
Math 222 notes cumulative

Alison Miller

1 Introduction and Overview

Today we’ll give a brief rough overview of the subject, with some gaps in rigor that will
be filled in later. (On Wednesday, we’ll fill in some of the differential geometry.)

1.1 Lie Groups

Definition. A (real) Lie group G is a group which is also a smooth (C∞) manifold, such
that the multiplication map G×G→ G and the inverse map G→ G are C∞ maps.

(A category theorist would restate this definition by saying that a Lie group is a group
object in the category of C∞ manifolds.)

Why care about Lie groups? One reason might be that you already care about groups
and about manifolds, and are interested in things that are both.

Another possible reason comes from the idea, dating back to Hilbert, that in order to
study a geometry, one should study its group of symmetries, and that group of symme-
tries is often a Lie group.

For instance: consider the group Isom(R3) of isometries of Euclidean space. This is
a group that we have real-world experience with, and we have some intuitive sense of
which isometries of R3 are “close to each other”. We’ll see later that we can make this
group into a manifold whose topology agrees with our expectations.

For another, central example: in linear algebra, you learn to care about not just isome-
tries, but all linear maps from a vector space to itself. This leads us to consider the group

GL(V) = {invertible linear maps from V to V}.

When V is finite-dimensional, this is a Lie group. Indeed, we have V ∼= Rn for some n,
and so

GL(V) ∼= GL(Rn) = GLn(R) = {g ∈Mn×n(R)|detg 6= 0},

which is an open subset of the space Mn×n(R) of n× n real matrices; but the latter can
be identified with Rn2 ; hence GLn(R) is an open subset of Rn2 , which is definitely a
smooth manifold.
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One can construct a number of other Lie groups as closed subgroups of GLn(R).
We’ll just list a few examples for now. We won’t actually check that the underlying
closed subsets of GLn are manifolds right, now, but we’ll later see how to do this. (It’s a
general fact, however, that every closed subgroup of GLn(R) is a Lie group; I’m not yet
sure whether or not this is something we’ll prove in class.)

The special linear group:

SLn(R) = {g ∈ GLn(R) | detg = 1}.

(This one can easily be checked to be a manifold, directly from definitions.)
The orthogonal group On(R), also called O(n), which is the subgroup of GLn(R)

containing those elements g that preserve the standard inner product (that is (gv · gw =

v ·w)); it can also be expressed in matrix form as

On(R) = {g ∈ GLn(R) | gtg = 1n}.

I didn’t say this in class, but could have noted here that O3(R) is a subgroup of the group
Isom(R3) that we started this discussion with, consisting of the isometries that fix the origin.

The construction of On(R) can be modified in a few different ways: to give one
example, we could instead consider the subgroup of GLn(R) preserving some other non-
degenerate inner product (symmetric bilinear form). If this inner product has signature
(p,q) with p+ q = n, then, after appropriate change of basis, it will have matrix Q with
p 1’s and q (−1)’s on the diagonal, and the subgroup preserving it is then

O(p,q) = {g ∈ GLn(R) | gtQg = Q}.

There’s also a notion of complex Lie groups, which we’ll define later in the class;
for now we’ll just give some examples. There are in general fewer complex Lie groups
than real ones; however, the groups GLn(C), SLn(C) and SOn(C) defined analogously to
above are all complex Lie groups.

1.2 Representations

In math we often have a choice between taking the “extrinsic” or “intrinsic” viewpoints.
For instance, in differential geometry, one has a choice between working with subman-
ifolds of Rn or defining manifolds abstractly as certain types of topological spaces. I
didn’t mention this in class; but this also happened in finite group theory, where people started
out by studying subgroups of permutation groups before developing the concept of an abstract
group.

Likewise, when studying Lie groups, mathematicians originally just studied sub-
groups of GLn(R), but they they broke the subject into two parts: studying abstract Lie
groups G, and, for a given Lie group G, studying morphisms G→ GLn(R). This second

2



part of the subject is what is known as the representation theory of G. Note we are now
studying all morphisms G→ GLn(R), not just embeddings; this turns out to be a better
class of objects to look at. Also, I should have noted this in class; not all Lie groups embed into
GLn(R).

To formalize the definition above:

Definition. A representation of G on a (real or complex) vector space V is a group
homomorphism ρ : G→ GL(V). Here V can be either finite or infinite-dimensional; if V
is finite-dimensional we require that ρ be a smooth map.

(We won’t be doing any general theory of infinite-dimensional representations, but
we will occasionally be invoking specific infinite-dimensional representations.)

We will spend much of the class time studying representations of Lie groups.

1.3 Lie Algebras

The last important topic in this class is Lie algebras, which will allow us to convert
geometric questions about Lie groups into much more algebraic questions.

We’ll be able to do this subject much more justice later after we review the differential
geometry background, but for now, we’ll just give the construction of the Lie algebra of
G when G is contained in GLn(R).

For any Lie group G, we can define the tangent space T1(G) to G at the identity 1 ∈ G.
If G ⊂ GLn(R), then T1(G) ⊂ T1(GLn(R)) ∼= Mn×n(R), since GLn(R) is an open subset
of Mn×n(R).

If G were an arbitrary submanifold of GLn(R), all we would be able to say about
T1(G) is that it is a R-vector space. But we’ll show that, because G is a subgroup, the
space T1(G) is also closed under the Lie bracket operation defined by

[X, Y] = XY − YX.

We define Lie(G) to be the vector space T1(G) with the binary operation [·, ·]. This is
an example of a Lie Algebra, which we now define.

Definition. A Lie algebra g over a field K is a K-vector space with a bilinear map [·, ·] :
g× g → g such that [X, Y] = −[Y,X] for all X, Y ∈ g (I might have forgotten this in class?)
and satisfying the Jacobi identity

[[X, Y],Z] + [[Y,Z],X] + [[Z,X], Y] = 0.

for all X, Y,Z ∈ g.

(Note that although usually “algebra” is used for sets with an associative bilinear
operation, the bracket operation on a Lie algebra is not associative.)
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In this class we’ll more generally define Lie algebras intrinsically for an arbitrary Lie
group, and show that passing from a Lie group to its Lie algebra retains most of the
structure. We’ll then study Lie algebras that have the property of being “semisimple”
(this means that they are the direct sum of simple lie algebras, where “simple” here
means something very analogous to what it does in finite group theory). note: I forgot
to mention this semisimplicity condition in class. For these Lie algebras, we will be able
to completely classify their representations; then we will go on to classify the complex
semisimple Lie algebras themselves.

2 Differential Geometry

Last time we gave an overview of the course, using terms like “C∞ manifold” and “tan-
gent space” without defining them. Today let’s define them.

2.1 C∞ manifolds

Let M be a second countable Hausdorff space.

Definition. A C∞ atlas on M is an open cover {Uα} of M along with a collection of open
sets Vα ⊂ Rn (here n is fixed) and homeomorphisms φα : Uα → Vα such that for any
α,α ′, the map

φα ◦ (φα ′)−1 : φα(Uα ∩Uα ′) → φα ′(Uα ∩Uα ′
is a diffeomorphism.

Definition. Two atlases {Uα}α∈A, {Uβ}β∈B are equivalent if their union {Uα}α∈A∪ {Uβ}β∈B
is also an atlas.

Definition. A C∞ manifold M is a second-countable Hausdorff space M along with an
equivalence class of atlases on M. I forgot to say this in class, but we have an obvious notion
of dimension of a manifold: if the Vi are open subsets of Rn, then we say that M has dimension
n.

Remark. It’s easy to see that any equivalence class of atlases contains a maximal atlas (the
union of all atlases in that equivalence class). Hence we could equivalently have defined
a smooth manifold as a (2nd countable, Hausdorff) space M with a maximal atlas. We
chose not to take this path, because if you want to show that something is a manifold,
it’s easier to just find one atlas on it than to construct a maximal atlas.

Remark. There’s a notion of a holomorphic function φ : U→ V where U ⊂ Cm, V ⊂ Cn,
very much similar to that of a holomorphic function in one variable; as in the single-
variable case, it’s equivalent to saying that the function can locally be expressed as a
power series in the complex variables.
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Using this, you can define a complex manifold analogously to above, replacing Rn

by Cn and replacing “diffeomorphic” with “biholomorphic” (that is, holomorphic with
holomorphic inverse).

Using the charts, we can now define a C∞ function from M to R.

Definition. Let M be a C∞ manifold with charts {Uα} and maps φα : Uα → Vα ⊂ Rn.
A function f :M→ R is C∞ if for any chart Uα with map φα : Uα → Vα, the function

f|Uα ◦φ−1
α : Vi → R is C∞. The space of C∞ functions from M to R is called C∞(M).

(For this definition to be well-defined, we do need to check that it doesn’t depend on
the choice of atlas on M; this is straightforward.)

Likewise, we can say that a function F : M → Rm is C∞ if each coordinate of F is a
C∞ function. Now we extend this definition to a function F :M → N for N another C∞
manifold. First, note that if M is a C∞ manifold, and M ′ is an open subset of M, then
M ′ is naturally a C∞ manifold with charts {Uα ∩M ′}α∈A, so it makes sense to talk of a
C∞ function M ′ → Rn.

Definition. LetM be a C∞ manifold andN be a C∞ manifold with charts {U ′β} and maps
φ ′β : U ′β → V ′β ⊂ Rm. Then a function F : M → N is C∞ if and only if for every β ∈ B,
(φ ′β)

−1 ◦ F|F−1(U ′β) : F
−1(U ′β) → Vβ ⊂ Rm is a C∞ map.

(Note that F−1(U ′β) is an open subset ofM, hence a C∞ manifold, and so by the above
we know how to define C∞ maps from F−1(U ′β) to Rm.)

(Again, we need to check this doesn’t depend on the choice of atlas on N, and again
this is straightforward.)

Remark. I mentioned in class that there’s actually a slicker way of defining C∞ maps from
M to N: the map F : M → N is C∞ if and only if for every f ∈ C∞(M), F ◦ f ∈ C∞(N).
The “only if” part is true because a composition of C∞ maps is C∞; the “if” part is
somewhat trickier.

(Mention of the Implicit Function Theorem here as a good way of showing that some-
thing is a smooth manifold.)

Remark. Although the atlas definition is a efficient way of defining smooth manifolds,
we won’t actually use it directly much. Instead, we’ll usually define things in terms of
C∞ functions. This will have the advantage that our constructions will be more natural,
and it will be easier to check that they don’t depend on the choice of atlas.

In fact, there’s another approach to defining C∞ manifolds without atlases, instead
using the data of the function (contravariant functor) sending a subset U ⊂ M to the
ring C∞(U) of C∞ functions on U It turns out that one can reconstruct the C∞ manifold
structure of M from this data; and therefore any construction we can do on a smooth
manifold we can do just in terms of C∞ functions on open subsets of M.
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2.2 Tangent Spaces

We’ll now define the space of tangent vectors to a manifold at a point; this is a notion
we used last time. The picture I drew last time was the one we’re used to thinking of,
say from multivariable calculus; we had a manifold in Rn, and the tangent space was
a subspace of Rn tangent to it at a point. The problem with this definition is that it’s
extrinsic; it absolutely depends on the embedding of our manifold in Rn. We’ll now see
how to define the space TpM of tangent vectors to M at p in a way that’s doesn’t depend
on the embedding; actually, we’ll do this in two different ways.

Our first definition is motivated by the idea that a tangent vector at p gives an “in-
finitesimal direction” in M.

Let M be a C∞ manifold and p a point of M.

Definition (First definition of tangent vector). A tangent vector to M at p is an equiva-
lence class of functions: γ : I → M, such that the domain I of γ is some interval in R

containing 0 and γ(0) = p modulo the equivalence relation

γ1 ∼ γ2 if (f ◦ γ1) ′(0) = (f ◦ γ1) ′(0) for all f ∈ C∞(M).

(here (f ◦ γi) ′(0) is the derivative of the function f ◦ γi : Ii → R at the point 0.)
We let TpM denote the space of tangent vectors to M at p.

Note that if F : M → N is a smooth map, then we have a natural map dFp : TpM →
TF(p)N given by [γ] 7→ [F ◦ γ].

This definition has the disadvantage that TpM does not have an obvious vector space
structure. So we give another definition, which turns out to be equivalent.

Definition (Second definition). A tangent vector to M at p is a linear map δ : C∞(M) →
R such that δ(fg) = f(p)δ(g) + g(p)δ(f).

Again, we will let TpM denote the space of tangent vectors toM at p in this definition.
This is abuse of notation, but it won’t be too bad since the two definitions are equivalent,
as we’ll see.

If [γ] is a tangent vector in the first sense, the map δγ : C∞(M) → R given by
δγ(f) = (f ◦ γ) ′(0) is a tangent vector in the first sense. It’s clear from the definition that
the map [γ] 7→ δγ is a well defined injection from TpM (first definition) to Tp(N) second
definition.

We now need to show that the map is actually surjective; that is, that any δ satisfying
the properties above is of the form [δγ].

We’ll do this in two steps; first we show that for any neighborhood U of p, δ(f) only
depends on the values of f on U. Using that fact, we can reduce to showing this when
M is an open set in Rn.

To show the first part; since δ : C∞(M) → R is linear, we just need to show that
δ(f) = 0 for any f which vanishes on U.
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To do this, choose g ∈ C∞(M) such that g(x) = 0 for any x /∈ U and g(p) = 1 (it’s an
exercise in differential geometry to show that g exists). Then fg = 0, so 0 = δ(fg) = δ(f)
as desired.

We’ll do the second step next time, by computing Tp(Rn) in both definitions.
Recap: M is a manifold, p ∈ M, last time we gave two definitions of the tangent

space TpM. Today we’ll show that they are equivalent, but for the moment let’s give
them different names so we can tell them apart:

T
path
p M = {γ : I→M | γ1 ∼ γ2 if (F ◦ γ1) ′(0) = (F ◦ γ2) ′(0) for all F ∈ C∞(M).

and

Tder
p N = {δ : C∞(M) → R | δis R-linear and δ(fg) = δ(f)g(p) + f(p)δ(g).}

First, some comments: note that both of these definitions allow us to push forward
tangent vectors by a C∞ map F :M→ N.

For the path definition; we can define a map dF : T
path
p (M) → T

path
p (N) by dF([γ]) =

[F ◦ γ].
For the derivation definition: we can define dF : Tder

p (M) → Tder
p (N) by dF(δ)(f) =

δ(f ◦ F) for all f ∈ C∞(N).
Also, both these definitions are local, in the sense that if U ⊂ M is an open neigh-

borhood of p, TpU ∼= TpM. (Here the isomorphism is dF where F is the inclusion map
U ↪→ M.) For Tpath

p this is because we can always shrink the domain of γ so that the
image of γ is contained in U. For Tder

p this follows from our observation at the end of
last time, that for any δ ∈ Tder

p the value of δf depends only on the values of f on any
open neighborhood of p. (Actually showing this is a little subtle and we’ll leave it for
the problem set.)

We now want to show that these two definitions are equivalent. That is, we have
a natural map T

path
p M → Tder

p M given by [γ] 7→ δγ where δγ(f) = (f ◦ γ) ′. We wish
to show that this is an isomorphism. Since p has an open neighborhood U which is
diffeomorphic to some open subset V of Rn, by the above properties of our definitions,
it’s enough to show that the map [γ] 7→ δγ is a diffeomorphism when M = Rn.

To do this, we’ll show that both Tpath
p Rn and Tder

p Rn are isomorphic to Rn. We can
define maps between the three:

Rn T
path
p Rn

Tder
p Rn.

v 7→[γv]

v 7→δv
γ ′(0)←[[γ]

[γ] 7→δγ
(δ(x1),δ(x2),...δ(xn))←[δ
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Here, for v = (v1, . . . , vn) ∈ Rn we define δv ∈ Tder
p Rn by δv = v1

∂
∂x1

+ · · ·+ vn ∂
∂xn

(that
is, this is the directional derivative along v).

Checking commutativity of this diagram is straightforward with one exception: we
need to show that, for δ ∈ Tder

p (Rn), δ = δv where v = (δ(x1), . . . , δ(xn)).
To show this, we will evaluate δ at an arbitrary f ∈ C∞(Rn). To do this, we’ll have to

use a form of Taylor’s theorem with remainder, which we state here:

Lemma 2.1 (Taylor’s theorem with remainder, lemma 1.4 in Introduction to Manifolds by
Tu). If f ∈ C∞(Rn), for any p = (p1, . . . ,pn) ∈ Rn, there exist functions g1, . . . ,gn ∈
C∞(Rn) such that

f(x) = f(pi) +

n∑
i=1

(xi − pi)gi(x). (1)

and gi(p) = ∂f
∂xi

(p).

(The statement about gi(p) follows from (1) by taking the partial derivative with
respect to xi.)

Note that must vanish on constant functions. To show this, note that δ(1) = δ(1 · 1) =
1 · δ(1) + δ(1) · 1, hence δ(1) = 0, and so by linearity δ vanishes on all constant functions.

This shows that our big diagram above commutes, and that Rn ∼= Tder
p Rn ∼= T

path
p Rn.

We can now also conclude by the argument given above, this means that Tder
p M ∼=

T
path
p Rn, and by mild abuse of notation we’ll write TpM for both of them, and switch

between definitions depending upon what is more convenient.

3 Vector fields

Now we define a vector field. Intuitively, a vector field on a manifold M is a choice of a
tangent vector at each point of M, in such as way that the vector field varies smoothly
with the basepoint.

Again, there are two ways of making this formal; a more geometric one, and one in
terms of derivations.

The first way is to define vector fields in terms of the tangent bundle TM. As a set,
TM is the disjoint union of all tangent spaces:

TM =
∐
p∈M

TpM.

We can make TM into a C∞ manifold by covering it with charts as follows. Let Uα be
a chart on M, with map φα : Uα → Vα. Then TUα =

∐
p∈Uα TpUα =

∐
p∈U TpM ⊂ TM,

will be a chart on TpM, using the identifications TUα ∼= TVα ∼= Vα ×Rn ⊂ Rn ×Rn.
Since TM is covered by the TUα, this makes TM into a manifold (it’s easy to check that
these charts are compatible).
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Definition (Vector fields, definition 1). The space Γ(TM) of vector fields on M is the
space of C∞ maps s :M→ TM such that s(p) ∈ TpM for every p ∈M.

We now give our second definition:

Definition (Vector fields, definition 2). A vector field on M is an R-linear map δ :

C∞(M) → C∞(M) satisfying the product rule

δ(fg) = fδ(g) + δ(f)g.

for all f,g ∈ C∞(M).

Note that this definition is entirely algebraic, in terms of the ring C∞(M). As such, it
generalizes to an arbitrary R-algebra:

Definition. Let A be an R-algebra (not necessarily commutative or associative). A deriva-
tion on A is an R-linear map δ : A→ A satisfying

δ(fg) = fδ(g) + δ(f)g

for all f,g ∈ C∞(M).

The set of all derivations on A is denoted Der(A). It clearly has the structure of
R-vector space; we’ll see later that it also has a natural Lie algebra structure.

It remains to show that our two definitions are equivalent; that is, that Der(C∞(M))

is naturally isomorphic to Γ(TM). For this, we give maps in both directions.
Given δ ∈ Der(C∞(M)), we construct s ∈ Γ(TM) by s(p) = δp where δp ∈ Tp(M) is

given by δp(f) = (δf)(p).
Given s ∈ Γ(TM), construct δ ∈ Der(C∞(M)) by (δ(f))(p) = s(p)(f) for all p ∈M.
One can check that these two maps are well-defined and inverses.
Let’s pin down notation. As before, M is a manifold; let X be a vector field on M.

We are primarily going to be thinking about X as a derivation today. For p ∈ M, define
Xp ∈ TpM by Xp(f) = Xf(p) (that is, Xp is the value of X at the point p.

Example. Let M is the unit circle in R2 (this is a submanifold because it is a regular level
set of the function x2 + y2). For p ∈ M, we can view TpM as a subspace of TpR2 (this is
most easily seen from the definition in terms of paths).

Then we can define a vector field X on M by Xp = (−y, x).

4 Integral curves

Definition. An integral curve for X is a map γ : I → M (where I is an interval in R) if
γ ′(t) = Xγ(t).
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(Here, γ ′(t) is the tangent vector dγ1 which is the image of 1 ∈ Tt(I) under γ. An
alternative equivalent definition, using the path definition of the tangent space is, γ ′(t) =
[u 7→ γ(t+ u)] ∈ Tγ(t).

The following theorem summarizes the relevant results on integral curves. We won’t
give a proof; it follows from fundamental results about PDEs.

Theorem 4.1. 1) (Existence) For any p ∈ M, there exists an integral curve γ : I → M with
γ(0) = p.

2) (Uniqueness) If γ1 : I1 →M and γ2 : I2 →M integral curves with γ1(0) = γ2(0) = p, then
γ1 ≡ γ2 on I1 ∩ I2.
(As a corollary, there is a unique maximal interval I on which there is an integral curve γ
with γ(0) = p. If I = R, this integral curve is called complete. If this is true for any p ∈M,
the vector field X is called complete)

3) (C∞ dependence on initial conditions) There exists a neighborhood U of p, an interval I ⊂ R,
and a C∞ map φ : I×U→M such that

• φ(0, x) = x for all x ∈ U
• for any x ∈ X, the map t 7→ φ(t, x) is an integral curve of X.

The map φ is called a (local) flow of X.

Moreover, if X is complete we may take I = R and U =M, in which case we say that φ is a
global flow.

Example. Let X be the vector field above on the unit circle. Then (cos t, sin t) is an integral
of X. Furthermore, we can define a complete flow φ by φ(t, x) is the rotation of x by an
angle of t.

Example. M = GLn. Pick some A ∈ Mn×n(R) (in class I said GLn(R) instead, but there’s
no reason to require B invertible), and define vector field X by XB = BA. Then the curve
γ(t) = etB =

∑
n≥0

(tB)n

n! is an integral curve of X. Additionally, the map φ(t,B) = etBA
is a global flow of X..

5 Lie Bracket of Vector fields

We now define the Lie bracket of vector fields, which is most easily done from the point
of view of derivations.

Definition. For X, Y ∈ Der(C∞(M)), define the Lie bracket [X, Y] = XY − YX (that is,
[X, Y](f) = XYf− YXf.
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Note that this definition is entirely algebraic; that is, it generalizes with an arbitrary
(not necessarily commutative or associative) R-algebra A in place of C∞(M):

Definition. For X, Y ∈ Der(A), define [X, Y] = XY − YX.

Proposition 5.1. The Lie bracket [·, ·] makes Der(A) into a Lie algebra over R.

Proof. Exercise; you need to check that Der(A) is closed under the lie bracket and satisfies
the Jacobi identity [[X, Y],Z] + [[Y,Z],X] + [[Z,X], Y] = 0 (bilinearity is clear.

Last time: we defined the Lie bracket of vector fields in terms of derivations: if
X, Y ∈ Der(C∞(M)), [X, Y] = XY − YX.

Today we’ll start by giving two alternative, geometric interpretations of [X, Y], without
proof.

For the first one, let φX : U× I → M be the flow of the vector field X as defined last
time, and write φX,t(x) = φX(t, x).

Then t 7→ φX,t(p) is the integral curve of I based at p. We’ll interpret [X, Y]p as the
rate of change of Y along this integral curve near p. That is, for any t ∈ I we have a
tangent vector Yφt(p) ∈ Tφt(p)M. We wish to compare these tangent vectors; the problem
is that they all live in different tangent spaces.

To fix this, note that φX,t maps U diffeomorphically to a neighborhood of φX,t(p) (the
inverse map is φX,−t). Hence its inverse map (φX,t)

−1 maps a neighborhood of φX,t(p)

diffeomorphically to a neighborhood of p, and the induced map (d((φX,t)
−1))φX,t(p) is

an isomorphism Tφt(p)M→ TpM.
Then (d((φX,t)

−1))φX,t(p)Yφt(p) ∈ TpM for all t, and we can look at how this vec-
tor varies depending on t. Note first that we can simplify this: d((φX,t)

−1)φX,t(p) =

((dφt)p)
−1 by the chain rule, and so

(d((φX,t)
−1))φX,tYφt(p) = ((dφt)p)

−1(Yφt(p).

Then one can show that

[X, Y]p =
d

dt
|t=0((dφt)p)

−1(Yφt(p) = lim
t→0

(dφt)
−1
p Yφt(p) − Yp

t
.

Note that the left hand side is skew-symmetric; [X, Y]p = −[Y,X]p, but the right-hand
side is not, so one can also get another expression for [X, Y]p by switching the roles of X
and Y.

Here’s another way of thinking about the Lie bracket [X, Y]; it measures the failure
of the flows of X and Y to commute. In fact, one can show that [X, Y] = 0 if and only if
φX,tφY,s(p) = φY,sφX,t(p) whenever both sides are defined. A slightly different way of
measuring the failure of flows to commute is the following:

Define α(t) = φY,−tφX,−tφY,tφX,t (note that φX,−t is the inverse function to φX,t and
likewise for Y, so this product is a commutator). The function α is defined on some
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neighborhood of 0, and if the flows of X and Y commute in the sense of the previous
paragraph, α(t) = p for all p.

One might hope to use α ′(0) = [α] ∈ TpM as a measure of the failure of the flows to
commute. Unfortunately, one can show α ′(0) = 0 for any vector fields X and Y.

What one can do instead is define α ′′(0) ∈ TpM as a derivation, by α ′′(0)(f) =

(f ◦ α) ′′(0). One can show that because α ′(0) = 0, this is in fact a derivation, and gives a
tangent vector.

It is then the case that α ′′(0) = 2[X, Y]p. (Correction: I left out the factor of 2 in class.)
(An alternative route here would be to reparametrize α and write α̂(t) = α(

√
t). This

has the disadvantage that α̂ is only define for positive values of t – however, one can still
define α̂ ′(0) and show that α̂ ′(0) = [X, Y]p.)

6 Left-Invariant Vector Fields and the Lie algebra

We’ve now done all of the general differential geometry that we’re going to do. We’ll
now apply this to study Lie groups. Let G be a Lie group; that is, G is a C∞ manifold
with a compatible group structure.

For g ∈ G, let Lg : G→ G be the map given by Lg(h) = gh.

Definition. A vector field X on G (viewed as a derivation) is left-invariant if

X(f ◦ Lg) = X(f) ◦ Lg (2)

for all f ∈ C∞(M) g ∈ G.

We’ll now give an equivalent definition for left-invariance by rewriting eqrefeq:left-
invarance in terms of values Xh of the vector field X at points h ∈ G.

Two functions are equal if and only if they have the same value at any point, so (2)
is equivalent to X(f ◦ Lg)(h) = (X(f) ◦ Lg)(h) holding for all h ∈ H. But X(f ◦ Lg)(h) =

Xh(f ◦ Lg) = ((dLg)hXh)(f) and (X(f) ◦ Lg)(p) = X(f)(gh) = Xgh(f).
Hence (2) is equivalent to Xgh(f) = ((dLg)hXh)(f) for all g,h ∈ G and all f ∈ C∞(G).

Furthermore, we can get rid of the f to obtain an equality of tangent vectors: X is left-
invariant if and only if

Xgh = (dLg)hXh (3)

for all g,h ∈ G.
Specializing to h = 1, we get Xg = (dLg)1X1; hence the tangent vector X1 ∈ T1G

determines the entire vector field X.
Indeed, we have a bijection between the set of left-invariant vector fields on G and

T1G. If X is a left-invariant vector field on G, we map it to X1 ∈ T1G. Conversely, if X1
is any element of T1G, we map it to the vector field X on G given by Xg = (dLg)1X1.
(exercise on your homework: check that this is actually C∞ and left-invariant).
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Proposition 6.1. If X and Y are left-invariant vector fields on G, so is [X, Y].

Proof. Let f ∈ C∞(G) be arbitary. By two applications of (2) we have XY(f ◦ Lg) =

XYf ◦ Lg. Likewise YX(f ◦ Lg) = YXf ◦ Lg. Subtracting gives [X, Y](f ◦ Lg) = [X, Y]f ◦ Lg as
desired.

Hence left-invariant vector fields form a Lie subalgebra of Der(C∞(M)), which we
denote by Lie(G). (On the first day of class we defined Lie(G) = T1(G); however, we’ve
seen that T1(G) is naturally in bijection with the space of left-invariant vector fields, so
this definition is equivalent.).

Example. G = GLn(C), so T1(G) = Mn×n(C). Any B ∈ Mn×n(G) then corresponds to
the-left invariant vector field given by XA = AB for all A ∈ GLn(C).

Theorem 6.2. Let X be a left-invariant vector field on G. Then X is complete (recall this means
that all integral curves for X are complete).

Proof. The key observation to make here is that if γ is an integral curve for X, so is Lg ◦ γ
for any g ∈ G.

