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Abstract. The field of definition of an affine invariant subman-
ifold M is the smallest subfield of R such that M can be defined
in local period coordinates by linear equations with coefficients in
this field. We show that the field of definition is equal to the in-
tersection of the holonomy fields of translation surfaces inM, and
is a real number field of degree at most the genus.

We show that the projection of the tangent bundle of M to
absolute cohomology H1 is simple, and give a direct sum decom-
position of H1 analogous to that given by Möller in the case of
Teichmüller curves.

Applications include explicit full measure sets of translation sur-
faces whose orbit closures are as large as possible, and evidence for
finiteness of algebraically primitive Teichmüller curves.

The proofs use recent results of Avila, Eskin, Mirzakhani, Mo-
hammadi, and Möller.

1. Introduction

1.1. Background. During the past three decades, it has been discov-
ered that many properties of a translation surface are determined to
a surprising extent by its SL(2,R)–orbit closure. The orbit closure is
relevant for:

• The dynamics of the straight line flow, for example the Veech
dichotomy and deviations of ergodic averages [Vee89, For02,
EKZ];
• Counting problems (the Siegel-Veech formula) [Vee98,EM01];
• Flat geometry, for example which translation surfaces can be

written as a convex polygon with edge identifications [Vee95].

Recently Eskin-Mirzakhani-Mohammadi have announced a proof that
the SL(2,R)–orbit closure of every unit area translation surface is the
set of unit area translation surfaces in some affine invariant submani-
fold [EM,EMM] (definitions are recalled in Section 2). However, the
work of Eskin-Mirzakhani-Mohammadi does not give the orbit closure
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of any particular translation surface. Prior to this work, the orbit clo-
sure was known for only a measure zero subset of translation surfaces
of genus greater than two.

1.2. Statement of results. The field of definition k(M) of an affine
invariant submanifold M is the smallest subfield of R such that M
can be defined in local period coordinates by linear equations with
coefficients in this field.

Theorem 1.1. The field of definition k(M) of an affine invariant
submanifold M is a real number field of degree at most the genus. It
is equal to the intersection of the holonomy fields of all translations
surfaces in M.

The second statement gives that k(M) can be explicitly calculated
from the absolute periods of translation surfaces in M.

Example 1.2. If M contains a single square-tiled surface, or even
just a single translation surface whose absolute periods are in Q[i] and
whose relative periods are arbitrary, then k(M) = Q.

Generic translation surfaces. A unit area translation surface is
said to be M–generic if its orbit closure is equal to M1, the set of
unit area translation surfaces within M. Work of Masur and Veech
[Mas82, Vee82] gives the ergodicity of the SL(2,R)–action on M1,
and ergodicity guarantees that almost every point (with respect to a
natural invariant smooth measure) in M1 is M–generic. (Masur and
Veech worked in a less general setting, but their proofs apply equally
well to affine invariant submanifolds.) However, prior to this work not
many examples of explicit generic translation surfaces were known, see
below for a summary.

In Section 3, we define what it means for a translation surface to
have M–typical periods. Roughly, (X,ω) has M–typical periods if its
periods do not satisfy any linear equation which might, according to
Theorem 1.1, define an affine invariant submanifold properly contained
in M. Having M–typical periods is an explicit, field theoretic condi-
tion.

Corollary 1.3. Let M be any affine invariant submanifold. Let G be
the set of translation surfaces (X,ω) ∈ M1 with M–typical periods.
Then

(1) G has full measure in M1, and
(2) every translation surface in G is M–generic.
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Let Q denote the algebraic closure of Q, and set QR = Q ∩ R. The
set G includes in particular the translation surfaces in M1 whose pe-
riod coordinates span a QR–vector space of dimension dimCM. So in
particular, Corollary 1.3 implies that translation surfaces whose period
coordinates are “sufficiently transcendental” have full orbit closure.

Example 1.4. Consider a translation surface (X,ω) in a stratum H,
and assume that the real parts of the period coordinates of (X,ω) are
contained in Q[π, π2, π3, . . .] and are linearly independent over Q. Then
the period coordinates of (X,ω) are automatically linearly independent
over QR, and so (X,ω) has H–typical periods. Corollary 1.3 gives that
such (X,ω) are H–generic.

The set G also contains a dense set of translation surfaces whose
periods lie in a number field.

Global structure. Our results on field of definition in fact follow
from considerations about the global structure of affine invariant sub-
manifolds which are of independent interest.

