
curve where n ∈ {0, 1, 2}. (If ColC1,C2(X,ω) had had marked points, it might have
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also been the case that C1 was a single simple cylinder with a pair of marked points
in its interior.)

Since ColC2(X,ω) is formed by gluing in ColC2(C1) - which is, up to forgetting
marked points, a pair of simple cylinders or a single complex cylinder - to the pair
of saddle connections comprising ColC1,C2(C2), which are exchanged by T ; it fol-
lows that there is an involution T2 on F(ColC2(X,ω)) such that T2(ColC2(C1)) =
ColC2(C1) and ColColC2

(C1)(T2) = T . This implies that M has extra symmetry.

Proposition 10.43. If C1 consists of half-simple or complex cylinders, then Theo-
rem 10.1 holds.

Proof. Suppose that M does not have extra symmetry. Note that by Masur-Zorich
(Theorem 4.8) C1 consists of two half-simple cylinders, one complex cylinder, or two
complex cylinders.

By Lemmas 10.37 and 10.39, if C1 consists of half-simple cylinders or a pair of
complex cylinders we may suppose that they are adjacent and we will let P denote the
collection of marked points on their common boundary. If C1 consists of two adjacent
half-simple cylinders coming from marking two points on the core curve of a simple
cylinder, then ColC1,C2(X,ω) would have a marked point contradicting Lemma 10.14.
By Masur-Zorich (Theorem 4.8, see Figure 4.1), it follows that F ′ (ColC2(C1)) is a
single complex cylinder (F ′ was defined in Lemma 10.40).

Remark 10.44. Recall that, according to Definition 3.10, the boundary of a collection
of cylinders C is the union of the boundary of the cylinders in C. This convention
might be confusing in the case that C contains two cylinders that are adjacent and
separated by marked points. In that case we say that the marked points are on the
boundary even though they are in the interior of a cylinder after forgetting marked
points.

By Lemma 10.40, the collection P of marked points on the boundary of C1

are periodic on F ′(X,ω) and (F ′(X,ω),M′,F ′(C1),C2) is a generic diamond with
M′
F ′(C1) and M′

C2
an Abelian (resp. quadratic) double. We will show that this is

not possible.
Notice that there are two saddle connections in ColC1,C2(F ′(C1)). By Lemma

10.42, ColF ′(C1),C2
(F ′(C1))/T also contains at least two saddle connections. By

Corollary 10.12,

ColF ′(C1),C2
(F ′(X,ω)) /T−

((
ColF ′(C1),C2

(F ′(C1) ∪C2)
)
/T ∪ τ

(
ColF ′(C1),C2

(C2)/T
))

consists of three subsurfaces fixed by the hyperelliptic involution. Applying the
Collapsing Lemma (Corollary 10.19) we may reduce to a generic diamond

((X ′′, ω′′),M′′,C′′1,C
′′
2)
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where two of the previously mentioned subsurfaces (the ones denoted Σ1 and Σ2 in the
notation of Definition 10.13) are simple cylinders and the third (denoted Σ3) is a par-
allelogram. Let {id, J ′′, T ′′, J ′′T ′′} denote the affine symmetries of ColC′′

1 ,C
′′
2
(X ′′, ω′′)

as in Lemma 10.5.

Sublemma 10.45. (X ′′, ω′′) is the surface depicted in Figure 10.9.

Figure 10.9: A surface in H(7, 1). Recall the convention that any unlabelled side is
glued to the opposite side of the polygon containing it.

Proof. By Lemma 10.5, ColC′′
1 ,C

′′
2
(X ′′, ω′′)/T ′′ is a connected surface that (by Def-

inition 10.13) is formed by gluing together Σ1,Σ2 and Σ3. Since these subsurfaces are
two simple cylinders and a parallelogram respectively, it follows that ColC′′

1 ,C
′′
2
(X ′′, ω′′)/T ′′

belongs to H(2). We have seen that ColC′′
1 ,C

′′
2
(C′′1)/T ′′ consists of two saddle connec-

tions, which, by Definition 10.13, form the boundary of Σ1. Similarly, ColC′′
1 ,C

′′
2
(C′′2)∪

τ
(
ColC′′

1 ,C
′′
2
(C′′2)

)
forms the boundary of Σ2.

Since C′′1 is a complex cylinder and C′′2 is either a pair of simple cylinders or a
single complex cylinder, we see that (X ′′, ω′′) can be presented as the two polygons
in Figure 10.9 with some edge identifications that will be deduced now.

First notice that ColC′′
2
(C′′1) is the preimage of a complex envelope on a generic

surface in a stratum of quadratic differentials. By Masur-Zorich (Theorem 4.8 (2)),
ColC′′

2
(X ′′, ω′′)− ColC′′

2
(C′′1) has two connected components. This is only possible if

the unlabelled opposite edges in Figure 10.9 are glued to each other (if not it is clear
that ColC′′

2
(X ′′, ω′′)− ColC′′

2
(C′′1) is connected).

Finally, C′′2 is a complex cylinder since otherwise it would be a pair of simple
cylinders (by Lemma 10.10) and ColC′′

1
(X ′′, ω′′) would be disconnected, contradicting
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our assumption that it belongs to an Abelian double (which by definition must
contain connected surfaces).

SinceM′′
C′′

1 ,C
′′
2

is an Abelian double of H(2), it follows thatM′′ has rank three rel

zero (it cannot be rank two rel two since it is contained in H(7, 1) which is rel one;
and these are the only two possibilities forM′′ sinceM′′

C′′
1 ,C

′′
2

has dimension exactly

two less than M′′). However, the core curve of the cylinder C′′2 is homologous to

the sum of core curves of the cylinders labelled Σ̃top
2 . Since Σ̃top

2 and C′′2 are both
subequivalence classes of cylinders, it follows that M′′ has rel greater than zero,
which is a contradiction.

10.6 When C1 is a simple cylinder

The goal of this section is to show that Theorem 10.1 holds when C1 is a simple
cylinder. For convenience we isolate the following several lemmas and show how they
imply the main result of the section. These lemmas will also be used in the next
subsection. The hypotheses of these lemmas are more general than just assuming
that C1 is a simple cylinder.

Lemma 10.46. When C1 is a collection of simple cylinders, MC1,C2 is an Abelian
and quadratic double.

Proof. It is only necessary to check that ColC1,C2(X,ω) is connected, which holds
since ColC2(X,ω) is connected and ColC2(C1) is a collection of simple cylinders.

Lemma 10.47. Suppose that C1 is a collection of simple cylinders and that ColC1,C2(C2)/T
is not τ -invariant, then ColC1,C2(X,ω)− ColC1,C2(C2) is connected.

Moreover, if s is a J-invariant saddle connection, then

ColC1,C2(X,ω)− {s, Ts}

has two connected components exchanged by T , each isometric to ColC1,C2(X,ω)/T−
s/T .