It will be enough to show that the integral curve γ for X with γ(0) = 1 is complete,
since Lg ◦ γ is then an integral curve with Lg ◦ γ(0) = g for any g ∈ G.

Suppose not. Then there exists a maximal ε > 0 such that there exists an integral
curve γ : (−ε, ε) → G for X with γ(0) = 0.

Define γ1 : (−ε/2, 3ε/2) by γ1(t) = Lγ(ε/2)γ(t− ε2), and γ2 : (−3ε/2, ε/2) by γ2(t) =
Lγ(−ε/2)(γ(t+ ε/2)).

Then γ1(ε/2) = γ(ε/2), so by uniqueness of integral curves they glue to form an
integral curve (−ε/2, 3ε/2) → G.

Likewise γ2(−ε/2) = γ(−ε/2), so it also glues, and we obtain an integral curve
(−3ε/2, 3ε/2) → G, contradicting the maximality of ε.

note that if γ is an integral curve for X, Lg ◦ γ is also an integral curve for X.
Recall: LieG is the space of left-invariant vector fields on G. We showed that as vector

spaces LieG ∼= T1G, so LieG is a finite-dimensional vector space. Let X ∈ LieG. At the
end of last time, we showed that X is complete: that is, all integral curves of X can be
extended to all of R. Hence we can define a C∞ global flow φX(t,g) : R×G→ G.

We now collect together these flows for all X ∈ LieG.

Definition. Define Φ(t,g,X) : R×G× LieG→ G by Φ(t,g,X) = ΦX(t,g).

Note that, since LieG is a finite-dimensional vector space, the domain of Φ is a C∞
manifold.

Proposition 6.3. Φ : R× LieG→ G is a C∞ map.
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Proof. We will do this by constructing a vector field X on G× LieG for which Φ is a
flow. Define X by

Xg,X = (Xg, 0) ∈ TgX× TX(LieG) ∼= T(g,X)(G× LieG).

It’s easy to see then that Φ is a flow for X , hence is C∞.

We now state some properties of Φ(t,g,X).

a) Φ(0,g,X) = g and t 7→ Φ(t,g,X) is an integral curve for G.

b) Φ(t,g,X) = gΦ(t, 1, x)

c) Φ(st, 1,X) = Φ(t, 1, sX)

d) Φ(t,Φ(s,g,X),X) = Φ(s+ t,g,X)

Here a) is true by definition of Φ. The rest are true because both sides, as function of
t, are integral curves for X, and agree when t = 0.

Definition. The exponential map: exp : LieG→ G is given by exp(X) = Φ(1, 1,X).

By b) and c) above,

Φ(t,g,X) = gΦ(1, 1, tX) = g exp(tX),

so we can reconstruct the function Φ just from knowing exp : LieG→ G. Also, if we set
g = 1 in d) and rewrite in terms of exp, we get exp(sX) exp(tX) = exp((s+ t)X). Setting
s = −1 and t = 1 gives the corollary exp(−X) = exp(X)−1.

Example. If G = GLn, then exp(X) =
∑∞
n=0

Xn

n! .

Write g = LieG. The map exp : g → G is C∞ with exp(0) = 1, so it induces a map
d exp : T0g → T1G. Now, we have identifications T0g ∼= g (as g is a vector space), and also
T1G ∼= g (from last time).

Proposition 6.4. Using these identifications, d exp0 : g ∼= T0g → T1G ∼= g is the identity map.

Proof. Suppose X ∈ g. Then the corresponding tangent vector [γ] = γ ′(0) in T0g is
represented by the linear path γ(t) = tX.

Then d exp0([γ]) = [exp ◦γ] = (exp ◦γ) ′(0). But exp ◦γ is the path t 7→ exp(tX), which
is an integral curve for X. By definition of integral curves, this means that (exp ◦γ) ′(0) =
X(exp ◦γ)(0) = X1.

Hence d exp0(X) = X1 ∈ T1G. But the identification g ∼= T1G identifies X ∈ g with the
tangent vector X1 ∈ T1G. This shows that d exp : g → T1G is the identity map.
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Since d exp0 is the identity map, it is an isomorphism. By the Inverse Function
Theorem, exp must map some neighborhood U of 0 in g diffeomorphically to some
neighborhood V = exp(U) of 1 in G. Write log : V → U for the locally defined inverse
function to exp.

This means that exp gives us a chart on G near the identity which is canonically de-
fined (it depends only on the Lie group structure of G, not on any choice of coordinates).
We will be taking advantage of this chart. The first thing we do is use it to study the
multiplication map G×G→ G.

Choose V ′ ⊂ V containing 1 such that V ′ · V ′ ⊂ V , and let U ′ = log(V ′). Shrink
U ′ (and correspondingly shrink V ′ = expU ′) as necessary so that U ′ = −U ′ and U ′ is
star-shaped around 0 (that is, if X ∈ U ′, the line segment connecting 0 to X also lies in
U ′; this is a technical requirment that we may not end up using, but might as well put
up front anyway).

Define M : U ′ ×U ′ → G by M(X, Y) = log(exp(X) exp(Y)). Then clearly M(X, 0) = X
M(0, Y) = Y. Also, M(X, Y) = −M(−Y,−X) since exp(X) exp(Y) = (exp(−Y) exp(−X))−1.

Last time, we defined an exponential function exp : LieG→ G, which maps a neigh-
borhood U of 0 in LieG homeomorphically to a neighborhood V of 1 in LieG , and let
log : V → U denote the inverse function. We defined a smaller neighborhood U ′ of 0
in LieG and a function M : U ′ ×U ′ → U such that M(X, Y) = log(exp(X) exp(Y)). We
showed that the Taylor expansion of M looks like

M(X, Y) = X+ Y + λ(X, Y) +O(max(|X|3, |Y3|),

where λ : LieG× LieG→ LieG is a bilinear function. Today we’ll show that in fact

Theorem 6.5.
λ(X, Y) =

1

2
[X, Y].

Proof. The key observation we will use here is that for, f ∈ C∞(G), X ∈ LieG,

Xf(g) =
d

dt
(f(g exp(tX)))|t=0 (4)

for all g ∈ G. This is just a restatement of the fact shown last time that g exp(tX) is an
integral curve for X.

Now [X, Y] and λ(X, Y) are both elements of LieG, that is, both left-invariant vector
fields. So it suffices to show that the vector fields agree at the point 1 ∈ G, that is,
[X, Y]1 = λ(X, Y)1.

Choose an arbitrary test function f ∈ C∞(G).
Then

[X, Y]1(f) = X(Yf)(1) − Y(Xf)(1). (5)
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We now apply (4) twice to evaluate X(Yf)(1).

X(Yf)(1) =
d

dt
(Yf)(exp(tX))|t=0

=
d

dt

(
d

ds
f(exp(tX) exp(sY))

)
|s=0|t=0

=

(
∂2

∂s∂t
f(exp(tX) exp(sY))

)
|s=t=0

=

(
∂2

∂s∂t
f(exp(M(tX, sY)))

)
|s=t=0.

(6)

Likewise

X(Yf)(1) =

(
∂2

∂s∂t
f(exp(M(tY, sX)))

)
|s=t=0 =

(
∂2

∂s∂t
f(exp(M(sY, tX)))

)
|s=t=0 (7)

where the last step is just renaming t to s and vice versa (using that ∂2

∂t∂s =
∂2

∂s∂t ).
Now, let φ = f ◦ exp ∈ C∞(LieG). Subtracting the previous two equations we have

[X, Y]1(f) =
(
∂2

∂s∂t
φ(M(tX, sY))

)
|s=t=0 −

(
∂2

∂s∂t
φ(M(sY, tX))

)
|s=t=0. (8)

Now, we Taylor-expand φ around 0: for Z ∈ LieG,

φ(Z) = φ(0) +φlin(Z) +φquad(Z) +O(|Z|
3), .

where φlin : LieG→ R is a linear function and φquad : LieG→ R is quadratic.
Combining this with the Taylor expansion for M(tX, sY) gives

φ(M(tX, sY)) = φ(tX+ sY + stλ(X, Y) +O(max(s3, t3)))

= φ(0) +φlin(tX+ sY + λ(tX, sY)) +φquad(tX+ sY) +O(max(s3, t3))

= φ(0) + tφlin(X) + sφlin(Y) + stφlin(λ(X, Y)) +φquad(tX+ sY) +O(max(s3, t3))
(9)

Now we apply
(
∂2

∂s∂t

)
|s=t=0 and get

(
∂2

∂s∂t
φ(M(tX, sY))

)
|s=t=0 = φlin(λ(X, Y)) +

(
∂2

∂s∂t
(φquad(tX+ sY))

)
|s=t=0.

Likewise,(
∂2

∂s∂t
φ(M(sY, tX))

)
|s=t=0 = φlin(λ(Y,X)) +

(
∂2

∂s∂t
(φquad(sY + tX))

)
|s=t=0.
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Subtracting and plugging into (8), we obtain

[X, Y]1(f) = φlin(λ(X, Y)) −φlin(λ(Y,X)).+

Now, we observed last time that M(Y,X) = −M(−X,−Y). Comparing Fourier expan-
sions implies that λ(Y,X) = −λ(−X,−Y) = −λ(X, Y) since λ is bilinear. Hence

[X, Y]1(f) = φlin(λ(X, Y)) −φlin(λ(Y,X)) = φlin(λ(X, Y) − (−λ(X, Y))) = 2φlin(λ(X, Y)).

On the other hand, we have

λ(X, Y)1(f) = (λ(X, Y)(f))(1) =
d

dt
(f(exp(tλ(X, Y))))|t=0 =

d

dt
(φ(tλ(X, Y)))|t=0 = φlin(λ(X, Y)).

We conclude that [X, Y]1 = 2λ(X, Y)1, and the result follows.

7 Lie algebras and homomorphisms

Let G and H be Lie groups. Let φ : G → H be a homomorphism. Then we have a map
(dφ)1 : T1G→ T1H. Via the natural identifications T1G ∼= LieG, T1H ∼= LieH, we obtain a
map LieG→ LieH, which we denote by Lieφ.

We give two alternate descriptions of this map; we leave it as an exercise to show that
it is equivalent. Suppose that Y = (Lieφ)(X). Then Y has the property that

Yφg = (dφ)g(Xg) (10)

for all g ∈ G. (Note: for an arbitrary vector field X on G there need not exist Y satisfying
(10), but for left-invariant vector fields this is always the case. Also, note that (10) by itself
only determines Y if φ is surjective; otherwise we still need left-invariance to determine
Yh for h /∈ Imφ.) A statement equivalent to (10) but in terms of the derivation Y is the
following: φ ◦ Yf = X(f ◦φ) for all f ∈ C∞(G).
Theorem 7.1. Let φ be as above. Write g = LieG, h = LieH. Then the diagram

G H

g h

φ

expG
Lieφ

expH commutes.

Proof. Let X ∈ g, Y = (Lieφ)(X). We must show that φ(expG(X)) = expH(Y).
It follows from (10) that the function t 7→ (Lieφ)(expG(tX)) is an integral curve for

the vector field Y. We also know that t 7→ expG(tY) is another integral curve. Since the
two integral curves take the same value at t = 0, they must agree for all t. Setting t = 1
yields the desired result.
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Theorem 7.2. With the notation as above, the map Lieφ : g → h is a homomorphism of Lie
algebras (that is, (Lieφ)([X, Y]) = [(Lieφ)(X), (Lieφ)(Y)].

Proof. (sketch – this will be a HW problem to complete) DefineMG(X, Y) = logG(expG(X) expG(Y))
and MH(X, Y) = logH(expH(X) expH(Y)) (with suitably chosen domains). We then have

MH((Lieφ)(X), (Lieφ)(Y)) = (Lieφ)(MH(X, Y)),

for all X, Y ∈ g. Taylor expand both sides and compare the quadratic terms to get the
desired result.

Remark. There is also a proof of this entirely from the vector field/differential geometry
point of view.

Last time, we were in the situation of having a Lie group homomorphism φ : G→ H.
We showed that this determined a Lie algebra homomorphism Lieφ : LieG → LieH.
Today we’ll talk about when we can go in the other direction.

Theorem 7.3. Let G and H be Lie groups, with G connected. If φ1,φ2 : G → H are Lie group
homomorphisms with Lieφ1 = Lieφ2, then φ1 = φ2.

Proof. From last time, we know that φ1 ◦ expG = expH ◦(Lieφ1) = expH ◦(Lieφ2) =

φ2 ◦ expG. Hence φ1 and φ2 agree on the image of expG.
Unfortunately, expG : LieG → G is not necessarily surjective (even when G con-

nected). However, we know that Im expG does contain a connected open neighborhood
V of 1G. We will then be done after proving the following lemma:

Lemma 7.4. Let G be a Lie group, V a neighborhood of 1G contained in the connected component
G0 of the identity in G. (In class we assumed V connected, but this is stronger.) Then V
generates G0.

Proof. By shrinking V if necessary, assume that V = V−1. Then G ′ =
⋃∞
n=1 V

n (where
Vn = V · V · · · · · V is the set of all n-fold products of elements of G).

Then G ′ is a subgroup, and G ′ is open: G ′ =
⋃
g∈Vn−1 gV is a union of open sets. But

it’s a general fact about topological groups that any open subgroup is also closed: to see
this, note that G−G ′ = ∪gG ′ 6=G ′gG ′ is also open.

Hence G ′ is both open and closed, so is a union of connected components; but G ′ ⊂
G0 by assumption, so G ′ = G0 as desired.

This finishes our proof; since φ1 and φ2 are group homomorphisms that agree on V
they agree on the subgroup generated by V , so φ1 = φ2.

The next question we will ask is the following:

Question 1 (Question 1). Suppose G, H are Lie groups, g = LieG, h = LieH. If f : g → h

is a Lie algebra homomorphism, does there exist a lie group homomorphism φ : G → H with
Lieφ = f?
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The answer to this is “not necessarily”. For an example:

Example. G = S1 ∼= U(1), (unit circle group) H = R. Then both LieG ∼= R and LieH ∼= R,
and there is only one possible Lie algebra structure on R, with all Lie brackets 0. So any
linear map R → R gives a Lie algebra morphism.

On the other hand, G is compact, so any Lie group morphism G → H has compact
image; but the only compact subgroup of R is 0. Hence the only morphism G → H is
the zero morphism.

However, what is true is :

Theorem 7.5. Question 1 is true if G is simply connected.

We won’t prove this right away; we’ll come back to it later. But at this point you
might be curious which Lie groups are simply connected.

Examples of simply connected Lie groups: SLn(C), the special unitary group SU(n),
Sp2n(C).

Examples of non-simply connected Lie groups: GLn(C), SLn(R), SOn(R), Sp2n(R).
Each of these non-simply connected Lie groups has a universal covering space which
is a simply connected Lie group. In some cases these are also matrix groups (e.g. the
simply connected double cover Spin(R) of SOn(R)), but in many cases not: for instance
the universal cover of SLn(R) is never a matrix group.

We’ll now ask a second question (which will ultimately help us answer question 1):

Question 2 (Question 2). Suppose G is a Lie group, g = LieG. Does every Lie subalgebra
h ⊂ g come from a Lie subgroup H ⊂ G?

The answer to this question depends upon what one means by “Lie subgroup”; if we
require H to be a closed subset of G which is a Lie group in the subspace topology, then
this is false.

The counterexample for this is

Example. G = S1 × S1 ∼= (R/Z)× (R/Z), g ∼= R2, h = span〈(1,
√
2)〉. Then H would

have to contain Im(expG(h)), which is a line with slope
√
2 in (R/Z)× (R/Z); hence it

is dense, and not a closed subgroup.

However, the definition can be fixed:

Definition. If G is a Lie group, a Lie subgroup of G is a Lie group H along with an
injective Lie group homomorphism i : H → G, which is an immersion (this means that
at every point h ∈ H dih is injective.)

If H is a Lie subgroup of G, LieH is naturally a Lie subalgebra of LieG (using the
injection di1H : T1HH→ T1GG).

With this definition, the answer to question 2 is yes: for instance, in the example
above we take H = R (with group structure addition), and the map i : H → G is given
by i(t) = (t,

√
2(t)).
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Theorem 7.6. Let G be a Lie group g = LieG. Let h be a lie subalgebra of h. Then there exists
a Lie subgroup H of G with h = H.

Proof. We’ll just sketch this here; this is somewhat messy and uses some big machinery
however you do this (we’ll use Baker-Campbell-Hausdorff). See http://www-personal.

umich.edu/~zhufeng/mat449.pdf pages 19-20 for details.
We’ll start by constructing a neighborhood of the identity in H.
Recall that we can find U ⊂ g such that expG maps U diffeomorphically to V ⊂ G.

As we did before, shrink U to U ′ and V to V ′ = expU ′ such that V ′ · V ′ ⊂ V .
Recall that we defined M : U ′ ×U ′ → U by M(X, Y) = logG(expG(X) expG(Y)), and

we have the Campbell-Baker-Hausdorff formula, which tells us that for X, Y ∈ U ′

M(X, Y) = X+ Y +
1

2
[X, Y] + · · ·

where the important thing about the · · · is that all the terms lie in the Lie subalgebra of
g generated by X and Y. Hence if X, Y ∈ h∩U ′, M(X, Y) ∈ h∩U. Let W = expG(h∩U ′).
Then W is a dim h dimensional manifold such that W ×W stays in the slightly larger
h-dimensional manifold expG(h∩ V).

Then we define H to be the subgroup of G generated by W, but we don’t use the
subspace topology. Instead we give H the topology where UH ⊂ H is open if and only
if UH ∩ hW is open for all h ∈ H. We then make H into a smooth manifold by using the
open sets hW for all h ∈ H and charts h∩U ′ → hW by X 7→ h expG(X).

It’s then somewhat painful but straightforward to check that this actually defines a
Lie group structure on H.

Last time we sketched a proof of the following result:

Theorem 7.7. Let G be a Lie group g = LieG. Let h be a lie subalgebra of h. Then there exists
a Lie subgroup H of G with h = H.

Today we’ll use it for a couple things. One will be to show the result we stated last
time:

Theorem 7.8 (Lie’s Second Theorem). Let G and H be Lie groups with Lie algebras g and h

respectively. Suppose that G is simply connected. Then any Lie algebra homomorphism f : g → h

is equal to Lieφ for some Lie group homomorphism φ : LieG → LieH. (Since G is connected,
φ must be unique, as proved on Wednesday.)

First we need a lemma:

Lemma 7.9. suppose φ : G → H is a morphism of groups with Lieφ an isomorphism. Then φ
is a covering map.
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(Remind people what a covering map is)

Proof. By assumption dφ : T1G → T1H is an isomorphism, so choose nbhds U of 1G
and V of 1H so that φ maps U homeomorphically to V . Shrink U down to U ′ so that
U ′ ·U ′ ⊂ U and U ′ = U ′−1.

Let K be the kernel of φ. Then K is a normal subgroup of G and K∩U = {1G}, so K is
discrete.

Then φ−1(gV ′) = ∪k∈KgU ′k, and this is a disjoint union (if gu1k1 = gu2k2, then
u−12 u1 = k2k

−1
1 , but the left hand side is in U and the right hand side is in K, so we must

have u1 = u2 and k1 = k2). and φ maps each gU ′k homeomorphically to gV ′. This
shows that φ is a covering map.

Now we prove the theorem:

Proof. Let g ′ ⊂ g× h = Lie(G×H) be the subspace {(X, f(X)) | X ∈ g}. Because f is a
homomorphism, g ′ is a Lie subalgebra. So there exists a unique connected subgroup
G ′ ⊂ G×H such that LieG ′ = g ′.

Let ψ be the map G ′ → G×H→ G. Then Lieψ is an isomorphism, so by the lemma
ψ is a covering map. Since G is simply connected, ψ must be an isomorphism.

As a corollary, we get

Theorem 7.10. If G and H are simply connected Lie groups with isomorphic Lie algebras, then
G ∼= H.

Example. Let G be an abelian Lie group. The Lie algebra g = LieG is given by [X, Y] = 0
for all X, Y ∈ g. (We actually haven’t proved this yet, because I was holding off until we
do the adjoint representation next week, but it follows easily from various things we’ve
seen in class and on the problem sets; for instance, the current problem set gives the
formula log(exp(X) exp(Y) exp(−X) exp(−Y)) = [X, Y] +O(max(|X|3, |Y|3)); if G is abelian
the LHS is 0.)

Hence if G is a simply connected abelian Lie group of dimension n, g ∼= Lie(Rn), so
G ∼= Rn as Lie groups.

More generally, if G is any abelian Lie group of dimension n, G is isomorphic to
(S1)m × Rn−m. (proof: the universal cover G̃ of G is isomorphic to Rn, so G is Rn mod a
discrete subgroup; that subgroup must be isomorphic to Zm for some m).

Fun application: we can prove the fundamental theorem of algebra, by showing that
if f ∈ C[x] be irreducible, then f has degree 1. To do this, note that K = C[x]/f(x) is a
field, so K− {0} is a Lie group. If deg f = d > 1, K− {0} is simply connected, implying
that K− {0} ∼= R2d as Lie groups; but K− {0} is not homeomorphic to R2d, contradiction.

Last time, Arul showed
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Theorem 7.11 (Lie’s Second Theorem). Let G and H be Lie groups with Lie algebras g and h

respectively. Suppose that G is simply connected. Then any Lie algebra homomorphism f : g → h

is equal to Lieφ for a unique Lie group homomorphism φ : LieG→ LieH.

One more result on the relationship between Lie groups and Lie algebras, before we
move on to the next topic.

If g is a Lie algebra over R, does g have to be the Lie algebra of a Lie group? Clearly
if this is the case, g must be finite-dimensional; and in fact, this is sufficient:

Theorem 7.12 (Lie’s Third Theorem). Let g be a finite-dimensional Lie algebra. Then there
exists a Lie group G with LieG ∼= g.

Remark. There’s also a Lie’s First Theorem – but nobody talks about it anymore because
it uses obsolete terminology.

The proof of this involves the following, rather hard, theorem, which we won’t prove
(the proof requires a lot of structure theory of Lie algebras, more than we will do in this
class).

Theorem 7.13 (Ado). Let g be a finite-dimensional Lie algebra. Then g is isomorphic to a
subalgebra of gln(R) for some n.

Proof of Lie’s Third Theorem. By Ado’s theorem, there exists a homomorphism g ↪→ gln(R).
Hence g is the Lie algebra of some G ⊂ gln(R).

8 Representations of Lie groups and Lie algebras

Recall the definition we gave on Day 1:

Definition. A (real or complex) representation ρ of a Lie group G is a homomorphism
ρ : G→ GL(V) where V is a (real or complex) vector space.. If V is finite-dimensional (as
it will usually be in this class), we also require that ρ is a homomorphism of Lie groups,
that, is, ρ is smooth.

If ρ : G → GL(V) is a representation, it induces a homomorphism of Lie algebras
Lie ρ : LieG→ gl(V).

Here gl(V) = Lie(GL(V)). As a vector space, gl(V) ∼= End(V) is the space of linear
maps V → V , with Lie bracket [A,B] = A ◦ B − B ◦ A. If we pick a basis for V , we
can identify gl(V) with gln(R) ∼= Mn×n(R) (if V is a vector space over R) or gln(C) ∼=
Mn×n(C) if V is a vector space over C.

This motivates the definition

Definition. A (real or complex) representation µ of a Lie algebra g is a Lie group homo-
morphism µ : g → gl(V) where V is a (real or complex) vector space.
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Note that if G is a simply connected Lie group, then Lie’s second theorem tells us
that representations ρ : G→ GL(V) are in bijective correspondence with representations
µ : g → gl(V), by the map ρ 7→ Lie ρ. Hence classifiying the representations of a simply
connected Lie group G is equivalent to classifying representations of the lie algebra
LieG.

Furthermore, even if G is not simply connected, a representation ρ : G → GL(V) is
still determined by the representation Lie ρ : g → gl(V); this is a result we proved last
Wednesday. (I didn’t actually say the above in class, but it’s worth pointing out.)

But when G is not simply connected, it’s not necessarily the case than any Lie algebra
representation µ : g → gl(V) is equal to Lie ρ for some such representation ρ of G.
However, we can determine whether this is the case as follows: let G̃ be the simply
connected universal cover of G, and let K be the kernel of the covering homomorphism
π : G̃→ G. Then Lie G̃ = g, and G̃ is simply connected, so there must exist ρ̃ : G̃→ GL(V)
such that Lie ρ̃ = µ. If ker ρ̃ contains K, then ρ̃ induces a map ρ : G̃ → G such that the
diagram

G̃

G GL(V).

π
ρ̃

ρ

commutes. Conversely, if such a ρ existed with Lie ρ = µ, we would necessarily have
ρ ◦ π = ρ̃, and so K ⊂ ker ˜rho.

Hence we have here a criterion for telling which representations of g come from
representations of G.

Example. Let’s classify the 1-dimensional complex representations of G = U(1) = {z ∈
C | |z| = 1} = {e2πiθ | t ∈ R/Z}.

First of all g = Lie(G) is a 1-dimensional Lie algebra; it is spanned by any nonzero X ∈
Lie(G). We’ll take X to correspond to the element ∂

∂θ ∈ T1(G). Since g is 1-dimensional,
the Lie bracket must be always 0.

Now a 1-dimensional representation of g is a Lie algebra homomorphism µ : g →
gl1(C); here gl1(C) ∼= C with the trivial Lie bracket. Such a homomorphism is determined
by µ(X) ∈ gl1(C); write µ(X) = y ∈ C, so µ(tX) = ty. This clearly defines a Lie algebra
homomorphism (as all Lie brackets are 0).

Now here, the simply connected cover of G is G̃ = R, with covering map π : G̃ → G

given by π(θ) = e2πiθ.
We now find the 1-dimensional representations ρ : G̃ → GL1(C). We know that for

any µ : g → gl1(C), there is a unique ρ̃ : G̃ → GL1(C) with Lie ρ̃ = µ. We can find ˜rho

23



using the commutative diagram

R GL1(C)

g gl1(C).

ρ̃

µ

expR
expGL1(C)

We start with an arbitrary element of g, which we can write as tX, and chase around
the diagram

t ety

tX ty.

ρ̃

µ

expR
expGL1(C)

Since the diagram commutes, this tells us that ρ̃ is defined by by ρ̃(t) = ety for all t ∈ R.
This gives us all the representations of G̃.

Now the representation ρ̃ of G̃ induces a representation ρ of G if and only if ker ρ
contains K = {θ | e2πiθ = 1} = Z. That is, y must satisfy ety = 1 for all t ∈ Z, so y = 2πik

for some k ∈ Z.
Since the covering map G̃→ G is given by θ 7→ e2πiθ, the representation ρ of G must

satisfy ρ(e2πiθ) = e2πikθ for all θ ∈ R. That is, ρ : U(1) → GL1(C) is given by ρ(z) = zk.
Hence we’ve shown all representations ρ : U(1) → GL1(C) are of the form ρ(z) = zk.

9 The Adjoint Representation

Every Lie group G automatically comes with a natural representation, the adjoint repre-
sentation.

Definition. Let G be a Lie group with g = Lie(G). The adjoint representation of G, Ad :

G → GL(Lie(G)), is defined as follows: for g ∈ G, Adg = Lie(Inn(g)) : g → g where
Inn(g) : G→ G is defined by Inn(g)(h) = ghg−1.

This also gives us a representation of the Lie algebra g.

Definition. The adjoint representation ad : g → gl(g) is given by ad = Lie Ad.

Proposition 9.1. For X, Y ∈ g, ad(X)(Y) = [X, Y].

Proof. Because ad = Lie Ad, we have ad(X) = d
dt Ad(exp(tX))|t=0, and so

ad(X)(Y) =
d

dt
(Ad(exp(tX))(Y)) |t=0. (11)
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To evaluate this, we now need to evaluate Ad(exp(tX))(Y) for any g ∈ G. Now for
any g ∈ G, s 7→ (g exp(sY)g−1) is an integral curve for (Adg)Y. Hence

(AdgY)1 =
d

ds
(g exp(sY)g−1)|s=0 = (AdgY). (12)

Now, setting g = exp(tX) in (12) we obtain

((Ad s)Y)t=1 =
d

dt

d

ds
exp(tX) exp(sY) exp(−tX) (13)

Now

exp(tX) exp(sY) exp(−tX) = (exp(tX) exp(sY) exp(−tX) exp(−sY))(exp(sY))
= exp(1+ st[X, Y] + . . . ) exp(1+ sY + . . . )
= exp(1+ sY + st[X, Y] + . . . )

(14)

where . . . denotes terms of degree 3 or higher.
The result then follows, since d(exp) : g ∼= T1G→ T1g ∼= g is the identity.