Let H1 denote the flat bundle over M whose fiber over (X,ω) ∈
M is H1(X,C), and let H1

rel denote the flat bundle whose fiber over
(X,ω) is H1(X,Σ,C), where Σ is the set of singularities of (X,ω). Let
p : H1

rel → H1 denote the natural projection from relative to absolute
cohomology. Note that T (M) is a flat subbundle of H1

rel.
The field of definition of a flat subbundle E ⊂ H1 is the small-

est subfield of R so that locally the linear subspace E of H1(X,C)
can be defined by linear equations (with respect to an integer basis of
H1(X,Z)) with coefficients in this field. The trace field of a flat bundle
overM is defined as the field generated by traces of the corresponding
representation of π1(M).

Theorem 1.5. Let M be an affine invariant submanifold. The field
of definition of p(T (M)) and trace field of p(T (M)) are both equal to
k(M).

Set VId = p(T (M)). There is a semisimple flat bundle W, and for
each field embedding ρ : k(M) → C there is a flat simple bundle Vρ

which is Galois conjugate to VId, so that

H1 =

(⊕
ρ

Vρ

)
⊕W.

The bundle W does not contain any subbundles isomorphic to any
Vρ. Both W and ⊕Vρ are defined over Q.

In particular,

dimC p(T (M)) · degQ k(M) ≤ 2g.
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The direct sum decomposition of H1 in Theorem 1.5 was previously
established in the case of Teichmüller curves by Martin Möller [Möl06],
and is one of the main tools used in the study of closed SL(2,R)–orbits.
In the Teichmüller curve case, Möller showed that the splitting of H1

is compatible with the Hodge decomposition; this is conjectured for
general affine invariant submanifolds, but this does not follow from
our work.1 When the splitting of H1 is non-trivial (H1 6= p(T (M)))
and compatible with the Hodge decomposition, thenM parameterizes
translation surfaces whose Jacobians admit non-trivial endomorphisms
[Möl08b, Lemma 4.2].

There may be a even more direct connection between the field of
definition and the global structure of affine invariant submanifolds.

Conjecture 1.6 (Mirzakhani). If an affine invariant submanifold M
is defined over Q, and M is not a connected component of a stratum,
then every translation surface inM covers a quadratic differential (half-
translation surface) of smaller genus.

Conjecture 1.7 (Mirzakhani). If an affine invariant submanifold M
is not defined over Q, then p(T (M)) has dimension 2.

In the case that p(T (M)) is 2 dimensional, M should parameterize
eigenforms for real multiplication. (This real multiplication may only
be present on a factor of the Jacobian up to isogeny, instead of the
entire Jacobian. This is analogous to the case of Teichmüller curves
treated in [Möl06].)

Evidence for finiteness of algebraically primitive Teichmüller
curves. Algebraically primitive Teichmüller curves correspond to two
complex dimensional affine invariant submanifolds where the trace field
of p(T (M)) has degree equal to the genus.

The equidistribution results of Eskin-Mirzakhani-Mohammadi [EMM]
and Theorem 1.5 allow us to show

Theorem 1.8. Let H be a connected component of the minimal stratum
in prime genus. If H contains infinitely many algebraically primitive
Teichmüller curves, then some subsequence equidistributes towards H.

We hope that Theorem 1.8 will eventually lead to a proof that there
are only finitely many algebraically primitive Teichmüller curves in the
minimal stratum in prime genus greater than two.2

1Added in proof: This has been established by Simion Filip [Filb, Fila], who
has also shown that the field of definition is totally real and that affine invariant
submanifolds are varieties.

2Added in proof: This hope has been realized in joint work with Matheus [MW].
Bainbridge and Möller have informed the author that together with Habegger they
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Countability of affine invariant submanifolds. Theorem 1.1 also
provides an alternate proof of a step in Eskin-Mirzakhani-Mohammadi’s
theorem on SL(2,R)–orbit closures.

Corollary 1.9 ([EMM], Prop. 2.16). There are only countably many
affine invariant submanifolds in the moduli of translation surfaces.

Proof. There are only countably many systems of real linear equations
all of whose coefficients lie in a number field. �

1.3. Previous results. Here we list the previous results which form
the context for our applications to problems predating [EM, EMM].
We do not use any of these results, and so omit some definitions which
the reader can find in the references. For an introduction to the field
of translation surfaces see the surveys [MT02,Zor06].

Generic translation surfaces. In the case that M is a connected
component of a stratum, we simply call an M-generic translation sur-
face generic.

McMullen has classified orbit closures in genus 2 (strata of abelian
differentials).