Proof. We will prove the second claim first. Let s be a J-invariant saddle connection.
By Lemma 10.46, MC1,C2 is an Abelian and quadratic double. The saddle connec-
tions in S := {s, Ts} are generically parallel and fixed by J . Since S/J consists of two
hat-homologous saddle connections, it follows, by Masur-Zorich (Theorem 4.9), that
ColC1,C2(X,ω)/J−S/J has trivial linear holonomy and hence that ColC1,C2(X,ω)−S
is disconnected. The second claim now follows.
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We now turn to the first claim. Notice that ColC1,C2(C2)/T is a single saddle
connection that is not fixed by the hyperelliptic involution. Let w be any fixed point
of J that is not a singularity (such points exist by Lemma 9.6). Since J descends
to τ on ColC1,C2(X,ω)/T (by Lemma 10.5), w/T is a fixed point of τ that is not
a singularity. Let σ be any saddle connection on ColC1,C2(X,ω)/T that is disjoint
from ColC1,C2(C2)/T and that passes through w/T . Let s be any saddle connection
in the preimage of σ on ColC1,C2(X,ω). We have already shown (by the second
part of the claim) that ColC1,C2(X,ω) − {s, Ts} consists of two isometric copies of
ColC1,C2(X,ω)/T − σ.

Notice that ColC1,C2(X,ω)/T − (ColC1,C2(C2)/T ∪ σ) is not disconnected since
σ is a saddle connection fixed by the hyperelliptic involution and ColC1,C2(C2)/T
is a saddle connection that is not (by Lemma 4.14, cutting two saddle connec-
tions that are not exchanged by τ does not disconnect the surface). Therefore,
ColC1,C2(X,ω) − {s, Ts,ColC1,C2(C2)} consists of two isometric copies of the con-
nected surface ColC1,C2(X,ω)/T − (ColC1,C2(C2)/T ∪ σ). Since adding s back in
joins the two components together, ColC1,C2(X,ω)−ColC1,C2(C2) is connected.

Recall from Definition 10.13, that when |ColC1,C2(C1)/T | = 2, Σ1 denotes the
component of

ColC1,C2(X,ω)/T − ColC1,C2(C1)/T

that does not contain ColC1,C2(C2)/T . Its preimage on ColC1,C2(X,ω) is denoted

Σ̃1. The following three lemmas will make use of the following assumption.

Assumption 10.48. Suppose that ColC1,C2(C2)/T is not τ -invariant and that one
of the following holds:

1. C1 is a simple cylinder;

2. C1 is a pair simple cylinders, |ColC1,C2(C1)/T | = 2, and Σ̃1 is not a pair
of non-adjacent simple cylinders. (Notice that the cylinders in C1 are non-
adjacent since if the cylinders in C1 were adjacent then ColC1,C2(C1) would
have only one saddle connection.)

Remark 10.49. A crucial point is that whether or not ColC1,C2(C2)/T is τ -invariant
is unchanged by applying the Collapsing Lemma (Corollary 10.19, see (6)). However,
a priori, whetherM has extra symmetry might change after applying the Collapsing
Lemma.

Similarly, we note that the assumptions that C1 is a simple cylinder, a pair of
simple cylinders, or that |ColC1,C2(C1)/T | = 2 all continue to hold after applying
the Collapsing Lemma by Corollary 10.19 (3) and (5).
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If the Collapsing Lemma is applied to a subsurface other than Σ̃1, then the
Collapsing Lemma only alters Σ̃1 by rotating and scaling it (see Corollary 10.19 (3)),
and so Assumption 10.48 continues to hold.

Lemma 10.50. If Assumption 10.48 holds, then a generic perturbation of F(ColC2(X,ω))
in MC2 does not admit a translation involution.

Proof. Suppose to a contradiction that (a generic perturbation of) F(ColC2(X,ω))
admits a translation involution T2.

Sublemma 10.51. There are no marked points on the boundary of ColC2(C1).

Proof. Since the cylinders in ColC2(C1) are non-adjacent, a boundary of a cylinder
in ColC2(C1) contains a marked point if and only if it is glued to the full boundary of
another cylinder C on ColC2(X,ω). (If there is more than one boundary component
of ColC2(C1) containing marked points, we pick one, and use that choice to pick
the single cylinder C.) By assumption one of the boundaries of C is a single saddle
connection. Define C′ := ColColC2

(C1)(C). Since C1 contains only simple cylinders,
C′ also has a boundary that is a single saddle connection. Although C′ is not
T -invariant we will nonetheless use the notation C′/T to denote its image in the
quotient.

Since every cylinder on ColC1,C2(X,ω)/T is fixed by the hyperelliptic involution,
and since ColC1,C2(C1)/T is invariant by the hyperelliptic involution, we see that
C′/T is a simple cylinder whose boundary is ColC1,C2(C1)/T . This is impossible
when |ColC1,C2(C1)/T | = 1, so suppose that |ColC1,C2(C1)/T | = 2.

Notice that any saddle connection in C′/T is fixed by the hyperelliptic involution.
Since ColC1,C2(C2)/T is not fixed by the hyperelliptic involution (by Assumption
10.48), ColC1,C2(C2)/T is not contained in C′/T . Therefore, Σ1 = C′/T . Since Σ1

is a simple cylinder, Σ̃1 is either a pair of non-adjacent simple cylinders or a complex
cylinder. Since C′ is a cylinder contained in Σ̃1 that has a boundary consisting of one
saddle connection, it follows that Σ̃1 consists of two non-adjacent simple cylinders,
contradicting Assumption 10.48.

If C1 is a simple cylinder, then so is ColC2(C1), which must be fixed by T2 by
Lemma 10.20 (which may be applied by Sublemma 10.51). However, no simple
cylinder can be fixed by a translation involution, so we have a contradiction.

Similarly, if C1 is a pair of non-adjacent simple cylinders, so is ColC2(C1). The
T2-involution must exchange those two cylinders by Lemma 10.20 (which may be
applied by Sublemma 10.51).
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Let T ′ := ColColC2
(C1)(T2) (which is defined, by Lemma 2.2, since ColC2(C1) is

fixed by T2). Since ColC1,C2(C1) and ColC1,C2(C1)/T both consist of two saddle
connections, it follows that ColC1,C2(C1) is not T -invariant. It is equally clear, since
T2 fixes ColC2(C1) that ColC1,C2(C1) is T ′-invariant. We will deduce a contradiction
by showing that T = T ′.

Since MC1,C2 is an Abelian and quadratic double (by Lemma 10.46) that is not
a double of H(0) (since ColC1,C2(C2)/T is not τ -invariant) it follows that T = T ′ by
Corollary 9.10. This is a contradiction.

Recall from Definition 10.13, that, when ColC1,C2(C2)/T is not τ -invariant, Σ2 is
defined as the component of

ColC1,C2(X,ω)/T − (ColC1,C2(C2)/T ∪ τ (ColC1,C2(C2)/T ))

not containing ColC1,C2(C1)/T . Recall too that Σ̃2 denotes the preimage of Σ2 on

ColC1,C2(X,ω). We will use Σ̃top
2 to refer to the corresponding subsurface on (X,ω)

as in Definition 10.13.