10 More on representations

Recall from last time: A representation of a Lie group G on a finite-dimensional vector
space V is a homomorphism of Lie groups ρ : G→ GL(V). An equivalent way of saying
this is that we have a smooth map G× V → V given by (g, v) 7→ ρ(g)(v) – as shorthand
we will write gv for ρ(g)(v) – with the properties that v 7→ gv is a linear map for all
g ∈ G, and that g(hv) = (gh)v for all g,h ∈ G and v ∈ V .

Likewise, we defined a representation of a Lie algebra g on a finite-dimensional vector
space V as a homomorphism of Lie algebras µ : g → gl(V). Again, an equivalent way of
saying this is that we have a bilinear map g× V → V given by (X, v) 7→ µ(X, v) – again
we write Xv as shorthand – with the property that [X, Y]v = X(Yv)− Y(Xv) for all X, Y ∈ g

and v ∈ V .
We explained last time that any representation ρ : G→ GL(V) yields a representation

µ = Lie ρ : g → gl(V). These two representations are related by the following formulas:
For any X ∈ g,

ρ(expG(X)) = expGL(V)(µ(X)) =
∑
n≥0

µ(X)n

n!
(15)

and

µ(X) =
d

dt

∣∣∣∣
t=0

(expGL(V)(tµ(X)) =
d

dt

∣∣∣∣
t=0

ρ(expG(tX)). (16)
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Applying this to v ∈ V , and using the shorthands Xv = µ(X)(v) and gv = ρ(g)(v) we can
write this as

Xv =
d

dt

∣∣∣∣
t=0

(expG(tX))v. (17)

So far, the map ρ 7→ Lie ρ from (representations of G) to (representations of g) is just
a map between two sets. Now we’ll add in some extra structure.

Definition. Let ρ1 : G→ GL(V1), ρ2 : G→ GL(V2) be representations of G. Then a linear
map φ : V1 → V2 is a morphism of G representations if φ ◦ ρ1(g) = ρ2(g) ◦ φ for all
g ∈ G (that is, φ(gv) = gφ(v) for all g ∈ G and v ∈ V).

Likewise define:

Definition. Let µ1 : g → gl(V1), µ2 : g → gl(V2) be representations of g. Then a linear
map φ : V1 → V2 is a morphism of g-representations if φ ◦ µ1(X) = µ2(X) ◦ φ for all
X ∈ g (that is, φ(Xv) = Xφ(v) for all X ∈ g and v ∈ V .)

Proposition 10.1. Let ρ1 : G → GL(V1), ρ2 : G → GL(V2) be representations; µ1 = Lie ρ1,
µ2 = Lie ρ2 be the corresponding representations of g = LieG. Then φ : V →W is a morphism
of G-representations if and only if it is a morphism of g-representations.

Proof. Exercise: use equations (15) and (16) above.

11 Operations on representations of Lie groups

We’ll now talk about how to build larger representations from smaller ones. We’ll first
do this is the case of Lie groups. Let ρ : G → GL(V), ρ1 : G → GL(V1), ρ2 : G → GL(V2)
be representations.

Direct sum: the representation ρ1 ⊕ ρ2 : G → GL(V1 ⊕ V2) is given by g(v1, v2) =

(gv1,gv2). (Note we’re using the shorthand introduced above, so this means (ρ1 ⊕
ρ2)(g)(v1, v2) = (ρ1(g)(v1), ρ2(g)(v2)).

Tensor product: ρ1⊗ ρ2 : G→ GL(V1⊗ V2) is defined by g(v1⊗ v2) = gv1⊗ gv2 (and
extend linearly to define gv for an arbitrary element v =

∑
civ1,i ⊗ v2,i ∈ V1 ⊗ V2).

Dual: If V is a vector space, over R or over C, let V∗ denote Hom(V , R) or Hom(V , C)

respectively. (This could potentially be confusing, since all C-vector spaces are also R-
vector spaces, but we’ll usually just be using this for C-vector spaces.) If φ ∈ Hom(V ,W)

define φt ∈ Hom(W∗,V∗) by φt(α) = α ◦φ.
Then define ρ∗ : G→ GL(V) by ρ∗(g) = (ρ(g)t)−1 = ρ(g−1)t. Equvalently, for α ∈ V∗1 ,

gα is given by , (gα)(v) = α(g−1v) for all v ∈ V .
Tensor powers: We can also take the tensor product of an arbitrary number of repre-

sentations. An important special case is when the representations are all the same. Then
we write

⊗n V = V ⊗ · · · ⊗ V︸ ︷︷ ︸
n times

, and g(v1 ⊗ · · · ⊗ vn) = gv1 ⊗ · · · ⊗ gvn for v1, . . . , vn ∈ V .

26



Symmetric powers: Recall that we can define a vector space Symn(V) as a quo-
tient of

⊗n(V) by the subspace spanned by v1 ⊗ · · · ⊗ vn − vσ(1) ⊗ · · · ⊗ vσn for all
v1, . . . , vn ∈ V and all permutations σ ∈ Sn; the image of v1 ⊗ · · · ⊗ vn in Symn V is
denoted v1 · · · vn. Then the action of G on

⊗n V given above induces an action of G on
the quotient Symn(V). That is, Symn(V) is a representation of G with g(v1v2 · · · vn) =

(gv1)(gv2) · · · (gvn).
Wedge powers: Likewise we can also define a vector space

∧n(V) as a quotient of⊗N(V) by the subspace spanned by all tensors v1 ⊗ · · · ⊗ vn with vi = vj for some
i 6= j. Again,

∧n(V) inherits a structure of G-representation with g(v1 ∧ · · · ∧ vn) =

gv1 ∧ gv2 ∧ · · ·∧ gvn.

12 Options on representations of Lie algebras

Now let g be a Lie algebra, and µ : G → GL(V), µ1 : G → GL(V1), µ2 : G → GL(V2)
be representations. We will now define representations µ1 ⊕ µ2, µ1 ⊗ µ2, etc, to be com-
patible with the above definitions for group representations: that is, if µ1 = Lie ρ1 and
µ2 = Lie ρ2 we’ll require µ1 ⊕ µ2 = Lie(ρ1 ⊕ ρ2), µ1 ⊗ µ2 = Lie(ρ1 ⊗ ρ2), and so on.

Direct sum: This is the easiest case: define ρ1 ⊕ ρ2 : G→ GL(V1 ⊕ V2) by X(v1, v2) =
(Xv1,Xv2). Compatibility is straightforward.

Tensor product: The na ive thing to do would be to define µ1 ⊗ µ2 by X(v1 ⊗ v2) =

Xv1 ⊗ Xv2. This is wrong for a number of reasons: not only does it not preserve the Lie
bracket, it fails to be linear in X.

Instead, suppose µ1 = Lie ρ1, µ2 = Lie ρ2; then we can define µ1 ⊗ µ2 as Lie(ρ1 ⊗ ρ2).
We’ll now evaluate this and show that it depends only on µ1 and µ2. Let’s use (17) here:

X(v1 ⊗ v2) =
d

dt

∣∣∣∣
t=0

(expG(tX))(v1 ⊗ v2)

=
d

dt

∣∣∣∣
t=0

(expG(tx)v1 ⊗ expG(tX)v2)

=
d

dt

∣∣∣∣
t=0

(expG(tx)v1)⊗ (expG(tX)v2)|t=0 + (expG(tx)v1)|t=0 ⊗
d

dt

∣∣∣∣
t=0

(expG(tX)v2)

= Xv1 ⊗ v2 + v1 ⊗ Xv2
(18)

Hence the right definition of the tensor product of two Lie algebras representations
is given by

X(v1 ⊗ v2) = Xv1 ⊗ v2 + v1 ⊗ Xv2
One can check directly that this in fact gives a morphism of Lie algebras µ1 ⊗ µ2 :

g → gl(V1 ⊗ V2). Duals:

27



By means of a calculation similar to the above, one can show that the correct definiton
for µ∗ : g → gl(V∗) is given by

µ∗(g) = −µ(g)t. (19)

Again, one can check directly that this gives a representation of Lie algebras.
Tensor, wedge, and symmetric powers
By applying the tensor product construction repeatedly, we can make

⊗n(V) into a
g-representation, by

X(v1 ⊗ v2 · · · ⊗ vn = Xv1 ⊗ v2 · · · ⊗ vn = v1 ⊗ Xv2 ⊗ · · · ⊗ vn + · · ·+ v1 ⊗ v2 · · · ⊗ Xvn.

Likewise, one can make Symn V and
∧n V into g-representations.

13 Irreducible representations of Lie groups and Lie alge-
bras

We now define what it means for a representation of a Lie group or Lie algebra to be
irreducible. First we give the notion of an invariant subspace.

Definition. Let V be a representation of G. Then V ′ ⊂ V is a (G-) invariant subspace if
gV ′ ⊂ V ′ for all g ∈ G.

Remark. In fact, if V ′ is an invariant subspace, we must also have V ′ = g(g−1V ′) ⊂ gV ′,
and so in fact gV ′ = V ′ for all g ∈ G. (If V ′ is finite-dimensional we can also prove this
by dimension-counting).

Likewise

Definition. Let V be a representation of g. Then V ′ ⊂ V is a (g-) invariant subspace if
XV ′ ⊂ V ′ for all X ∈ g.

Remark. It’s no longer true that XV ′ must equal V ′; for instance, if the representation V
of g has Xv = 0 for all X ∈ g and all v ∈ V , then any subspace V ′ of V is invariant, but
XV ′ = 0 is not equal to V ′ unless V ′ = 0 also.

Now we define an irreducible representation

Definition. A representation ρ : G→ GL(V) is irreducible if the only invariant subspaces
of V are 0 and V . Likewise a representation µ : g → gl(V) is irreducible if and only if the
only invariant subspaces of V are 0 and V .

Proposition 13.1. If ρ : G→ GL(V) is a representation ofG, and µ = Lie ρ is the corresponding
representation of LieG, then a subspace V ′ ⊂ V is G-invariant if and only if it is g-invariant.

Proof. Exercise: use (15) and (16) again.
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Corollary 13.2. In the setting of the proposition above, ρ is irreducible if and only if µ is irre-
ducible.

Recall last time we defined:

Definition. A representation V of a Lie group G or a Lie algebra g is irreducible if and
only if the only invariant subspaces of V are 0 and V .

Here we defined an invariant subspace of a G-representation V as a subspace V ′ ⊂ V
such that gV ′ ⊂ V ′ for all g ∈ G. Likewise, if V is a g-representation, a subspace V ′ of V
is invariant if XV ′ ⊂ V ′ for all X ∈ g.

Today we’re going to assume all representations finite-dimensional (and are over C

unless otherwise stated).

Example. Some examples of irreducible representations:
G = GLn(C), V = Cn is the standard representation (so ρ : GLn(C) → GLn(C) is the

identity). It’s an exercise in linear algebra to show that GLn(C) acts transitively on the
nonzero vectors in Cn; hence the only nonzero invariant subspace of V is V itself, and so
V is irreducible. Likewise, the standard representation of gln(C) is irreducible.

Likewise, if G = SLn(C), and V = Cn is the standard representation, (so ρ : SLn(C) ↪→
GLn(C) is the inclusion map), the same argument as above shows that V is irreducible
for n > 1 (V is also irreducible for n = 1, since 1-dimensional representations are always
irreducible). Again, we have the same result for n(C).

If G = GLn(R) or SLn(R), and V = Cn is the standard complex representation
(ρ : G ↪→ GLn(C) is again the inclusion map), one can show that V is still irreducible,
although the argument is a little harder now. (Note that it is important that we are
viewing V as a complex vector space here, since Rn ⊂ Cn is sent to itself by the action
of G but is not a C-subspace.) Again one has the analogous example for G = gln(R) or
n(R).

Indeed, for most classical lie groups the standard representations are irreducible, e.g.,
SU(n) for all n and SO(n) for n 6= 3.
Example. On the other hand; if G = SO(2), V = C2 is the standard representation (so
ρ : G ↪→ GLn(C) is the inclusion map), V is not irreducible. Indeed, V has two proper
invariant subspaces, spanned by the vectors

(
1 i

)
and

(
1 −i

)
, respectively.

This is easier to see if we pass to the representation of the Lie algebra Lie(G) = so(2)

(recall last time that we showed that V is an irreducible representation of G iff V is an
irreducible representation of Lie(G)). Indeed, so(2) is spanned as an R-vector space

by the matrix
(
0 1

−1 0

)
, which is easily seen to have the two vectors given above as

eigenvectors.

Example. Let g = R, with trivial Lie bracket; [X, Y] = 0 for all X, Y ∈ R. We’ll classify the
irreducible (finite-dimensional) complex representations of g.
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A representation µ : R → gl(V) is determined by T = µ(1) ∈ gl(V) ∼= End(V), and a
subspace V ′ ⊂ V is g-invariant if TV ′ ⊂ V ′.

Since T ∈ End(V) is an endomorphism of a finite-dimensional complex vector space
V , T must have some eigenvector v. Then the subspace V ′ = span(v) is g-invariant. If V
is irreducible, we must have V = V ′ is one-dimensional.

Hence all irreducible representations of V are one-dimensional, and they are parametrized
by λ ∈ C: for each λ ∈ C we can construct a one-dimensional irreducible representation
Vλ on which T = µ(1) acts as multiplication by λ.

We now apply this to find the irreducible complex representations of Lie groups G
with LieG ∼= R. There are two such, R and U(1).

Example. Let G = R (group action is addition). If V is an irreducible (complex) represen-
tation of G, V must also be an irreducible representation of Lie(G), hence V is irreducible
and V ∼= Vλ as g-representations, for some λ ∈ C. Since G is simply connected, every
irreducible representation Vλ of Lie(G) comes from an irreducible representation of G,
in this case: ρ : G→ GL(V) is given by ρ(t) = (eλt) ∈ GL1(C).

Example. Let G = U(1). Again, since every irreducible complex representation of Lie(G)
is one-dimensional, the same must be true of G. Furthermore we classified the one-
dimensional complex representations of G in class: they correspond to the morphisms
ρk : U(1) → GL1(C) for k ∈ Z given by ρk(z) = zk.

There’s an important lemma about irreducible representations that we will note here.

Lemma 13.3 (Schur). Let V1,V2 be complex representations (of a lie algebra g or a lie group
G), and let φ : V1 → V2 be a morphism (of g-representations or of G-representations). Then
either φ = 0 or φ is an isomorphism. If V = V ′, then there exists a complex number λ with
φ(v) = λ(v) for all v.

Proof. Key observation: kerφ, Imφ are invariant subspaces. Hence kerφ is 0 or V1 and
Imφ is 0 or V2.

Suppose φ 6= 0. Then kerφ 6= V1, so kerφ = 0. And Imφ 6= 0, so Imφ = V2. Hence
φ is an isomorphism.

Second part: let λ be a eigenvector of φ. Then φ ′ = φ− λ idV is also a morphism of
representations, but it’s not injective, so it must be 0.

The terminology of “irreducible” representations suggests that non-irreducible rep-
resenations are in some sense “reducible.”

This is true in the following sense: if a representation V of a Lie group G is not
irreducible, by definition there exists an invariant subspace V ′ ⊂ V . Since gV ′ ⊂ V ′ for
all g ∈ G, the subspace V ′ is also a representation of G with the restricted action. The
inclusion map V ′ ↪→ V is then a morphism of G-representations, and we say that V ′ is a
subrepresentation of G. Additionally, the action of G on V induces an action of G on V/V ′.
This means that we can relate V to the smaller representations V ′ and V/V ′ (although
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we cannot necessarily reconstruct V from V ′ and V/V ′). Likewise, the same is true if V
is a representation of a Lie algebra g.

However, there is a sense in which this is not necessarily true. We say that a represen-
tation V (of a Lie group G or Lie algebra g) is decomposable if V = V ′ ⊂ V ′′ for nonzero
proper invariant subspaces V ′ and V ′′ of V (so V is the direct sum of V ′ and V ′′ as rep-
resentations). Then an non-irreducible representation is not necessarily decomposable.

Example. For an example on the Lie algebra side, let g = R and V = C2. We define

the map ρ : R → gl(V) = gl2(C) by ρ(1) = T =

(
0 1

0 0

)
. Since V is 2-dimensional, any

nonzero proper invariant subspace of V is 1-dimensional, hence must be spanned by an
eigenvector of T . The only eigenvector of T is

(
1 0

)
and its scalar multiples, so the only

nonzero proper invariant subspace of V is span
(
1 0

)
. Hence V is not decomposable.

Although this shows that not all non-irreducible representations can be decomposed
as direct sums of smaller representations, there are conditions under which this is the
case. We outline some now.

Definition. A representation V of a Lie group or Lie algebra is said to be semisimple or
completely reducible if for all invariant W ⊂ V there exists a invariant complement W ′

with W ⊕W ′ = V .

Proposition 13.4. Let V be a finite-dimensional representation of a Lie group or Lie algebra.

a) If V is semisimple then any subrepresentation V ′ ⊂ V is semisimple.

b) If V is semisimple then V ∼= V1 ⊕ V2 · · · ⊕ Vn where the Vi ⊂ V are irreducible subrepresen-
tations.

Proof. For part a): suppose that W ⊂ V ′ is an invariant subspace. Then W is also
an invariant subspace of V , so there exists W ′′ ⊂ V with W ⊕W ′′ = V . Then set
W ′ = V ′ ∩W ′′; this is invariant since both V ′ and W ′′ are, and V ′ =W ⊕W ′.

Part b) is now a straightforward induction on dimV . If V is irreducible we’re done.
Otherwise, choose V1 ⊂ V invariant, and let V2 be a complementary invariant subspace,
so V = V1 ⊕ V2. Both V1 and V2 are also semisimple, so, by the induction hypothesis,
they are both direct sums of irreducible subrepresentations. Then V = V1 ⊕ V2 is also a
direct sum of irreducible subrepresentations, and we’re done.

Remark. In fact, b) is an if and only if, and most books use the criterion in b) as a
definition of semisimplicity/complete reducibility (the latter is the more common term).

This still isn’t an easy definition to check. Fortunately, there’s a nice criterion that
we’ll be using.
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Definition. If V is a complex representation of a Lie group G, a (G)-invariant Hermitian
inner product on V is a Hermitian inner product (·, ·) such that (v,w) = (gv,gw) for all
g ∈ G.

If V is a complex representation of a Lie algebra g, a (g)-invariant Hermitian inner
product on V is an inner product (·, ·) such that (Xv,w) + (v,Xw) = 0 for all g ∈ G.

A representation V (of a Lie group or a Lie algebra) is unitarizable if it admits a
positive definite Hermitian inner product.

Remark. The definition of a g-invariant inner product is motivated by the following con-
sideration: if g = LieG, an inner product on V should be G-invariant if and only if it is
g-invariant.

Invariant inner products are most commonly seen for group representations rather
than Lie algebra representations, and starting next time we’ll be focusing mainly on the
former.

Proposition 13.5. Unitarizable representations are semisimple.

Proof. If V is irreducible, and W ⊂ V is invariant, the orthogonal complement W⊥ of W
is also invariant, and V =W ⊕W⊥.

Theorem 13.6. If G is compact, all representations of G are semisimple.

Last time, we defined a unitarizable representation V of G, and showed that it is
necessarily semisimple/completely reducible.

Today we’ll prove that if G is a compact Lie group, then every complex representation
of G is unitarizable.
Remark. Which Lie groups G are compact? Here compact means “compact as a topolog-
ical space,” so matrix groups are compact iff they are closed and bounded. For instance,
the unitary group U(n) and special unitary group SU(n) are compact. Likewise, the
orthogonal group Ø(n) and special orthogonal group SO(n) are both compact. Addi-
tionally, the double cover Spin(n) of SO(n) is compact. One more family of compact Lie
groups are the unitary symplectic groups USp(2n) = U(2n) ∩ Sp2n(C). (This group is
called Sp(n) in Knapp.)

It turns out that I’ve now basically named all the simply connected compact Lie
groups with six exceptions. That is, any simply connected compact Lie group can
be written a product of factors, each of which is isomorphic to one of U(n), Spin(n),
USp(n), or one of six exceptions (the compact forms of the exceptional Lie groups
E6,E7,E8, F4 and G2). We’ll be able to prove this by the end of the semester.

If G is a compact Lie group that is connected but not simply connected, it has a
universal cover G̃. You should be worried that G̃ might not be compact, and indeed, it
isn’t in the case G = U(1) where G̃ ∼= R. However it turns out that this is basically the
only thing that can go wrong; one can show that G̃ is isomorphic to the product of some
Rn (n ≥ 0) with a compact group; hence there is a nice classification of compact Lie
groups.
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We’ll first sketch the proof strategy, then later fill in the background we need.

Strategy. We do an averaging argument.
Let (, )0 be any positive definite Hermitian inner product on V , not necessarily invari-

ant. Then we will define an averaged inner product (, ) by letting (v,w) be the average of
(gv,gw)0 as g runs over G. This inner product will then be G-invariant since the average
value of (gv,gw) is the same as the average value of (gg ′v,gg ′w).

In order to make this “averaging” rigorous, we need to do some measure theory.

14 Haar Measure

Let X be a locally compact Hausdorff topological space (not necessarily a group). (
Additionally, we need the following technical condition left out in class: X should be σ-compact,
which means that X is a countable union of compact sets. Second countable and locally compact
imply σ-compact, so all manifolds are σ-compact.)

Definition. A Borel set of X is a member of the σ-algebra generated by open subsets of
X. Let B(X) denote the collection of all Borel sets. A Borel measure µ : B(X) → [0,∞] is
a countably additive measure on the Borel sets. (That is, µ(

⋂∞
i=1 Ei) =

∑∞
i=1 Ei if the Ei

are pairwise disjoint).

Definition. A Radon measure on X is a measure on X such that

• µ(K) <∞ for every compact K ⊂ X

• (Outer regularity) µ(E) = infU⊃E open µX

• (Inner regularity) µ(U) = supK⊂E compact µ(K).

Now let G be a locally compact σ-compact topological group (these terms are gener-
ally defined so that G is assumed to be Hausdorff).

Definition. A Borel measure on G is left-invariant if µ(E) = µ(gE) for all g ∈ G and all
E ⊂ X Borel. Likewise, we say that µ is right-invariant if µ(E) = µ(Eg) for all g,E.

A left Haar measure is a nonzero left-invariant Radon measure on G. A right Haar
measure is a nonzero right-invariant Radon measure on G.

Example. G = Rn, group action given by addition. Then the Lebesgue measure on G
(domain restricted to Borel sets) is a Radon measure.

We state without proof the fundamental theorem about Haar measures (which is
difficult in the context of general topological groups, although easier for Lie groups).
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Theorem 14.1. If G is a locally compact, σ-compact, topological group, then there exists a left
Haar measure µ, unique up to multiplication by a positive scalar. Likewise there exists a right
Haar measure unique up to multiplication by a positive scalar.

The group G acts on the set of left Haar measures by right translation. That if µ
is a Haar measure then, for any g ∈ G we can define a left Haar measure rg(µ) by
rg(µ)(E) = µ(Eg).

Since Haar measures are unique up to scaling, we must have µ(Eg) = c(g)µ(g) for
some c ∈ R>0. It’s easy to see that c : G → R>0 is a group homomorphism (with the
group operation on R>0 given by multiplication. It’s somewhat harder to see that c is
continuous; we won’t prove it in full generality, but for Lie groups it follows from 7a) on
Problem Set 5.

The function c is called the modular function of G (Note: some books define the modular
function to be the reciprocal of c.) We say that G is unimodular if c(g) = 1 for all g. This is
equivalent to the left-invariant Haar measure µ also being right-invariant, in which case
it is a right Haar measure as well.

Proposition 14.2. Compact topological groups are unimodular.

Proof. The image c(G) of G must be a compact subgroup of R>0; but the only such
subgroup is {1}. Hence c(g) = 1 for all g.

Hence if G is compact, any left Haar measure µ on G is also a right Haar measure.
Note also that G compact implies µ(G) < ∞, and so there is a unique (left and right)
Haar measure µ with µ(G) = 1. We call the the normalized Haar measure on G.
Example. The group Bn(R) of invertible upper triangular n× n matrices is not unimod-
ular, as you’ll show on HW. (The “B” here stands for Borel, but it’s a different Borel from
the measure theory Borel.)

Given a Radon measure µ, one can define a class of functions integrable with respect
to µ and an integral

∫
g∈G f(g)dµ(g) the same way that one does for the Lebesgue integral.

Importantly, if f is continuous and compactly supported, f is integrable.
If one just has the data of the integral, one can recover the measure µ by the formula

µ(E) =
∫
g∈G 1E(g)dµ(g) for every Borel set E ⊂ G (here 1E is the characteristic function

of E). Worth mentioning, although I didn’t say it in class: in fact, you can recover µ just by
knowing

∫
g∈G f(g)dµ(g) for all continuous compactly supported f. This is the content of the

Riesz(-Markov-Kakutani) representation theorem.
The measure µ will then be left-invariant if and only if∫

g∈G
f(g)dµ(g) =

∫
g∈G

f(g ′g)dµ(g) (20)

for all g ′ ∈ G and every integrable f. Likewise, µ is right-invariant if and only if∫
g∈G

f(g)dµ(g) =

∫
g∈G

f(gg ′)dµ(g). (21)
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Now we specialize to the case when G is a Lie group. In this setting one can easily
construct a left Haar measure as follows. Suppose dimG = n, and let ω be a left-
invariant differential n-form on G. (This means that ω = `∗gω for any g ∈ G: here
as before `g : G → G is given by `g(h) = gh, and the upper star denotes pullback of
differential forms.) Then the Haar measure µ is determined by∫

g∈G
f(g)dµ(g) =

∫
G
fω.

(This integral is defined by writing fω as a sum of functions each of which is supported
on a chart, and then doing the Lebesgue integral on each chart.)

Standard notation is to refer to either µ or ω as dg.

Example. If G = GLn(R), and for g ∈ G we write g = (gij),

dg = det(g)−ndx11 ∧ · · ·∧ dxnn.

If G = GLn(C), and for g ∈ G we write g = (xij + yij),

dg = |det(g)|−2ndx11 ∧ · · ·∧ dxnn ∧ dy11 · · ·∧ dynn.

Now let’s go back and make the averaging method from the start of class rigorous.

Proof. Recall that V is a representation of a complex Lie group G, and that we have to
find a G-invariant positive definite Hermitian inner product on V .

As before, let (·, ·)0 be an arbitrary positive definite Hermitian inner product on V .
Define the inner product (·, ·) by

(v,w) =
∫
g∈G

(gv,gw)0dµ(g)

where µ is the normalized (left and right) Haar measure on G.
Applying (21) to f(g) = (gv,gw) we obtain

(v,w) =
∫
g∈G

(gv,gw)0dµ(g) =
∫
g∈G

(gg ′v,gg ′w)0dµ(g) = (g ′v,g ′w)

for all g ′ ∈ G. Hence (·, ·) is G-invariant as desired.

15 L2(G)

Let G be a compact Lie group. Recall from last time that we have a unique normalized
Haar measure dg on G which is left and right invariant and satisfies

∫
g∈G 1dg = 1.
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Definition. The space L2(G) = L2(G,dg) is the space of measurable functions f : G→ C

such that
‖f‖L2

∫
G
|f|2dg <∞

, quotiented out by those functions f such that
∫
G |f|2 = 0. (One can show that

∫
G |f|2 = 0

if and only if f is supported on a set of measure 0, so two functions f : G → C have the
same image in L2(G) if and only if they agree almost everywhere.)

Basic results on L2 spaces from analysis: L2(G) is a Hilbert space (complete inner
product space space) with respect to the inner product

(f1, f2)L2 =
∫
G
f1(g)f2(g)dg.

Furthemore, L2(G) contains the space C(G) of continuous functions as a dense sub-
space. (In fact, C∞(G) is also dense in L2(G). For the next week or so, we’re just going
to be focusing on C(G) instead of C∞(G) because pretty much everything we do gener-
alizes directly to compact topological groups, where C∞ doesn’t make sense.)

16 Left and right regular representations, and the biregu-
lar representation

Now we will make L2(G) into a representation of G. In fact, there are two different
natural ways of doing this.

Definition. The left regular representation ρ` : G→ GL(L2(G)) is given by

ρ`(g)f = f ◦ `−1g .

That is,
ρ`(g)(f)(g

′) = f(g−1g ′)

The left regular representation ρ` is a unitary representation of G in the following
sense:

Definition. LetH be a Hilbert space with inner product (, )H. The groupU(H) of unitary
transformations of H is given by

U(H) = {φ ∈ GL(H) | (φ(v),φ(w))H = (v,w)H for allv,w ∈ H}

A unitary representation of G on H is a homomorphism ρ : G→ U(H) such that the
map G×H→ H given by (g, v) 7→ ρ(g)v is continuous.
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To show that ρ` is indeed unitary, we have two things to check. The first is that the
image of ρ` is indeed contained in U(H); that is, (f1, f2)L2 = (ρ`(g)(f1), ρ`(g)(f2))L2 =

(f1 ◦ `−1g , f2 ◦ `g)L2 for all g ∈ G and f1, f2 ∈ L2(G). This follows directly from left-
invariance of Haar measure.

