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Abstract

Knot theory and arithmetic invariant theory are two fields of mathematics that

rely on algebraic invariants. We investigate the connections between the two, and

give a framework for addressing asymptotic counting questions relating to knots and

knot invariants.

We study invariants of simple (2q − 1)-knots when q is odd; these include the

Alexander module and Blanchfield pairing. In the case that q = 1, simple 1-knots are

exactly knots as classically defined. In the high-dimensional cases of q ≥ 3, the theory

is different, and simple knots are exactly classified by these algebraic invariants.

These invariants connect to arithmetic invariant theory by way of the theory

of Seifert matrices, which are related to the Z-orbits of the adjoint representation

Sym2(2g) of the algebraic group Sp2g. We classify the orbits of this representation

over general fields and over Z. These techniques are modeled after those of Bhargava,

Gross, and Wood in arithmetic invariant theory, but also have much in common with

methods used by Trotter and others in the topological context. We explain how our

results fit into this topological context of the Alexander module, Blanchfield pairing,

and related invariants.

In the final section, we look at how this connection can be used to asymptotically

count simple knots and Seifert hypersurfaces ordered by the size of their Alexander

polynomial. For knots of genus 1, the theory of binary quadratic forms yields an

explicit count for Seifert surfaces. We also conjecture heuristics for the asymptotic

number of genus 1 knots. These heuristics imply that most such knots have Alexander

polynomial of the form pt2 + (1− 2p)t+ p where p is a positive prime number. Using

sieve methods, we obtain an upper bound for the asymptotic count of such knots that

agrees with our heuristics.
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Chapter 1

Introduction

In this thesis, we will explore a connection between two separate branches of math-

ematics: arithmetic invariant theory and knot theory. This connection comes about

by way of knot invariants that have natural arithmetic structure. We will consider

the question of counting these arithmetic objects, and the consequences for counting

high-dimensional simple knots.

Arithmetic invariant theory, a term coined by Bhargava and Gross in [3], deals

with the questions of the following form. Suppose G is an algebraic matrix group

defined over a ring R, and V is a finite-dimensional representation of G. What are

the orbits of G(R) acting on V (R)? What sorts of invariants classify them? This

is a well-studied problem when R is an algebraically closed field, in which case the

invariants are always polynomial functions on V ; however, if R is non-algebraically

closed field, or a general ring, there is additional arithmetic complexity.

The goal of knot theory is different: to understand the topologically distinct ways

that one manifold can be embedded into another. Classical knots are embedded

circles in S3, but knots can also be defined in higher dimensions: an n-knot is an

embedding of Sn in Sn+2. Knot theory also concerns itself with invariants; there are
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many ways to construct invariants of knots. However, it is in general much harder to

completely classify knots by their invariants.

Some knot invariants, in particular those related to the Alexander module and

to the Seifert pairing, have natural arithmetic structure; they can be thought of as

ideal classes of rings, or as Z-orbits of a representation of Sp2g. These structures were

analyzed by a number of knot theorists, including Milnor [25] and Trotter[30]. The

arguments they made were of a similar nature to ones made in work by Bhargava and

Gross [3] and of Wood [32]. In Chapter 3, we will reinterpret their arguments in the

context of arithmetic invariant theory.

The bijections given by arithmetic invariant theory have made it possible to count

a wide range of objects, including points on elliptic curves, finite dimensional Z-

algebras, and ideal classes of orders in number fields. In this thesis, using the con-

nection between arithmetic invariant theory and algebraic knot invariants, we will

extend the range of these techniques to count high-dimensional knots as well.

1.1 Historical background

Historically, the first researchers to look at algebraic-number-theoretic invariants of

knots were Fox and Smythe [12], studying classical knots in S3. Their construction

implicitly used the Alexander module via a presentation matrix. Hillman [13] later

recast their work in terms of module theory and simultaneously generalized the results

to links in S3. Many of the results from that paper are recapitulated in [14]. The

generalization to links meant that Hillman worked with Laurent polynomial rings in

more variables, which we shall not be concerned with.

At the same time, Kearton, Levine, and others were developing the general higher-

dimensional theory of n-knots, that is, knotted copies of Sn in Sn+2.
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(Some parts of the theory of higher-dimensional knots also have similar algebraic

structures: see [21] and [14] for more details.)

Meanwhile, the Alexander module had been studied as an object in its own right.

One thing that was realized early on was that the Alexander module had additional

structure; in fact it was endowed with a canonical pairing, known as the Blanch-

field pairing (introduced by Blanchfield [7]). Knot theorists studied properties of the

Alexander module, and also worked on the question of classifying the possible mod-

ules that could be realized as Alexander modules of some knot. Most of the work

done involved higher-dimensional generalizations.