Lemma 10.52. If Assumption 10.48 holds, then M has rank at least two and there
is a singularity that is not a marked point in the intersection of the boundaries of C2

and Σ̃top
2 .

Proof. By Assumption 10.48, ColC1,C2(C2) is not τ -invariant, so M has rank at
least two by Lemma 10.14. Suppose now, in order to derive a contradiction, that the
intersection of the boundaries of C2 and Σ̃top

2 contains no singularities (only marked
points).

Let P be the set of marked points on the common boundary of C2 and Σ̃top
2 .

BecauseMC1 is an Abelian double and ColC1(C2) is a subequivalence class of generic
cylinders, ColC1(P ) is a slope +1 irreducible pair of marked points on ColC1(X,ω).
The same holds on (X,ω).

Since M has rank at least two, Apisa-Wright [AWc] (Lemma 3.7) implies that
F(X,ω) admits a translation cover of a distinct surface. Since ColC2(X,ω) is formed
by merging P with zeros and/or marked points, it follows that ColC2(X,ω) (and any
generic perturbation thereof) also admits a translation cover of a distinct surface and
thatMC2 has rank at least two sinceM does. By Lemma 9.1, this translation cover
is the quotient by a translation involution. But no translation involution exists on
ColC2(X,ω) by Lemma 10.50, a contradiction.

Lemma 10.53. If Assumption 10.48 holds and Σ̃2 is disconnected, then C2 is a pair
of simple cylinders.
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Before we prove this lemma, we will show how it can be used to conclude this
section.

Proposition 10.54. If C1 is a simple cylinder, then ColC1,C2(C2)/T is τ -invariant.
In particular, M has extra symmetry.

Proof. Suppose to a contradiction C1 is a simple cylinder, and that ColC1,C2(C2)/T
is not τ -invariant. Note that once we establish that ColC1,C2(C2)/T is τ -invariant,
it will follow that M has extra symmetry (by Lemma 10.11).

Let s denote the single saddle connection in ColC1,C2(C1), which is J-invariant.
By Lemma 10.47, ColC1,C2(X,ω)−{s, Ts} is disconnected. Since Σ2 is disjoint from

ColC1,C2(C1)/T by construction, Σ̃2 is disconnected. By Lemma 10.53, C2 is a pair
of simple cylinders.

By the Collapsing Lemma (Corollary 10.19), we may reduce to a generic diamond
((X ′, ω′),M′,C1,C2) where Σ2 is a simple cylinder and its complement is a parallel-
ogram (see Figure 10.10). As observed in Remark 10.49, Assumption 10.48 continues
to hold after applying the Collapsing Lemma. Since C2 is a pair of simple cylinders
glued into Σ̃2, which is also a pair of simple cylinders, there are no singularities (only
marked points) on their common boundary, contradicting Lemma 10.52.

Figure 10.10: The surface that results from applying the Collapsing Lemma. Recall
the convention that any unlabelled side is glued to the opposite side of the polygon
containing it.

Proof of Lemma 10.53. Suppose to a contradiction that Σ̃2 is disconnected and that
C2 is not a pair of simple cylinders. By Lemma 10.10, C2 is a single complex cylinder.
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By applying the Collapsing Lemma (Corollary 10.19) to Σ2, we may replace (X,ω)
with another surface, which we will give the same name for simplicity, that fits into a
generic diamond with C1 and C2 and so Σ2 is a simple cylinder on ColC1,C2(X,ω)/T .
By Remark 10.49, Assumption 10.48 continues to hold. Moreover, after collapsing,
it is clear that Σ̃2 remains disconnected and that C2 remains a complex cylinder (by
Corollary 10.19 (3)).

Since Σ̃2 is disconnected it follows that it is a pair of non-adjacent simple cylinders
both of which are isometric to Σ2. A specific example of a surface satisfying the
hypotheses of this lemma is shown in Figure 10.11.

Figure 10.11: An example of a surface that will be ruled out by the proof.

Let C3 denote the pair of non-adjacent simple cylinders on (X,ω) corresponding

to Σ̃2. We use this notation, instead of the Σ̃top
2 , to emphasize the fact that, in this

case, Σ̃top
2 is a subequivalence class of cylinders. Notice that ((X,ω),M,C2,C3) is

not a diamond since C2 and C3 share boundary saddle connections. Nevertheless,
the invariant subvariety MC3,C2 is well-defined.

Sublemma 10.55. The orbit closure MC3,C2 is a quadratic double of a component
Q′ of a stratum. If Q′ is hyperelliptic, then ColC3,C2(C3)/ColColC2

(C3)(J2) is not
fixed by the hyperelliptic involution.

Proof. Since C3 consists of a pair of simple cylinders and since ColC2(X,ω) is con-
nected, ColC3,C2(X,ω) is also connected. Moreover, MC3,C2 has dimension exactly
one less thanMC2 since ColC2(C3) consists of two simple cylinders exchanged by the
holonomy involution. By Lemma 3.24, it follows that MC3,C2 is a quadratic double
of a component Q′ of a stratum. By Lemma 4.5, ColColC2

(C3)(J2) is the holonomy
involution on ColC3,C2(X,ω).

Suppose to a contradiction that Q′ is hyperelliptic, and that

ColC3,C2(C3)/ColColC2
(C3)(J2)
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is fixed by the hyperelliptic involution. Then ColC2(X,ω)/J2 belongs to a hyperellip-
tic component since it is formed by gluing in a simple cylinder, namely ColC2(C3)/J2,
to a saddle connection fixed by the hyperelliptic involution on ColC3,C2(X,ω). This
implies that F(ColC2(X,ω)) (and any generic perturbation thereof) admits a trans-
lation involution, which contradicts Lemma 10.50.

Sublemma 10.56. MC3 is properly contained in a quadratic double.

Proof. Since ColC1,C2(C2) consists of boundary saddle connections of Σ̃2, it follows
that ColC2(C2) consists of boundary saddle connections of ColC2(C3). Notice that
ColC1,C2(C2) is T -invariant and so is ColC1,C2(C3), since it is the full preimage
of Σ2 under the quotient by T . The T -involution exchanges the two cylinders
in ColC1,C2(C3). Therefore, for each cylinder in ColC1,C2(C3) there is a saddle
connection in ColC1,C2(C2) that borders it. Notice too that since C2 is a com-
plex cylinder, ColC1,C2(C2) consists of exactly two saddle connections. Therefore,
ColC3,C2(C2) = ColC3,C2(C3).

Since ColC1,C2(C3)/T = Σ2, which is invariant by τ , it follows that ColC1,C2(C3)
is invariant by J . Therefore, ColC2(C3) is fixed by J2. Since ColC2(C3) is fixed
by J2, it follows that ColC3,C2(C3) is fixed by ColC3(J2). Therefore, ColC3(X,ω) is
formed by gluing the complex cylinder ColC3(C2) into the two saddle connections in
ColC3,C2(C2), which are exchanged by the holonomy involution ColColC2

(C3)(J2). It is
clear that there is a marked-point preserving involution J3 on ColC3(X,ω) such that
ColC2(J3) is the holonomy involution on ColC3,C2(X,ω) (see Lemma 10.10 where an
identical argument is given). This implies that MC3 is contained in a quadratic
double.