The second is that (g, f) 7→ ρ`(g)(f) = f ◦ `−1g is continuous. We won’t do the full
proof here, but we will give the key step.

We will prove that g 7→ ρ`(g)(f) is continuous at g = 1 for any fixed continuous
function f ∈ C(G). For this, note that f is a continous function on a compact space, hence
uniformly continuous. It follows that as g→ 1, the functions f ◦ `−1g → f uniformly (that
is, in the L∞ topology). Since G is compact, this means that f ◦ `−1g → f in L2(G).

The general case follows from this using the fact that C(G) is dense in L2(G).
(Exercise: fill in the rest of the details. Knapp does part of this in Lemma 4.17 of

Chapter IV, where he proves that ρ`(g)(f) is a continuous function of g for arbitrary
fixedf. For the rest, use the fact that, for fixed g, ρ`(g) is unitary, hence an isometry.)

We can also define the right regular representation ρr : G → U(L2(G)) by ρr(g)(f) =

f ◦ r(g). For the same reasons as above, this is also a unitary representation of G.
Furthermore, the left and right regular representations commute: for any g1,g2 ∈ G

and and f ∈ G, ρr(g1)ρ`(g2)(f) = ρ`(g2)ρr(g1)(f) is the function g 7→ f(g−11 gg2).
Hence we obtain a unitary representation ρ = ρ` × ρr : G×G → G by ρ(g1,g2)(f) =

ρr(g1)ρ`(g2)(f).

Example. Let G = R/Z ∼= U(1). Then L2(G) = L2(R/Z). Fourier analysis tells us that
L2(R/Z) has a Hilbert space basis {vk}k∈Z where vk : R/Z → C is given by vk(t) = e2πikt.

Then we claim that Vk = span(vk) is a G× G-invariant subspace. Indeed, for s ∈
R/Z,

ρ`(s)(vk)(t) = vk(t− s) = e
2πikt−s = e−2πisvk(t)

Hence ρ`(s)(vk) = e−2πisvk. Likewise, ρr(s)(vk) = e2πisvk.
Recall that the unitary representations of G ∼= U(1) are given by ρk : G → Wk for

k ∈ Z, where Wk is a one-dimensional C-vector space, and ρk : G → GL1(C) sends
t 7→ e2πikt. Then the invariant subspace Vk with, G acting by the left regular action
ρ`, is isomorphic to W−k

∼= W∗k . On the other hand, under the right regular action ρr,
Vk ∼=Wk.

To describe Vk as a representation of G×G, we need a bit of terminology.

Definition. If V and W are representations of Lie groups G and H respectively, then the
external tensor product V ×W is a representation of G×H defined as follows: as vector
spaces, V �W ∼= V ⊗W, and (g,h)(v⊗w) = gv⊗ hw for all (g,h) ∈ G×H and any
pure tensor v⊗w ∈ V �W.

Then we have Vk ∼=W∗k �Wk as representations of V × V .
We can restate the statement that the vk form a basis for H in the following way:
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L2(G) ∼=
⊕̂
k∈Z

V−k� Vk. (22)

where
⊕̂

denotes the completion of the direct sum of inner product spaces.

Over the next week, we will be proving a generalization of this result to arbitrary
compact Lie groups.

Theorem 16.1 (Peter-Weyl). For any compact Lie group G,

L2(G) ∼=
⊕
ρ∈Ĝ

V∗ρ � Vρ. (23)

where Ĝ denotes the set of (isomorphism classes of) irreducible finite-dimensional representations
ρ : G→ GL(Vρ) of G.

That is, L2(G) contains in it all the irreducible representations of G, and these repre-
sentations exhaust L2(G).

Last time: we made L2(G) into a unitary representation of G in two different ways.
Left regular representation ` : G→ U(L2(G)) given by `(g)(f) = f ◦ `−1g . (last time we

called it ρ`, but I’m chaging it to ` for brevity; likewise will abbreciate ρr to r).
Right regular representation r : G→ U(L2(G)) given by r(g)(f) = f ◦ rg.
Since these two representations commute, we have the biregular representation `× r→

U(L2(G)) given by `× r(g1,g2) = `(g1) ◦ r(g2) = r(g2) ◦ `(g1).
Last time, we stated the Peter-Weyl theorem:

Theorem 16.2 (Peter-Weyl). For any compact Lie group G,

L2(G) ∼=
⊕
ρ∈Ĝ

V∗ρ � Vρ. (24)

where Ĝ denotes the set of (isomorphism classes of) irreducible finite-dimensional representations
ρ : G→ GL(Vρ) of G.

We’ll be spending this week proving it. Today we’ll find the copies of V∗ρ � Vρ inside
L2(G).

17 Matrix coefficients

Let V be a finite-dimensional representation of G. We know that V is unitarizable; let
(·, ·)V be a G-invariant hermitian inner product on V . (Exercise: use Schur’s lemma to
prove that (·, ·) is well-defined up to scaling.)

38



Let v1, . . . , vn be an orthonormal basis for V . Our representation gives us a map
ρ : G → GL(V) ∼= GLn(C), where the latter isomorphism uses the basis {vi} of V . Then
for any i, j between 1 and n, we can define a function ρij : G → C by: ρij(g) is the ijth
entry of the matrix ρ(g). Clearly ρij ∈ C(G) ⊂ L2(G).

We can also define the function ρij without picking the entire basis by ρij(g) =

(gvj, vi).

Definition. For any v1, v2 ∈ V (not necessarily part of an orthonormal basis), the function
g 7→ (gv1, v2) is called an matrix coefficient of G.

There’s an alternate way defining matrix coefficients without the inner product. Let
V∗ be the dual space of V , and denote the canonical bilinear pairing V∗ × V → C by
v∗, v 7→ 〈v∗, v〉. Then the matrix coefficients are precisely the functions of the form
g 7→ 〈v∗,gv〉 for v ∈ V and v∗ inV∗. Note that the function thus defined depends
bilinearly on v and v∗. Hence we can define

Definition. We define a map ΦV : V∗ ⊗ V → L2(G) by ΦV(v∗ ⊗ v)(g) = 〈v∗,gv〉.

Taking the direct sum of all the ΦV gives us the map⊕
V

ΦV :
⊕

Virred rep

V∗ ⊗ V → L2(G)

We will prove that this map is an isometry, that is, it preserves the inner product (and
is hence also injective). In order to do this, we first need to give an inner product on the
left hand side.

Let V be any irreducible representation of G. As noted above, we have a G- invariant
inner product (·, ·)V on V (unique up to scaling). We can use this to obtain a G-invariant
inner product on V∗ as follows: for any v∗1 , v

∗
2 ∈ V∗, there exist unique v1, v2 ∈ V such

that (v, vi)V = 〈v∗i , v〉 for all v ∈ V and i = 1, 2. Then define (v∗1 , v
∗
2)
∗
V = (v1, v2)V .

We will then define an inner product (·, ·)V∗⊗V by:

(v∗1 ⊗ v1, v∗2 ⊗ v2)V∗⊗V =
(v∗1 , v

∗
2)V∗(v1, v2)V
dimV

.

This then gives us an inner product on
⊕
V∗ ⊗ V which restricts to (·, ·)V∗⊗V on each

V∗ ⊗ V , and such that V∗ ⊗ V is orthogonal to (V ′)∗ ⊗ V∗ if V ′ 6= V .
Showing that

⊕
V ΦV is an isometry ultimately boils down to the following:

Theorem 17.1 (Schur Orthogonality). Let V ,W be irreducible representations of G with in-
variant inner products (·, ·)V and (·, ·)W respectively. Let v1, v2 ∈ V , w1,w2 ∈ W, then∫
g∈G(gv1, v2)V(gw1,w2)Wdg is 0 if V 6∼=W and (v1,v2)V (w1,w2)V

dimV if V =W.

To prove this theorem, we will need the following version of Schur’s lemma:
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Lemma 17.2. Let V ,W be irreducible representations of G, and let L : V → W be any linear
map. Then L̃ =

∫
g∈G gLg

−1dg = 0 if V 6∼=W and = trL
dimV 1V otherwise.

of lemma. The map L̃ is a morphism of representations, since for any h ∈ G

h−1L̃h =

∫
g∈G

(gh)−1L(gh) = L̃

by right-invariance of Haar measure. We now apply Schur’s lemma; this gives the result
for V 6= W, and tells us that L̃ = λ1V for some λ ∈ C. To determine λ, note that
tr L̃ =

∫
g∈G trLdg = trL, so λ = trL

dimV ..

Now we show the orthogonality relations:

Proof of Schur orthogonality. Apply the lemma with L :W → V given by L(w ′) = (w ′,w1)Wv1.
Schur’s lemma tells us that L̃ = 0 if V 6∼=W, and L̃ = trL

dimV 1V = (v1,w1)V
dimV 1V if V =W.

Consider the quantity (L̃w2, v2)W . By the above this is 0 if V 6∼=W, and is (v1,w1)V (v2,w2)V
dimV .

On the other hand,

(L̃w2, v2)V =

∫
g∈G

(g((g−1w2,w1)Wv1)w2, v2)Vdg =

∫
g∈G

(g−1w2,w1)V(gv1, v2)Wdg =

∫
g∈G

(v1,gv2)V(w1,gw2)Wdg.

(L̃ = 0 if V 6∼=W, and

As an immediate corollary we get the following.

Corollary 17.3 (Schur Orthogonality, equivalent nform). Let v ∈ V , w ∈ W, v∗ ∈ V∗,
w∗ ∈W ′. Then

(ΦV(v
∗ ⊗ v),ΦW(w∗ ⊗w))L2

is 0 if V 6∼=W and is (v,w)V (v∗,w∗)V∗
dimV otherwise.

This shows that ⊕VΦV is an isometry.
Last time, for each irreducible representation V of G, we defined a map ΦV : V∗ ⊗

V → L2(G). Taking the direct sum of all these maps gave a map

Φ =
⊕
V

ΦV :
⊕

V irreducibleV∗ ⊗ V → L2(G).

We showed that this is an isometry. To show the Peter-Weyl theorem, we need two more
things: to show that Φ is actually a homomorphism of G× G-representations, and to
show that the image of Φ is dense in L2(G).

Let’s do the first part first. It’s enough to show that for each V , ΦV is a homomor-
phism of G×G-representations. We write the domain of ΦV as V∗ � V to clarify what
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the representation structure is. Then we need to show that for any v∗ ⊗ v ∈ V∗ � V and
any (g1,g2) ∈ G×G, ΦV(g1v ∗ ⊗g2v) = `(g1)r(g2)ΦV(v∗ ⊗ v).

Indeed, for any g ∈ G,

PhiV(g1v
∗ ⊗ g2v)(g) = 〈g1v∗,gg2v〉 = 〈v∗,g−11 gg2v〉 = ΦV(v

∗ ⊗ v)(g−11 gg2),

which is the value of `(g1)r(g2)ΦV(v∗ ⊗ v) at g.
The hard part is to check that the image of Φ =

⊕
V ΦV is dense in L2(G). For this,

let Calg(G) denote the image of Φ. Then Calg(G) is spanned by all matrix coefficients of
irreducible representations; that is, the functions g 7→ 〈v∗,gv〉 for v ∈ V and v∗ ∈ V∗
where V is an irreducible representation of G.

We make here two observations about Calg(G); proofs are left for the problem set.

• Calg(G) also contains matrix coefficients of non-irreducible reps.

• If f ∈ Calg(G) then f̌ ∈ Calg(G).

Our goal now is to show that Calg(G) is dense in L2(G). To do this we will first give
an alternate characterization of Calg(G).

Definition. Let V be a (possibly infinite-dimensional) representation of G. Then we say
that v ∈ V is G-finite if v is contained in a finite-dimensional G-invariant subspace.

Note that v is G-finite if and only if span({gv | g ∈ G}) is finite-dimensional. Also, the
set Vfin of G-finite vectors in V is a subspace of V

Proposition 17.4. For a function f ∈ L2(G):

a) f ∈ Calg(G)

b) f is G×G-finite (with respect to the biregular representation`× r).

c) f is G-finite (with respect to the left regular representation `)

d) f is G-finite (with respect to the right regular representation r)

Proof. a) =⇒ b): Since the G×G-finite vectors of L2(G) form a subspace, it’s enough to
show this when f ∈ ImΦV for some irreducible representation V . But ΦV is a morphism
of G×G-representations, so ImΦV is a G×G-invariant subspace containing f as desired.

b) =⇒ c) and d) is clear.
We’ll do c) =⇒ a) and d) =⇒ a) next time. The proof will take two steps; first show

that f is continuous, and then argue that f ∈ Calg(G).

Last time we stated the following proposition

Proposition 17.5. For a function f ∈ L2(G):
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a) f ∈ Calg(G)

b) f is G×G-finite (with respect to the biregular representation`× r).

c) f is G-finite (with respect to the left regular representation `)

d) f is G-finite (with respect to the right regular representation r)

and proved a) =⇒ b) =⇒ c)&d). We’ll now show c) =⇒ a): the proof for d) =⇒
a) is similar.

Proof. Suppose that f is contained in a finite-dimensional G-invariant subspace V . We
must show that f ∈ Calg(G). Since V can be decomposed as a direct sum of irreducibles,
it’s enough to do this when V is irreducible. We may also assume f 6= 0, as the implica-
tion is clear when f = 0. We first show the following claim:

Claim: V ⊂ C(G) (so in particular f is continuous).
Let φ ∈ C(G) be arbitrary. Then, by the problem set, the convolution φ ∗ f = `(φ)(f)

is continuous and lies in the finite-dimensional subspace V of L2(G). Additionally, since
f 6= 0 by the problem set we can choose φ such that φ ∗ f 6= 0. Then span({`(g)(φ) | g ∈
G}) is a nonzero `(G)-invariant subspace of V , so it must be all of V . This means that V
is spanned by continuous functions, giving the claim.

Now we can show that f ∈ Calg(G).
First of all, we define an element v∗ ∈ V∗ by 〈v∗, f ′〉 = f ′(1G) for all v ∈ V ⊂ C(G).

This is the part where it is absolutely essential to use V ⊂ C(G): the point is that L2

functions cannot be evaluated at individual points, because they are only defined up to
changing their values at a set of measure 0. However, continuous functions are actually
well-defined as functions, so they can be evaluated in this way.

Then, Calg(G) contains the function g 7→ 〈v∗, `(g)f〉 = `g(f)(1G) = f(g−1), namely, f̌.

Since f̌ ∈ Calg(G), the homework tells us that f = ˇ̌f ∈ Calg(G) as well.

Now, we finish the proof of Peter-Weyl by proving that Calg(G) is dense in C(G), that
is, that the closure of Calg(G) is all of C(G):

Proof. Let φ ∈ C(G) be any real-valued function with φ = φ̌ (that is, φ(g) = φ(g−1) for
all g..

We have the map r(φ) : L2(G) → L2(G), which sends f ∈ L2(G) to r(φ)(f) =∫
g∈G f(gh)φ(h

−1)dg = f ∗ φ̌ = f ∗φ. We will show that the image of r(φ) is contained in
the closure of Calg(G); that is, for any f ∈ L2(G), f ∗φ ∈ closure(Calg(G)).

This map is self-adjoint: for any f1, f2 ∈ L2(G),

〈f1, r(φ)f2〉L2 =
∫
g∈G

f1(g)(r(φ)(f2))(g)dg =

∫
g∈G

∫
h∈G

f1(g)f2(gh)φ(h)dhdg
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and

〈r(φ)f1, f2〉 =
∫
g∈G

(r(φ)f1)(g)f2(g)

=

∫
g∈G

∫
h∈G

f1(gh)f2(g)φ(h)dhdg

=

∫
g∈G

∫
h∈G

f1(g)f2(gh
−1)φ(h−1)dhdg

=

∫
g∈G

∫
h∈G

f1(g)f2(gh)φ(h)dhdg.

(The first change of variables is justified by right-invariance of Haar measure. The second
one is justified since d(h−1) is also a left-and-right invariant measure on G, so must equal
dh.)

Additionally, r(φ) is a compact operator. (This means that the image of the unit ball
in C(G) has compact closure. Roughly speaking, this means that the image of the unit
ball must be “small”, since the unit ball in an infinite-dimensional Hilbert space is never
compact.) We won’t show this here, but this follows from a general result about Hilbert-
Schmidt operators: for any K ∈ L2(G×G), the map TK(f)(g) =

∫
G×G K(g,g ′)f(g ′)dg is

always compact for any K ∈ L2(G×G).
The spectral theorem for compact operators then tells us the following: L2(G) =⊕̂
λ≥0Vλ where Vλ is the λ-eigenspace of r(φ), and Vλ is finite dimensional for λ > 0.

Because the left and right regular actions commute, r(φ) commutes with `(g) for any
g ∈ G, and hence Vλ must be `(G)-invariant for any λ. If λ > 0, then also Vλ is finite-
dimensional, so Vλ ⊂ Calg.

Since
⊕
λ≥0 Vλ is dense in L2(G), r(φ)

(⊕
λ≥0 Vλ

)
=
⊕
λ>0 Vλ must be dense in Im r(φ).

But
⊕
λ>0 Vλ is contained in Calg(G), so Im r(φ) is contained in closure(Calg(G)) as de-

sired.
We’ll finish this proof on Monday.

Today we’ll do the last step in the proof of

Theorem 17.6 (Peter-Weyl). For any compact Lie group G,

L2(G) ∼=
⊕̂
V

V∗ � V . (25)

as unitary representations of G × G, where V runs through all finite-dimensional irreducible
representations of G×G.

We’ll then do a couple of applications.
Recall our strategy; we defined a map

Φ :
⊕
V

V∗ ⊗ V → L2(G).
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We showed that Φ was an isometry and a morphism of G×G-representations. We then
defined Calg(G) ⊂ L2(G) as the image of Φ, and had left to show that Calg(G) is actually
dense in L2(G).

What we showed last time was that for any f ∈ L2(G) and any real-valued φ ∈ C(G)
with φ = φ̌, f ∗φ ∈ Calg(G).

Now we finish the proof:

Proof. We must show that the closure of Calg(G) is all of L2(G). It is enough to show that
the closure of Calg(G) contains C(G), since the latter is dense. Let f ∈ C(G) be arbitrary.

Choose a sequence of functions φn ∈ C(G) (“approximate identity”) such that φn(g) ≥
0 for all g ∈ G,

∫
g∈Gφn(g)dg = 1, and supp(φn) shrinks down to {1G} as n → ∞. Then

we claim limn→∞ f ∗ φn = f. We show this in the topology of uniform convergence,
which implies L2 convergence (since G is compact):

Indeed, for any g ∈ G,

(f ∗φn)(g) =
∫
h∈G

f(gh)φn(h
−1)dh

=

∫
h∈G

f(gh)φn(h)dh

= f(g)

∫
h∈G

φn(h)dh+

∫
h∈G

(f(gh) − f(g))φn(h)dh

≤ f(g) +
(

max
h∈supp(φn)

(f(gh) − f(g))

) ∫
h∈G

φn(h)dh

= f(g) + max
h∈supp(φn)

(f(gh) − f(g))

and the second term goes to 0 as n→ ∞, uniformly in g, because f is uniformly contin-
uous.

Since each f ∗φn lies in the closure of Calg(G), the same is true of f = limn→∞(f ∗φn),
as desired.

18 Applications of Peter-Weyl

We now move to a couple applications of the Peter-Weyl Theorem.
Our first application is the following.

Corollary 18.1. Any compact lie group G has a finite-dimensional representation ρW : G →
GL(W) which is faithful: this means that ker ρW = {1G}.

(Another way of saying this is that G is isomorphic as Lie group to the closed sub-
group Im ρW of the matrix group GL(W).)
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Without the finite-dimensional criterion, we could take W = L2(G) using either the
left or right regular representations; however it will take a bit of work to show that we
can in fact pick W to be finite-dimensional. We do this in a sequence of lemmas:

Lemma 18.2. For every g ∈ G, there exists some finite-dimensional irreducible representation
ρV : G→ GL(V) such that g /∈ ker ρV .

Proof. Suppose otherwise; then ρV(g) is the identity on V for every finite-dimensional
irreducible representation V of G.

Now we apply Peter-Weyl: we have

L2(G) ∼=
⊕̂
V

V∗ � V . (26)

as representations of G×G. The element (1,g) ∈ G×G acts on the left hand side by the
right action r(g); on the other hand, it acts on the right hand side trivially, since g acts
trivially on each V . Hence r(g)f = f for all f ∈ L2(G); but this is absurd.

Lemma 18.3. Let U ⊂ G be any neighborhood of the identity. Then there exists a finite-
dimensional representation ρW : G→ GL(W) with ker ρW ⊂ U.

Proof. By the previous lemma, for every g ∈ G \U we can choose a finite-dimensional
irreducible representation ρVg : G → GL(Vg) with g /∈ ker ρVg . Since ker ρVg is closed,
we can also choose a neighborhood Ug of g such that g ′ /∈ ker ρVg for any g ′ ∈ Ug. By
compactness, we can find a finite collection Ug1 , . . . ,Ugn that cover G \U.

Then W = Vg1 ⊕ · · · ⊕ Vgn has the desired property.

Up until this point, we haven’t actually been using that G is a Lie group; everything
so far is equally true of any compact topological group. Our last lemma will use that G
is a Lie group.

Lemma 18.4. There exists a neighborhood U of 1G in G such that the only subgroup of G
contained in U is {1G}.

Proof. Choose V ′ ⊂ LieG a neighborhood of 0 such that expG maps V ′ homeomorphi-
cally to U ′ = expG(V

′). Shrink V ′ if necessary to be bounded (in the finite-dimensional
vector space LieG). Choose V ⊂ V ′ such that 2V ⊂ V ′, and let U = expG V . We claim
that this choice of U works

Now suppose H is a subgroup of G contained in U. For any h ∈ U, write h = expX
for some X ∈ V . Since H is a subgroup, h2 = exp(2X) ∈ H ⊂ U, hence 2X ∈ V .
Repeating, get 2NX ∈ V for all N. However, V is bounded, so we must have X = 0, and
so h = 1G; thus H must be {1G}.
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Combining the previous two lemmas proves the theorem.
We now do a second application.
Suppose that H is a closed subgroup of the compact Lie group G (not necessarily

normal). Then the quotient G/H is a set with a left action of G; it is also a topological
space with the quotient topology. Additionally, one can show that G/H is actually a
manifold.

Let π : G→ G/H be the quotient map. We can push forward the Haar measure on G
via π to obtain a measure dx on G/H, determined by∫

x∈G/H
f(x)dx =

∫
g∈G

(f ◦ π)(g)dg =

∫
g∈G

f(gH)dg.

(Equivalently, the measure of a subset E ⊂ G/H is defined as the measure of π−1(E).)
That is, L2(G/H) is isomorphic as a Hilbert space to the subset {f ∈ L2(G) | f(gh) =

f(g) for all g ∈ G,h ∈ H} of L2(G) consisting of functions that are constant on left cosets
of H. Another way of saying this is that L2(G/H) ∼= L2(G)r(H) where L2(G)r(H) denotes
the subspace of r(H)-invariants of L2(G): that is, {f ∈ L2(G) | f = r(h)(f) for all h ∈ H}.

Now, by Peter-Weyl, we have

L2(G) ∼=
⊕̂
V

V∗ � V

as representations of G×G. We now take the invariants on both sides with respect to
the subgroup 1×H ⊂ G×G. On the left hand side, we get L2(G)r(H) ∼= L2(G/H). On
the right hand side, taking invariants commutes with the completed direct sum, so we
obtain ⊕̂

V

(V∗ � V)1×H =
⊕̂
V

V∗ ⊗ VH.

Hence
L2(G/H) ∼=

⊕̂
V

V∗ ⊗ VH.

This is not just an isomorphism of inner product spaces, but also an isomorphism of
representations of G ∼= G × 1 ⊂ G × G. (Here g ∈ G acts on L2(G/H) by (gf)(x) =

f(g−1x), and on V∗ ⊗ VH by g(v∗ ⊗ v) = gv∗ ⊗ v.)
We can write the right hand side slightly differently; first, switch the roles of V and

V∗ to get
⊕̂
VV ⊗ (V∗)H, and then use the result from the problem set that V∗ ∼= V to get

L2(G/H) ∼=
⊕̂
V

V ⊗ (V)H.

That is, L2(G/H) can be decomposed as a direct sum of irreducibles such that it
contains dim(V

H
) = dim(VH) copies of any irreducible representation V .
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Example. Let G = SO(3), H = SO(2). Then G/H ∼= S2. As you’ll see in more detail on
your problem set, L2(G/H) ∼= V1 ⊕ V3 ⊕ V5 · · · is a direct sum of irreducible representa-
tions, where V2k+1 has dimension 2k+ 1 (and it follows from the above that VH2k+1 must
be one-dimensional). These subspaces V2k+1 ⊂ L2(G/H) are known as the “spherical
harmonics” and are used in physics.

19 Representation theory of sl2(C)

Today we’ll study the representation theory of g = sl2(C). By your previous homework,
all finite-dimensional representations of sl2(C) are direct sums of irreducibles, so it’s
enough to classify the finite-dimensional irreducible representations of sl2(C).

First, some notation: g is spanned as a C-vector space by H = ( 1 0
0 −1 ), E = ( 0 10 0 ) and

F = ( 0 01 0 ). One can compute: [E, F] = H, [H,E] = 2E, [H, F] = 2F.
A representation of g is a Lie algebra homomorphism µ : g → gl(V). Since µ is linear

it is determined by h = µ(H), e = µ(E), f = µ(F). Furthermore, if we want to check that
a linear map µ : g → gl(V) is a Lie algebra homomorphism, it’s enough to check it on
basis elements, which comes down to checking that [e, f] = h, [h, e] = 2e and [h, f] = 2f.
Example. The standard representation of sl2(C) is V = C2, with basis e1, e2. With respect
to that basis, we have

he1 = e1 ee1 = 0 fe1 = e2

he2 = −e2 ee2 = e1 fe2 = 0.

Example. For our next example, we do V = Symn(C2), which has basis given by {en−k1 ek2 |

0 ≤ k ≤ n}. Since a Lie algebra acts on the symmetric power of a representation by

X(v1 · v2 · · · vn) = Xv1 · v2 · · · vn + v1 · Xv2 · · · vn + · · ·+ v1 · v2 · · ·Xvn
, we can compute

h(en−k1 ek2) = (n− 2k)en−k1 ek2

e(en−k1 ek2) = ke
n−k+1
1 ek−12

f(en−k1 ek2) = (n− k)en−k−11 ek+12 .

We will now show

Theorem 19.1. The representation V = Symn(C2) of sl2(C) is irreducible.

Proof. Suppose that W ⊂ V is a nonzero g-invariant subspace. Choose any nonzero
vector w ∈W Then we can write w =

∑
k≤k0 cke

n−k
1 ek2 with ck0 6= 0.

Then W must also contain ek0(w) = ck0k0!e
n
1 , and so en1 ∈W.

Now, for each k, fk(en1 ) = n(n− 1) · · · · · (n− k+ 1)en−k1 ek2 ∈W. Hence W contains a
basis of V , and so we must have W = V , showing irreducibility of V .
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We will now show that any irreducible representation V of g = sl2(C) is isomorphic
to Symn(C2) for some n.

Let V be an arbitrary irreducible representation of g.

Definition. For each λ, the λ-weight space Vλ of V is the λ-eigenspace of h acting on V .
Any nonzero v ∈ Vλ is called a weight vector of V with weight λ.

Lemma 19.2. If v ∈ Vλ, then hv ∈ Vλ, ev ∈ Vλ+2 and fv ∈ Vλ−2.

Proof. We have hv = λv ∈ Vλ.
To show that ev is an eigenvector of h with eigenvalue λ+ 2, we first note that he−

eh = [h, e] = 2e by assumption, and so he = eh+ 2e. Then

h(ev) = (he)v = ehv+ [h, e]v = e(λv) + 2ev = (λ+ 2)(ev).

as desired. The proof that fv ∈ Vλ−2 is almost identical.

Hence the subspace ⊕λVλ is g-invariant (and is nonzero since h must have eigenvec-
tors), so must equal all of V .

(If V is not irreducible, it is still the case that V = ⊕λVλ. The reason is that we know
that V is a direct sum of irreducibles, each of which is spanned by weight vectors, so the
same must be true of V .)

Definition. A maximal vector (or highest weight vector) for V is a nonzero weight vector v
such that ev = 0.