Theorem 1.10 ([McM07], Thm. 1.2). The SL(2,R)–orbit closure of
any unit area translation surface in H(2) or H(1, 1) is either

(1) equal to a closed orbit, or
(2) equal to a locus of (X,ω) of unit area, where Jac(X) admits real

multiplication with ω as an eigenform, or
(3) equal to the whole stratum.

All of the possible orbit closures (affine invariant manifolds) listed
had been previously studied by both McMullen and Calta [McM03a,
Cal04]. Calta describes these orbit closures in terms of the J–invariant,
and gives explicit linear equations defining the affine invariant mani-
folds [Cal04].

It follows directly from this theorem of McMullen that in particular
any translation surface in H(2) or H(1, 1) whose absolute periods do

not satisfy a linear relation with coefficients in Q[
√
d] for some d ≥ 1 is

generic. McMullen’s result shows that Corollary 1.3 is not sharp even
in genus 2.

Let L be the locus of hyperelliptic translation surfaces in H(2, 2),
where both of the singularities are fixed by the hyperelliptic involution.
Examples of generic translation surfaces have been constructed in L

have recently established new finiteness results that are complementary to those in
[MW], using different methods.
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by Hubert-Lanneau-Möller [HLM09a, HLM12, HLM09b] and also
in Hhyp(4) by Nguyen [Ngu11]. These results in L and Hhyp(4) are
complementary to ours; they do not provide a full measure set, but
do provide many especially interesting and important examples not
covered by our results.

Theorem 1.11 ([HLM09b], Thm 0.2). Suppose (X,ω) ∈ L is ob-
tained by the Thurston-Veech construction, has cubic trace field, and
has a completely periodic direction that is not parabolic. Then (X,ω)
is L–generic.

In particular, there are L–generic translation surfaces whose periods
lie in a cubic field (that is, there is a real cubic field k so that the period
coordinates lie in k[i]). In private communication Erwan Lanneau has
indicated to the author that some of the results in [HLM09b] can be
extended to certain strata in higher genus.

Theorem 1.12 ([Ngu11], Thms 1.1, 1.2, Cor. 1.3). Every translation
surface in Hhyp(4) admits a specific decomposition into parallelograms
and cylinders. When two edges are assumed to be parallel, then for
an explicit generic subset of the remaining parameters, the translation
surface is generic. In particular, in Hhyp(4) there are generic sur-
faces arising from the Thurston-Veech construction, and generic sur-
faces with period coordinates in a quadratic field.

Any surface in Hhyp(4) with a completely periodic direction consisting
of three cylinders whose moduli are independent over Q is generic.

These results of McMullen, Hubert-Lanneau-Möller and Nguyen all
rely on explicit decompositions of the translation surface into simple
pieces such as tori. Sufficiently simple decompositions are not available
for the generic translation surface in high genus.

In the case that M is two complex dimensional (i.e., corresponds
to a closed SL(2,R)–orbit), then every translation surface in M is
M–generic. See [Wri13] for a list of known closed SL(2,R)–orbits;
additional examples arise from covering constructions.

Algebraically primitive Teichmüller curves. There are infinitely
many algebraically primitive Teichmüller curves in H(2), which were
constructed by McMullen and Calta [Cal04, McM03a]. McMullen
showed that there is only one algebraically primitive Teichmüller curve
in H(1, 1) [McM06].

Finiteness of algebraically primitive Teichmüller curves is known in
Hhyp(g− 1, g− 1) by work of Möller [Möl08a], and in H(3, 1) by work
of Bainbridge-Möller [BM12].
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1.4. Tools and motivation. That affine invariant submanifolds are
defined over number fields is easier than the other statements of The-
orem 1.1. This can be proved using only a Closing Lemma for Te-
ichmüller geodesic flow. We sketch this approach briefly in Section 4.
The result also follows, together with the bound on the degree of the
field of definition, from the inequality in Theorem 1.5.

Both Hamenstädt [Ham10] and Eskin-Mirzakhani-Rafi [EMR] have
proven Closing Lemmas for Teichmüller geodesic flow. The version we
require is extremely close to that given in [EMR]. The Closing Lemma
is also used in the proof of Theorem 1.5.

Theorem 1.5 also uses a result of Avila-Eskin-Möller.

Theorem 1.13 ([AEM], Theorem 1.5). The bundle H1 over M is
semisimple. That is, every flat subbundle has a flat complement.

In fact, Avila-Eskin-Möller prove this for the bundle H1
R whose fiber

over (X,ω) is H1(X,R). The result follows for H1 = H1
R ⊗R C from

general principles, see Section 5.
That affine invariant submanifolds are defined over a number field

is motivated by the expectation that they have a fairly rigid algebro-
geometric structure. The use of the Closing Lemma in the proof is
motivated by the fact that, up to scaling, the real and imaginary parts
of a translation surface on a closed orbit for the Teichmüller geodesic
flow have period coordinates in a number field.

