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1. Introduction

Let r = (r1, . . . , rn) be a tuple of positive numbers. Let Sri ⊂ R3

denote the sphere of radius ri. Let

µ : Sr1 × · · · × Srn → R3

denote the addition map, so µ(e1, . . . , en) = e1 + · · ·+ en.

Lemma 1.1. µ is a submersion away from the locus where all ri are
collinear.

Proof. The image of the derivative is the sum of the tangent spaces of
the spheres. These two-dimensional tangent spaces span R3 as long as
they are not all equal. �
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Corollary 1.2. 0 is a regular value of µ as long as there is no solution
to
∑
εiri = 0 with εi ∈ {±1}.

Proof. If
∑
vi = 0 and all the vi are collinear, then the signed sum of

their lengths must be 0. More formally, take the inner product with a
unit vector that is collinear to all the vi to get the result. There are
two choices of unit vector, which correspond to the two possible sign
conventions. �

Standing assumption: From now on, we will assume there is no
solution to

∑
εiri = 0 with εi ∈ {±1}. Note that this assumption is

satisfied by most choices of r.

Corollary 1.3. µ−1(0) is a submanifold of
∏
Sri of dimension 2n− 3

Remark 1.4. Without our standing assumption, this would not be true
in general; µ−1(0) might have singularities. The singularities are mild
and understandable, but we prefer to stick to the non-singular situa-
tion.

Lemma 1.5. µ−1(0) is invariant under SO(3), and the quotient

M(r) = µ−1(0)/SO(3)

is a manifold of dimension 2n− 6.

Proof. Note that because of the genericity assumption, the SO(3) ac-
tion on µ−1(0) is free.

That the quotient is a manifold follows from the fact that the SO(3)
actions is free and proper and smooth, see for example [Lee13, The-
orem 7.10]. The dimension of the quotient is the dimension of µ−1(0)
minus the dimension of SO(3). �

This manifold M(r) is called the moduli space of spatial polygons,
or polygons in 3-space R3. The polygon should be through of as the
edge vectors (e1, . . . , en) ∈

∏
Sri , placed in three space from tip to

tail, up to orientation preserving rigid motions of R3. Note that the
polygons may intersect themselves.

The standing assumption says thatM(r) does not contain any poly-
gon contained in a line.

General references onM(r) include the two papers [KM96,Kly94]
that independently developed some of the general theory, and the more
recent thesis [Man], whose Section 1.1 corresponds to the material
above. We will give additional references as we proceed, but we have
not made any attempt to be comprehensive in our bibliography. The
author is not an expert on this subject, and hence may have inadver-
tently left out some important references and attributions.
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2. The case of n = 4

If n = 4 then the manifold is of dimension 2, i.e. it is a smooth
surface, and the standing assumption isn’t required. (It is required for
bigger n for the moduli space to be a smooth manifold.)

Any spacial polygon can be obtained by gluing together two trian-
gles. The side lengths of one of the triangles are r1, r2 and `, and the
sides lengths of the other triangles are r3, r4 and `. Here there is an
interval of possibilities for `. When it achieves its maximum and min-
imum values, one of the polygons will be degenerate, in that all three
edges will be collinear.

The spacial polygon is obtained by gluing the two triangles together
along some angle θ. Different θ give different polygons, except when
one of the triangles is a line. We think of ` as a map M(r)→ R, and
we see that

• the image is an interval,
• the preimage of an interior point is a circle, and
• with the standing assumption, the preimage of an endpoint is

a point.

Without the standing assumption, the preimage of an endpoint isn’t
necessarily a point. (Think for example of the case when all ri are
equal. Then the preimage of ` = 0 is an interval.) Nonetheless, it isn’t
too hard to conclude the following.

Proposition 2.1. When n = 4, the moduli space M(r) is a sphere
whenever it is non-empty and not a point.

It is empty when r1 + r2 + r3 < r4, or when the same inequality is
true after permuting the ri. It is a point when equality holds.

Remark 2.2. For n > 4 the topology is more complicated, and depends
on r.

3. so(3)

The purpose of this section and the next section is to show that µ
is a moment mapping, and hence that some results concerning µ that
can be understood very explicitly can also be viewed as instances of
general phenomena.