Any finite dimensional representation V of sl2(C) has a highest weight vector, because
we can always find a weight λ of V such that λ+ 2 is not a weight for V .

Let v be a maximal vector, of weight λ. Then for each k, fkv ∈ Vλ−2k. The vectors
v, fv, f2v, . . . , fkv, . . . , are linearly independent if nonzero; since V is finite-dimensional,
there must be some k for which fkv = 0. Let n be the largest integer such that fnv 6= 0.

We claim that {v, fv, f2v, . . . , fnv} forms a basis for V . We have linear independence
because the fkv are nonzero eigenvectors for h with distinct eigenvalues. We will prove
that they span by showing that W = span(v, fv, . . . , fnv) is an sl2(C)-invariant subspace.
For this it’s enough to show that eW, fW,hW ⊂W. It’s clear that fW ⊂W by construc-
tion; also, since W is spanned by eigenvectors of h we must have hW ⊂ W. The only
part that takes work is to show eW ⊂W.

To show this, we will invoke the following lemma:

Lemma 19.3. For each k, efkv = k(λ+ 1− k)fk−1v.

Proof. Left as exercise for HW: induct on k.
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Recall the setting from last time: V is an irreducible representation of g = sl2 C, and
v ∈ V is a maximal vector of weight λ. Let n be the largest integer such that fnv 6= 0, and
let W = span(v, fv, . . . , fnv). Last time, we stated the following lemma (which we left as
an exercise).

Lemma 19.4. For each k, efkv = k(λ+ 1− k)fk−1v.

By the lemma, we have eW ⊂ W. Also, fW ⊂ W by construction, and hW ⊂ W

because fkv is an eigenvector for V with eigenvalue λ − 2k. Hence W is g-invariant,
and so W = V by irreducibility of V . Hence {v, fv, f2, . . . , fnv} forms a basis for V (we
showed linear independence last time, since eigenvectors of h with distinct eigenvalues
are linearly independent).

Finally, we show that we must have n = λ. For this, apply the lemma with k = n+ 1,
to obtain efn+1v = (n+ 1)(λ− n)fnv. Since fn+1v = 0, the left hand side of this is zero,
but since fnv 6= 0 the only factor in the right side that can be zero is λ−n. Hence n = λ.

In particular, this means that the highest weight λ = nmust be a non-negative integer.
Note that we now know exactly how the linear maps e, f, and h act our our basis

{v, fv, f2, . . . , fλv}, and so the g-representation V is determined up to isomorphism by its
highest weight λ. Indeed, if we had another such representation V ′ with a maximal vec-
tor v ′ of weight λ, the linear map φ : V → V ′ such that φ(fkv) = fkv ′ is an isomorphism
of representations.

Furthermore, for any non-negative integer λ, the irreducible representation V =

Symλ(C2) has maximal vector eλ1 of weight λ. This shows that any irreducible com-
plex finite-dimensional representation of the complex Lie algebra 2(C) is isomorphic to
Symn(C2) for some n.

We can now get some corollaries from this: By a previous homework, this implies
also that every irreducible complex finite dimensional representation of 2(R) or of su(2)
is isomorphic to Symn(C2) for some n.

Since su(2) is the Lie algebra of the simply connected Lie group SU(2), the finite-
dimensional complex representations of su(2) are in one-to-one correspondence with
those of SU(2), and so every irreducible finite dimensional representation of SU(2) is
isomorphic to Symn(C2) for some n.

The Lie group SL2(R) is not simply connected, and so we don’t know a priori that its
irreducible representations are in bijection with those of sl2(R). However, in this case,
each representation Symn(C2) of the Lie algebra sl2(R) is induced by the representation
Symn(C2) of SL2(R), and so is this case we do have a bijection.

One more corollary: by the homework we know that su(2) ∼= so(3). However, the
Lie group SO(3) is not simply connected; its double cover is the simply connected Lie
group SU(2), and the covering map SU(2) → SO(3) has kernel ±1. The irreducible
representation Symn(C2) of SO(3) descends to a representation of SU(2) if and only if
−1 acts trivially on Symn(C2), which happens precisely when n is even. Hence there is
a unique irreducible representation of SO(3) of every odd dimension.
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20 Ideals of Lie algebras

Now we’re going do some general theory of Lie algebras.
Let g be a Lie algebra (over a field k).
For a, b subsets of g, let [a, b] denote the subspace of g spanned by {[a,b] | a ∈ a,b ∈ b}.

Definition. A subspace a ⊂ g is an ideal if [a, g] ⊂ a.

An equivalent definition is: a is an ideal of g if and and only if a is an invariant
subspace of g in the adjoint representation ad : g → gl(g) (recall this is defined by
ad(x)(y) = [x,y]).

If f : g → h is a homomorphism, then ker f is an ideal of g. Conversely, if a is an ideal
of g, then g/a is a Lie algebra, and the projection map π : g → g/a has kernel precisely
a. (The proofs of this are essentially the same as in commutative algebra.)

Note that if a is an ideal of g, then a is a subalgebra of g (this is a difference from com-
mutative algebra, where ideals are generally not subrings, because of the requirement to
contain the identity element).

We’ve been talking about ideals of Lie algebras as being analogous to ideals of rings,
but we should also think of them as analogous to normal subgroups of groups. Indeed
one can show the following:

Theorem 20.1. Let G is a Lie group and g = LieG. Then a subspace h ⊂ g is an ideal if and
only if there exists a normal subgroup H ⊂ G with h = LieH.

Proposition 20.2. If a, b are ideals of g then a + b, a∩ b and [a, b] are also ideals of g.

Proof. The proofs of the first two are entirely straightforward (just as in the commutative
algebra case).

For the last one: it’s enough to show that [g, [a,b]] ∈ [a, b] for all g ∈ g, a ∈ a, b ∈ b.
However [g, [a,b]] = [[g,a],b] + [a, [g,b]], and both terms lie in [a, b].

We also note the following theorem about Lie algebras, whose proof is exactly the
same as done in commutative algebra.

Theorem 20.3 (Second isomorphism theorem). For ideals a, b of g, we have an isomorphism
(a + b)/b ∼= a/(a∩ b)

One example of an ideal of g is the center Z(g) = {x ∈ g | [x,y] = 0 for all y ∈ g}. The
center Z(g) is an ideal because [g, Z(g)] = 0, or alternatively because Z(g) = ker(ad : g →
gl(g)).
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21 Solvable and Nilpotent Lie algebras

Definition. The commutator series (derived series) {gn} of g is a series of ideals of g

defined by g0 = g and gn+1 = [gn, gn]. We say g is solvable if gn = 0 for some n.

Definition. The lower central series {gn} of g is a series of ideals of g defined by g0 = g

and gn+1 = [gn, g] We say g is nilpotent if gn = 0 some n.

Note that gn ⊂ gn for all n, so every nilpotent Lie algebra is also solvable.
Example. The Lie algebra bn of n×n upper-triangular matrices is solvable but not nilpo-
tent. The Lie algebra nn of n× n upper-triangular matrices with 0s on the diagonal is
nilpotent (so also solvable).

22 More on solvable Lie algebras

Recall last time that we defined

Definition. The commutator series (derived series) {gn} of g is a series of ideals of g

defined by g0 = g and gn+1 = [gn, gn]. We say g is solvable if gn = 0 for some n.

The example you should keep in mind of a solvable Lie algebra is the algebra Bn of
n× n upper triangular matrices (you’ll check solvability on HW).

Proposition 22.1. Let g be a Lie algebra, and a an ideal of g. Then g is solvable if and only if a
solvable and g/a solvable.

Proof. ⇒ follows from the following observations: an ⊂ gn and for the second g surjects
onto (g/a)n.

To show ⇐: by assumption there is some n1 such that (g/a)n1 = 0 and some n2 such
that an2 = 0. The first result implies that gn1 ⊂ a. Hence

gn1+n2 = (gn1)n2 ⊂ an2 = 0

as desired.

Proposition 22.2. Let g be a Lie algebra, and a, b ideals of g. Then a and b solvable implies
a + b solvable.

Proof. We have that (a + b)/b ∼= a/(a ∩ b) is solvable, as is b, so a + b is solvable by the
previous proposition.

Let g be a finite-dimensional Lie algebra. Then the previous proposition implies that
g has a unique largest solvable ideal of g. Indeed, let a be a solvable ideal of g of largest
possible dimension. Then any other solvable ideal b must satisfy dim(a + b) ≤ dim(a),
which implies b ⊂ a. Hence a contains all other solvable ideals of g.

Definition. For a finite dimensional Lie algebra g, we let rad(g) denote the largest solv-
able ideal of g.
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23 Simple and semisimple Lie algebras

Definition. The Lie algebra g is simple if g is nonabelian (that is, [g, g] 6= 0) and g has no
nonzero proper ideals.

(For g finite dimensional, this is equivalent to rad(g) = 0).

Definition. The Lie algebra g is semisimple if g has no nonzero solvable ideals.

Proposition 23.1. Simple Lie algebras are also semisimple.

Proof. Let g be a simple Lie algebra. Supppose by way of contradiction that a were a
nonzero solvable ideal of g. Since g has no nonzero proper ideals, the only possibility
is a = g. But then g would be solvable, which implies [g, g] 6= g; but also [g, g] 6= 0 by
assumption, giving us a nonzero proper ideal of g, contradiction.

Theorem 23.2. If g is a finite dimensional Lie algebra, then g/ rad(g) is semisimple.

Proof. Let a be a solvable ideal of g/ rad(g). Let ã be the preimage of a in g. Then
ã/ rad(g) ∼= a is solvable, as is rad(g), so ã must be a solvable ideal of g. By definition of
the radical, this means that ã ⊂ rad(g); as we already have the other inclusion, the two
must be equal, implying a = 0 as desired.

Hence, for any finite-dimensional Lie algebra g, we have a short exact sequence

0→ rad(g) → g → g/ rad(g) → 0

where the first term is solvable and the last term is semisimple. One can in fact show
that this short exact sequence splits; this is equivalent to the following theorem

Theorem 23.3 (Levi). Let g be a finite-dimensional complex Lie algebra. Then there exists a
subalgebra h ⊂ g such that g = rad(g)⊕ h as vector spaces.

(Two cautions here: first of all, this is not a direct sum of Lie algebras; that is, gener-
ally, [rad(g), h] 6= 0. Secondly, h is not canonically defined.)

24 Lie’s theorem

As mentioned previously, the Lie algebra bn of n× n upper triangular matrices is an
example of a solvable Lie algebra. Also, any subalgebra of bn will also be solvable. We’ll
next show that these are in fact all the solvable Lie algebras.

The theorem we’ll invoke to use this is called Lie’s theorem. It has several equivalent
versions, which we’ll now give and show the equivalence of.
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Theorem 24.1 (Lie’s theorem (1st version)). Let µ : g → gl(V) be a finite dimensional
complex representation of a solvable complex Lie algebra g. Then there exists v ∈ V which is a
simultaneous eigenvector of µ(X) for all X ∈ g.

Another way of saying the conclusion here is: span(v) is a one-dimensional g-invariant
subspace of V .

Theorem 24.2 (Lie’s theorem (2nd version)). Same assumptions as the 1st version, and let
n = dimV . Then there exist g-invariant subspaces V0 = 0 ⊂ V1 ⊂ · · · ⊂ Vn = V of V such
that dimVk = k. (This is what is known as a flag in V .)

Clearly the second version implies the 1st version: just take v to be a nonzero vector
of V1. The other direction is an induction argument.

1st version =⇒ 2nd version. We proceed by induction on dimV ; the base case dimV = 1

is clear.
Now suppose dimV = k+ 1. By the first version, we can chose v1 ∈ V such that the

subspaces span(v1) is g-invariant. Let V1 = span(v1). Then V/V1 is an n-dimensional
representation of g, and we can apply the induction hypothesis to get a g-invariant flag

0 =W0 ⊂W1 · · · ⊂Wk = V/V1.

Now define V0 = 0, and for i = 0, . . . ,k let Vi+1 be the preimage of Wi ⊂ V/V1 in V
(note this is consistent with our previous definition of V1 since W0 = 0). Then Vi+1 is a
g-invariant subspace of V of dimension i+ 1, and we have 0 = V0 ⊂ V1 ⊂ · · · ⊂ Vk+1 = V
as desired.

Theorem 24.3 (Lie’s theorem (3rd version)). Let V be a finite-dimensional complex vector
space of dimension n, and let g ⊂ gl(V) be a solvable subalgebra. Then there is a basis v1, . . . , vn
with respect to which any X ∈ g has upper-triangular matrix.

2nd version =⇒ 3rd version. The inclusion g ↪→ gl(V) makes V into a representation of
g. The 2nd version of Lie’s theorem then gives us a g- invariant flag V0 ⊂ V1 ⊂ · · · ⊂
Vn = V of V .

Now we can inductively choose vi such that v1, . . . , vi is a basis for Vi. For any X ∈ g

we then have Xvi ∈ XVi ⊂ Vi = span(v1, . . . , vi), and so X has upper-triangular matrix
with respect to the basis v1, . . . , vn of V .

(We can also run this argument in the reverse direction to give the converse; if µ : g →
gl(V) is a finite-dimensional representation, and v1, . . . , vn is a basis of V with respect
to which any µ(X) has upper-triangular matrix, then Vi = span(v1, . . . , vi) defines a
g-invariant flag of V .)

As previously mentioned (but not proved) in this class, Ado’s theorem tells us that
any finite-dimensional complex Lie algebra is a subalgebra of gln(C). Combining this
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with the 3rd version of Lie’s theorem, this tells us that any finite-dimensional complex
Lie algebra is a subalgebra of the Lie algebra bn(C) of upper-triangular n× n matrices.

(In class I expressed some concern that, if one unpacks the proof of Ado’s theorem,
this argument might turn out to be circular; but looking things up, it seems to be fine.)
Today, we’ll prove Lie’s theorem, in the first form we stated last time:

Theorem 24.4 (Lie’s theorem (1st version)). Let µ : g → gl(V) be a finite dimensional complex
representation of a finite-dimensional solvable complex Lie algebra g. Then there exists v ∈ V
which is a simultaneous eigenvector of µ(X) for all X ∈ g.

Before we prove this, a comment on how we’ll use the hypothesis that g is solvable.
Recall that we defined this by: g is solvable if and only if the commutator series gn

defined by g0 = g and gn = [g, g] eventually stabilizes at 0.
This has two specific consequences: for one, if g 6= 0 is a solvable Lie algebra, we

must have [g, g] ( g (otherwise the commutator series would stabilize at the first step.
Also, any proper subalgebra a of a solvable Lie algebra g is solvable; this will allow us
to induct on the dimension of g.

(Indeed, this is an if and only if : if g is a Lie algebra with the property that [g, g] 6= g

and every subalgebra a ( g is solvable, then [g, g] is solvable, and so g must be as well.)

Proof of Lie’s Theorem. We induct on dim(g). If dim(g) = 1, then g = span(X) for any
nonzero X ∈ g. Then choose v to be an eigenvector of µ(X) : V → V .

Now, assume the theorem is true for every Lie algebra of degree < d, and let g be a
Lie algebra with dim(g) = d.

Let h be any codimension 1 subspace of g containing [g, g]. Then h is an ideal. Choose
X ∈ g \ h; then g = span(X)⊕ h as vector spaces (but not necessarily as Lie algebras).

By the inductive hypothesis, there exists v ∈ V such that for every H ∈ h, v is an
eigenvector of H with eigenvalue λ(H), that is: µ(H)v = λ(H)v for some scalar λ(H) ∈ C.

Consider the sequence of vectors vi = µ(X)iv for i = 0, 1, . . . . Since V is finite-
dimensional, eventually we must have vn+1 ∈ span(v0, v1, . . . , vn); take the minimal n
for which this is the case. Then v0, . . . , vn are linearly independent, and form a basis for
the subspace W = span(v0, v1, . . . , vn) of V . By construction µ(X)W ⊂W.

We now study how µ(H) acts on W for any H ∈ h.
We now show the following: Claim: µ(H)vi ≡ λ(H)vi mod span(v0, . . . , vi−1) for

each i = 0, . . . ,n. Proof of claim: By induction: we already know the case i = 0.
Suppose the claim holds for for i = k.
For i = k+ 1, we have

µ(H)vk+1 = µ(H)µ(X)vk = µ([H,X])vk + µ(X)µ(H)vk. (27)

Since [H,X] ∈ H, the induction hypothesis tells us that µ([H,X])vk ≡ λ([H,X])vk mod span(v0, . . . , vk−1),
and so µ([H,X])vk ∈ span(v0, . . . , vk).
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Also, by induction, µ(H)vk ≡ λ(H)vk mod span(v0, . . . , vk−1) and so

µ(X)µ(H)vk ≡ µ(X)λ(H)vk = λ(H)vk+1 mod span(v1, . . . , vk).

Combining these gives the claim.
As an immediate consequence, we get that H ∈ h, µ(H)|W has an upper triangular

matrix with respect to the basis (v0, . . . , vn), with all diagonal entries equal to λ(H).
Now if H ∈ [g, g] ⊂ h, then we must have tr(µ(H)|W) = 0, just because any com-

mutator of matrices has trace 0. On the other hand tr(µ(H)|W) = (n+ 1)λ(H), implying
λ(H) = 0.

Using this, we can strengthen the previous claim to
Claim’: µ(H)vi = λ(H)vi for i = 0, . . . ,n and all H ∈ h. Proof of Claim’: This will be

the same induction argument. As before, we have the case i = 0 already.
For the inductive step, we again use (27). Our stronger inductive hypothesis gives

µ([H,X])vk = λ([H,X])vk, which is 0 since [H,X] ∈ [g, g]. The stronger inductive hy-
pothesis also gives µ(H)vk = λ(H)vk, and so (27) reduces to µ(H)vk+1 = µ(X)λ(H)vk =

λ(H)vk+1.
This claim tells us that any vi is an eigenvector of µ(H) with eigenvalue λ(H). Since

W is spanned by the vi, the same is also true of any w ∈W.
Recall that by construction µ(X) maps W to itself. Now, let v be an eigenvector for

µ(X)|W . Since v ∈ W, v is also an eigenvector for any µ(H), and so v has the desired
property.

25 Nilpotent Lie algebras and Engel’s theorem

Let g be a subalgebra of gl(V) which is nilpotent (recall; this means that the lower central
series {gn} defined by g0 = g and gn+1 = [gn, g] eventually stabilizes at 0). Then g is also
solvable, and so Lie’s theorem applies, and we know (from last time) that there’s a basis
in which g consists of upper triangular matrices.

Question 3. Must there necessarily exist a basis for V with respect to which g consists of strictly
upper triangular matrices? (that is, upper triangular matrices with 0s on the diagonal).

Unfortunately, the answer to this question is no: for instance, if g ⊂ gln(C) is the
subalgebra of diagonal matrices, then [g, g] = 0, but there is no other basis for Cn in
which every X ∈ g is strictly upper triangular – a nonzero diagonal matrix cannot be
conjugate to a strictly upper triangular matrix (look at the eigenvalues).

However, these is in fact a different hypothesis one can impose that does force g to
have upper triangular matrices with respect to a suitably chosen basis.

This is the substance of Engel’s theorem:
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Theorem 25.1 (Engel). Let g be a subalgebra of gl(V) such that any X ∈ g is nilpotent (as a
linear transformation from V to itself). Then there exists a basis of V with respect to which every
X ∈ g has a strictly upper-triangular matrix.

(Using the fact from the HW that the Lie algebra of strictly upper-triangular matrices is
nilpotent, as a corollary, we get that g is a nilpotent Lie algebra.)

(Note: the hypothesis of Engel’s theorem is equivalent to the statement that, for any
X ∈ g, we can find some basis of V , possibily depending upon X, in which X has a
strictly-upper triangular matrix. The conclusion tells us that we can do this simultane-
ously for all X ∈ g.)

We won’t prove Engel’s theorem in this class, although you can find the proof in
Knapp. The proof is an induction similar to that of Lie’s theorem: the hard part is
showing that the hypothesis implies that g has an ideal of codimension 1.

26 Engel’s theorem and more on nilpotent Lie algebras

Last time we stated (without proof: we won’t prove this result in class, though it’s not
hard, just a bit tedious).

Theorem 26.1 (Engel). Let g be a subalgebra of gl(V) such that any X ∈ g is nilpotent (as a
linear transformation from V to itself). Then there exists a basis of V with respect to which every
X ∈ g has a strictly upper-triangular matrix.

This can also be restated in an equivalent form

Theorem 26.2 (Engel, alternate form). Let µ : g → gl(V) be a finite-dimensional representa-
tion of a Lie algebra g (not necessarily nilpotent) such µ(X) is nilpotent for every X ∈ g. Then
there is a basis with respect to which Im(µ) consists of upper-triangular nilpotent matrices.

The alternate form follows from applying Engel’s theorem to Im(µ) ⊂ gl(V).
As noted last time, just knowing that g is nilpotent as a Lie algebra is not enough

to imply the conclusion of Engel’s theorem. However, if g is nilpotent, there is one
important representation of g to which the alternate form of Engel’s theorem does apply;
namely, the adjoint representation.

Proposition 26.3. A Lie algebra g is nilpotent if and only if ad(X) : g → g is a nilpotent linear
transformation for every X ∈ g.

For this, we first prove a lemma:

Lemma 26.4. A Lie algebra g is nilpotent if and only if g/Z(g) is nilpotent (where Z(g) = {X ∈
g | [X, Y] = 0 for all Y ∈ g} is the center of g)
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Proof of Lemma. The ⇒ direction follows from the more general fact that any quotient of
a nilpotent Lie algebra is nilpotent (proved similarly to the solvable case, as done in a
previous lecture).

For the ⇐ direction, suppose that g/Z(g) is nilpotent, so (g/Z(g))n = 0 for some n.
It follows that gn ⊂ Z(g), and then gn+1 = [g, gn] ⊂ [g,Z(g)] = 0.

Now we prove the Proposition

Proof of Proposition 26.3. We first prove ⇒: suppose g is nilpotent, so gn = 0 for some n.
Then, for any X, Y ∈ g,

(ad(X))n(Y) = [X, [X, . . . , [X, Y], . . . , ]︸ ︷︷ ︸
n pairs of brackets

∈ gn = 0

and so ad(X)n = 0.
To prove ⇐, we apply Engel’s theorem to the adjoint representation of g, and thus

we get that Im(ad : g → gl(g)) is nilpotent. But Im(ad) ∼= g/ ker(ad) = g/Z(g), and so
g/Z(g) is a nilpotent Lie algebra. By the lemma this tells us that g is nilpotent.

Before moving on, we record one more result relating to solvable and nilpotent Lie
algebras, whose proof uses the lemma above as well as Lie’s theorem

Theorem 26.5 (Corollary of Lie’s theorem). If g is a solvable Lie algbra, then [g, g] is nilpotent.

Proof. Consider [g, g] as a representation of g with the adjoint action: that is, we have
µ = ad : g → gl([g, g]) (that is, µ is the usual adjoint action, but restricted to act on the
ad-invariant subspace [g, g] of g).

By Lie’s theorem, there is a basis for [g, g] with respect to which Imµ = µ(g) consists
only of upper-triangular matrices. It then follows that µ([g, g]) = [µ(g),µ(g)] consists
only of upper-triangular nilpotent matrices, hence is nilpotent. (Note that this doesn’t
actually need the full strength of Engel’s theorem, just that the lie-algebra nn(C) of
upper-triangular nilpotent matrices is a nilpotent Lie algebra.)

But µ([g, g)) ∼= [g, g]/([g, g] ∩ kerµ) = [g, g]/Z([g, g]), so [g, g]/Z([g, g]) is nilpotent,
hence the same is true of [g, g] by the lemma.

27 Killing Form

Let g be a complex Lie algebra, and let µ : g → gl(V) be a finite-dimensional complex
representation of g. (This can also be done over other fields, and we’ll eventually be
interested in this over R, but for now let’s just look at this over C.)

Then we can define a symmetric bilinear form BV : g × g → C by BV(X, Y) =

tr(µ(X)µ(Y)). This is bilinear, symmetric, and has the invariance property that BV(ad(Z)X, Y)+
BV(X, ad(Z)Y) = 0
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(To check this, note that BV(ad(Z)X, Y) +BV(X, ad(Z)Y) expands to

tr(µ(Z)µ(X)µ(Y)) − tr(µ(X)µ(Z)µ(Y)) + tr(µ(X)µ(Z)µ(Y)) − tr(µ(X)µ(Y)µ(Z)).

The middle two terms cancel, and the first and last terms also cancel because tr(AB) =
tr(BA) for any A,B ∈ End(V).

In the case of the adjoint representation, that is, V = g and µ = ad, we write B = Bg
and this is called the Killing form (after the mathematician Wilhelm Killing).

Example. g = sl2(C): recall that this has basis e = ( 0 10 0 ), f = ( 0 01 0 ) and h = ( 1 0
0 −1 ).

Let V = C2 with the standard represnetation. We can compute the matrix of BV with
respect to the basis {e, f,h}: 

e f h

e 0 1 0

f 1 0 0

h 0 0 2

.

Now, we compute the Killing form of sl2(C). First, we write out the matrices of ad(e),
ad(f), and ad(h):

ad(e) =


e f h

e 0 0 −2

f 0 0 0

h 0 1 0

, ad(f) =


e f h

e 0 0 0

f 0 0 2

h −1 0 0

, ad(h) =


e f h

e 2 0 0

f 0 −2 0

h 0 0 0

.

Using this we can then obtain the matrix of the Killing form B = Bsl2(C):


e f h

e 0 4 0

f 4 0 0

h 0 0 8

.

Note that B = 4BV : this could be predicted using the fact (which will probably be on
the next HW) that a simple Lie algebra has a unique ad-invariant bilinear form (up to
scaling).

Also observe that the symmetric bilinear form B is non-degenerate; this holds gener-
ally for semisimple Lie algebras as we’ll see below.

Example. g = b2(C) is upper-triangular 2× 2 matrices; we’ll compute the Killing form
Bg.

The basis we will use for g is X11 = ( 1 00 0 ), X12 = ( 0 10 0 ), and X22 = ( 0 00 1 ). Then

ad(X11) =


X11 X12 X22

X11 0 0 0

X12 0 1 0

X22 0 0 0

, ad(X12) =


X11 X12 X22

X11 0 0 0

X12 −1 0 1

X22 0 0 0

,
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and

ad(X22) =


X11 X12 X22

X11 0 0 0

X12 0 −1 0

X22 0 0 0

.

and we can compute the matrix of the Killing form B, obtaining


X11 X12 X22

X11 1 0 −1

X12 0 0 0

X22 −1 0 1

.

Note that in this case the Killing form is clearly degenerate; [X12, Y] = 0 for all Y ∈
b2(C).

Also, in this case B is not just a rescaling of the bilinear form BV coming from
the standard representation V = C2; for instance, B(X11,X22) = −1 but BV(X11,X22) =

tr(X11X22) = 0.

These invariant bilinear forms are important because of the following useful criteria
which show that they can be used to detect the properties of solvability and semisim-
plicity.

We first give the criterion for solvability, which has two versions:

Theorem 27.1 (Cartan’s Criterion for Solvability). A subalgebra g ⊂ gl(V) (V a finite-
dimensional complex vector space) is solvable if and only if BV(X, Y) = 0 for every X ∈ g and
Y ∈ [g, g].

Theorem 27.2 (Cartan’s Criterion for Solvability, second version). A finite-dimensional
complex Lie algebra g is solvable if and only if the Killing form B(X, Y) = 0 for every X ∈ g and
Y ∈ [g, g].

Now we give the criterion for semisimplicity, which can only be tested using the
Killing form:

Theorem 27.3 (Cartan’s Criterion for Semisimplicity). A finite-dimensional complex Lie al-
gebra g is semisimple if and only if the Killing form B : g× g → C is nondegenerate.

(These criterion in fact also work over R, or over any field of characteristic 0.)
We’ll prove these next time.
Today, we’ll prove

Theorem 27.4 (Cartan’s Criterion for Solvability). A subalgebra g ⊂ gl(V) (V a finite-
dimensional complex vector space) is solvable if and only if BV(X, Y) = 0 for every X ∈ g and
Y ∈ [g, g]
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which we stated last time (recall that BV(X, Y) = tr(XY) by definition). We can handle
the ⇒ direction easily with Lie’s theorem.

Proof of ⇒. By Lie’s theorm, there is a basis of V in which g is contained in the Lie
algebra bn of upper-triangular matrices. Then [g, g] ⊂ [bn, bn] = nn. Hence any X ∈ g

is upper triangular and any Y ∈ [g, g] is strictly upper-triangular, implying BV(X, Y) =

tr(XY) = 0.

Our strategy to prove the reverse implication is the following. We must show g

solvable. We’ll do this by showing that [g, g] is nilpotent, since it then follows that [g, g]
is solvable, and thus that g (the commutator series of g is the same as that of [g, g], only
with indices shifted by 1).