That the field of definition of p(T (M)) is equal to that of T (M) is
motivated by the fact that for any (X,ω) having a hyperbolic affine dif-
feomorphism, and in particular any (X,ω) lying on a closed SL(2,R)–
orbit, the absolute and relative periods span the same Q–vector sub-
space of C [KS00,McM03b].

Organization. Section 2 contains definitions, and Section 3 proves
Corollary 1.3 using Theorem 1.1. Section 4 discusses the Closing
Lemma, which is used to prove the “Simplicity Theorem” in Section 5.
The Simplicity Theorem includes the statement that p(T (M)) is sim-
ple from Theorem 1.5. The remainder of Theorem 1.5 is established
in Section 6, using the Simplicity Theorem and the Closing Lemma.
Theorem 1.1 is proven in Section 7, using Theorem 1.5. Theorem 1.8
is covered in the final section.

Acknowledgements. Special thanks go first of all to the author’s
thesis advisor Alex Eskin, for inspiring this work and generously con-
tributing ideas at several stages. Special thanks also go to Maryam
Mirzakhani for sharing her conjectures and allowing us to reproduce
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2. Period coordinates and field of definition

Suppose g ≥ 1 and let α be a partition of 2g − 2. The stratum
H(α) is defined to be the set of (X,ω) where X is a genus g closed
Riemann surface, and ω is a holomorphic 1-form on X whose zeroes
have multiplicities given by α. In fact, we immediately replace H(α)
by a finite cover H which is a manifold instead of an orbifold.

Given a translation surface (X,ω), let Σ ⊂ X denote the set of
zeros of ω. Pick any basis {ξ1, . . . , ξn} for the relative homology group
H1(X,Σ;Z). The map Φ : H → Cn defined by

Φ(X,ω) =

(∫
ξ1

ω, . . . ,

∫
ξn

ω

)
defines local period coordinates on a neighborhood (X,ω) ∈ H. We
may also refer to the absolute period coordinates of a translation surface:
these are the integrals of ω over a basis of absolute homology H1(X,Z).

Period coordinates provideH with a system of coordinate charts with
values in Cn and transition maps in SL(n,Z). An affine invariant
submanifold of H is an immersed manifold M ↪→ H such that each
point of M has a neighborhood whose image is locally defined by real
linear equations in period coordinates. The possibility thatMmight be
immersed instead of embedded will not cause us any problems. (There
are two ways to see that immersions do not cause problems for our
arguments. First, one can simply phrase the arguments in M instead
of in its image in the stratum. This involves only notational changes.
Second, [EMM] gives that M is embedded away from a closed locus
of measure zero, and this locus can be avoided in our arguments.)
We will typically treat M as embedded for notational simplicity. All
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linear equations in this paper are assumed to be homogeneous, i.e. have
constant term 0.

Given any subspace V ⊂ Cn, one can define its field of definition as
the unique subfield k ⊂ C so that V can be defined by linear equations
with coefficients in k but V cannot be defined by linear equations with
coefficients in a proper subfield of k. We require that the variables
defining these linear equations are the coordinates of Cn.

Lemma 2.1. The field of definition of any subspace V ⊂ Cn is well-
defined, and furthermore it is the smallest subfield of C such that V is
spanned by vectors with coordinates in this subfield.

Proof. Left to the reader. In fact the field of definition is the field
generated by the coefficients in the row reduced echelon form of any
system of linear equations defining V . �

Given an affine invariant submanifold M, we define its field of def-
inition k(M) to be the field of definition of the linear subspace of Cn

that definesM in period coordinates. Since the transition maps are in
SL(n,Z), this does not depend on which coordinate chart is used.

Given a translation surface (X,ω), its holonomy is the subset Λ ⊂ C
of the holonomies of all saddle connections. (A saddle connection is
a straight line between two singularities on the translation surface,
and the holonomy of a saddle connection is the integral of ω over the
relative homology class of this line.) Similarly the absolute holonomy
is the subset Λabs ⊂ C of the holonomies of all saddle connections
representing absolute homology classes.

Given e1, e2 ∈ Λabs linearly independent over R, the holonomy field
of (X,ω) is the smallest subfield k ⊂ R so that Λabs ⊂ ke1⊕ ke2. This
does not depend on e1, e2. The definition of holonomy field is due to
Kenyon-Smillie [KS00].