Suppose to a contradiction that the MC3 is not a proper invariant subvariety
in the quadratic double containing it. Since ColC3(C2) is a complex cylinder whose
saddle connections are generically parallel to it, Masur-Zorich (Theorem 4.8 (2))
implies that there are two connected components of

ColC3(X,ω)− ColC3(C2).

This implies that there are two connected components of

ColC2,C3(X,ω)− ColC2,C3(C2).

Since ColC2(C3) consists of two simple cylinders and since gluing in simple cylinders
does not cause the number of connected components that a translation surface with
boundary has to decrease, there are at least two connected components of

ColC2(X,ω)− ColC2(C2).
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This implies that there are at least two connected components of

ColC1,C2(X,ω)− ColC1,C2(C2).

However, this contradicts Lemma 10.47 (note that ColC1,C2(C2)/T is not τ -invariant
by the fact that Assumption 10.48 holds).

Let J3 denote the holonomy involution on ColC3(X,ω). Notice that ColC3(X,ω)/J3

is formed by gluing in the complex envelope ColC3(C2)/J3 to the saddle connec-
tion ColC3,C2(C3)/ColColC2

(C3)(J2). By Sublemma 10.56 and Theorem 6.1, it fol-
lows that MC3,C2 is a quadratic double of a hyperelliptic component Q′ and that
ColC3,C2(C3)/ColColC2

(C3)(J2) is fixed by the hyperelliptic involution, contradicting
Sublemma 10.55.

10.7 When C1 is a pair of simple cylinders

Proposition 10.57. If C1 is a pair of simple cylinders, then M is as in Theorem
10.1.

Proof. Suppose that C1 is a pair of simple cylinders and suppose to a contradiction
thatM has no extra symmetry. By Lemma 10.11, ColC1,C2(C2)/T is not τ -invariant.
If C1 is a pair of adjacent simple cylinders, then by Lemma 10.40, forgetting the
marked point on their common boundary is a diamond in which C1 is a simple
cylinder, which is impossible by Proposition 10.54.

Therefore, C1 consists of two non-adjacent simple cylinders. By Lemma 10.42,
|ColC1,C2(C1)/T | = 2. If Σ̃1 is a pair of simple cylinders, then we are done by

Lemma 10.38. Therefore, suppose that Σ̃1 is not a pair of non-adjacent simple
cylinders. Notice that Assumption 10.48 now holds.
Case 1: Σ̃2 is disconnected.

Since Σ̃2 is disconnected, C2 is a pair of simple cylinders by Lemma 10.53. By
applying the Collapsing Lemma (Corollary 10.19) to Σ2 we may reduce to the case

where Σ̃2 is a pair of non-adjacent simple cylinders. Assumption 10.48 continues to
hold by Remark 10.49. Since C2 is a pair of simple cylinders, its boundary with Σ̃top

2

consists solely of marked points, contradicting Lemma 10.52.
Case 2: Σ̃2 is connected.

By applying the Collapsing Lemma (Corollary 10.19) to Σ2 and Σ3, we may
reduce to the case where Σ2 is a simple cylinder and Σ3 is a parallelogram. We
continue to call this surface (X,ω). By Remark 10.49, Assumption 10.48 continues

to hold. Case 1 gives a contradiction if Σ̃2 is disconnected, so we can assume that
Σ̃2 is a complex cylinder.
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Since both Σ̃2 and ColC1,C2(C2) are T -invariant, ColC1,C2(C2) comprises either

the entire top or the entire bottom boundary of Σ̃2. Suppose that ColC1,C2(C2) is

the bottom boundary of Σ̃2. The argument is identical when ColC1,C2(C2) is the top
boundary.

By Lemma 10.52, C2 cannot be a single complex cylinder (since then the common

boundary of C2 and Σ̃top
2 would not contain a singularity, only marked points) and

so C2 must be a pair of simple cylinders by Lemma 10.10.

Sublemma 10.58. There is a J-invariant saddle connection s contained in Σ̃2 such
that ColC1,C2(X,ω)−{s, Ts} consists of two isometric copies of ColC1,C2(X,ω)/T −
s/T exchanged by T .

Proof. Since Σ̃2 is connected, it is a complex cylinder that is fixed by J (since Σ2 is

fixed by τ and since J descends to τ on ColC1,C2(X,ω)/T ). Therefore, Σ̃2 contains

two fixed points of J . Let s be a saddle connection in Σ̃2 that contains one of these
fixed points. We are now done by Lemma 10.47 (note that ColC1,C2(C2)/T is not
τ -invariant by the fact that Assumption 10.48 holds).

By Sublemma 10.58, Σ̃1 is disconnected. Since Σ̃1 is not a non-adjacent pair
of simple cylinders, it follows that Σ1 is not a simple cylinder. By applying the
Collapsing Lemma (Corollary 10.19) to Σ1 we may reduce to the case where Σ1 is a

slit torus (and hence Σ̃1 is a pair of disjoint slit tori). We continue to call this surface
(X,ω).

Sublemma 10.59. M has dimension seven and (X,ω) is depicted in Figure 10.12
(top).

Proof. The surface ColC1,C2(X,ω)/T is comprised of three subsurfaces - Σ1,Σ2,Σ3 -
consisting of a slit torus, simple cylinder, and parallelogram respectively - that are
glued together. This shows that ColC1,C2(X,ω)/T belongs to H(1, 1) (see Lemma
10.5) and hence that MC1,C2 has dimension five. By definition of generic diamond
(Definition 3.26 (2)), M has dimension seven.

At this point, appealing to Sublemma 10.58, we have shown that ColC1,C2(X,ω)
is the surface in Figure 10.12 (top) once the cylinders labelled C1 and C2 have been

collapsed. Since C2 is a pair of simple cylinders glued into the bottom of Σ̃2 and
since C1 is a pair of simple cylinder such ColC1,C2(C1)/T forms the boundary of Σ̃1

the surface (X,ω) is as depicted in Figure 10.12 (top).
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Figure 10.12: The top figure is the surface in Case 2 of Proposition 10.57. The
middle figure is ColΣ̃top

2
(X,ω). The bottom figure illustrates the “attack”.

Collapsing Σ̃top
2 on (X,ω), as in the middle subfigure of Figure 10.12, we see

that MΣ̃top
2

belongs to a quadratic double of Q(8,−14), which has rank three and

rel one (and hence dimension seven) by Lemma 4.4. By Sublemma 10.59, M has

dimension seven. Since Σ̃top
2 is a generic cylinder,MΣ̃top

2
has dimension six and hence

is codimension one in the quadratic double (in fact, using the saddle connections
labelled a and b in the middle subfigure of Figure 10.12, the additional equation
defining MΣ̃top

2
is a = b).
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Notice that MΣ̃top
2

has no rel, as can be seen either by directly working with the

surface or since MΣ̃top
2

is codimension one in an invariant subvariety with rel one.