By Engel’s theorem, to prove nilpotency of [g, g] it’s enough to show that any X ∈
[g, g] ⊂ gl(V) is nilpotent (as an endomorphism of V).

For this, we’ll need the following linear algebra fact.

Proposition 27.5 (Jordan(-Chevalley) Decomposition). a) Let V be a finite-dimensional com-
plex vector space, A ∈ End(V). Then A has a unique decomposition A = As +An where As
is semisimple (in this context, this means diagonalizable) and An is nilpotent.

b) The linear map ad(A) ∈ End(End(V)) given (as usual) by ad(A)(B) = AB−BA has Jordan
decomposition ad(A)s = (adAs) and ad(A)n = (adAn).

c) There exist polynomials PA(t),QA(t) ∈ tC[t] (that is, polynomials in C[t] with constant term
0) such that PA(A) = As andQA(A) = As (where As ∈ End(V) is the linear transformation
with the same eigenspaces as As but complex conjugate eigenvalues.)

Proof. Existence in part a) follows from Jordan Canonical Form; choose a basis for V in
which A is in JCF, then let As be the diagonal part of A and An be the off-diagonal part.
Uniqueness is an easy exercise.

Part b) can be shown by checking that ad(As) is semisimple, ad(An) nilpotent, and
then appealing to the uniqueness in part a).

Part c) will be entirely left as an exercise.

Proof of ⇐ in Cartan’s criterion for Solvability. As explained above, it’s enough to show
that X is nilpotent for all X ∈ [g, g] ⊂ gl(V).

Let X = Xs +Xn be the Jordan decomposition of X. Then X is nilpotent if and only if
Xs = 0.

Let λ1, . . . , λn be the eigenvalues of X, so also of Xs.
With respect to a basis in which X is in Jordan normal form, XXs is upper-triangular

with diagonal entries |λi|
2, and so tr(XXs) =

∑
i |λi|

2. We want to show this is 0.
To do this, write X =

∑
i[Yi,Zi] for Yi,Zi ∈ g, so
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tr(XXs) =
∑
j

tr([Yj,Zj]Xs)

.
Each element in this sum is the trace of a product of two things; but Xs does not have

to be in g, so we can’t immediately conclude we get 0. Instead, we’ll have to manipulate
this a bit.

Looking at the jth term individually:

tr([Yj,Zj]Xs) = tr(ad(Yj)(Zj)Xs) = − tr(Zjad(Yj)(Xs)) = tr(Zj[Xs, Yj]) = tr(Zjad(Xs)(Yj)).
(28)

Now we apply part b) of the Jordan decomposition: adXs = ad(Xs) = (ad(X)s).
By part c), there exists some Q ∈ tC[t] such that

ad(Xs) = (ad(X)s) = Q(ad(X)).

Write Q(t) =
∑d
k=1 ckt

k.
Then ad(Xs)(Yj) =

∑d
k=1 ckad(X)kYj. But ad(X)kYj = [X, . . . , [X, Yj], . . . , ] ∈ [g, g].

Hence also ad(Xs(Yj)) ∈ [g, g].
Now we can use the condition we were given to get tr(Zjad(Xs)(Yj)) = B(Zj, ad(Xs)(Yj)) =

0. By (28) this means tr([Yj,Zj]Xs) = 0 for all j, and summing this gives tr(XXs) = 0 as
needed.

Corollary 27.6 (Cartan’s criterion for solvability, Second form). If g is a finite-dimensional
complex Lie algebra, then g is solvable if and only if B(X, Y) = tr(ad(X)ad(Y)) = 0 for all X ∈ g

and all Y ∈ [g, g].

Proof. By the previous version of Cartan’s criterion, this criterion is equivalent to Im ad :

g → gl(g) being solvable. But Im ad ∼= g/Z(g), and Z(g) is abelian hence solvable, so this
is the case if and only if g is solvable (using the result that g is solvable iff h and g/h
solvable).

28 Cartan’s criterion for semisimplicity

Now we’ll deduce Cartan’s criterion for semisimplicity from his criterion for solvability.
This will take a little work, but it will be relatively straightforward.

Theorem 28.1 (Cartan’s criterion for semisimplicity). A finite-dimensional complex Lie al-
gebra g is semisimple if and only if the Killing form B = Bg : g× g → C is nondegenerate.

First we prove a couple lemmas.

Lemma 28.2. Let h be any ideal of g. Then Bh = Bg|h; that is, the Killing form of h agrees with
the restriction of the Killing form of g to h.
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Proof. Exercise (will be on HW)

Define rad(B) = {X ∈ g | B(X, Y) = 0 for all Y ∈ g}.

Lemma 28.3. rad(B) ⊂ rad(g).

Proof. We show that rad(B) is a solvable ideal, which is equivalent to the lemma state-
ment.

First, we show that rad(B) is an ideal; if X ∈ rad(B) then for any Y,Z ∈ g,

B(ad(Y)(X),Z) = −B(X, ad(Y)Z) = 0.

Now let h = rad(B). To show solvability of h, we note that Bh = Bg|h = 0 by definition
of h = rad(B). Hence h satisfies Cartan’s criterion and is solvable.

Proof of ⇒ in Cartan’s Criterion for semisimplicity. We show the contrapositive: suppose B
is degenerate. Then rad(B) 6= 0, so rad(g) ⊃ rad(B) 6= 0, so g is not semisimple.

We’ll do the other direction next time.
Last time, we proved

Theorem 28.4 (Cartan’s criterion for solvability, second form). If g is a finite-dimensional
complex Lie algebra, then g is solvable if and only if B(X, Y) = tr(ad(X)ad(Y)) = 0 for all X ∈ g

and all Y ∈ [g, g].

and used it to prove the ⇒ direction of

Theorem 28.5 (Cartan’s criterion for semisimplicity). A finite-dimensional complex Lie al-
gebra g is semisimple if and only if the Killing form B = Bg : g× g → C is nondegenerate.

Now we’ll prove ⇐. For this, we actually don’t need the solvability criterion.

Proof of ⇐. Again we prove the converse. Suppose g is not semisimple. Then, by your
previous problem set, g has an abelian ideal a. Then, for any X ∈ a and Y ∈ g, ad(X)ad(Y)
maps g into a and a to 0, so (ad(X)ad(Y))2 = 0. Hence ad(X)ad(Y) is nilpotent, so
implying B(X, Y) = tr(ad(X)ad(Y)) = 0.

29 Decomposing semisimple Lie algebras as direct sums
of simple Lie algebras

We’ll apply Cartan’s criterion for semisimplicity to show that the semisimple Lie algebras
are exactly those which are direct sums of simple Lie algebras.

If g1, g2 are Lie algebras we can construct their direct sum g1 ⊕ g2 as the Lie algebra
which is equal to the direct sum g1 ⊕ g2 as vector spaces, with Lie bracket [X1 ⊕ X2, Y1 ⊕
Y2] = [X1,X2]⊕ [Y1, Y2].
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Then both g1 and g2 are ideals of g1 ⊕ g2, and the Killing form Bg1⊕g2 is given by

Bg1⊕g2(X1 ⊕ Y1,X2 ⊕ Y2) = Bg1(X1,X2) +Bg2(Y1, Y2).

This is nondegenerate if and only if both Bg1 and Bg2 are, and so Cartan’s criterion
gives us

Proposition 29.1. If g1, g2 are lie algebras, g1 ⊕ g2 is semisimple if if g1, g2 both are.

Since simple algebras are semisimple, this tells us that a direct sum g1 ⊕ g2 · · · ⊕ gn
of simple lie algebras is semisimple.

Theorem 29.2. Let g be a semisimple Lie algebra. Then there is a decomposition g = g1⊕ · · · gn,
where the gi are simple, unique up to ordering of terms.

Remark. Note that this is very similar to the decomposition of a semisimple(/completely
reducible) representation as a direct sum of irreducibles. One contrast here is that in this
decomposition the irreducible summands are always uniquely determined.

Proof. Step 1: Similarly to how we proved complete reducibility for unitarizable repre-
sentations, we’ll first show that any ideal h ⊂ g has a complementary subspace.

let h be any ideal of g. Let h⊥ = {X ∈ g | B(X, Y) = 0 for all Y ∈ h}. We claim that h⊥

is an ideal and that h⊕ h⊥ = g

The fact that h⊥ is an ideal follows from ad-invariance of B.
Then h∩ h⊥ is an ideal of g with Bg|h∩h⊥ = 0, so h∩ h⊥ is a solvable ideal, hence must

be 0 as g is semisimple.
Because B is non-degenerate we have dim(h⊥) = dim g − dim h. Hence h and h⊥ are

subspaces of g of complementary dimension with 0 intersection, so g = h⊕ h⊥ as vector
spaces. Additionally, since both h and h⊥ are ideals, we have [h, h] ⊂ h and [h⊥, h⊥] ⊂ h⊥,
so g = h⊕ h⊥ as Lie algebras as well.

Step 2: Now we prove existence by induction on dim g. Suppose that the theorem is
true for all Lie algebras of dimension < g.

If g is simple, then we’re done. Otherwise, g has a nonzero proper ideal h ⊂ g. By
step 1, we can write g = h⊕ h⊥; then h, h⊥ are semisimple Lie algebras of strictly lower
degree than g. By the inductive hypothesis, this means that h and h⊥ are both direct
sums of simple Lie algebras so the same is true of g, and the induction goes through.

Step 3: Uniqueness This will follow from the following assertion: if g = g1⊕ · · · ⊕ gn,
then the ideals of g that are simple Lie algebras are precisely the gi.

Indeed, let h be any simple ideal of g1 ⊕ · · · ⊕ gn. Then [h, g] ⊂ h is an ideal of h, and
it’s not zero (because Z(g) 6= 0) so, it must be h. Then [h, g] is spanned by the subspaces
[h, gi], and for each i, [h, gi] is an ideal of gi, so either 0, or gi. Hence h is a direct sum
of some subset of the gi; since h is simple this subset must only have one element, and
h = gi some i.
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30 Real Lie algebras and Lie algebras of compact Lie groups

For the past week we’ve been doing everything over C. Now let’s go back and see what
still works over R.

Let g be a real Lie algebra. Recall that we’ve defined a complexification gC = g⊗R C =

g⊕ ig.
The Lie algebra g is solvable if and only if gC is solvable; this is because (gC)

n = (gn)C.
We can define a Killing form Bg : g× g → R just as before, and then BgC

is the unique
C-bilinear form extending Bg.

As a consequence of all this : Cartan’s criterion of solvability still holds for g a real
Lie algebra.

Additionally, the arguments we used to deduce Cartan’s criterion of semisimplicity
from the solvability criterion work over any field: so Cartan’s criterion also holds for Lie
algebras over R. Likewise, Theorem 29.2 also holds for semisimple real Lie algebras.

Now we look at the case where g is the Lie algebra of a compact Lie groups.

Proposition 30.1. Let G be a compact lie group, g = Lie(G). Then the killing form B = Bg
is negative semidefinite, and rad(B) = Z(g) (recall we defined rad(B) last time as {X ∈ g |

B(X, Y) = 0 all Y ∈ g}.

Proof. We have B(X,X) = tr(ad(X)2); we need to show that this is ≤ 0, and is < 0 unless
ad(X) = 0.

Now, G is a compact Lie group, so every representation of G is unitarizable, in
particular, Ad : G → GL(g). That is, with respect to an appropriately chosen ba-
sis, Ad(G) ⊂ U(n) (n = dim g), and so adX ∈ u(n). Hence ad(X) = −ad(X)∗, and
tr(ad(X)2) = − tr(ad(X)∗ad(X)), but this is negative unless ad(X) = 0 (e.g. because it is
the sum of the squares of the entries of ad(X).

In particular, if G is a compact Lie group with Z(G) finite, then the Killing form of
g is negative definite, hence nondegenerate, and g is semisimple. Next time we’ll show
a converse: any Lie algebra g with negative definite Killing form is the Lie algebra of a
compact Lie group.

31 Real lie algebras and compact Lie groups, continued

Last time we showed that if G is a compact Lie group with Z(G) finite and g = Lie(G),
then the Killing form of g is negative definite, hence g is semisimple. Now we’ll do a
converse.

Proposition 31.1. Let g be a real lie algebra such that Bg is negative definite. Then there is a
compact Lie group G with Lie algebra Lie(G) ∼= g.
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Proof. Pick any connected Lie group G ′ with Lie algebra g. Since g is semisimple, the
center Z(g) = 0, and so the center Z(G ′) of G ′ must be discrete in G ′. Let G = G ′/Z(G) ′;
then Lie(G) ∼= Lie(G ′) ∼= g. We’ll show that G is compact.

Now G ′ has an adjoint action Ad : G ′ → GL(g), with kernel ker Ad = Z(G). Hence
G ′ ∼= Im(Ad). However, the Killing form Bg on g is Ad-invariant, so Im(Ad) is contained
in the subgroup of GL(g) preserving the Killing form. Since Bg is negative definite, this
subgroup is isomorphic to O(n) (where n = dim(g). Since O(n) is compact, its closed
subgroup Im(Ad) is also compact, and so G is compact.

Note: I found a gap in this argument while writing it up; it assumes that Im(Ad) is closed
in GL(g). This is in fact true, because Im(Ad) = Aut(g) is the group of automorphisms of the
Lie algebra g, which is closed in GL(g); but proving this fact takes a bit of work. You can find the
basic argument in the section on “Automorphisms and Derivations” in chapter I of Knapp; this
is I.14 in the second edition and I.11 in the first.

In fact, a stronger theorem is true:

Theorem 31.2. Let g be a Lie algebra with negative definite Killing form, and let G a Lie group
such that g = Lie(G). Then G is compact.

Remark. Equivalently, the unique simply connected Lie group with Lie algebra g is com-
pact.

This is stronger than Proposition 31.1; the proof of the proposition just shows that
G/Z(G) is compact, but still leaves open the possibility that G might have infinite center,
in which case it would fail to be compact.

This theorem is actually quite difficult to prove. There are two main approaches to it;
an algebraic approach and a geometric approach. The algebraic proofs mostly seem to
involve first developing some structure theory of semisimple Lie algebras (as we’ll soon
do). The geometric proof involves using some Riemannian geometry; we’ll provide a
sketch here. (Note: I’m not very familiar with Riemannian geometry, and am getting
some of this off Wikipedia...)

Sketch of Geometric proof. In this setting, we can naturally make G into a Riemannian
manifold; this means putting a positive definite inner product on the tangent space TgG
for all g ∈ G. If g = 1, then T1G ∼= g, and we use the inner product −Bg, and then
translate by the action of G to get an inner product on every TgG.

One can then compute the Ricci curvature of G, and show that it is positive and
bounded below. The (Bonnet)-Myers theorem then gives an upper bound on the diame-
ter of G, and so G is compact.

Stronger: every Lie group with Lie algebra g is compact; equivalently, the simply
connected Lie group with Lie algebra g is compact. (Myers’ theorem gives bounds on
the diameter of such a thing.)
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Corollary 31.3. If g is a Lie algebra with negative definite Killing form, then every finite-
dimensional complex representation of g is completely reducible, as is every complex represen-
tation of gC.

Proof. Same as done for su(2) on a past homework: if G is the simply connected lie group
with Lie algebra g, the representations of g are in correspondence with representations
of Lie(G). Since the latter are completely reducible, the same is true of the former.

For the second part; the complex representations of gC are also in correspondence
with the complex representations of g, so they too are completely reducible.

This corollary can be used to prove complete reducibility for the irreducible repre-
sentations of every semisimple complex Lie algebra – this method is known as Weyl’s
unitary trick, and was the original proof for this. To do this, we need to find, for every
semisimple complex Lie algebra g, a real subalgebra g ′ such that g = (g ′)C and Bg ′ is
negative definite. (The Lie algebra g ′ is called the compact real form of g; one can show
that it is in fact unique up to automorphisms of g.)

For instance, if g = sln(C) we can take g ′ = su(n); if g = son(C), we can take
g ′ = son(R), and if g = spn(C) we can take g = usp(n) = u(n)∩ spn(C). (Note that these
three examples all have in common that g ′ = g∩ u(n). In fact, this works more generally
if g ⊂ gln(C) is a semisimple subalgebra such that X ∈ g =⇒ Xt ∈ g.)

Showing the existence of compact real forms in general seems to require more struc-
ture theory than we currently have: I’ll give an argument here that doesn’t actually work
as is, but that we’ll be able to complete later.

Not a proof of existence of compact real forms. One might try to prove this as follows: since
g is semisimple, the bilinear form Bg is nondegenerate. Nondegenerate bilinear forms
on complex vector spaces are are equivalent up to change of basis, so there exists a
basis X1, . . . ,Xn of g, such that Bg(Xj,Xk) = δjk. Then let g ′ be the R-subspace of g

spanned by iX1, . . . , iXn. The problem is that we have no reason to expect g ′ to be closed
under Lie bracket. However, if that were the case, then we would have g = (g ′)C is the
complexification of the real Lie algebra g ′. Then we would have a Killing form Bg ′ on g ′;
this is equal to the restriction of Bg to g ′, so is negative definite by construction.

Once we’ve done some structure theory of semisimple complex Lie algebras, we’ll be
able to find a suitable choice of basis for g in which this argument actually goes through.

It follows from the existence of compact real forms that

Theorem 31.4. If g is a real or complex semisimple Lie algebra, then every finite-dimensional
complex representation of g is completely reducible.

Theorem 31.5. If g is a complex semisimple Lie algebra, then g has a compact real from g ′

with negative definite Killing form, and g = (g ′)C, so Corollary 31.3 tells us that every finite-
dimensional complex representation of g is completely reducible.
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If g is a real semisimple Lie algebra, then gC is also semisimple, and so every finite-dimensional
complex representation of gC is completely reducible. But every finite-dimensional complex rep-
resentation of g extends to a representation of gC, so must also be completely reducible.

Theorem 31.4 can be also be proved in a completely algebraic manner, as is done in
most books on Lie algebras (see also my comments on this in the list of potential final pa-
per topics). This gives a much shorter and more direct proof, but requires constructions
that won’t be relevant elsewhere in the course, so we’ll skip it.

32 Toral subalgebras; definition and examples

We now move to the next part of the course: classifying semisimple complex Lie algebras
and their representations.

Let g be a semisimple (finite-dimensional) Lie algebra over C. From now on every-
thing will be over C and finite-dimensional unless otherwise stated.

Definition. We say that a subalgebra t of g is toral if t is abelian and adX : g → g is
semisimple (that is, diagonalizable) for all X ∈ t. We say that t is maximal toral if there
does not exist a large toral subalgebra t ′ ) t.

Remark. There’s various disagreement on the terminology here: toral subalgebras are
also called toroidal subalgebras or tori. Maximal toral subalgebras are also called Cartan
subalgebras, although that term is also used (as in Knapp) for a more general and more
complicated definition that is equivalent to our in the case of g semisimple.

Example. Let g = sl2(C), which we know is spanned by E = ( 0 10 0 ), H = ( 1 0
0 −1 ) and F = 0 0

1 0 .
Then the 1-dimensional subalgebra spanned by H is toral (since our basis E, F,H gives
an eigenbasis for ad(H)). However, the 1-dimensional subalgebra spanned by E is not
toral, despite being abelian, because adE is nilpotent (in fact (adE)3 = 0.)

Additionally, span(H) is maximal toral, since the only elements of sl2(C) that com-
mute with H are multiples of H itself.

Example. A family of examples that motivate the definition: Let G be a Lie group, and
let g = (LieG)C. Let T ⊂ G be a torus, that is, T is a subgroup such that T ∼= (S1)n as Lie
groups, and define t = (Lie T)C ⊂ g. Since T is abelian, t is abelian. It remains to show
that ad(X) : g → g is semisimple for all X ∈ t.

The complexified adjoint representation AdC : G→ GL(g) restricts to a representation
(AdC)|T : T → GL(g) of T . Since T is compact, (AdC)(T) is unitarizable. Since unitary
matrices are diagonalizable, it follows that AdC(g) ∈ GL(g) is diagonalizable for all
g ∈ T . Passing to the Lie algebra, it follows that ad(X) ∈ gl(g) is diagonalizable for all
X ∈ Lie(T), and hence ad(X) is diagonalizable for all X ∈ t = (Lie T)C.

Correction: I failed to adequately justify the last step in class; to pass from Lie(T) to Lie(T)C

we absolutely need the fact that Lie(T) is abelian. (E.g. any X ∈ su(n) is diagonalizable,
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but sln(C) contains non-diagonalizable matrices). To show diagonalizablity ofad(X) for any
X ∈ t = (Lie T)C, write X = X1 + iX2 for X1,X2 ∈ Lie T . Then ad(X1), ad(X2) ∈ gl(g)

are both diagonalizable, and they commute (since t is abelian), so they must be simultaneously
diagonalizable. Hence ad(X) = ad(X1) + iad(X2) is diagonalizable.

Alternatively, one could show that every irreducible representation of T is 1-dimensional; from
this it follows that there is a basis of g in which every g ∈ T acts diagonalizably, and so the same
is true for X ∈ t.

33 Weight Spaces

Let h be a (finite-dimensional, complex) abelian Lie algebra, and let µ : h → gl(V) be a
representation of h such that µ(X) is diagonalizable for every X ∈ h.

Definition. For λ ∈ h∗ define the weight space Vλ of weight λ as

Vλ = {v ∈ V | µ(X)v = λ(X)v for all v ∈ V}.

If V = g and µ = ad these are called root spaces and λ is called a root of V .

(This generalizes our definition of weight spaces for representations of sl2(C), where
h = span(H).)

Proposition 33.1. V =
⊕
λ∈h∗ Vλ.

Proof. Take a basis H1, . . . ,Hn for h. Then µ(H1), . . . ,µ(Hn) : V → V are commuting
diagonalizable linear maps, so they can be simultaneously diagonalized (this is a stan-
dard result in linear algebra that can be proved by induction on n). Hence V has a basis
v1, . . . , vn such that each vi is a simultaneous eigenvector of µ(H) for every H ∈ h, and
the result follows.

Example. Let g = sln(C), and let h be the subalgebra of g consisting of all diagonal
matrices. Then you found the root space decomposition of g on your last problem set:

g = h⊕
⊕
i 6=j

span(Eij)

where Eij here is the matrix with a 1 in the ij position and 0s elsewhere.
Note that this decomposition also shows that the centralizer of h in g is precisely h,

and so h is maximal toral.

Proposition 33.2. Let g be semisimple, h be a toral subalgebra of g, and let g = ⊕λgλ be the root
space decomposition.

Then
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a) [gα, gβ] ⊂ gα+β.

b) B(Xα,Xβ) = 0 if α+β 6= 0.

c) The restriction of B to gα ⊕ g−α is nondegenerate for α 6= 0, as is the restriction of B to g0.

Proof. For part a), we just compute. Let X ∈ gα, Y ∈ gβ:

ad(H)[Xα,Xβ] = [ad(H)Xα,Xβ] + [Xα, ad(H)Xβ] = (α(H) +β(H))[Xα,Xβ].

For part b): by part a), adXαadYβ maps gλ into gλ+α+β. If we then use the root
space decompositon g = ⊕λgλ to write ad(Xα)ad(Yβ) in block form, we conclude that all
diagonal blocks are 0 unless α+β = 0. Since B(Xα,Xβ) = Tr(ad(Xα)ad(Yβ)), b) follows.

For part c): it follows from part b) that the subspaces {gα ⊕ g−α} and g0 are mutually
orthogonal with respect to the Killing form B. Since B is nondegenerate, it must be the
case that its restriction to each of these subspaces is also nondegenerate.

Note that the 0-root space g0 is equal to the centralizer Zg(h), and is a subalgebra of
g.

Theorem 33.3. Supppose that h ⊂ g is a maximal toral subalgebra (also known as a Cartan
subalgebra). Then Zg(h) = h.

Proof. Since h is abelian, we have h ⊂ Zg(h); we need to show that the opposite inclusion
holds.

First, a general remark. If we strengthened the hypothesis to require that h be a max-
imal abelian subalgebra, the inclusion would follow directly. Indeed, for any X ∈ Zg(h),
h + span(X) is a abelian subalgebra of g. The difficulty here is that we don’t necessarily
know that h + span(X) is a toral subalgebra, because adX need not be semisimple; we
will have to do a substantial amount of extra work to eliminate that possibility.

To deal with that possibility we will use two main tools.
The first one is a form of Jordan decomposition for semisimple Lie algebras (which

we give without proof, though it may appear on your problem set)

Theorem 33.4. If X ∈ g there is a unique decomposition X = Xs + Xn, with Xs,Xn ∈ g, such
that ad(Xs) = (ad(X))s and ad(Xn) = (ad(X))n, where ad(Xs), ad(Xn) are the semisimple and
nilpotent parts of ad(X) viewed as an element of gl(g).

The second tool we’ll use is the following Lemma:

Lemma 33.5. Let X, Y ∈ g be such that [X, Y] = 0 and ad(X) is nilpotent. Then B(X, Y) = 0.

Proof of Lemma. Since [X, Y] = 0 also [ad(X), ad(Y)] = 0, so ad(X)ad(Y) = ad(Y)ad(X).
Hence (ad(X)ad(Y))n = ad(X)nad(Y)n is 0 for sufficiently large n, so ad(X)ad(Y) is
nilpotent and B(X, Y) = tr(ad(X)ad(Y)) = 0.
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Now we undertake the proof of the theorem itself. Let c = Zg(h); we must show c ⊂ h

(and so c = h).
Step 1: X ∈ c =⇒ Xs,Xn ∈ c By definition, X ∈ c means that ker ad(X) ⊃ h. Now

we use the fact that for any vector space V and any Z ∈ gl(V), both kerZn and kerZs
contain kerZ. Applying this to Z = ad(X), we have ker ad(Xs), ker ad(Xn) ⊃ kerX ⊃ h.
Hence Xs,Xn ∈ c.

Step 2: X ∈ c =⇒ Xs ∈ h Suppose not. By Step 1, we know Xs ∈ c, so h⊕ span(Xs) is
an abelian Lie algebra. For any Y ∈ h⊕ span(Xs), ad(Y) = ad(h) + ad(Xs) is the sum of
two commuting diagonalizable maps g → g, so is diagonalizable. Hence h⊕ Xs is toral,
contradicting maximality of h.

Step 3: c is nilpotent For any X ∈ c we have ad(X) = ad(Xs) + ad(Xn). But Xs ∈ h

commutes with everything in c, so ad(Xs) = 0. Hence ad(X) = ad(Xn) is nilpotent, and
so we may apply Engel’s theorem to show c nilpotent.

Step 4: B|h is nondegenerate Note that we already have shown that B|c is nondegenerate,
as c = g0. Hence for any H ∈ h there exists X ∈ c with B(H,X) 6= 0. Write X = Xs + Xn.
By the lemma B(H,Xn) = 0, hence B(H,Xs) = B(X,H) 6= 0. Since Xs ∈ h this shows B|h
nondegenerate.

Step 5: h ∩ [c, c] = 0 We have B([c, c], h) = B(c, [c, h]) = 0 (the first step is by ad-
invariance of the Killing form, the second because [c, h] = 0.) So any X ∈ h ∩ [c, c] must
satisfy B(X,H) = 0 for all H ∈ h; by step 4 this implies X = 0, as desired.

Step 6: c is commutative Suppose not. By step 3, c is nilpotent; let n be largest such that
cn 6= 0; by our assumption n ≥ 1. Choose X ∈ cn nonzero; then X ∈ Z(c) by maximality
of n.

Write X = Xs + Xn. Since both X,Xs ∈ Z(c) we must also have Xn ∈ Z(c). By the
lemma we have B(Xn, Y) = 0 for all Y ∈ c; since B|c is nondegenerate this forces Xn = 0.
Hence X = Xs ∈ h, but we also have X ∈ cn ⊂ c1 = [c, c]; this contradicts step 5.

Step 7: c = h For any X ∈ c, write X = Xs + Xn. Since c is commutative we can
apply the lemma one last time to get B(Xn, Y) = 0 for all Y ∈ c, and so Xn = 0 by
nondegeneracy of B|c.

As usual, let g be a semisimple complex Lie algebra. Let h be a maximal torus.
Then we have the root space decomposition g = ⊕α∈h∗gα. Since g is finite-dimensional

there must be only finitely many nonzero gα. Let

R = {α ∈ h∗ r 0 | gα 6= 0}.

Then
g = g0 ⊕

⊕
α∈R

gα

and we showed on Monday that g0 = h (using maximality of h).
We also showed the following:
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• [gα, gβ] ⊂ gα+β

• B(gα, gβ) = 0 unless α+β = 0

• B|gα⊕gβ is nondegenerate, as is B|g0=h.