Note in particular, that for some A ∈ GL(2,R), we have Ae1 = 1
and Ae2 = i. Hence AΛabs ⊂ k[i], and in particular all of the absolute
period coordinates of A(X,ω) lie in k[i].

3. Generic translation surfaces

In this section we prove Corollary 1.3 assuming Theorem 1.1. First
we must give the definitions.

We say that a translation surface (X,ω) ∈M1 hasM–special periods
if there is some subfield k of the holonomy field of (X,ω), such that

(1) k has degree at most the genus g of (X,ω), and
(2) k(M) ⊂ k, and
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(3) there is some linear equation on local period coordinates with
coefficients in k which does not hold identically on M, but
nonetheless holds at (X,ω).

A translation surface is said to haveM–typical periods if it does not
have M–special periods.

Proof of Corollary 1.3. In local period coordinates,M is some dimCM–
dimensional subspace V of Cn. The unit area translation surfaces in V
form a hypersurface, and the natural invariant volume onM1 is up to
scaling the disintegration of Lebesgue measure on V [EM].

There are only countably many linear equations on V which are
nonzero on V and which have coefficients in a number field of degree at
most g. Their union is measure zero, and their complement is contained
in G in local period coordinates. Hence G has full measure.

Consider any translation surface (X,ω) in G. Its orbit closure is some
affine invariant manifold N ⊂ M, which is defined in local period
coordinates by linear equations with coefficients in k = k(N ). By
Theorem 1.1, k(N ) is contained in the holonomy field of (X,ω) ∈ N ,
and is a field of degree at most g. Furthermore, since k(M) is the
intersection of the holonomy fields of surfaces in M, and k = k(N ) is
the intersection of the holonomy field of surfaces in N ⊂ M, we see
that k ⊃ k(M).

However, the coordinates of (X,ω) by assumption do not satisfy any
linear equations with coefficients in such a field k that do not hold
identically on M. Hence N =M. �

4. Closed orbits for the Teichmüller geodesic flow

The Teichmüller geodesic flow is given by

gt =

(
et 0
0 e−t

)
⊂ SL(2,R).

4.1. Closed orbits are abundant. The following Closing Lemma is
due to Eskin-Mirzakhani-Rafi [EMR, Section 9] using results of Forni.
See also the Closing Lemma of Hamenstadt [Ham10, Section 4].

Lemma 4.1 (Closing Lemma). Let K be an arbitrary compact subset
of an affine invariant submanifold M. Given any open set U ′ ⊂ M
that intersects K, there is a smaller open set U ⊂ U ′ and a constant
L0 > 0 with the following property.

Assume that g : [0, L]→M is a segment of a gt–orbit (parameterized
by t) such that the following three conditions hold:

(1) g(0),g(L) ∈ U ,
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(2) L > L0,
(3) |{t ∈ [0, L]|g(t) ∈ K}| > L/2.

Then there exists a closed gt–orbit that intersects U ′.

Proof. The proof follows as in [EMR, Section 9]. They discuss only
strata of quadratic differentials, but the key feature of local product
structure (expanding and contracting foliations) is guaranteed by real
linearity for any affine invariant submanifold. (The proof proceeds by
applying the contraction mapping principal to the stable and unstable
foliations. Thus, only the hyperbolicity of the flow is relevant. The
flow “accumulates hyperbolicity” at a definite rate as it spends time in
a fixed compact set, which is why condition 3 is required.) �

In fact stronger statements are true; see the references. We have
stated the Closing Lemma as is because we only need the existence of
closed orbits.

4.2. The action on (relative) cohomology. If gT (X,ω) = (X,ω),
then there is an induced pseudo-Anosov diffeomorphism on X. The
action g∗T on the relative and absolute cohomology of X is via this
pseudo-Anosov.

The action of g∗T on absolute cohomology is related to its action on
relative cohomology H1(X,Σ,C), where Σ is the set of singularities.
After replacing the pseudo-Anosov with a power, we may assume it
fixes Σ pointwise. In this case the pseudo-Anosov acts trivially on
ker(p), and thus the action on H1(X,Σ,C) has block triangular form,
where the diagonal blocks are the identity (on ker(p)) and the action
on absolute cohomology.

Both e−T and eT are simple eigenvalues for g∗T [Fri85, FLP79,
Pen91], and the eigenvectors are Re(ω) and Im(ω). The abelian dif-
ferential defines both a cohomology class and a relative cohomology
class, and this statement is true in both cohomology and relative coho-
mology. Furthermore, we emphasize that the generalized eigenspaces
of e−T and eT are one-dimensional in both cohomology and relative
cohomology.