The Lie algebra of SO(3) is the space so(3) of trace 0 anti-symmetric
matrices. Note that so(3) is a three dimensional algebra, where the
algebra product is given by Lie bracket. Another three dimensional
algebra is R3 endowed with cross product. In fact, the Jacobi identity

a× (b× c) + b× (c× a) + c× (a× b) = 0
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for cross product shows that (R3,×) is a Lie algebra. Our goal is now
to show this Lie algebra is isomorphic to so(3).

For a ∈ R3, define Ta ∈ End(R3) by Ta(b) = a× b.

Lemma 3.1. Ta ∈ so(3).

Proof. Recall the formula for the triple scalar product:

〈a× b, c〉 = det(a, b, c).

The fact that Ta is anti-symmetric corresponds to the fact that deter-
minant changes signs when you swap a pair of columns.

That Ta is trace zero is geometrically clear: Ta annihilates a, and acts
as a rotation followed by a scaling on its orthogonal complement. �

Remark 3.2. Ta is the derivative of a on parameter group of rotations
that fixes a. This can be used to give an alternative proof of the lemma.

Lemma 3.3. Ta×b = [Ta, Tb].

Proof. Using the Jacobi identity and the anti-commutativity of cross
product, we calculate

Ta×b(c) = (a× b)× c
= −c× (a× b)
= +b× (c× a) + a× (b× c)
= −b× (a× c) + a× (b× c)
= −Tb(Ta(c) + Ta(Tb(c)),

which is the desired result. �

Lemma 3.4. If B ∈ SO(3), then TBa = BTaB
−1.

Proof. We compute

TBa(c) = (Ba)× c = B(a× (B−1c)) = (BTaB
−1)(c),

using the fact (Bv)× (Bw) = B(v × w). �

The three lemmas show the following.

Proposition 3.5. The map a 7→ Ta is an isomorphism between the Lie
algebras (R3,×) and so(3), conjugating the usual action of SO(3) on
R3 with the Adjoint action of SO(3) on so(3).
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4. Moment mappings for SO(3)

We now consider the sphere Sr of radius r in R3. We deviate from
our typical notational conventions in this section and allow r to denote
a single positive real number rather than a tuple, and similarly for
other notation.

We endow this sphere with the symplectic form ω that is 1/r times
the usual area form. That is, if v, w ∈ Te(Sr),

ω(v, w) =
det(v, w, e)

r2
.

Note that e/r is the unit normal vector to the sphere. We will presently
see why the extra factor of r is included; it is so the lemma below is
true. The factor of r is more important that you might think, since we
will be using different values of r simultaneously.

Suppose that a Lie group, say SO(3), acts on a symplectic manifold,
say Sr, via symplectomorphisms. This gives a collection of flows, via
the one parameter subgroups exp(tξ), for ξ ∈ so(3). We say that

µ : Sr → so(3)∗

is a moment map if, for each ξ ∈ so(3), we have that 〈µ, ξ〉 is a Hamil-
tonian function for the flow exp(tξ). Here we can in fact consider µ as a
map to so(3) rather than its dual, using the standard SO(3) invariant
inner product 〈·, ·〉 to identity R3 ' so(3) and (R3)∗ ' so(3)∗.

Concretely, that 〈µ, ξ〉 is a Hamiltonian function for the flow means
that, for v ∈ TeSr,

(d〈µ, ξ〉)(v) = ω

(
d

dt

∣∣∣∣
t=0

exp(tξ)e, v

)
.

In other words, the exterior derivative of the function 〈µ, ξ〉 gives a
1-form, i.e. a co-vector at each point of the manifold. The symplectic
form, being a non-degenerate bi-linear form on each tangent space,
allows us to identity the tangent and co-tangent spaces, and transform
this co-vector into a tangent vector at each point. In this way we obtain
a vector field, which generates the flow.

Lemma 4.1. The inclusion Sr ⊂ R3 = so(3) is the moment mapping
for the SO(3) action on Sr.
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Proof. We compute, using µ to denote the identity map,

(d〈µ, ξ〉)(v) =
d

dt
〈µ(e+ tv), ξ〉

∣∣∣∣
t=0

=
d

dt
〈e+ tv, ξ〉

∣∣∣∣
t=0

= 〈v, ξ〉
and also

ω

(
d

dt

∣∣∣∣
t=0

exp(tξ)e, v

)
= ω (ξ × e, v)

=
det(ξ × e, v, e)

‖e‖2
.