By Corollary 3.13, this implies that equivalent cylinders, for instance the ones in
ColΣ̃top

2
(C2), have a constant ratio of moduli.

We’re now going to describe a deformation of the surface in which we use the
cylinders in ColΣ̃top

2
(C1) to “attack” those in ColΣ̃top

2
(C2), resulting in a family of

surfaces where the modulus of one of the two cylinders in ColΣ̃top
2

(C2) changes but

not the other. This will contradict Corollary 3.13. We will describe this deformation
by making reference to Figure 10.12. While keeping all other edges constant, take
the corner of the orange triangle and move it as shown in Figure 10.12. Moving the
corner vertically causes the corner to enter one ColΣ̃top

2
(C2), changing the height of

one cylinder of ColΣ̃top
2

(C2) but not the other. This is the desired deformation, which

produces the desired contradiction.

Proof of Theorem 10.1: This is immediate from Propositions 10.33, 10.43, 10.54, and
10.57.

10.8 Supplemental statements in case (3b)

In this section, we deduce the following supplemental claims from the statement of
Theorem 10.1 (3b) and the results of Section 10.3.

Theorem 10.60. The following hold in Case (3b) whenM is not a quadratic double.

3b-1 If the surfaces in N do not contain a free marked point, then, defining

a(3) :=

{
{a+ 1, a+ 1} a odd

{2a+ 4} a even

M is contained in the quadratic double of

(i) Q0 = Q
(
a(3), 2,−12

)
with no preimages of poles marked, or

(ii) Q0 = Q
(
a(3),−14

)
with one or two preimages of poles marked (see Figure

10.13), or

(iii) Q0 = Q
(
a(3), 0,−14

)
with no preimages of poles marked (see Figure

10.14),

where a ≥ 0. Moreover, F(M) is the preimage of a codimension one hyperel-
liptic locus in F(Q0).
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Figure 10.13: An illustration of Case (3b) when the surfaces in N contain no free
marked points. Either 1 or 2 of the points labelled x can be marked. More specifically
see (3b-1) (ii).

Figure 10.14: An illustration of Case (3b) when the surfaces in N contain no free
marked points. Both points labelled x are marked. More specifically see (3b-1) (iii).

3b-2 If the surfaces in N contain a free marked point that is not a branch point,
then F(M) =MC1,C2 and MC1,C2 is a quadratic double of Qhyp(a(1),−12) for
some a ≥ 1. Up to two cylinder deformations, ColC1,C2(X,ω) is (X,ω) with
four marked points forgotten - a slope +1 irreducible pair of points exchanged
by T and a slope −1 irreducible pair of points exchanged by J .

3b-3 If ColC1,C2(X,ω) is connected, then surfaces in M contain a slope −1 irre-
ducible pair of marked points (see Figure 10.15).

3b-4 If ColC1,C2(X,ω) is disconnected, then if surfaces in N contain a free point, it
belongs to the branch locus. Letting Q′ denote the non-free marked points on
surfaces in N , one of the following occurs:

(a) Q′ consists of one point that is not in the branch locus (see Figures 10.15
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Figure 10.15: An illustration of possibility (3b) of Theorem 10.1. Here there is a
slope −1 irreducible pair of marked points. There is also an additional free point
that is a branch point on surfaces in N . An additional example can be obtained by
gluing the segments labelled A and B together in the other possible way (so each
segment labelled A gets glued to one labelled B); in this example the points there
is still an additional free point on surfaces in N , but it is not in the branch locus.
A third example can be obtained by collapsing the vertical cylinder between the
cylinders labelled C1. On this new surface ColC1,C2(X,ω) is disconnected and one
or two periodic points are marked.

and 10.13 for the cases where surfaces in N contain (resp. do not contain)
a free marked point).

(b) Q′ consists of two points that are in the branch locus (see Figure 10.2 for
the cases where N does and does not contain a free marked point).

We make a standing assumption arising from the statement of Theorem 10.1 (3b).

Assumption 10.61. ((X,ω),M,C1,C2) is a generic diamond, andM is a full locus
of double covers of a codimension one locus N in a component of a stratum of Abelian
differentials H0, where F(N ) = F(H0) is a hyperelliptic connected component of rank
at least two, and surfaces in N have at most three marked points at most one of which
is free. Additionally, M is not a quadratic double.

Throughout this subsection we will let T0 denote the involution on (X,ω) such
that (X,ω)/T0 is a surface in H0. By Lemma 4.3, since F ((X,ω)/T0) is a generic
surface in a stratum of Abelian differentials of rank at least two, (X,ω) is not a
translation cover of degree greater than one of another surface. Therefore, Assump-
tion 10.22 holds, as do Lemmas 10.23 and 10.28. We will let Q′ denote the marked
points on (X,ω)/T0 that are not free.

Lemma 10.62. Q′ consists of either a single point fixed or two points exchanged by
the hyperelliptic involution.
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Proof. First, if Q′ contains a single point, then since N is codimension one in H0

and F(N ) = F(H0) this point must be a periodic point and hence a Weierstrass
point by Theorem 3.8.

Second, if Q′ consists of two points, then for the same reasons they must be an
irreducible pair. The other possibility would have been that the points in Q′ were
both periodic points, but then N would have codimension two. By Lemma 3.7,
an irreducible pair of marked points must belong to the same fiber of a map to a
lower genus surface. By Lemma 4.3, since F(H0) is a hyperelliptic component of
rank at least two, the only such map is the quotient by the hyperelliptic involution.
Therefore, the points in Q′ consist of two points exchanged by the hyperelliptic
involution.

We will let P ′ denote the marked points on (X,ω)/T0 in the complement of Q′.
The set P ′ is either empty or contains a single free marked point by Assumption
10.61. Finally, we will let P (resp. Q) denote the marked points and singularities of
(X,ω) that are preimages of P ′ (resp. Q′) under the map from (X,ω) to (X,ω)/T0.

Lemma 10.63. The points in Q′ do not belong to the boundary of cylinders in C2/T0.
When C1 is T0-invariant, the points in Q′ are contained in the boundary of C1/T0

and C1/T0 consists of two simple cylinders.

Proof. Suppose first that C1 is T0-invariant. This implies that ColC1(T0) is defined
and that ColC1(T0) = T1 (by Corollary 10.27).

The codomain of T1 is ColC1/T0 ((X,ω)/T0) (by Lemma 2.2). By definition
of Abelian double all marked points on this surface are free, which implies that
ColC1/T0(Q

′) no longer contains marked points. In particular, this implies that the
points in Q′ belonged to the boundary of C1/T0 and that C1/T0 consists of two
simple cylinders (the other possibility - that C1/T0 consisted of a single simple cylin-
der, with both boundaries consisting of a loop from a marked point to itself - would
lead to periodic marked points on ColC1(X,ω)/T1). In this case, it is also easy to
see that C2/T0 cannot contain a point in Q′ in its boundary since then C1/T0 and
C2/T0 would not be disjoint; and so, C1 and C2 would not be disjoint (since both
C1 and C2 are T0-invariant). This contradicts the definition of a diamond. We have
established the second claim in general and the first claim in the case that C1 is
T0-invariant.