Remark 4.2. We may now sketch a proof that every affine invariant
submanifold M is defined over a number field. Details are left to the
reader, as this will be reproved in a stronger form later.

Pick any period coordinate chart forM. It is not hard using the Clos-
ing Lemma and ergodicity to show that closed orbits are dense inM1.
(K can chosen to be any compact set with measure greater than 0.5, and
condition 3 is verified using the Birkhoff Ergodic Theorem by letting
the starting point be generic.) If (X,ω) lies on a closed orbit, then the
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real and imaginary parts of the period coordinates lie in a number field
up to scaling, because they are eigenvectors of simple eigenvalues of an
integer matrix. The integer matrix is g∗T : H1(X,Σ,Z)→ H1(X,Σ,Z).

The result now follows from the fact that any subspace V ⊂ Cn which
is spanned by points with coordinates in a number field is defined over
a number field.

5. The Simplicity Theorem

In this section we prove that p(T (M)) is simple, using Avila-Eskin-
Möller’s Theorem (Theorem 1.13). First we address the difference be-
tween the statements of Theorem 1.13 and [AEM, Theorem 1.5].

Proof of Theorem 1.13. The difference between the statements is
simply the difference between using real and complex cohomology.

Flat bundles correspond to representations of the fundamental group
of the base. [AEM, Theorem 1.5] gives that the representation to real
cohomology is the sum of real representations without real invariant
subspaces. The complexification of any real representation without
invariant subspaces is either simple or the direct sum of two complex
conjugate simple representations. �

In the following statement, p(T (M)) and T (M) are regarded as flat
complex vector bundles over M.

Theorem 5.1 (The Simplicity Theorem). The bundle p(T (M)) is sim-
ple. Furthermore, T (M) cannot be expressed as a direct sum of flat
complex vector subbundles, and any proper flat subbundle of T (M) is
contained in ker(p).

Proof. By Theorem 1.13, to show p(T (M)) is simple it suffices to show
that it cannot be written nontrivially as a direct sum p(T (M)) =
E ′ ⊕ E ′′ of two flat bundles. Suppose in order to find a contradiction
that such a direct sum decomposition exists.

Pick a small open set U ′ ⊂ M such that, for all v ∈ U ′, if we set
w = p(v), and write w = w′ + w′′ with w′ ∈ E ′ and w′′ ∈ E ′′, then the
real and imaginary parts of both w′ and w′′ are nonzero. (Locally, M
looks like an open subset of a complex vector space, and the set of v
for which the real or imaginary part of w′ or w′′ vanish is a union of
four real vector subspaces.) Apply the Closing Lemma to find v ∈ U ′
which generates a closed gt–orbit.

Let φ be the mapping class of gT , where gTv = v. Then φ is a
pseudo-Anosov, and

Re(w) = Re(gTw) = eTφ∗Re(w).
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By assumption both w′ and w′′ are nonzero, and we have

Re(w′) = eTφ∗Re(w′) and Re(w′′) = eTφ∗Re(w′′).

However, eT is the unique largest eigenvalue for (φ∗)−1, and it is a
simple eigenvalue. This contradicts the fact that we have found two
eigenvectors for this eigenvalue. Hence p(T (M)) is simple.

The same proof shows that T (M) has no direct sum decomposition.
Now we wish to show that any proper flat subbundle B ⊂ T (M) is
contained in ker(p). Suppose not. We must have p(B) = p(T (M)),
since p(B) is a nonzero flat subbundle of p(T (M)), and p(T (M)) is
simple.

Pass to a finite cover ofM′ for which monodromy does not permute
the singularities of flat surfaces. This passage to a finite cover does
not effect any of our previous results; already we were working in an
unspecified finite cover of a stratum. Lift B to a flat bundle B′ over
M′.

Now we have that ker(p) is a flat subbundle on which monodromy
acts trivially. Over any fiber, pick a complement B′′ ⊂ ker(p) of B′.
Because ker(p) is a trivial bundle, this complement extends to a flat
bundle which is a complement to B′. This contradicts that T (M) has
no direct sum decompositions. �

6. Monodromy and Galois action

Part of Theorem 1.5, namely that p(T (M)) is simple, has already
been established in the previous section as part of the Simplicity The-
orem. In this section we use the Simplicity Theorem to establish the
remainder of Theorem 1.5.

Fix an affine invariant submanifoldM. The flat bundle H1 overM
corresponds to a conjugacy class of representations

π1(M)→ EndC2g ' EndH1(X,C)

and Theorem 1.13 of Avila-Eskin-Möller gives that the representation
is semisimple.