We wish to show that this is the above expression for (d〈µ, ξ〉)(v). By
SO(3) invariance, homogeneity, and the fact that v is orthogonal to e,
it suffices to check this for e = (0, 0, 1) and v = (0, 1, 0). In this case,
the determinant is the x component of ξ × e = ξ × (0, 0, 1), which is
the y component 〈ξ, v〉 of ξ as desired. �

Remark 4.2. We have observed that

det(ξ × e, v, e)
‖e‖2

= 〈v, ξ〉

whenever v is orthogonal to e.

In general, if a group G acts on two manifolds, it acts diagonally
on their product. In this context, if each action has a moment map,
then the sum of these maps is easily seen to be a moment map for the
diagonal action. Hence we get the following.

Corollary 4.3. The moment map for the SO(3) action on a product
Sr1 × · · · × Srn of spheres is given by the addition map µ.

We close by commenting that we can view Sr as contained in so(3)
via the isomorphism to R3. In general, any orbit for the action of a Lie
group on the (dual of) its Lie algebra has a Kirillov-Kostant symplectic
form. (Here we can use an invariant inner product to identify so(3)
and its dual.) The symplectic pairing of two tangent vectors [X,λ] and
[Y, λ] at the point λ in the adjoint orbit is

−〈λ, [X, Y ]〉.
Note that the tangent space to the orbit at λ is {[λ,X]}, where [·, ·] is
the Lie bracket. Returning to our previous notation, we have

e = λ, v = [X,λ], w = [Y, λ].
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Since cross product by e/r acts by rotation by π/2 on Te, we can set
X = −e× v/r2 and Y = −e× w/r2. This gives

ω(v, w) = 〈e, (−e× v/r2)× (−e× w/r2)〈
= det(e, (e/r)× (v/r), (e/r)× (w/r))

=
1

r2
det(e, v, w).

So we see that our normalization of the symplectic form exactly recovers
the Kirillov-Kostant form.

It is a general fact that the inclusion of a (co)adjoint orbit is a mo-
ment map.

5. The symplectic structure on M(r)

General principles in symplectic topology guarantee thatM(r) has a
natural symplectic structure, because it was constructed using a sym-
plectic space (

∏
Sri , ω), and a moment map µ. Sometimes this is called

symplectic reduction, or the Marsden-Weinstein Theorem. Natural
means that, to compute the symplectic pairing of of two tangent vec-
tors to M(r) we lift them to

∏
Sri and take the pairing there. There

are many possible lifts, but it turns out that they all give the same
pairing. This is for the following reason.

Lemma 5.1. The tangent vectors in the kernel of the derivative of the
map µ−1(0) → M(r) have zero symplectic pairing with any tangent
vector to µ−1(0).

There are easy proofs of this in most symplectic topology books.
Here we also provide an algebraic proof in our situation.

Proof. We take e = (e1, . . . , ek) ∈ µ−1(0). The kernel of the derivative
is all vectors of the form (ξ × e1, . . . , ξ × en) for some ξ ∈ R3. Indeed,
these are the derivatives for the action of one parameter subgroups of
SO(3), so generate the tangent space to the SO(3) orbit.

Now consider a general vector (v1, . . . vn) in Teµ
−1(0). So 〈vi, ei〉 = 0

for each i and
∑
vi = 0. We need to show that

0 =
∑ det(ξ × ei, vi, ei)

‖ei‖2
.

By Remark 4.2, the right hand side is equal to∑
〈ξ, vi〉

which is indeed zero since
∑
vi = 0. �
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6. Action-angle coordinates

The reference for this section is [KM96, Sections 3, 4].
Consider an oriented polygon in R3 given by (e1, . . . , en) ∈

∏
Sri .

We define the length of the i-th diagonal as

`i = ‖e1 + · · ·+ ei+1‖.

LetM′(r) ⊂M(r) denote the locus where all `i are non-zero and each
e0 + · · ·+ ei is not collinear to ei. On this locus, we can define triangles
Ti that span the initial vertex and the (i + 1)-st edge. The triangles
Ti, Ti+1 share an edge which is exactly the i-the diagonal. We define
θi to be the dihedral angle from Ti to Ti+1. So θi is valued in R/2πiZ.
We observe the following.

Lemma 6.1. The `i, θi, i = 1, . . . , n − 3 are smooth coordinates for
M′(r).

These coordinates are analogous to Fenchel-Nielsen coordinates.