Remark. It seems like we might have some choice here in which maximal toral subalgebra
h we choose. However, in fact the following is true:

Theorem 33.6. If h, h ′ are maximal toral subalgebras of g, then there exists an automorphism of g
that takes h to h ′. If G is a connected Lie group with Lie(G) = g, then this automorphism can be
taken to be of the form Ad(g) for some g ∈ G. (By the current HW, this is just saying that it’s
in the connected component of the identity in Aut(g)).

The non-degenerate bilinear form B on h, so induces an isomorphism h∗ → h, which
we’ll denote by α 7→ tα. It is determined by the property that B(tα,H) = α(H) for all
H ∈ h.

Using this isomorphism we can transfer B to h∗, to obtain a bilinear form 〈, 〉 defined
by

〈α,β〉 = B(tα, tβ) = tα(β).

Proposition 33.7. if X ∈ gα, Y ∈ g−α then [X, Y] = B(X, Y)tα

Proof. It’s enough to show that B(H, [X, Y]) = (H,B(X, Y)tα) for all H ∈ h.
The left hand side equals B([H,X], Y) = B(α(H)X, Y) = α(H)B(X, Y).
The right hand side is B(X, Y)B(H, tα) = α(H)B(X, Y), as desired.

Proposition 33.8. If α is a root, then

a) 〈α,α〉 6= 0.

b) Take any Eα ∈ gα nonzero and any E−α ∈ gα such that B(Eα,E−α) = 2
〈α,α〉 . Then Eα, E−α

and Hα = [Eα,E−α] = 2tα/〈α,α〉 span a subalgebra of g isomorphic to sl2(C) via Eα ↔ E,
E−α ↔ F, and Hα ↔ H.

Proof. We’ll prove a) by contradiction: suppose 〈α,α〉 = 0. Let Xα ∈ gα be nonzero,
and let X−α ∈ g−α such that B(Xα,X−α) 6= 0; write κ = B(Xα,X−α). By Proposi-
tion 33.7, [Xα,X−α] = κtα. Additionally, [tα,Xα] = α(tα)Xα = 〈α,α〉Xα = 0, and likewise
[tα,X−α] = 0.

Hence g ′ = span(Xα,X−α, tα) is a subalgebra of g, and is solvable. Applying Lie’s
theorem to the adjoint action ad|g ′ : g ′ → gl(g), we find that there is a basis of g in which
ad(X) is upper-triangular for all X ∈ g ′. This implies that ad(X) is strictly-upper triangu-
lar for all X ∈ [g ′, g ′], specifically, that ad(tα) is strictly upper-triangular, hence nilpotent.
But we know that ad(tα) is diagonalizable, so this forces ad(tα) = 0, contradicting the
fact that Z(g) = 0.
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Now b) is just a matter of calculation: by the proposition we have Hα = [Eα,E−α],
and then

[Hα,Eα] =
2

〈α,α〉 [tα,Eα] =
2α(tα)

〈α,α〉 Eα = 2Eα.

Likewise [Hα,E−α] = −2E−α. This gives the desired result.

We let sl2(C)α = span(Eα,E−α,Hα) be the subalgebra defined above. (In class I called
this a “principal sl2” – however that term actually refers to something else. My bad!)

Then g is a representation of sl2(C)α using the adjoint action. We will now use what
we know about representations of sl2(C) to study this representation and get conclusions
about the roots.

First, we note that any Xβ ∈ gβ is a weight vector for Hα, because

[Hα,Xβ] =
2

〈α,α〉 [tα,Xβ] =
2〈α,β〉
〈α,α〉 Xβ.

Since we know that all weights in finite-dimensional representations of sl2(C) are inte-
gers, this gives:

Proposition 33.9. 2〈α,β〉
α,α ∈ Z for all α,β ∈ R.

This proposition has a geometric interpretation; the vector β can be decomposed as
β = β‖ + β⊥ where β‖ is a multiple of α and 〈β⊥,α〉 = 0. The component β‖ in the
direction of α is given by the formula β‖ = 〈α,β〉

〈α,α〉α. So Proposition 33.9 tells us that β‖

must be a half-integer multiple of α. This is already a fairly constraining condition to
put on the set of vectors R, but we’ll be able to show even more.

Our next step will be to pick out some sl2(C)α invariant subspaces of g and analyze
them as sl2(C)α-representations.

Consider the subspace
V =

⊕
n 6=0∈Z

gnα ⊕ span(Hα)

of sl2(C)α. It’s straightforward to check that V is sl2(C)α invariant using [gα, gβ] ⊂ gα+β,
plus Proposition 33.7.

Furthermore, for any n 6= 0, gnα is the 2〈nα,α〉
〈α,α〉 = 2n-weight space of V , and if n = 0,

span(Hα) is the 0-weight space of V .
Hence V is an sl2(C)-representation with all weights even, so its irreducible decompo-

sition only includes irreducibles with even highest weights. Furthermore, the 0-weight
space of V is 1-dimensional, so there can only be one such summand in this irreducible
decomposition. Hence V is an irreducible representation of sl2(C).

Furthermore, the element Eα ∈ V is a highest weight vector with highest weight 2.
Hence V must be precisely span(Eα,Hα,E−α). We can summarize this by
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Proposition 33.10. If α ∈ R, dim gα = 1. If also nα ∈ R for n ∈ Z, then n = ±1.

The second part of this proposition can be strengthened further:

Proposition 33.11. If cα ∈ R for c ∈ C, then c = ±1.

Proof. By Proposition 33.9, we know that 2〈cα,α〉
〈α,α〉 = 2c is an integer. Switching the roles

of α and cα we obtain that 2/c is also an integer. Hence c must be one of ±12 ,±1,±2.
The possibility c = ±2 is ruled out by the previous proposition. Switching the roles of α
and cα rules out c = ±12 as well. So we are left with only c = ±1.

Now we pick out another sl2(C)α subrepresentation of g to analyze. Let β be any
root other than ±α. Then the subspace⊕

n∈Z

gβ+nα

is sl2(C)α-invariant.
This is called the α-string through β. Next time we’ll show

Proposition 33.12. There are integers p,q ≥ 0 such that⊕
n∈Z

gβ+nα ∼= gβ−pα ⊕ gβ−(p−1)α · · · ⊕ gβ+qα

where each of the root spaces in the right-hand sum is 1-dimensional, and this is an irreducible
representation of sl2(C)α. Furthermore, p−q2 =

〈α,β〉
〈α,α〉 .

Proposition 33.13. If α,β ∈ R, then

sα(β) = β−
2〈α,β〉
〈β,β〉 α ∈ R.

The geometric meaning here is that sα(β) is the reflection of β through the hyper-
plane orthogonal to α.

34 More on roots

As usual, let g be a finite-dimensional complex Lie algebra, and let h be a maximal toral
subalgebra of g.

Last time we showed

• if α,β ∈ R, then 2〈α,β〉
〈α,α〉 ∈ Z. We will write

n(α,β) =
2〈α,β〉
〈α,α〉 .
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• dim gα = 1 for α ∈ R

• if α, cα ∈ R then c = ±1.

Also, for every α ∈ R, we constructed a subalgebra sl2(C)α = span(Eα,E−α,Hα) of g

isomorphic to sl2(C).
It’s worth pointing out here that the elements Eα ∈ gα and E−α ∈ g−α are not canoni-

cally defined. Indeed, we can take Eα to be any nonzero element of gα. Then E−α ∈ g−α
is determined by the choice of Eα and the condition B(Eα,E−α) = 2

〈α,α〉 .

However, the element Hα = 2
〈α,α〉tα does not depend upon the choice of Eα. Also the

subalgebra sl2(C)α = span(Eα,E−α,Hα) = gα ⊕ g−α ⊕ span(Hα) doesn’t depend on the
choice of its basis vectors Eα and E−α.

Now we prove the result stated last time:

Proposition 34.1. There are integers p,q ≥ 0 such that⊕
k∈Z

gβ+kα ∼= gβ−pα ⊕ gβ−(p−1)α · · · ⊕ gβ+qα

where each of the root spaces in the right-hand sum is 1-dimensional, and this is an irreducible
representation of sl2(C)α. Furthermore, p−q2 =

〈α,β〉
〈α,α〉 .

Proof. Let V =
⊕
k∈Z gβ+kα, viewed as a representation of sl2(C)α. First we show irre-

duciblity. Note that any X ∈ gβ+kα is a weight vector for Hα with weight

2〈α,β+ kα〉
〈α,α〉 =

2〈α,β〉
〈α,α〉 + 2k = n(α,β) + 2k.

Since all nonzero root spaces gβ+kα are 1-dimensonal, this means that V is an sl2(C)α-
representation with the property that all (nonzero) weight spaces are 1-dimensional,
and also such that all weights have the same parity. By what we know about sl2(C)α
representations, this implies that V is irreducible.

If V has highest weight λ, then the set of weights of V is given by {−λ,−λ+ 2, . . . , λ}.
This must equal {n(α,β) + 2k | α+ kβ ∈ R}. Hence the set of k such that α+ kβ ∈ R is
precisely the integers between −λ−n(α,β)

2 and λ−n(α,β)
2 .

This means that the first part of the proposition is true with p = λ+n(α,β)
2 , and q =

λ−n(α,β)
2 . Then p− q = n(α,β) = 2

〈α,β〉〈α,α〉 as desired.

We then get the following corollary (also stated at the end of last time).
Recall that last time we defined sα(β) to be the reflection of β through the hyperplane

orthogonal to alpha. In formulas:

sα(β) = β−
2〈α,β〉
〈β,β〉 α = β−n(α,β)α
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Proposition 34.2. If α,β ∈ R, then sα(β) ∈ R.

Proof. We divide into cases based on whether n(α,β) = 2
〈α,β〉〈α,α〉 is positive or nega-

tive.
We’ll do the case n(α,β) ≥ 0 here; the other case is essentially identical. Since

p− q = n(α,β) and q ≥ 0 we must have p ≥ n(α,β). By the previous proposition we
know that α− kβ in R for 0 ≤ k ≤ p. Setting k = n(α,β) gives the desired result.

Remark. Although it looks like Proposition 34.2 is strictly weaker than Proposition 34.1,
it turns out that in some sense they are equivalent. However, Proposition 34.2 has a more
elegant geometric conclusion, which is what we’ll use when define abstract root systems
next time.

We have a couple things left to show about the roots. For this we’ll have to do some
linear algebra.

Proposition 34.3. The roots span h∗ as a complex vector space.

Proof. Suppose not: then there must exist nonzero H ∈ h such that α(H) = 0 for all
α ∈ R. By definition of root spaces, this implies [H, gα] = 0 for all α ∈ R; and this is also
necessarily true for α = 0. But g is spanned by {gα}α∈R∪{0}, so H must lie in the center of
g. This contradicts semisimplicity of g.

Let n = dim h = dim h∗. By Proposition 34.3, we can find β1, . . . ,βn ∈ R which form
a basis for h∗. Hence any α ∈ R can be written uniquely as a C-linear combination of
β1, . . . ,βn. We’ll show that in fact α is a Q-linear combination of β1, . . . ,βn. First the
following propostion.

Proposition 34.4. If α,β ∈ R, then 〈α,β〉 ∈ Q.

Proof. Since we already know 2〈α,β〉
〈α,α〉 ∈ Z, it’s enough to show 〈α,α〉 ∈ Q for any α ∈ R.

We first prove that B(Hα,Hα) = tr((ad(Hα))2) ∈ Z. We’ve previously seen that, for
any β ∈ R, the linear map ad(Hα) acts on the one-dimensional root space gβ as scaling
by 2〈α,β〉

〈α,α〉 = n(α,β) ∈ Z. Also ad(Hα) maps h to 0. Hence

tr((adHα)2) =
∑
β∈R

(nβ)
2 ∈ Z.

Now, Hα = 2tα
〈α,α〉 , so

B(Hα,Hα) =
4

〈α,α〉2B(tα, tα) =
4

〈α,α〉2 〈α,α〉 = 4

〈α,α〉 .

Hence 4
〈α,α〉 ∈ Z, and so 〈α,α〉 ∈ Q.
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Proposition 34.5. Suppose β1, . . . ,βn ∈ R form a C-basis for h∗ Then spanQ(β1, . . . ,βn) ⊃ R.

Proof. Define a linear map φ : h∗ → Cn by φ(α) = (〈α,β1〉, . . . , 〈α,βn〉). This map φ is
an isomorphism because 〈·, ·〉 is nondegenerate and β1, . . . ,βn form a basis.

By Proposition 34.4, φ(spanQ(β1, . . . ,βn)) ⊂ Qn. But the left hand side is an n-
dimensional Q-vector space, so in fact we must have φ(spanQ(β1, . . . ,βn)) = Qn.

Now let α ∈ R be arbitrary. By Proposition 34.4 again, φ(α) ∈ Qn. Since φ is injective,
we must then have α ∈ spanQ(β1, . . . ,βn) as desired.

As a corollary of this proposition, we see that the roots R are all contained in the
n-dimensional real vector space spanR(β1, . . . ,βn) = spanR(R). It follows from proposi-
tion 34.4 that the bilinear form 〈, 〉 takes real values on spanR(R). What’s more:

Proposition 34.6. 〈, 〉|spanR(R) is positive definite.

Proof. Let λ ∈ spanR(R). We must show that 〈λ, λ〉 ≥ 0 with equality if and only if λ = 0.
By definition, 〈λ, λ〉 = B(tλ, tλ) = tr((ad(tλ))2. By definition, ad(tλ) acts on each root

space gα by multiplication by α(tλ) = 〈λ,α〉, and maps g0 = h to 0.
Hence

〈α,α〉 = tr((ad(tλ))2 =
∑
α∈R
〈λ,α〉2.

For each α ∈ R, 〈λ,α〉 =
∑
i ci〈βi,α〉 ∈ R. Since a sum of squares of reals is non-

negative, it follows that 〈α,α〉 ≥ 0, with equality if and only if 〈λ,α〉 = 0 for all α ∈ R;
but that can only happen for λ = 0.

35 Abstract root systems

Definition. A root system R is a finite set of nonzero vectors in a (positive definite) real
inner product space V such that

1. R spans V

2. For α,β ∈ R,

2
〈α,β〉
〈α,α〉 ∈ Z

. (We write n(α,β) = 2 〈α,β〉
〈α,α〉 ).

3. For α,β ∈ R, the reflection sα(β) of β through the hyperplane perpendicular to α also
lies in R. Recall we have the formula

sα(β) = β−
〈α,β〉
〈α,α〉α = β−n(α,β)α.
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A root system is said to be reduced if α ∈ R implies cα /∈ R for any c 6= ±1.
The rank of R is defined to be dimV .
Two root systems R ⊂ V and R ′ ⊂ V are said to be isomorphic if there is a linear map

φ : V → V ′ such that φ(R) = R ′, and such that n(φ(α),φ(β)) = n(α,β). (In particular,
the map φ does not need to be an isometry.)

Remark. By the argument given on Friday’s class, one can show that if α, cα ∈ R then
c = ±12 ,±1,±2.

Then the results of the last week can be summarized as

Theorem 35.1. If g is a semisimple complex Lie algebra with maximal torus h , then the set of
roots R is a reduced abstract root system inside the inner product space spanR(R) ⊂ h∗, of rank
equal to dimC(h

∗) = dimC(h).

From the previous homework, this then means that we have some examples.

Example. Let g = sln(C), and h be the subalgebra of diagonal matrices. Then h is spanned
by the vectors ε1, . . . , εn given by

εi

h1 . . .
hn

 = hi

which satisfy the relation ε1 + · · ·+ εn = 0.
You showed on a previous homework that the set of roots of g = gln is given by

R = {εi − εj}i 6=j. This root system is also called An−1 (the subscript indicates the rank).
We draw pictures of this for ranks n = 2, 3.
For n = 2: g = sl2 has two roots ε1 − ε2 and ε2 − ε1. The root system looks like:

ε1 − ε2ε2 − ε1

This is the root system A1, which is the only root system of rank 1.
For n3, there are 6 roots, ±(ε1 − ε2), ±(ε2 − ε3, and ±(ε3 − ε1). This root system A2

forms a hexagon pattern:
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ε1 − ε2ε1 − ε3

ε2 − ε1

ε2 − ε3

ε3 − ε1

ε3 − ε2

ε1

ε2 ε3

Example. Let g = sp2n(C) and h be the subalgebra of all diagonal matrices in g. Then
you calculated on your last problem set that the root system R is equal to{±εi ± εj}i 6=j ∪
{±2εi}, where εi ∈ h∗ are vectors that are pairwise orthogonal and all of the same length.
This root system is also called Cn.

For n = 1, this gives the same root system as sl2(C), as it should, since sp2(C) =

sl2(C).
For n = 2 this gives the root system C2

ε1 − ε2

ε1 + ε2ε2 − ε1

−ε1 − ε2

2ε1−2ε1

2ε2

−2ε2

There are two other root systems of rank 2. One of them, A1 ⊕A1, is the root system
of the semisimple Lie algebra sl2(C)⊕ sl2(C):
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ε1−ε1

ε2

−ε2

You can tell that it is a direct sum because it contains two copies of the root system
A1 that are orthogonal to each other (see the current problem set).

Finally, there is the root system G2:

(Dotted lines added to make collinearity clear.)
This is the root system of a 14-dimensional Lie algebra g2. I hope to be able to say

something about g2. One way of defining it is the following: there is a nonassociative
algebra O known as the octonions, which is an 8-dimensional real vector space. The
automorphism group G2 = Aut(O) of the octonions is a 14-dimensional real Lie group.
One can then define g2 = (Lie(G2))C.

The four root systems listed above are the only rank 2 reduced root systems, as you’ll
show on the problem set.

We can also construct two more infinite families of root systems, coming from the
special orthogonal groups.

The orthogonal group so2n(C) has root system Dn given by {±εi ± εj}i 6=j.
The orthogonal group so2n+1(C) has root system Bn given by {±εi ± εj}i 6=j ∪ {εi}.
(In both cases this can be shown by a calculation similar to what you did for sp2n(C).)
We have now listed all the irreducible root systems with four exceptions.
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One of the exceptions is F4 = {±εi ± εj}i 6=j ∪±εi ∪ {±12ε1 ±
1
2ε2 ±

1
2ε3 ±

1
2ε4} inside a

4-dimensonal vector space V with orthonormal basis ε1, ε2, ε3, ε4. This is the root system
of a 52-dimensional Lie algebra which is substantially harder to construct.

The other 3 are E6,E7,E8. These are most easily defined by constructing E8, and then
defining E7 as the intersection of E8 with the hyperplane perpendicular to any root, and
E6 as the intersection of E7 with the hyperplane perpendicular to any root. Again, it’s
much harder to write down the corresponding Lie algebras.

Recall that an abstract root system is a subset R of a real inner product space V (with
positive definite inner product 〈, 〉 such that

1. R spans V

2. For α,β ∈ R,

2
〈α,β〉
〈α,α〉 ∈ Z

. (We write n(α,β) = 2 〈α,β〉
〈α,α〉 ).

3. For α,β ∈ R, the reflection sα(β) of β through the hyperplane perpendicular to α also
lies in R. Recall we have the formula

sα(β) = β−
〈α,β〉
〈α,α〉α = β−n(α,β)α.

We say that R is reduced if α, cα ∈ R implies c = ±1. For the rest of this we will only
work with reduced root systems.

Last time we classified all reduced root systems of rank 2 (this means dimV = 2). We
now observe that if R ⊂ V is a root system and α,β ∈ V , then R ∩ span(α,β) is a rank 2
root system.

Lemma 35.2. Let R be a reduced root system. Suppose α,β ∈ R with 〈α,β〉 < 0. Then
α+β ∈ R.

Proof. By the above observation, it’s enough to check this for R of rank 2. By inspecting
our list of rank 2 root systems, we see that this is the case.

Remark. This also holds when R is not reduced, but we won’t need this.

36 Simple roots

Let R ⊂ V be a reduced root system. By definition R spans V , but it is far from a basis;
in general, there are lots of linear dependencies. We’ll give a way of choosing a subset
of R that forms a basis for V .
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First, we will choose a way of partitioning R into a set R+ of positive roots and a set
R− of negative roots. We do this in a somewhat arbitrary manner. Choose any linear
function f : V → R with the property that f(α) 6= 0 for all α ∈ R. Then we say α is
positive (α > 0) if f(α) > 0 and α is negative (α < 0 if f(α) < 0).

E.g. for all of our examples R of rank 2 root systems, this just means we have drawn
a line through the origin and defining all roots on one side of the line to be positive.
More generally, in higher dimensions, we have drawn a hyperplane through the origin
and have defined all roots on one side of the line to be positive.

Remark. Although it may seem like we have a lot of choice in doing this, in fact the
root system is so symmetric that one can show that any two such different ways of
partitioning R = R+

∐
R− are the same up to symmetries of the root system R. You

should check that this is the case for all of the rank 2 root diagrams we drew last time.
(More on this when we get to the Weyl group).

Definition. We say that α ∈ R+ is simple if there is no decomposition α = α ′ + α ′′ with
α ′,α ′′ ∈ R+ r 0.

We let Π denote the set of simple roots.

Proposition 36.1. Any α ∈ R+ can be written as a finite sum of simple roots (with repetitions
allowed).

Proof. If α is simple, then this is certainly true. Otherwise, then we can write α = α ′+α ′′

with α ′,α ′′ ∈ R+, and do the same for α ′, α ′′. Since R is finite and f(α ′), f(α ′′) < f(α),
this process must ultimately terminate.

As an immediate corollary we get:

Corollary 36.2. Suppose the set of positive roots Π = {α1, . . . ,αn}. Then any α ∈ R can be
written as α =

∑
i ciαi, where all ci ≥ 0 if α ∈ R+, and all ci ≤ 0 if α ∈ R−.

Since R spans V , this means that also Π spans V . Now we show that Π is actually
a basis. To show linear independence we’ll use problem 1 on the problem set, and the
following:

Lemma 36.3. If α,β ∈ Π are simple roots then 〈α,β〉 ≤ 0.

Proof. Suppose not. In that case 〈α,−β〉 < 0. Then we can apply Lemma 35.2 to get
α− β ∈ R. If α− β ∈ R+, then α = β+ (α− β) is not simple. Otherwise β− α ∈ R+, so
by the same reasonining β is not simple. Either way we get a contradiction.

Now Problem 1 from the current problem set applies to show that the set Π of simple
roots is linearly independent, hence forms a basis for V .
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Example. Let R be the root system An coming from the lie group g = sln+1(C). That is,
R = {εi − εj}i 6=j, living inside he vector space V = {

∑n+1
i=1 ciεi |

∑
i ci = 0}.

We’ll now define a function f to separate the positive from negative roots. It’s easiest
to first define f on span(ε1, . . . , εn+1) and then restrict to the hyperplane V . We define f
by f(εi) = n+ 1− i.

Then f(εi − εj) = j− i, and so the positive roots R+ are {εi − εj | i ≤ j}. The simple
roots are then ε1 − ε2, ε2 − ε3, . . . , εn − εn+1.

37 Cartan Matrices

Let Π = {α1, . . . ,αn} be the set of simple roots. We will now write down a matrix that
encodes all the relevant information about the αi.

Definition. The Cartan matrix of {α1, . . . ,αn} is the n× n matrix A = (aij) such that

aij = n(αi,αj) =
2〈αi,αj〉
〈αi,αi〉

.

All of the aij integers, and aii = 2 for all i. By Lemma 36.3, we have aij ≤ 0 for i 6= j.
The following proposition puts additional constraints on the Cartan matrix A –

enough to characterize all Cartan matrices.

Theorem 37.1. The matrix A satisfies detA > 0. Furthermore, detA ′ > 0 for any principal
minorA ′ ofA. (A principal minor ofA is the submatrix ofA taken by intersecting the i1, . . . , ikth
rows of A with the i1, . . . , ikth columns of A, for any subset {i1, . . . ik} ⊂ {1, . . . ,n}.)

Proof. We’ll show only the first part; the second part is proved in the same way.
We can factor A as

A =


〈α1,α1〉 〈α1,α2〉 · · · 〈α1,αn〉
〈α2,α1〉 〈α2,α2〉 · · · 〈α2,αn〉

...
...

...
〈αn,α1〉 〈αn,α2〉 · · · 〈αn,αn〉




2
〈α1,α1〉

2
〈α2,α2

. . .
2

〈αn,αn〉

 .

The first factor is the Gram matrix of the basis α1, . . . ,αn of V with respect to the inner
product 〈, 〉. Since the inner product 〈, 〉 is positive definite, this is a positive definite
matrix, and so has positive determiannt. The second factor is diagonal with positive
entries, and so it also has positive determinant. Hence their product A must also have
positive determinant.

Now, we classify all 2× 2 Cartan matrices. We know they must take the form A =

( 2 −a
−b 2 ) with a,b ≥ 0 and detA = 4− ab > 0. If either a = 0 or b = 0, then 〈α1,α2〉 = 0

and so both a and b must be 0. In this case A = ( 2 00 2 ) is the Cartan matrix of A1 ⊕A1.
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Otherwise, the unordered pair {a,b} is one of {1, 1}, {1, 2}, or {1, 3}. These three possi-
bilites correspond to the three other rank 2 root diagrams: A2 has Cartan matrix ( 2 −1

−1 2 ),
B2 ∼= C2 has Cartan matrix ( 2 −1

−2 2 ), and G2 has Cartan matrix ( 2 −1
−3 2 ). (In both of the

last two cases, you can get the transpose matrix by switching the order of the roots.)
Note that by the second part of Theorem 37.1, these are the only matrices which can

occur as principal 2× 2 minors of any Cartan matrix.

38 Dynkin Diagrams

It turns out that Cartan matrices of semisimple Lie algebras are all rather sparse, and as
a result it’s helpful to represent them using graphs.

Definition. Let R be a root system with positive roots α1, . . . ,αn and Cartan matrix A.
Then the Dynkin diagram of R is a diagram with n vertices labeled by α1, . . . ,αn, with
edges drawn between them as follows:

For i 6= j, we draw aijaji edges between the vertices αi and αj. If ‖αi‖ > ‖αj‖, we
also draw an arrow from αi to αj.

(Note that aijaji =
‖αj‖2
‖αi‖2

, and so ‖αi‖ > ‖αj‖ if and only if aji > aij. Correction: aij and
aji are both negative, so this should be |aji| > |aij|.)

We can draw the Dynkin diagrams for each of the rank 2 root systems:
A1 ⊕A1

A2

B2 ∼= C2

G2
Now we do the Dynkin diagrams for all the root systems listed last time. For An, Bn,

and Cn we will label the vertices with the simple roots. In the other cases, we’ll leave
out the labels.
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An

ε1 − ε2 ε2 − ε3 ε3 − ε4 εn−1 − εn εn − εn+1

Bn

ε1 − ε2 ε2 − ε3 ε3 − ε4 εn−1 − εn εn

Cn

ε1 − ε2 ε2 − ε3 ε3 − ε4 εn−1 − εn 2εn

Dn

E6

E7

E8

F4:

G2:

39 Classification of Dynkin Diagrams

Let R be a root system, with simple roots α1, . . . ,αn.
We defined a Cartan matrix A = (aij) by aij = n(αi,αj) =

2〈αi,αj〉
〈αi,αi〉

. Last time we
defined the Dynkin diagram of R as a graph with vertices labeled by α1, . . . ,αn, where
we draw aijaji edges from αi to αj. Additionally, if ‖αi‖ > ‖αj‖ (or, equivalently, if
|aji| > |aij|), we draw an arrow from αi to αj.

Last time we showed that the matrix A has the following properties:

• aii = 2 for all i
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• aij ≤ 0 and is an integer for i 6= j.

• detA > 0, and for any principal minorA ′ ofA, detA ′ > 0. (A principal minor is the
submatrix of A taken by intersecting the i1, . . . , ikth rows of A with the i1, . . . , ikth
columns of A, for any subset {i1, . . . ik} ⊂ {1, . . . ,n}.)

We now observe that we can reconstruct the Cartan matrixA from its Dynkin diagram
D. This is because, by the argument given last time, for i 6= j the unordered pair {aij,aji}
is one of {0, 0}, {−1,−1}, {−1,−2}, or {−1,−3}. Hence, if we know the product aijaji, and
we know which of |aij| and |aji| is larger, that determine the values of aij and aji.

More generally, this gives us a bijection between matrices A such that any 2 × 2
minor is equal to one of ( 2 −a

−b 2 ) with {a,b} one of {0, 0}, {−1,−1}, {−1,−2}, or {−1,−3},
and graphsDwhere pairs of vertices may be connected either by unoriented single edges
or by oriented double or triple edges.