Furthermore, the representation comes from an integer valued rep-
resentation

π1(M)→ EndZ2g ' EndH1(X,Z).

Flat subbundles of H1 correspond to subrepresentations, and the
Simplicity Theorem gives that the projection of the tangent bundle
p(T (M)) corresponds to an irreducible subrepresentation, which we
will call V . We will also consider the representation V ′ corresponding
to T (M).
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Proposition 6.1. For any affine invariant manifold, let k be the trace
field of V . Then k = k(M). Furthermore, k(M) is equal to the field
of definition of p(T (M)) ⊂ H1.

The proof has been divided into lemmas, the first of which uses the
following basic fact [Lan65, Cor. 3.8].

Lemma 6.2. (Bourbaki) Let G be any group (not necessarily finite).
Let V1 and V2 be two finite dimensional semisimple representations of
G over a field of characteristic zero. Then V1 and V2 are isomorphic
as representations if and only if their characters are equal.

Lemma 6.3. There is a monodromy matrix A of the flat bundle H1

for which the following is true. The matrix A has a simple eigenvalue
λ, and for every field automorphism σ : C → C which acts as the
identity on the trace field of V , σ(λ) is a simple eigenvalue of A, and
the eigenvector lies in V .

The same statements remain true when H1 is replaced by H1
rel, and

the matrix A is replaced by the corresponding monodromy matrix A′ for
H1
rel: all the σ(λ) are simple eigenvalues of A′, and the eigenvectors lie

in V ′.

We emphasize that by simple eigenvalue, we mean that the general-
ized eigenspace is one-dimensional.

Proof. Suppose (X,ω) ∈M generates a closed gt–orbit, so gT (X,ω) =
(X,ω), and let A be the action of gT on cohomology. In other words,
A is a monodromy matrix for the bundle H1. Let λ be the eigen-
value of maximal modulus of A. We have already observed that λ is
unique and simple (Section 4.2). Furthermore we have observed that
the eigenvector of λ lies in V .

By Lemma 6.2 every Galois automorphism that acts as the iden-
tity on the trace field must send the irreducible representation V to a
conjugate (isomorphic) irreducible representation; that is, these Galois
automorphisms send the representation V to itself.

Hence, for any σ as in the Lemma, it follows that σ(A|V ) is similar
to the matrix A|V (this is the matrix A restricted to the subspace V ),
and consequently σ(λ) is a simple eigenvalue of A|V .

Recall that in a basis adapted to ker p, (possibly after replacing A′

with a finite power) the matrix A′ has the form

A′ =

(
Id ∗
0 A

)
.

Since each σ(λ) is a simple eigenvalue for A, it is also a simple eigen-
value for A′.
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The restriction A′|V ′ of A′ to V ′ has a similar block upper triangular
form,

A′|V ′ =

(
Id ∗
0 A|V

)
,

where the identity block is the identity on V ′ ∩ ker(p). Since each σ(λ)
is an eigenvalue for A|V , it is also an eigenvalue for A′|V ′ . In other
words, the eigenvector for the eigenvalue σ(λ) of A′ lies in V ′. �

Lemma 6.4. Let A′ be as in the previous lemma, and E ⊂ V ′ denote
the span of the eigenvectors of the σ(λ). Then E is defined over the
trace field of V . In particular, V ′ contains vectors with coordinates in
k.

Proof. Let {λ = λ1, . . . , λk} be the set of σ(λ), where σ is a field
automorphism of C acting trivially on k. Define the polynomial g(x) =∏k

i=1(x − λi), and note that g(x) ∈ k[x] has coefficients in the trace
field.

Let f(x) denote the characteristic polynomial of A′. Then g(x) di-
vides f(x), and moreover since the λi are simple eigenvalues g(x) is
coprime to f(x)/g(x).

The Primary Decomposition Theorem gives that there is a projection
onto ker(g(A′)) = E which is a polynomial in A′ with coefficients in k.
In particular, since A′ is an integer matrix, this projection has matrix
coefficients in k, and hence the image is defined over k. �

Proof of Proposition 6.1. We can fix a basis for V ⊂ C2g of vectors
with coefficients in k(M). Since the action on C2g is via integer ma-
trices, it follows that the representation V can be defined by matrices
with coefficients in k(M). In particular, it is clear that the trace field
of V is a subfield of k(M).