Remark 6.2. For each σ ∈ Sn, there is an isomorphism σ : M(r) →
M(σ(r)). Hence one obtains (a slight generalization of) action angle
coordinates on σ−1M(σ(r)). These coordinates are very natural when
σ is a power of the cyclic permutation (123 . . . n). In this case it simply
amounts to picking a different base vertex of the spatial polygon. Other
permutations give rise to less geometric coordinate charts.

One can see that the union of the geometric σ−1M(σ(r)) do not
always cover M(r). For example, consider the case when n = 9 and
all ri are equal. Then M(r) contains a polygon that goes three times
around a triangle. More generally, when n = 9 and r1 + r2 + r3 =
r4+r5+r6 = r7+r8+r9 thenM(r) contains polygons that are triangles
where each edge is actually composed of three collinear edges. These
polygons are not in any of the geometric coordinate charts arising from
cyclic permutations. (Thanks to Gabe Khan for these examples.)

However, the union of all σ−1M(σ(r)) do always cover M(r). To
see this we need to take a polygon, and produce a permutation. To
do this, start with any edge. Then repeatedly pick the “next” edge by
picking any of the remaining edges that are not collinear to the sum
of the previously chosen edges. This algorithm might get stuck, but if
it does, then all the remaining edges are collinear. If this is the case,
remove the previous edge ei0 , add all the remaining collinear edges, and
then add ei0 as the final edge. The order of the edges will produce the
desired permutation.
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For each i, there is a bending flow which twists the first part of the
polygon around the i-th diagonal. In coordinates, it fixes all coordi-
nates except θi, and increases that coordinates linearly.

Lifting to µ−1(0), the flow rotates e1, . . . , ei+1 about the direction
of e1 + · · · + ei+1. We will see that, up to re-parametrization, this
is the Hamiltonian flow for the function `i. Since the flow fixes the
coordinates ej, i > 1, it suffices to prove the following result.

Lemma 6.3. The Hamiltonian flow on
∏
Sri generated by the function

H = 1
2
‖
∑
ei‖2 is a rotation about the direction of

∑
ei with speed

K = ‖
∑
ei‖. If one instead uses K as the Hamiltonian, the the flow

is the rotation with speed one.

Speed refers to how quickly angles change. So speed one means that
the period is 2π, speed 1/2 means that the period is π, etc.

Proof. We begin by observing that

dH(v) = 〈
∑

vi,
∑

ei〉.

Recall the definition of the symplectic form:

ω(v, w) =
∑ det(vi, wi, ei)

r2i
.

We plug in w = ((
∑
ej)×ei), which we wish to show is the Hamiltonian

vector field, to get∑ det(vi, (
∑
ej)× ei, ei)
r2i

=
∑
〈
∑

ej, vi〉

as desired.
Now, note that H = K2/2 so dH = KdK, so dK = (dH)/K and

the speed of the flow is changed to 1. �

Corollary 6.4. The Hamiltonian flow for the function `i preserves
M′(r) and fixes all coordinates except θi, on which it acts by θi 7→ θi+t.
In other words,

d`i(·) = ω

(
∂

∂θi
, ·
)
.

This Corollary was discovered in [KM96], where they are called
bending flows. (We may also call them twisting flows, because they are
analogous to Fenchel-Nielsen twists.) The Hamiltonian flows were also
discussed in [Kly94], but without giving a geometric interpretation.

Remark 6.5. A symplectic manifold with a faithful torus action of half
the dimension is called a toric manifold. M(r) is almost toric, but
is not actually toric. This is because the i-th bending flow cannot be
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extended to the locus with `i = 0. Intuitively, one could change the
polygon so `i is infinitesimal, but with the i-th diagonal pointing in
a different direction, and all these different directions correspond to
different, incompatible bends. Formally, at these points d`i is zero, so
the Hamiltonian flow is not well defined. Nonetheless, for n < 7 and r
generic, M(r) is toric [KM96, Remark 3.13].

In [KM96] the above, plus a trick, was used to understand the
symplectic structure on M′(r).

Theorem 6.6 (Kapovich-Millson). The symplectic form on M′(r) is

ω =
∑

dθid`i.

Proof. Write

ω =
∑

(fijdθid`j + gijdθidθj + hijd`id`j).

The corollary, and the facts that d`i(`j) = δij and d`i(θj) = 0 give that
fij = δij and gij = 0. So it remains only to show that the coefficients
of d`id`j is zero.