By Lemma 10.28, either C1 is T0-invariant or (X,ω) contains an irreducible pair
of marked points in Q that belong to the boundary of C1 and map to distinct points
of Q′. We may suppose that the latter is the case. Suppose to a contradiction that
the boundary of C2/T0 does contain a point in Q′.
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Because each point of Q′ has a marked point in its preimage (in Q), neither point
of Q′ is a branch point. So all preimages of points in Q′ are non-singular points.

We have assumed that C2 has a point of Q in its boundary. Since C2 is T0-
invariant (by Lemma 10.23), the boundary of C2 contains both preimages of a point
in Q′. Since the boundary of C1 contains one of these preimages, we have that C2

and C1 contain a non-singular point in their intersection. This contradicts the fact
that C1 and C2 are disjoint.

Define T2 := ColC2(T0), which is defined since C2 is T0-invariant (by Lemma
10.23). By Lemma 4.3, the existence of the map ColC2(X,ω)/J2→ColC2(X,ω)/〈J2, T2〉
implies that F(Q2) is a hyperelliptic component. In particular, there are integers
a ≥ b ≥ −1 such that F(Q2) = Qhyp

(
a(1), b(1)

)
(see Subsection 9.1 where this

notation is first defined).

Lemma 10.64. If F(Q2) 6= Q(−14), then {id, J2, T2, J2T2} are the affine symmetries
identified in Lemma 9.3.

Proof. Suppose that F(Q2) 6= Q(−14). By Lemma 9.3, the generic surface in F(Q2)
has four affine symmetries of derivative ±Id. These are: the identity, the holonomy
involution, a unique translation involution, and the composition of the previous
two involutions. Since J2 is the holonomy involution on ColC2(X,ω) and T2 is a
translation involution, the claim follows.

Lemma 10.65. b ∈ {−1, 0}.

While technically a(1) is a set of integers we will also use it to denote the cor-
responding points on quadratic differentials with zeros of the corresponding order.
Similarly for a(2).

Proof. If not, then, by Lemma 10.64, F(ColC2(X,ω))/T2 belongs to H
(
a(2), b(2)

)
(by Lemma 9.2) with a ≥ b > 0. By Assumption 10.61, F((X,ω)/T0) belongs to
a hyperelliptic connected component of a stratum of Abelian differentials, so the
same is true for F(ColC2(X,ω)/T2). Hyperelliptic connected components of strata
of Abelian differentials have either a single zero or a pair of zeros that differ by the
hyperelliptic involution, which describes the points in a(2) (since a > 0). So b(2) must
consist of marked points and hence b ∈ {−1, 0}, a contradiction.

Lemma 10.66. Suppose Q′ consists of a single point. Then it is not a branch point,
Q entirely consists of one or two marked points, and ColC1,C2(X,ω) is disconnected.
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Proof. By Lemma 10.62, since Q′ is a single point, it is a periodic point and hence
its preimages cannot contain a slope −1 irreducible pair of marked points. Similarly,
if the preimage of P ′ contains a marked point it is either free or part of a slope 1
irreducible pair of marked points. In particular, (X,ω) does not contain a slope −1
irreducible pair of marked points.

Hence Lemma 10.28 gives that C1 is T0-invariant. By Lemma 10.63, Q′ is con-
tained in the boundary of a cylinder in C1/T0 and C1/T0 is a pair of simple cylinders.
The cylinders in C1/T0 share a boundary saddle connection since Q′ is a non-singular
fixed point of the hyperelliptic involution (by Lemma 10.62).

Since every subequivalence class in a quadratic double consists of at most two
cylinders, it follows that ColC2(C1) also consists of two cylinders. These two cylinders
are adjacent, so by Masur-Zorich (Theorem 4.8), ColC2(C1)/J2 is an envelope and
the points in ColC2(Q) are preimages of poles on the boundary of the envelope. Since
C1 and C2 are not adjacent, this shows that Q′ is not a branch point and that Q
entirely consists of one or two marked points.

Since C1 is the preimage of two simple cylinders under the quotient by T0, there
are four saddle connections at the interface of C1 and the rest of the surface. (We
will only need that there are at least three.) Hence ColC2(C1)/J2 has at least two
saddle connections at its interface with the rest of the surface, and we see that
ColC2(C1)/J2 is a complex envelope. Let Z denote the singularities and marked
points of ColC2(X,ω) excluding points in ColC2(Q). Notice that ColC1,C2(Q) must
be contained in ColColC2

(C1)(Z) since ColC1,C2(X,ω)/T does not contain marked
points that are fixed points of τ that lie outside of ColColC2

(C1)(Z)/T (by Lemma
10.5). By Remark 6.2, this implies that ColC1,C2(X,ω) is disconnected.

Lemma 10.67. If ColC1,C2(X,ω) is disconnected, then P ′ is contained in the branch
locus.

Proof. Suppose to a contradiction that P contains marked points, but that ColC1,C2(X,ω)
is disconnected. Since P is a collection of two marked points exchanged by T0 and
that belong to the boundary of C2 (by Lemma 10.23), collapsing ColC1(C2) entails
moving (at least one of) these marked points into other marked points or zeros.
However, this shows that ColC1,C2(X,ω) is connected since ColC1(X,ω) is, a contra-
diction.

Lemma 10.68. Suppose that Q′ consists of two points, at least one of which is a
branch point. Then P ′ ∪ Q′ is contained in the branch locus and ColC1,C2(X,ω) is
disconnected.
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Proof. First we will show that both points in Q′ are contained in the branch locus.
By Lemma 10.63, C2 does not contain points of Q in its boundary. Therefore, both
points in Q′ are branch points if and only if both points in ColC2/T0(Q

′) are branch
points, which is what we will show.

If this were not the case, then ColC2(Q) contains a marked point. By definition
of quadratic double, ColC2(Q) contains two points exchanged by the holonomy invo-
lution, which would project to two points on ColC2(X,ω)/T2 that were not branch
points. Therefore neither point in ColC2/T0(Q

′) would be a branch point, which is a
contradiction.

Notice that (X,ω) does not contain a slope −1 irreducible pair of marked points,
since they would have to project to such a pair of points on (X,ω)/T0. But the only
such pair of points is Q′, which are branch points.

Next we will show that C1 consists of two (non-adjacent) complex cylinders. By
Lemma 10.28, we have that C1 is T0-invariant and, by Lemma 10.63, that C1/T0

consists of two (non-adjacent) simple cylinders each of which contains a boundary
made up of a saddle connection joining a point in Q′ to itself (the non-adjacency
follows since Q′ consists of two points, see Lemma 10.62). Since the points in Q′

are branch points and since ColC2(C1), which is a subequivalence class of generic
cylinders, consists of at most two cylinders by Masur-Zorich (Theorem 4.8), it follows
that ColC2(C1) consists of two (non-adjacent) complex cylinders. By Masur-Zorich
(Theorem 4.8), ColC1,C2(X,ω) is disconnected.