We will now prove the classification result stated last time

Theorem 39.1. Any connected Dynkin diagram is one of the following
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An

Bn

Cn

Dn

E6

E7

E8

F4:

G2:

Proof. Let D be a connected Dynkin diagram. Our strategy will be to show that there
are various subgraphs that cannot be contained in D; we’ll then show that this forces D
to be one of the graphs on the list.

Lemma 39.2. D does not contain any cycles.

Proof of Lemma. Suppose not; renumber the vertices of D so that the cycle consists of
vertices α1,α2, . . . ,αk in that order.

Let v =
∑k
i=1

αi√
〈αi,αi〉

. Then

0 < 〈v, v〉 =
∑
1≤i≤k

1+
∑

1≤i<j≤k
2

〈αi,αj〉√
〈αi,αi〉〈αj,αj〉
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For i 6= j,
2

〈αi,αj〉√
〈αi,αi〉〈αj,αj〉

= −
√
aijaji

(the minus sign is because we know the numerator is negative and the denominator is
positive).

We have √aijaji ≥ 0 for any i, j with i 6= j, and also √aijaji ≥ 1 if there is any sort of
edge between αi and αj. So

0 < 〈v, v〉 = k−
∑

1≤i<j≤k

√
aijaji ≤ k−

√
a12a21 −

√
a23a32 − · · ·−

√
ak1a1k ≤ k− k = 0.

a contradiction.

Hence we know that D is a tree with possible double or triple edges.
There are a number of ways of proceeding from here. The one we will do is the

following:
We will use the fact that detA ′ > 0 for any principal minor A ′ of A. Note that if A ′

is the minor constructed from the i1, . . . , irth rows and columns of A, then the matrix A ′

corresponds to the induced subgraph D ′ of D comprising the vertices αi1 , . . . ,αir and
all edges between them.

We will then show that if D is a graph not on the list, it contains a subgraph D ′ such
that the corresponding minor A ′ has detA ′ ≤ 0. (Note that by the argument we gave
above, we can uniquely reconstruct A ′ from D ′.)

To do this, we will need a to come up with a somewhat long list of D ′. We give here
a method for enumerating such D ′:

40 Affine Dynkin diagrams

Let R be any irreducible root system, with set of simple roots Π = {α1, . . . ,αn}. Then the
following is true:

Proposition 40.1. There is a unique highest root α ∈ R+ such that α+αi /∈ R for any i.

There are two ways of proving this ; one uses some of the stuff we’ll be doing at the
end of the week. Alternatively, we can check this for all the root systems we’ve listed.
Example. If R = An, with simple roots ε1 − ε2, . . . , εn − εn+1, the highest root is α =

ε1 − εn+1.
Then let αn+1 = −α be the negative of the highest root. Let Ã be the n+ 1× n+ 1

matrix with entries ãij = n(αi,αj), for 1 ≤ i, j ≤ n+ 1. That is, Ã is made by adding an
extra row and column to A.

We can apply the same argument we used to show that detA > 0 to the matrix Ã. In
this case, however, the vectors α1, . . . ,αn+1 are linearly dependent, and so we must have
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det Ã = 0. One can show though that all off-diagonal entries of Ã are negative, and that
all proper principal minors of det Ã have positive determinant; so we can draw a graph
D̃ corresponding to the matrix Ã. This graph D̃ looks like the Dynkin diagram D but
with an extra node added; we call it an affine Dynkin diagram.

(Affine Dynkin diagrams correspond to infinite dimensional Lie algebras in the fol-
lowing sense: next time we’ll give an algorithm to go from a Dynkin diagram to a
finite-dimensional Lie algebra. If one applies the same algorithm to an affine Dynkin
diagram, one obtains an infinite-dimensional Lie algebra.)

We now write down all the affine Dynkin diagrams (checking them is just a calcula-
tion). The extra node and edge(s) are done in red. We label the nodes for Ãn but not for
the others.
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Ãn(n ≥ 2)
ε1 − ε2 ε2 − ε3 ε3 − ε4 εn−1 − εn εn − εn+1

εn+1 − ε1

B̃n(n ≥ 3)

C̃n(n ≥ 2)

D̃n(n ≥ 4)

Ẽ6

Ẽ7

Ẽ8

F̃4:

G̃2:
There are also four more graphs that we will need, which will look the same as

previously drawn graphs up to the direction of the arrows. These can be constructed
in a somewhat similar manner, or one can just check directly that they correspond to
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matrices with determinant 0.

Ã
(2)
2n−1(n ≥ 3)

Ã
(2)
2n (n ≥ 2)

D
(2)
n+1(n ≥ 2)

E
(2)
6

(In both tables, all diagrams have n+ 1 vertices.)
Since all of these diagrams correspond to matrices with determinant 0, none of them

can be a subdiagram of any Dynkin diagram.
Now we are ready to prove the theorem.
Let D be a connected Dynkin diagram. We know already that D must be a tree,

possibly with multiple edges. We now break into cases according to whether D contains
any double or triple edges.

Case 1: D contains only single edges.
Then D cannot have any vertices of degree ≥ 4, otherwise D would contain D̃4. Also,

D does not contain D̃n for n > 4, so D can have at most one vertex of degree 3.
If D is a path, then D = An for some n. Otherwise, D is a tree Tp,q,r with one vertex

of degree 3 and three paths of length p, q, and r connected to the vertex (for a total of
p+ q+ r+ 1 vertices). Without loss of generality p ≤ q ≤ r.

If p ≥ 2 then q, r ≥ 2 also, and D would then contain Ẽ6, which can’t happen, so
p ≥ 1. If q ≥ 3, then r ≥ 3, and in that case D would contain Ẽ7– since that can’t happen
either q = 1 or q = 2.

If q = 1, then D = Dn for some n. If we had q = 2 and r ≥ 5, then D would contains
Ẽ8, which can’t happen. So we’re left with q = 2 and r = 2, 3, or 4, which give the
possibilities D = E6,E7,E8 respectively.

That exhausts all cases when D has only single edges.
Case 2: D has at least one double edge but no triple edges.
First we show that D must have exactly one double edge. If D has two double edges,

then they must be connected by a path (possibly of length 0, if the double edges are
incident to each other). But then D would contain one of C̃n, A2n(2), or A(2)

n+1.

Now D must be a single path with no forks; otherwise D would contain B̃n or Ã(2)
2n−1.

If the double edge is at the end of the path, then D = Bn or Cn.
Otherwise, because D does not contain F̃2 or E(2)6 , the only remaining possibility is

D = F2.
Case 3: D has a triple edge.
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In this case, the only possibility is D = G2. This will be a HW problem to check that
this is in fact the case; you’ll need to consider some forbidden subgraphs other than the
ones we’ve listed (but they will be small enough that you can check the determinant
directly).

So far, we’ve given maps

{simple Lie algebras} ⇒ {Root systems} ⇒ {Positive roots} ⇒ Cartan matrix ⇒ {Dynkin diagram}

Today we’ll talk about how to go in the opposite direction.
We’ve already touched on how to go backwards from a Dynkin diagram to the Cartan

matrix. To summarize: the Dynkin diagram encodes the information of the numbers
aijaji, as well as indicating whether aij > aji. Since the unordered pair {aij,aji} is always
one of {0, 0}, {−1,−1}, {−1,−2}, {−1,−3}, this in enough to recover the values of aij and
aji.

We’ll now sketch how to recover the root system from the Cartan matrix. First, one
uses the information in the matrix to determine the configuration of the positive roots.
Then one uses the following results

41 Weyl group

Definition. Let R ⊂ V be an abstract root system. Then the Weyl group W(R) is the sub-
group of GL(V) generated by reflections {sα | α ∈ R}. (Recall that sα denotes reflection
through the hyperplane perpendicular to α.)

It follows from the root system axioms that W(R) permutes the set R of roots. (As a
corollary, this means that W(R) is finite.

Example. Let R = A2. Then W(R) is generated by three reflections through three lines
through the origin making 120◦ angles with each other, so it is isomorphic to D3 ∼= S3.

(More generally, W(An) ∼= Sn+1.)

We state the following two facts without proof (the proof is not hard, but is somewhat
lengthy). We write W =W(R), and as above Π = {α1, . . . ,αn} is the set of simple roots.

Theorem 41.1. The Weyl group W =W(R) is generated by the reflections sα1 , . . . , sαn through
the hyperplanes perpendicular to the simple roots.

Theorem 41.2. The set W(Π) = {w(αi) | w ∈W, 1 ≤ i ≤ n} is all of R.

As a result, the set R =W(Π) is uniquely determined by the set Π of simple roots.
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42 Serre relations

Now we explain how to construct a semisimple Lie algebra with given root system and
show its uniqueness. In fact, we’ll be able to construct the Lie algebra just using the data
of the Cartan matrix.

We’ll first show (modulo some facts we won’t prove) that a Lie algebra g is uniquely
determined by its root system. Once we’ve shown this it will be clear how to to construct
a Lie algebra with given root system.

Let g be a semisimple Lie algebra with maximal toral subalgebra h. Let R ⊂ h∗ be the
set of roots. Choose a way of dividing R = R+

∐
R−, and let Π = {α1, . . . ,αn} denote the

set of simple roots.
Construct the following subalgebras of g:

n+ =
⊕
α∈R+

gαn
− =

⊕
α∈R−

gα. (29)

Note that these are subalgebras, but not ideals! We have g = n+ ⊕ h⊕ n−, but again this
is only true as a direct sum of vector spaces, not as a direct sum of Lie algebras.

Now, we will choose a generating set for the Lie algebra g.
For each i, choose any Ei = Eαi ∈ gαi . Let Fi = Fαi ∈ g−αi be the unique element

of g−αi with B(Ei, Fi) = 2
〈αi,αi〉

. Let Hi = [Ei, Fi]. Then we’ve previously seen that
span(Ei, Fi,Hi) = sl2(C)α is isomorphic to sl2(C).

Proposition 42.1. The Ei generate n+ as a Lie algebra, and the Fi generate n− as a Lie algebra.

Proof. We’ll prove the first half of this; the proof of the second half is identical.
Let (n+) ′ be the subalgebra of n+ generated by the Ei. It suffices to show that for all

positive roots α ∈ R+, we have gα ⊂ (n+) ′.
We know we can write α =

∑
i ciαi where the ci are non-negative integers. We will

induct on
∑
i ci – this is also called the height ht(α).

If ht(α) = 1 then α = αi for some i, and gi = span(Ei) ⊂ (n+) ′.
For the inductive step (ht(α) > 1), we use the following lemma

Lemma 42.2. There exists i such that α−αi ∈ R+.

Proof of Lemma. First we show that there exists i such that 〈α,αi〉 > 0. Otherwise, by
Problem 1 on Problem Set 11, we would have α1, . . . ,αn,−α linearly independent, but
this is impossible as α1, . . . ,αn already form a basis.

Now, α and −αi are both roots with 〈α,−αi〉 < 0, so by a lemma proved last week,
α− αi ∈ R. Suppose we had α− αi = (ci − 1)αi

∑
j 6=i cjαj ∈ R−. Then we would have

ci − 1 ≤ 0 and cj ≤ 0 for i 6= j. Summing, this gives ht(α) =
∑
i ci ≤ 1, contradiction.

Hence α−αi ∈ R+.
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Now, because the αi-chain through α is an irreducible sl2(C)αi-representation, we
have Ei(gα−αi) = Eαi(gα−αi) ⊂ gα.

Since the Ei generate g+, the Fi generate g−, and the Hi generate h, between them
they generate all of g.

One can check that they satisfy the following relations, known as the Serre relations:

[Hi,Hj] = 0
[Ei, Fi] = Hi
[Ei, Fj] = 0 (i 6= j)
[Hi,Ej] = aijEj
[Hi, Fj] = −aijFj

ad(Ei)1−aijEj = 0

ad(Fi)1−aijEj = 0.

(The last two equations mean, e.g. that if aij = 0 then [Ei,Ej] = [Fi, Fj] = 0; if aij = −1

then [Ei, [Ei,Ej]] = [Fi, [Fi, Fj]] = 0, etc.)
Furthermore, these are all the relations; so if g ′ is any other Lie algebra with elements

E ′i , F
′
i ,H

′
i satisfying the same relations, then there is a unique Lie algebra morphism

g → g ′ sending Ei 7→ E ′i , Fi 7→ F ′i and Hi 7→ H ′i .
In particular, if g ′ is another Lie algebra with root system isomorphic to R, then we

get Lie algebra morphisms g → g ′ and vice versa. These morphisms are inverses, and so
g ∼= g ′.

This shows that g is determined up to isomorphism by its root system.

Remark. Note that the isomorphism g
∼→ g ′ is only canonical after we have made the

choices of maximal toral subalgebras, positive roots, and generating elements Ei and E ′i .

Now let R be an arbitrary abstract root system, with Cartan matrix A = (aij). Then we
can construct a Lie algebra g with generators {Ei, Fi,Hi}, i = 1, . . . ,n and relations given
above. One can then show that this Lie algebra g is a finite-dimensional semisimple Lie
algebra with root system equal to R.

43 Weights and highest weights for representations of semisim-
ple Lie algebras

Let g be a finite-dimensional semisimple Lie algebra, with maximal toral subalgebra h.
Let R be the root system, and choose a division R = R+

∐
R−. Let Π = α1, . . . ,αn ⊂ h∗

be the positive roots.
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Last time, we wrote g = n+ ⊕ h⊕ n− (this is just a direct sum of vector spaces, not of
Lie algebras), where n+ =

⊕
α∈R+ gα, and n− =

⊕
α∈R− gα.

For each positive root α ∈ R+, we as usual choose a basis {Eα, Fα,Hα] for sl2(C)α
as follows: We make a choice of nonzero Eα ∈ gα and take Fα ∈ g−α, such that Hα =

[Eα, Fα] = 2tα
〈α,α〉 .

For each simple root αi, we write Ei as shorthand for Eαi . Then last time we showed
that E1, . . . ,En generate n+, F1, . . . , Fn generate n−, and H1, . . . ,Hn form a basis for h∗.

Let µ : g → gl(V) be a representation of g. Recall that for λ ∈ h∗ we’ve defined

Vλ = {v ∈ V | µ(H)v = λ(H)v for all H ∈ h}.

If V is finite-dimensional, we’ve seen that

V = ⊕λ∈h∗Vλ.

(Even if V is not finite-dimensional, the Vλ are still linearly disjoint.)
If Vλ 6= 0 we say that λ is a weight of V , and if v 6= 0 ∈ Vλ, we say that v is a weight

vector of weight λ.
We will show that as in the case of sl2(C), the finite-dimensional representations can

be classified by their highest weight. First we will define what this means.

Definition. We say that v 6= 0 ∈ V is a singular vector if v ∈ Vλ for some λ and n+v = 0.
This is equivalent to Eβv = 0 for all β ∈ R+. Additionally, n+ is generated by E1, . . . ,En,
it’s enough to check that Eiv = 0 for all i.

If v ∈ V is singular, and V is generated by v, then v is said to be a highest weight vector
(and V is said to be a highest weight representation.

We’ve previously seen that if V is a highest weight representation of sl2(C) with
highest weight vector v, then the vectors {µ(F)kv}v≥0 generate V .

Proposition 43.1. Enumerate the positive roots R+ = {β1, . . . ,βr}.
Let V be a highest weight representation with highest weight vector V the set

{µ(Fβ1)
d1 · · ·µ(Fβr)drv}d1,...,dr≥0

spans V , and for each d1, . . . ,dr, we have µ(Fβi)
d1 · · ·µ(Fin)βrv ∈ Vλ−d1β1−···−drβr .

Correction: in class this was incorrectly stated, using just the simple roots Π instead of all the
positive roots R+.

Sketch of proof. Let V ′ = span{µ(Fβ1)
d1 · · ·µ(Fβn)dnv}d1,...,dr≥0; we need to show that V ′

is g-invariant.
It’s enough to show that for any X ∈ g and any positive integers d1, . . . ,dr,

Xµ(Fβ1)
d1 · · ·µ(Fβn)dnv ∈ V ′.
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For this, we induct on d1 + · · ·+ dr, using

µ(X)µ(Fβ1)
d1 · · ·µ(Fβr)drv =[µ(X),µ(Fβ1)]µ(Fβ1)

d1−1 · · ·µ(Fβr)drv
+ µ(Fβ1)µ(X)µ(Fβ1)

d1−1 · · ·µ(Fβr)dr

if d1 > 0, and the analogous equation with with Fβi intsead of Fβ1 if i is the first integer
with di > 0.

Remark. There’s an alternate proof using an object called the universal enveloping algebra
of g, which is what you’ll find in most books. The reason is that it is more easily extended
to give other results which we won’t proof in this class.

As a corollary, we can show that the highest weight vector of a representation is
unique up to scaling.

Proposition 43.2. Let V be a representation of g, and let v ∈ Vλ, v ′ ∈ Vλ ′ be highest weight
vectors of V . Then λ = λ ′ and v ′ = cv for some c ∈ C×.

Proof. By the previous proposition (plus the fact that weight vectors in different weight
spaces are linearly independent), we know that λ ′ = λ − d1β1 − · · · − drβr and λ ′ =
λ−d ′1β1− · · ·−d ′rβr for non-negative integers d1, . . . ,dr,d ′1, . . . ,d

′
r. Hence (d1+d

′
1)β1+

· · ·+ (dr+ d
′
r)βr = 0. Because the βi are all on the same side of a hyperplane, this forces

di = d
′
i = 0 for each i, and λ = λ ′.

By the previous proposition again, we have that v spans Vλ, as does v ′. Hence we
must have v ′ = cv for some c ∈ C×.

44 Verma modules

We now will now state an important result without proof.

Theorem 44.1. Let λ ∈ h∗ be arbitrary. There exists a unique infinite-dimensional representation
Mλ of g, containing a highest weight vector v ∈M(λ) which is universal among highest-weight
representations of weight λ in the following sense:

For any highest weight representation V ′ of g with highest weight vector v ′ of weight λ, there
is a unique surjective homomorphism φ :M(λ) � V ′ of g-representations with φ(v) = v ′.

Additionally,M(λ) has the following basis of weight vectors: {µ(Fβ1)
d1 · · ·µ(Fβr)drv}d1,...,dr≥0,

where as before {β1, . . . ,βr} = R+ is a list of positive roots. Again, in class I got this wrong
and used only the simple roots.

This implies that M(λ) =
⊕
λ ′∈h∗M(λ)λ ′ is the direct sum of its weight spaces (this is

something we already knew to be true of finite-dimensional representations, but not necessarily of
infinite-dimensional ones!)
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(The construction of M(λ) uses the universal enveloping algebra of g, and the proof
of the basis uses the Poincaré-Birkhoff-Witt theorem on the structure of the universal
enveloping algebra.)

Example. g = sl2(C). In this case M(λ) has a basis {fkv}k≥0, where µ : g → gl(M(λ)) is
determined by

µ(F)(fkv) = fk+1v

µ(H)(fkv) = (λ− 2n)fkv

µ(E)(fkv) = k(λ+ 1− k)fk−1v.

One can show the following (this is on the HW): If λ is not a positive integer then
M(λ) is irreducible. On the other hand, if λ ∈ Z≥0, then W = span(fλ+1v, fλ+2v, . . . ) is
a g-invariant subspace, and M(λ)/W is isomorphic to the finite-dimensional representa-
tion of sl2(C) with highest weight λ.

Theorem 44.1 tells us that any representation of g with highest weight λ is isomorphic
to quotient M(λ)/W of the Verma module M(λ) by some invariant subspace W ⊂M(λ).
Invariant subspaces of M(λ)/W correspond to invariant subspaces of M(λ) containg W;
hence M(λ)/W is invariant if and only if W is a maximal proper invariant subspace of
M(λ).

Proposition 44.2. The Verma module Mλ has a unique maximal proper g invariant subspace
W ( M(λ), and the quotient Mλ/W is the unique irreducible highest weight representation of
weight λ.

Proof. The proof given in class was incomplete – corrected here.
Let v ∈M(λ) be a highest-weight vector (unique up to scaling).
We claim that the following are equivalent for a g- invariant subspace W of M(λ):

a) W 6=M(λ)

b) v /∈W

c) W ⊂ ⊕λ ′ 6=λM(λ)λ ′ .

(a) ⇔ (b) is just the statement that v generates M(λ), and (c) certainly implies both (a)
and (b).

We show that (b) =⇒ (c): suppose that w ∈ W; write w = ⊕λ ′wλ ′ where wλ ′ ∈
M(λ)λ ′ . Then (linear algebra exercise!) all wλ ′ must also be in W. (Note you can’t a priori
use weight space decomposition for W, since W need not be finite-dimensional.) By (a)
W ∩M(λ) =W ∩ span(v) = 0, so wλ = 0, showing (c).

It follows from the above that the collection {W ( M(λ)g-invariant} is closed under
direct sums.
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Now take
W =

⊕
W ′(M(λ)
g-invariant

W ′.

This is then a g-invariant proper subspace, and contains any other such W ′ by construc-
tion.

Hence there is a unique irreducible representation of highest weight λ, which we’ll
call L(λ) – but we don’t yet know for which λ this L(λ) is finite-dimensional.

However, we can give a necessary condition. Suppose that L(λ) is finite-dimensional.
Let vλ ∈ L(λ) be a highest weight vector. For each simple root αi, view L(λ) as a finite-
dimensional representation of sl2(C)αi = span(Ei, Fi,Hi). Since

µ(Hi)(vλ) =
2

〈α,α〉µ(tαi)(vλ) =
2〈α, λ〉
〈α,α〉 v

the vector v is also a weight vector in the sl2(C)α representation, and the weight 2〈α,λ〉
〈α,α〉

must be an integer. Additionally, since Eiv = 0, we must also have 2〈α,λ〉
〈α,α〉 ≥ 0.

This motivates the following definitions:

Definition. For λ ∈ h∗, we say that λ is integral if 〈λ,αi〉
〈αi,αi〉

∈ Z for all i = 1, . . . ,n.
We say that λ is dominant if 〈αi, λ〉 ≥ 0 for i = 1, . . . ,n.

(Equivalent definitions: λ is integral if and only if 〈,λ,β〉
〈β,β〉 ∈ Z for all β ∈ R, and λ is

integral if and only if 〈,β, λ〉 ≥ 0 for all β ∈ R+.)
By the above, λ must be dominant in order for L(λ) to be finite-dimensional. In fact,

this is an if and only if:

Theorem 44.3. For λ ∈ h∗, the unique irreducible representation L(λ) of g with highest weight
λ is finite-dimensional if and only if λ is dominant and integral.

Hence the finite-dimensional irreducible representations of g are parametrized by dominant
integral weights.

We’ll cover the proof next time.
As usual g is a Lie algebra, h is a finite-dimensional toral subalgebra, R = R+

∐
R− is

the set of roots, Π = {α1, . . . ,αn} is the set of simple roots.
Last time we showed that for any λ ∈ h∗ there is a unique irreducible representation

of g with highest weight λ – we’ll call this representation L(λ). The catch is that this
representation L(λ) may be infinite-dimensional.

In order to classify the finite-dimensional irreducible representations of g, we then
need to know for which λ the representation L(λ) is finite-dimensional. Last time, we
gave two necessary conditions:
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Definition. For λ ∈ h∗, we say that λ is integral if 〈λ,αi〉
〈αi,αi〉

∈ Z for all i = 1, . . . ,n.
We say that λ is dominant if 〈αi, λ〉 ≥ 0 for i = 1, . . . ,n.

(Here α1, . . . ,αn are the simple roots; there are equivalent definitions using the entire
set of roots.)

Example. If g = sl3(C), so R is the root system A2 = {±(ε1 − ε2),±(ε2 − ε3),±(ε1 − ε3)},
with positive roots taken to be ε1 − ε2, ε2 − ε3, ε1 − ε3, inside V = {c1ε1 + c2ε2 + c3ε3 |

c1, c2, c3 ∈ C, c1 + c2 + c3 = 0}.
Then one can compute that the integral weights are those of the form c1ε1 + c2ε2 +

c3ε3 for c1, c2, c3 ∈ Z (c1 + c2 + c3 = 0), and the dominant weights are those that lie in
the 60◦ sector bounded by the rays connecting the origin to ε1 and −ε3 respectively.

(I may add a picture if I have the time.)

Last time we stated

Theorem 44.4. For λ ∈ h∗, the unique irreducible representation L(λ) of g with highest weight
λ is finite-dimensional if and only if λ is dominant and integral.

and proved the “only if” direction. Today we’ll give a sketch of the “if’ direction (the
full proof is Theorem 5.16 in Knapp).

Our proof will depend on the following

Lemma 44.5 (Key Lemma). Let V be a (not necessarily finite-dimensional) representation of g
such that:

a) V ∼=
⊕
µ∈h∗ Vµ has a weight space decomposition (we’ve shown this to be the case when V is

finite-dimensional, but it’s not necessarily the case for infinite-dimensional V).

b) V , viewed as a representation of sl2(C)αi ⊂ g, breaks down as a direct sum of finite-
dimensional representations of sl2(C)αi (for each simple root αi).

Then if µ is a weight of V , so is the reflection sαi(µ) of µ through the hyperplane perpendicular
to any αi, and dimVµ = dimVsαi(µ)

.
More generally, if w ∈ W(R) is any element of the Weyl group, w(µ) is a weight of V , and

dimVw(µ) = dimVµ. (This follows from the previous statement and the fact that W is generated
by the sαi .)

Note that the conditions of the Key Lemma are certainly satisfied when V is finite-
dimensional. However, one can also check directly (though we won’t go into detail; see
Knapp) that they are satisfied for L(λ) whenever λ is a dominant integral weight, without
using finite-dimensionality of L(λ), so we’ll be able to use this as a lemma to show that
L(λ) is finite-dimensional.

We didn’t do the proof of the Key Lemma in class: it’s essentially the same argument
we used to show that sα permutes the roots R.

We will also need another, more geometric lemma, which is simple enough to prove.
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Lemma 44.6. For any µ ∈ h∗, there exists some element w of the Weyl group W(R) such that
w(µ) is dominant.

Proof. We will put a partial ordering on the finite set {w(µ) | w ∈ W(R)}; we will then
show that if we choose w ∈ W(R) such that w(µ) is maximal with respect to that order-
ing, then w(µ) is dominant.

We define a partial ordering ≺ on h∗ by µ ≺ µ ′ if µ− µ ′ =
∑
i ciαi with ci ≥ 0. Now

take w ∈ W(R) such that w(µ) is maximal with respect to ≺ (that is, there is no other
w ′ ∈ W(R) such that w ′(µ) � w(µ). . If there existed some i such that 〈αi,w(µ)〉 < 0,
we would have

sαi(w(µ)) = w(µ) +

(
−
αi,w(µ)
αi,αi

)
αi � w(µ)

contradiction.

Now we’ll sketch the proof of Theorem 44.4

Proof. Step 1: check that the conditions of the Key Lemma are satisfied. This step is
where we use irreducibility of L(λ) – one shows that the subspace of L(λ) spanned by
all finite-dimensional sl2(C)-invariant subspaces is a nonzero g-invariant subspace,s o
much be all of L(λ). See Knapp for details.

Step 2: Let µ be any weight of L(λ). By Lemma 44.6, there exists w ∈W(R) such that
w(µ) is dominant. By the Key Lemma, w(µ) is also a weight of L(λ).

Step 3: One can show that there are finitely many possibilities for w(µ) as follows.
By results stated last time, there exist positive integers c1, . . . , cn such that w(µ) = λ−

c1α1 − · · ·− cnαn. On the other hand, w(µ) is dominant. One can show that this forces
c1, · · · , cn to be bounded, and so there are only finitely many possibilites for w(µ).

Step 4: Since there are only finitely many possibilities for w(µ), and W is a finite
group, it follows that L(λ) contains only finitely many distinct weights.

Step 5: It remains to show that each weight space (L(λ))µ is finite-dimensional. For
this, we use the fact stated last time that L(λ) is spanned by the vectors

F
d1
β1
F
d2
β2
· · · Fdrβr ∈ (L(λ))λ−d1β1−···−dnβr .

(Here v is a highest weight vector of L(λ), and β1, . . . ,βr are the positive roots.)
Hence the weight space L(λ)µ is spanned by the vectors Fd1β1F

d2
β2
· · · Fdrβr such that

d1β1 + · · · + drβr = λ − µ. One can show that this has only finitely many solutions
(since the βi are all positive) and this completes the proof.

Facts about finite-dimensional representations:
They are all direct sums of irreducibles.
Weight space decomposition: V = ⊕λVλ.
If X ∈ gα and v ∈ Vλ,µ(X)v ∈ gα+λ,
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any irreducible has a highest weight λ, and irreducibles are parametrized by highest
weight.

if V has highest weight vector v, then the following sets span V
µ(Fi1)µ(Fi2) · · ·µ(Fik)v.
µ(X1)µ(X2) · · ·µ(Xk)v
µ(Fd1β1F

d2
β2
· · · Fdnβn).
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