For this, we use that any spacial polygon can be moved using the
bending flows to be planar. Indeed, being planar just means that all
θi = 0. This doesn’t change the lengths. Since ω is closed and these
flows are Hamiltonian, this doesn’t change the coefficients of ω. (This
is basically the fact that Hamiltonian flows are symplectomorphisms.)

There is an isometry on M′(r) given by applying any orientation
reversing isometry of R3 to the polygon. It doesn’t matter which one,
since we’ve already modded out by orientation preserving isometries.
The planar polygons are fixed by involution. All the lengths are obvi-
ously also fixed, but the angles are negated.

The involution negates the symplectic form. For example, if you lift
it to µ−1(0), then it is just negation, and there are three sign changes
(the two tangent vectors, and e), and (−1)3 = −1.

Since the symplectic form is negated, and d`i is preserved that means
that the coefficient of d`id`j is zero. This gives the result. �

Remark 6.7. If one only wishes to know the associated volume form,
the proof is simpler, in that it does not require the symmetry argument
at the end, because∑

(dθid`j + hijd`id`j)
n−3 =

∏
dθid`j.

Remark 6.8. This proof follows the same outline as one of the proofs
of Wolpert’s formula for the Weil-Petersson symplectic form.
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Corollary 6.9. The volume of M(r) is (2π)n−3 times the usual Eu-
clidean volume of the image the map (`1, . . . , `n−3).

In particular, it should be possible to use this to see that the volume
is piecewise polynomial. There is a beautiful closed form formula for
the volume of M(r) [Tak01,Kho05,Man14]. It would be great to
find an elementary proof of this formula directly from the corollary.
One would think that at least an elementary inductive proof would be
possible. (I haven’t tried to write one down. It would be preferable
to find a proof that encapsulated more geometric meaning while still
being elementary.)

It’s nice to make the convention that `0 = r1 and `n−2 = rn. (The
convention is that `i is a side length of a triangle whose other side
lengths are `i−1 and ri+1.) Then the image of the map in the corollary
is the polytope described by the three inequalities indicating that there
is a triangle of side lengths (`i−1, `i, ri). It is a general feature of moment
maps that the image is a polytope.

In particular, this makes it easy to see that for r = (r1, r2, r3, r4)
with

∑
ri constant, the greatest volume is realized for r1 = r2 = r3 =

r4. In other words, the regular quadrilateral is the “most flexible”
quadrilateral, in that the volume of its deformation space is greatest.
In fact, this was generalized in [Kho05] to arbitrary n. We will give a
short, elementary argument now.

Theorem 6.10. The maximum volume of M(r) among r with
∑
ri a

constant is uniquely achieved when all the lengths are equal.

Proof. We first give the proof without worrying about uniqueness.
Suppose that not all ri are equal. Then we claim that, without loss

of generality we can assume that r1 > r2 .
We compare the polytope of allowable `i values to the polytope ob-

tained by replacing both r1, r2 with their average a = (r1 + r2)/2.
Before making this change, the allowable `1 values range from r1 +

r2 = 2a to r1 − r2 > 0. After the change, the allowable `1 values range
from 2a to 0.

This shows that the max is achieved when all the lengths are equal.
But it doesn’t show uniqueness. The problem is that there are other
constraints on `1. The upper bound that `1 ≤ r3 + . . . + rn is of no
concern to us, because we see the improvement of the range of `1 on
the lower bound. But it may be that r1 − r2 is the minimum value of
the length of a sum of vectors of lengths r3, . . . , rn, and then we would
see no improvement. In all other cases we see improvement.

One can see uniqueness in the following way, suggested in outline by
Benjamin Krakoff. One can iteratively average the largest and smallest
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ri’s. If the process ends after finitely many iterations with all ri’s being
equal, then the last averaging is easily seen to increase the volume; the
remaining edges all have equal length, so they can be arranged to sum
to zero. Otherwise, eventually the ri are all approximately the same. In
this case, the remaining edges for the next averaging can also arranged
to sum to zero, so the next averaging increases the volume. �

7. The Kähler structure on M(r)

A nice online general reference for Kähler quotients is [Zhu]. The
other references for this section are [KM96,Kly94] as usual.

Recall that
Te(SO(3)e) ⊂ Teµ

−1(0)

has zero symplectic pairing with all of Teµ
−1(0). Hence Teµ

−1(0) is the
symplectic perp of Tp(SO(3)e). Hence it is the Riemannian perp of
ITe(SO(3)e), where I is the complex structure. Hence, the subspace
of Teµ

−1(0) that is orthogonal to the SO(3) orbit is

(ITe(SO(3)e))⊥ ∩ (Te(SO(3)e))⊥.