It follows that P ′ is a subset of the branch locus by Lemma 10.67.

Proof of 3b-3 and 3b-4: Suppose first that ColC1,C2(X,ω) is connected. By Lemma
10.66, Q′ is not a fixed point of the hyperelliptic involution. So by Lemma 10.62,
Q′ consists of two points exchanged by the hyperelliptic involution. By Lemma
10.68, these points are not branched points, so their preimage consists of a slope −1
irreducible pair of marked points. This proves 3b-3.

Suppose now that ColC1,C2(X,ω) is disconnected. The claim that if P ′ is nonempty,
then it is contained in the branch locus is Lemma 10.67. If Q′ consists of one point,
then it is not in the branch locus (by Lemma 10.66). If Q′ consists of two points,
one of which belongs to the branch locus, then both belong to the branch locus
(by Lemma 10.68). If Q′ consists of two points, neither of which belongs to the
branch locus, then Q consists entirely of marked points, which (by Lemma 10.63)
do not belong to the boundary of C2. This shows that, up to a cylinder deforma-
tion, ColC1,C2(X,ω) is formed from ColC2(X,ω) by forgetting the marked points in
ColC2(Q); in particular, ColC1,C2(X,ω) is connected (since ColC2(X,ω) is), which is
a contradiction. This proves 3b-4.
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Proof of 3b-2: Suppose now that P ′ contains a single point that is not part of the
branch locus. Since P ′ is a free point, P consists of either a free point or a pair
of points that differ by T0. By Lemma 10.23 only the second possibility occurs, so
(X,ω) contains a slope +1 irreducible pair of marked points P .

Without loss of generality (up to replacing the word “top” with “bottom”), the
points in P are the only singularities or marked points on the top boundary of C2

(by Lemma 10.23). Therefore, passing from ColC1(X,ω) to ColC1,C2(X,ω) amounts
to, up to a single cylinder deformation, simply forgetting the points in ColC1(P ). In
particular, ColC1,C2(X,ω) is connected. This implies that Q is a slope −1 irreducible
pair of marked points on (X,ω) by Theorem 10.60 (3b-3). Since passing from (X,ω)
to ColC2(X,ω) amounts to, up to a single cylinder deformation, simply forgetting
the points in P , we see that there is a holonomy involution J0 on (X,ω) that comes
from the holonomy involution J2 on ColC2(X,ω). Since ColC2(Q) is J2 invariant, it
follows that Q is a J0-invariant pair of marked points.

Therefore, up to two cylinder deformations, ColC1,C2(X,ω) is (X,ω) with P ∪Q
forgotten. This shows that MC1,C2 has rank at least two and hence that MC1,C2 is
a quadratic double of Q(a(1),−12) for some a > 0 and with no marked points (by
Lemma 9.6). So F(M) =MC1,C2 .

Proof of 3b-1: By assumption (the statement of 3b-1), P ′ is empty. Since C2/T0 is
a subequivalence class of generic cylinders that do not border the points in Q′ (by
Lemma 10.63), C2/T0 consists of a simple cylinder that is fixed by the hyperelliptic
involution. The fact that C2/T0 is fixed by the hyperelliptic involution is the key
point here and it is the emptiness of P ′ that accounts for it. As a consequence,
ColC2(C2)/T2 is a single saddle connection.

Sublemma 10.69. F(Q2) 6= Q(−14) and the single saddle connection ColC2(C2)/T2

has both of its endpoints in a(2). Moreover, ColC2(C2)/J2 consists of one of the
following:

1. one or two saddle connection whose endpoints lie in a(1), or

2. two saddle connections each of which has one endpoint in a(1) and the other a
pole.

(When a = b = 0 there is no way to differentiate a(i) and b(i) so this might require
exchanging these two sets).

Proof. We will begin by explaining how the first claim implies the second. By the first
claim, ColC2(C2) consists of two saddle connections whose endpoints are preimages
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of a(2). Notice that the preimages of a(2) project to the points in a(1) under the
quotient by J2. The second listed possibility for ColC2(C2)/J2 occurs when J2 fixes
each saddle connections in ColC2(C2) and the first possibility occurs otherwise.

We will prove the first claim in two cases.
Case 1: a > 0.

Since a > 0, on ColC2(X,ω)/T2, which belongs to H
(
a(2), b(2)

)
, there are singu-

larities of the flat metric and they are precisely the points in a(2). Notice that C2/T0

is a simple cylinder on a surface that, after forgetting the points in Q (which do
not belong to the boundary of C2/T0 by Lemma 10.63), belongs to a hyperelliptic
connected component. For any such cylinder, if collapsing it does not give rise to a
genus one surface, then the saddle connection resulting from collapsing the cylinder
joins singularities of the metric. Applying this to C2/T0 gives the result.
Case 2: a ≤ 0.

Since a ≤ 0, MC2 has rank one. Since M has rank at least two it follows by
definition of generic diamond (Definition 3.26 (2)) that F ((X,ω)/T0) belongs to
H(2). By assumption (the statement of 3b-1), the marked points on (X,ω)/T0 are
precisely the point(s) in Q′. It follows that ColC2/T0 (F (X,ω)/T0)) belongs toH(0, 0)
and that ColC2/T0(C2/T0) is a saddle connection joining these two zeros. Therefore,
ColC2(X,ω)/T2 belongs to H(02, 0|Q

′|) and MC2 has rel |Q′|.
If F(Q2) = Q(−14), then Q2 = Q(−14, 0|Q

′|). It follows that ColC2(X,ω) is a
torus with one or two pair(s) of slope −1 irreducible marked points and with the
remaining marked points being periodic points (in particular, fixed points of J2).
Since the endpoints of ColC2(C2)/T2 consist of two distinct points that are a slope
−1 irreducible pair, there is a saddle connection s in ColC2(C2) whose endpoints are
a slope −1 irreducible pair of marked points. But ColC2(C2) is T2-invariant (which
follows from Lemma 10.23) and T2 cannot fix s (no translation involution fixes a
saddle connection) nor can it send it to another saddle connection (since no other
saddle connection has generically the same length). This is a contradiction.

If F(Q2) 6= Q(−14), then {id, J2, T2, J2T2} are the affine symmetries described
in Lemma 9.3 (by Lemma 10.64). We have already seen that ColC2(C2)/T2 is a
single saddle connection joining two points exchanged by the hyperelliptic involution.
Since ColC2(X,ω)/T2 belongs to H

(
a(2), b(2)

)
and the points in a(2) and b(2) consist

of one point fixed or two points exchanged by the hyperelliptic involution, the claim
follows.