The previous lemma gives that V ′ contains a point v′ with coor-
dinates in the trace field k of V . By the Simplicity Theorem, any
invariant subspace of V ′ is contained in ker(p). The point v′ is not
contained in ker(p), so its orbit under the monodromy representation
spans V ′. Since the monodromy of H1

rel is integral, it follows that V ′ is
spanned by points with coordinates in the trace field of V . Hence V ′

is defined over the trace field, that is k = k(M).
This gives that k(M) is equal to the trace field of V . It is easy to

see that the field of definition of p(T (M)) contains the trace field of V
and is contained in k(M). �

Lemma 6.5. For each embedding ρ of k(M) into C, there is a simple
subbundle Vρ of H1. These subbundles are non-isomorphic, and we
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have that

H1 =

(⊕
ρ

Vρ

)
⊕W,

where W is semisimple and does not contain any copies of the Vρ. Both
W and ⊕Vρ are defined over Q.

In particular,

dimC p(T (M)) · degQ k(M) ≤ 2g.

This lemma is exactly Theorem 1.5 in the language of representa-
tions. To translate, set Vρ to be the flat subbundle corresponding to
the representation Vρ, etc.

Proof. Each embedding ρ of k(M) into C can be written as the identity
embedding composed with some field automorphism σρ ∈ GalQ(C). We
set Vρ = σρ(V ). Since the representation π1(M) to H1 can be defined
with integer matrices, it follows that all Vρ appear in this representa-
tion. Furthermore, since k(M) is the trace field of V , all these repre-
sentations Vρ have different characters and are hence non-isomorphic.
They are simple because a simple representation composed with a field
automorphism is again a simple representation.

Again because the representation π1(M) to H1 is integral, we have
that the multiplicity of each Vρ in H1 is the same. The multiplicity of V
must be one because there are matrices in the representations coming
from closed gt–orbits which have a simple eigenvalue whose eigenvector
lies in V .

There are degQ k(M) field embeddings of k(M) into C, so the final
inequality follows from a dimension count:∑

ρ

dimC Vρ ≤ dimCH
1.

�

7. Calculation of the field of definition

Proof of Theorem 1.1. If M is an affine invariant submanifold de-
fined over k, then M contains translation surfaces with period coor-
dinates in k[i]. This is simply linear algebra: linear equations with
coefficients in k can be solved over k. Any translation surface with
period coordinates in k[i] has holonomy field contained in k. This
shows that k(M) contains the intersection of the holonomy fields; it
remains to show that k(M) is contained in the holonomy field of each
translation surface in M.
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If a translation surface has holonomy field k, then up to scaling,
something in its SL(2,R)–orbit has absolute period coordinates in k[i].
So we will show that if M contains a translation surface (X,ω) with
absolute period coordinates in k[i], then k(M) ⊂ k.

The point p(X,ω) represents a point in VId = V with coordinates
in k[i]. By the simplicity of p(T (M)), the orbit of this point under
the monodromy representation spans VId. Since the monodromy is
integral, we see that VId is spanned by points with coordinates in k[i].
It follows that VId is defined over k[i], that is, p(M) is defined over k.
By Theorem 1.5, it follows that M is defined over k.

The bound on the degree of k(M) follows from the inequality in
Theorem 1.5. (The interested reader may discover an alternate way to
conclude that the degree of the field of definition is at most the genus,
using the Closing Lemma and the Simplicity Theorem directly.) �

8. Limits of algebraically primitive Teichmüller curves

Corollary 8.1. Suppose M is contained in the minimal stratum in
prime genus, and that M properly contains an algebraically primitive
Teichmüller curve. Then M is equal to a connected component of the
stratum.

Proof. By Theorem 1.1, k(M) is contained in the trace field of the alge-
braically primitive Teichmüller curve C ⊂ M. Since this field has prime
degree, either k(M) has degree equal to the genus, or else k(M) = Q.
Since the dimension ofM is greater than 2 (becauseM properly con-
tains a Teichmüller curve, and the dimension in question is the complex
dimension of the tangent space), the inequality in Theorem 1.5 forces
k(M) = Q.

In particular, we have that the representation π1(C) to the tangent
space ofMmust be stable underGalQ(C). However, the representation
π1(C) toH1 is the sum of g Galois conjugate irreducible representations,
so we see that the tangent space of M must be all of H1. It follows
that M is a connected component of a stratum. �

Proof of Theorem 1.8. The results of Eskin-Mirzakhani-Mohammadi
[EMM, Thm. 2.3] give in particular that given any sequence of distinct
closed SL2(R)–orbits, some subsequence must equidistribute towards
some larger affine invariant submanifold which contains the tail of this
subsequence.

For the strata in question, the previous corollary shows that the only
affine invariant submanifold which properly contains an algebraically
primitive Teichmüller curve is the entire stratum. �
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