This subspace is isomorphic to TM(r). Since it is I invariant, we get
that TM(r) has an almost complex structure. This complex structure
together with ω gives M(r) a Kähler structure.

One can write I concretely as follows, for (v1, . . . , vn) ∈ Te
∏
Sri :

I(v1, . . . , vn) =

(
v1 ×

e1
r1
, . . . , vn ×

en
rn

)
.

The subspace of Teµ
−1(0) that is identified with TM(r) consists of

those (v1, . . . , vn) ∈ µ−1(0) that are orthogonal to the SO(3) orbit, i.e.,
are orthogonal to all vectors of the form (ξ × e1, . . . , ξ × en) for any
ξ ∈ R3. This is equivalent to∑ vi × ei

ri
= 0.

Note that the r−1i comes from the definition of the Kähler inner prod-
uct, which like the symplectic form, is scaled from what is typical in
R3. This equivalence is easily seen using that scalar triple product is
determinant, to cyclically permute the role of the vectors.

In the previous section we discussed an involution on M(r) that we
will now denote R. This R applies an orientation reversing isometry
of R3 to the polygon. It is an isometry, so hence its fixed point set is
totally geodesic.

When n = 5, the fixed point set has real dimension 2, and it is
known that it can be a surface of positive, zero, or negative Euler
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characteristic, see for example [Gor, Table 1]. (Note that the fixed
point set of R is not the same thing as the SO(2) symplectic quotient
of circles; rather it is the O(2) symplectic quotient.) It follows that, in
general, M(r) does not always have non-negative sectional curvature.

I don’t know the answers to any of the following. (Other people
besides me may know the answer.)

• Does M(r) have positive scalar curvature? Are there nice for-
mulas for its curvatures?
• Can the isometry group of M(r) ever be larger than the sta-

bilizer of r in Sn? (Possibly at least when dimM(r) > 2, in
analogy with the fact that Royden’s Theorem fails for two di-
mensional Teichmüller spaces?)
• Can geodesics be computed? Is there any sense in which they

represent the most efficient way to deform one polygon into
another, in some physical sense?
• Does the geodesic flow have dense orbits?

8. Moduli of points on P1

Consider H3 in the unit ball model, so its boundary is the unit sphere
S2 ⊂ R3.

Douady and Earle defined, for each probability measure ν on S2 that
has no atoms of mass at least 1

2
, a conformal center of mass C(ν) ∈ H3

[DE86]. It has the property that for any g ∈ PSL(2,C) then

C(g∗ν) = gC(ν).

Since PSL(2,C) acts on H3 transitively, for any such ν there is a
gν ∈ PSL(2,C) such that gνC(ν) = 0. This gν is well defined up to
SO(3) ⊂ PSL(2,C), where SO(3) is the stabilizer of 0 ∈ H3.

Douady and Earle also showed that C(ν) = 0 if and only if the usual
Euclidean center of mass of ν is 0. Hence, a consequence of their work
is that there is a gν ∈ PSL(2,C) that is well defined up to SO(3) such
that (gν)∗µ has Euclidean center of mass zero.

Remark 8.1. In Teichmüller theory, the Douady-Earle result gives a
nice way to extend a quasi-symmetric map of the circle to a quasi-
conformal map of the disc. Each point in the disc H2 gives a visual
measure on the circle S1 at infinity. This measure is pushed forward via
the quasi-symmetric map, and the point is mapped to the conformal
center of mass.

Fix r = (r1, . . . , rn) with our usual genericity assumption, which
means the ri can’t be divided into two subsets of equal total sum.
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We now defined a space M0,r which is a compactification of M0,n,
the moduli space of n distinct ordered points on P1 up to PSL(2,C).
Of course, M0,n can be constructed as the subset of n distinct points
in P1, quotiented by the diagonal PSL(2,C) action. Similarly, we can
consider the subset of n points in P1 such that the sum of the masses at
any given point is strictly less than 1

2
. Here we give the i-th point mass

ri. The quotient of this space by PSL(2,C) is defined to be M0,r.