Since C2/T0 is fixed by the hyperelliptic involution, ColC2(C2)/T2 is fixed by the
hyperelliptic involution on ColC2(X,ω)/T2. Since J2 and T2 commute and J2 induces
the hyperelliptic involution on ColC2(X,ω)/T2 (by Lemma 10.64), this implies that
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ColC2(C2) is fixed by the holonomy involution. Since (X,ω) is formed by gluing C2,
which is either a pair of simple cylinder or a complex cylinder (by Lemma 10.10),
into ColC2(C2) - a pair of saddle connections fixed by the holonomy involution -
there is an involution J0 on (X,ω) that preserves marked points, preserves C1 and
C2, and such that ColC2(J0) = J2. This shows that M is contained in a quadratic
double of a stratum Q0.

Letting M′ be the orbit closure of (X,ω)/J0,

((X,ω)/J0,M′,C1/J0,C2/J0)

is a generic diamond. Since C2 is either a pair of simple cylinders or a single complex
cylinder, C2/J0 is one of the following: a simple cylinder, a pair of isometric simple
envelopes, or a single complex envelope.

Sublemma 10.70. F(M′) is a codimension one hyperelliptic locus in Q(a(3), b(1),−12)
where b ∈ {−1, 0} and a ≥ 0.

Note that if b = 0 then

Q(a(3), b(1),−12) = Q
(
a(3), 2,−12

)
and if b = −1 then

Q(a(3), b(1),−12) = Q
(
a(3),−14

)
.

Proof. By Assumption 10.61,M is not a quadratic double, which lets us discard the
possibility that C2/J0 is a simple cylinder (by Corollary 4.12). Similarly, our analysis
of gluing in a complex envelope (Theorem 6.1) implies that if C2/J0 is a complex
envelope, then eitherM is a quadratic double, a case that we again discard, or that
ColC2(C2)/J2 is a single saddle connection s fixed by the hyperelliptic involution. By
Sublemma 10.69, this saddle connection must join points corresponding to those in
a(1) to other such points and so, by Remark 6.6, F(M′) is contained in F(Q′) where
Q′ = Q

(
a(3), b(1),−12

)
. Since s is not a saddle connection joining two poles (since

a 6= −1 by Sublemma 10.69), it follows that the boundary of C2/J0 does not contain
marked points and so (by Theorem 6.1) F(M′) is a codimension one hyperelliptic
locus in F(Q′).

It remains to consider the case where C2/J0 consists of two isometric simple
envelopes. In this case, it is clear that Q2 contains at least two poles. Since
Q2 = Q(a(1), b(1)) and a ≥ b, this implies b = −1. By Sublemma 10.69, a ≥ 0
and ColC2(C2)/J2 contains two saddle connections that join a point corresponding
to a(1) to a pole. Recall that ColC2(C2) is T2-invariant (by Lemma 10.23). There-
fore, ColC2(C2)/J2 is invariant by the hyperelliptic involution since T2 induces this
involution on ColC2(X,ω)/J2 (by Lemma 10.64).
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Gluing in a simple envelope changes the stratum by adding a pole and increasing
the cone angle around one point by π, so F(Q0) = Q(a(3),−14). Note that gluing in
the two isometric simple envelopes in ColC2(C2)/J2 to a pair of saddle connections
that are exchanged by the hyperelliptic involution on ColC2(X,ω)/J2 produces a
surface in the hyperelliptic locus, and moreover the two envelopes are exchanged
by the hyperelliptic involution. The condition guaranteeing the existence of the
hyperelliptic involution is that the two envelopes are isometric, so in fact F(M′) is
a codimension one hyperelliptic locus in F(Q0). (The fact that the envelopes have
the same circumference is automatic, because the saddle connections they are glued
into are generically parallel.)

It remains to establish the claim in (3b-1) about marked points on (X,ω), the
set of which we know is invariant under J0. By Assumption 10.61, since P is empty,
the set of marked points on (X,ω) is a subset of Q.

Sublemma 10.71. When b = 0, (X,ω) has no marked points.

Proof. Recall F(Q2) = Q(a(1), b(1)). Since b = 0, b(1) = {2} corresponds to single
point on ColC2(X,ω)/J2. Let R denote the preimage of this point on ColC2(X,ω),
so R consists of two singularities of the flat metric.

By Lemma 10.64, T2 is the translation involution studied in Figure 9.1 and so the
points in R are ramification points for the map from ColC2(X,ω) to ColC2(X,ω)/T2;
moreover, the image of the points in R on ColC2(X,ω)/T2 are two points exchanged
by the hyperelliptic involution (see Figure 9.1).

On ColC2(X,ω)/T2, the singularities and marked points consist of the points in
ColC2/T0(Q

′) (these remain marked points by Lemma 10.63) and the point in a(2), i.e.
the zeros and marked points coming from the fact that, after forgetting the points
in ColC2/T0(Q

′), ColC2(X,ω)/T2 belongs to Hhyp
(
a(2)
)
.

The points in a(2) consist of either one point fixed or two points exchanged by
the hyperelliptic involution on ColC2/T0(X,ω). Since C2/T0 is fixed by the hyperel-
liptic involution, the same is true of the saddle connection in ColC2/T0(C2/T0). The
endpoints of this saddle connection belong to a(2) (by Sublemma 10.69). It follows
that every point in a(2) is an endpoint of ColC2/T0(C2/T0).

Since ColC2/T0(Q
′) belongs to the complement of a(2) (by Lemma 10.63) and

contains at most two points (by Lemma 10.62) it follows that this set coincides with
R/T2, which also belongs to the complement of a(2) and contains exactly two points.
Therefore, ColC2(Q) = R and so the points in ColC2(Q) are singularities of the flat
metric.

Since the boundary of C2 does not contain points in Q (by Lemma 10.63) the
number of points in Q and the cone angles around these points are the same on
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(X,ω) as on ColC2(X,ω). This shows that Q consists of two singularities of the flat
metric. Since Q contains no marked points and any marked point on (X,ω) belongs
to Q, we are done.

Suppose finally that b = −1. Suppose first that Q′ consists of two points. By
Lemma 10.68, either both points in Q are singularities or the points in Q are not
ramification points, and hence are a slope −1 irreducible pair of marked points
(by Lemma 10.62). In the latter case, Q0 = Q(a(3), 0,−14) and the points in Q
are precisely the preimages of the free marked points in (X,ω)/J0; in particular
there are no other marked points on (X,ω). The case that the points in Q are both
singularities cannot occur since, by virtue of F ((X,ω)/J0) belonging toQ

(
a(3),−14

)
,

all the singularities of the flat metric belong to the boundary of C2 whereas the points
in Q do not (by Lemma 10.63).

Suppose finally that b = −1 and that Q′ consists of one point. By Lemma 10.66,
the points in Q are periodic marked points. It suffices to show that these points are
fixed points of J0. Since the points in Q do not belong to the boundary of C2, it
suffices to show that the points in ColC2(Q) are fixed points of J2, which follows by
definition of quadratic double. Therefore, (X,ω) belongs to a quadratic double of
Q
(
a(3),−14

)
and the marked points consist of one or two preimages of poles.
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