Remark 8.2. In M0,r, there must always be at least three distinct
points, since the total weight at any point is less than 1

2
. There should

always be a map from the Deligne-Mumford compactification toM0,r.
This map can be defined as follows. Start on a leaf of the nodal Rie-
mann surface. If the sum of the marked points on that leaf is less than
1
2
, contract it to a point, and give that point the sum of the weights.

(There will always be a leaf with this property, unless we’re done.)
Repeat to eventually get a point in M0,r.

It is intuitive that M0,r is compact. For example, if some points
collide in such a way that the total mass would be more than 1

2
, then

we can use a Möbius transformation to zoom in on the collision. This
changes the point of view, so that now the remaining points, which
have mass less than 1

2
are colliding. But compactness will also follow

from the following.

Theorem 8.3. M0,r is isomorphic to M(r).

Proof. We can consider any point of M0,r as a measure on S2, up to
PSL(2,C). Apply a Möbius transformation to this measure so that
the (conformal) center of mass is zero. The measure is now a collection
of points (q1, . . . , qn) ∈ S2, defined up to SO(3), such that

∑
riqi = 0.

This corresponds to the polygon with edge vectors ei = riqi. �

One can also see that the complex structures agree.

Proposition 8.4. M(r) is simply connected.

Proof. π1(M0,n) → π1(M(r)) is surjective; since the boundary is real
codimension at least 2, any loop can be isotoped to be disjoint from
the boundary.
π1(M0,n) is generated by loops that move one point around another.

If the sum of the weights is less than one half, the points can be collided,
showing the that loop is trivial. If the sum is more than a half, all
remaining points can be collided, showing that the loop is trivial. (Note
that M0,3 is a point, so you in fact can’t have such a loop when there
are only three points.) �
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It would be nice to come up with a direct proof not using the connec-
tion to moduli of points. I imagine this is possible, but haven’t done
it. A proof might attempt to show that π1(M(r)) is generated by the
loops given by bending deformations, which are all obviously trivial.

Example 8.5. We consider the case n = 5, and show that the topology
of M(r) depends on r.

In general, for any tuple of four ri such that any three of them add
up to at least 1/2, we get a map M(r)→M0,4.

In particular, we get a map M(.2, .2, .2, .2, .2) → P1 × P1, by con-
sider the first 4 points and the last 4 points. It seems that there are
three contracted curves, for the three pairs of two of the central three
points that can overlap. The three contracted curves are disjoint. So
M(.2, .2, .2, .2, .2) is P1×P1 blown up at 3 points. (Compare to [Kly94,
Example 1.4.4], which claims that it is P2 blown up at 4 points.)

On the other hand, we also get a map M(.03, .31, .31, .31, .04) →
P1 × P1, again by consider the first four and the last four points. In
this case this map is an isomorphism, since no pair of the middle three
points can collide.

Example 8.6. We consider the example

M
(

1

2
− ε,

1
2

+ ε

n− 1
, . . . ,

1
2

+ ε

n− 1

)
.

The first point cannot collide with any other. We can move that point
to ∞ on P1, and we get that we have n − 1 points on C up to affine
transformation, any n− 2 of which can collide. We can normalize the
second point so it is at the origin, and then the remaining points are
defined up to scaling, and we have the condition that they can’t all be
0. Hence the moduli space is Pn−3.
Example 8.7. We consider the example M(1, 1, 1, ε, . . . , ε). We have
a bunch of maps to P1 by taking cross ratios of four tuples including
the first three points. Since the first three points can’t collide, this
gives an isomorphism to (P1)n−3.

These moduli spaces were used by Deligne-Mostow to build lattices
in SU(k, 1) for some values of k. In short, they looked at monodromy
of families of cyclic covers of P1 branched over k points, and had to
allow some collisions of points. Thurston gave a different point of view,
related to the moduli of points point of view. He used the fact that,
giving a collection of points on P1 and collection of ri so that

∑
ri = 1,

then one can find a cone metric on the sphere with cone angles 2π(2−ri)
at the given points. SoM(r) is also a compactification of the space of
cone metrics on S2 with given cone angles!
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9. Chamber structure

M(r) is non-empty if and only if all permutations of the inequality

r1 ≤ r2 + . . .+ rn

hold. Thus, the space of valid r is a polyhedron in Rn. Since there
are n-inequalities, the polyhedron is actually a cone on a simplex. For
example, if we choose to normalize so

∑
ri is a constant, then the

region of ri is a simplex.
This simplex is cut by a number of hyperplanes corresponding to the

r not satisfying our standing assumption. These hyperplanes cut the
region of valid r in to sub-regions called chambers.

In each chamber, the topology of M(r) is constant. One nice way
to see this is that the corresponding moduli of points are isomorphic.
One can just change the weights from one r to another r′ in the same
chamber, and this will never result in a point with total weight 1

2
or

more. Indeed, one can linearly or smoothly interpolate between r and
r′. If the weights at some point reached 1

2
at a point, this would prove

that this intermediate value of r′ did not lie in the same chamber.

10. Circle bundles, Euler classes and intersection
numbers

For each 1 ≤ i ≤ n, there is a circle bundle Ci → M(r). A point
in Ci is an element of µ−1(0) whose i-th edge begins at the origin and
goes in the direction of the x-axis. The group SO(2) of rotations that
fix the x-axis acts on these configurations, and the quotient is M(r).

Remark 10.1. Recording the length of a diagonal gives a map `1 :
M(r)→ R, whose image is an interval. The preimage of a point in the
interior of isomorphic to a circle bundle Ci over someM(r′) of smaller
dimension.

Let Li denote the normal bundle of the i-the edge. To be pedantic,
it is easiest to start by defining the normal bundle over µ−1(0). Here it
is given by the subspace of R3 that is normal to the i-th vector. Then
we mod out by the SO(3) action to get the total space of Li →M(r).

Let Ui ⊂ Li denote the unit normal bundle. Note that Ui is iso-
morphic to Ci. Indeed, a map is given by taking a polygon and a unit
normal vector and placing the polygon in R3 so the i-th edge starts at
the origin and goes in the x-direction, and the unit vector maps to the
y direction. The inverse of this map takes a point in Ci and choose the
unit normal vector in the y direction.
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Hence Li is the R2 bundle associated to the circle bundle Ci. (This
also suggests that Ci may be viewed as the relative tangent bundle at
the i-th point, from the moduli of points point of view.)

There is a cohomology class

eu(C1) ∈ H2(M(r),Z)

called the Euler class of the circle bundle. If the Euler class is non-zero,
then the circle bundle doesn’t have a section. We will use the following
to compute the Euler class. For us it can serve as a definition; we’ll
skip more standard definitions of the Euler class.

Lemma 10.2. Suppose that C is a circle bundle over a space M. Let
L be the associated R2 bundle. Let s be a section of L → M that
intersects the zero section transversely. Then eu(C) is Poincare dual to
the zero locus of s.

Note that this lemma in theory applies to any circle bundle, since
the zero section of L can always be perturbed to be transverse.

In our situation, we can easily define a section s of L1 as follows. Just
take the second vector and project it to the normal direction. The zero
section is the locus where the first and second edges are parallel, which
has one component isomorphic to

D+
1,2 =M(r1 + r2, r3, . . . , rn)

and one component isomorphic to

D−1,2 =M(|r1 − r2|, r3, . . . , rn).

The orientations are given by [AG09, Section 4] and could presumably
be worked out from first principles fairly easily. We get

eu(C1) = D+
1,2 + sign(r1 − r2)D−1,2.

We might have made a sign error, if our conventions differ from other
sources, and we are assuming r1 6= r2 to get a transverse intersection.
Note that the D± have natural orientations, since they are embedded
copies of smaller polygon spaces, and these polygons spaces cary a nat-
ural complex structure. But D− is not a complex submanifold ofM(r).
That is, the embedding is not holomorphic. One can already see a hint
at this in the fact that the negation map is not holomorphic on the
sphere, and hence the graph of this map is not a complex submanifold
of a product of spheres. Note also that sometimes one or even both
of these two loci could be empty. This happens sometimes even in the
case of n = 4.

We can obtain integers by taking a product of n − 3 of the eu(Li)
(for different i’s). These integers count the signed number of transverse
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intersections of the Poincare dual classes. Note that even if one wants,
for example, to consider the product of eu(L1) with itself in the case
of n − 3, this can often be done by considering two different sections,
which might give transverse Poincare duals.

The information of these intersection numbers can be packaged into
a generating function. They satisfy recursive relations analogous to
those provided by Witten’s conjectures for the case of moduli of curves,
and they can also be computed explicitly, see for example [AG09].
There are a number of other papers that have been written about the
intersection theory and topology of M(r). For example, the eu(Li)
generate the cohomology ring, and an explicit presentation of this ring
is given in [HK98, Man14], which also give results on intersection
numbers.
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