When n = 2q−1 is odd, one productive way to understand the Alexander module

of an n-knot K is to choose an embedded hypersurface V in Sn+2 with boundary

equal to K. The homology group Hq(V,Z) then carries a natural non-symmetric

Z-valued pairing, known as the “Seifert pairing” such that the skew-symmetric part

of the Seifert pairing is the intersection pairing on S. The Seifert pairing is not an

invariant of the knot K, but depends upon the hypersurface V . For one thing, the

rank of the homology group H1(V,Z) depends upon the choice of V , but even if one

fixes the rank the isomorphism class of Seifert pairing can still depend on the choice

of V . In order to construct a true invariant one must impose a weaker equivalence

relation called “S-equivalence” on matrices, which has the property that any two

Seifert matrices for the same knot are S-equivalent.

The relevance of Seifert pairings for us is that knowing a Seifert matrix for a knot

is sufficient information to compute the Alexander module along with its Blanchfield

pairing. In fact (as shown, e.g., by Trotter [29]), two knots have isomorphic Alexander

modules and Blanchfield pairings if and only if they have Seifert matrices that are

S-equivalent. Therefore, one approach to finding number-theoretic invariants of knots

is to look for invariants of the Seifert pairing (here considered as a pairing on a free Z-
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module, not as an S-equivalence class) and then to determine which of them become

knot invariants.

Another feature of the Seifert pairing is that it is easy to construct matrices with

desired Seifert pairing. For this reason, the Seifert matrix approach was used to study

the realization problem for Alexander modules. In particular, it was used by Trotter

[30] who built on previous work of Levine [20], to give an algebraic criterion for which

Z[t, t−1]-modules are middle-dimensional Alexander modules.

Although in general these invariants are not complete invariants, there is one

important class of knots for which they are. These are the simple n-knots, those

whose complement has the homotopy type of a circle up until the middle dimension.

Simple n-knots are fully classified by their Alexander module and Blanchfield pairing.

They were introduced by Levine [19], and classified in multiple equivalent ways by

Levine [19], Kearton [17], and Farber [10].

Using this classification, Bayer and Michel [1] proved that there are only finitely

many equivalence classes of simple knots with a fixed squarefree Alexander polyno-

mial. They also proved a similar theorem for simple Seifert hypersurfaces.

1.2 Outline

This thesis has two main goals. The first is to revisit the knot invariants described

above from the point of view of arithmetic invariant theory. The second is to explore

the new question of finding asymptotics for the number of simple (2q− 1)-knots with

Alexander polynomials of bounded height. By the result of Bayer and Michel [1],

we know this number is finite: an answer to this question thus gives an average-case

quantitative version of their results.

Chapter 2 covers background material from high-dimensional knot theory. In

Chapter 3 we consider the question of the Sp2g(R) orbits on 2g × 2g Seifert matrices
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in the cases where R is a field or R = Z. This is an arithmetic question that arises

naturally from the topological question of the classification of Seifert hypersurfaces,

and which has been studied extensively by topologists for that reason. We study it

from the point of view of arithmetic invariant theory, and explain the connection to

previous work done by topologists on the question.

Chapter 4 explains the connection between the arithmetic invariants from Chap-

ter 2 and knot invariants related to the Alexander polynomial.

Chapter 5 deals with the question of counting simple knots and simple Seifert

hypersurfaces. We prove asymptotics for counting simple Seifert hypersurfaces of

genus 1, and give heuristics, based on standard conjectures in number theory, for the

asymptotics of the number of simple knots of genus 1. In particular, we conjecture that

most simple knots of genus 1 have Alexander polynomials of the form pt2+(1−2p)t+p.

We use sieve theory to prove an upper bound for the number of knots with Alexander

polynomial of that form.
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Chapter 2

Background on n-knots

2.1 Basic concepts and definitions in the theory of

n-knots

We are interested in counting n-knots by way of invariants with interesting arithmetic

structure. Informally, an n-knot is a knotted copy of Sn in Sn+2. There are multiple

ways of making this rigorous; the following two definitions are both commonly used:

Definition.

(i) An n-knot K is a topologically embedded copy of Sn in Sn+2 that is locally flat

(locally homeomorphic to Rn ⊂ Rn+2). Equivalence is given by ambient isotopy.

(ii) An n-knot is a smoothly embedded submanifold K of Sn+2 which is homeomor-

phic to Sn (but not necessarily diffeomorphic; K might be an exotic sphere).

Equivalence is induced by orientation-preserving diffeomorphism of the Sn+2.

In both cases, we will consider both Sn and Sn+2 to be oriented, so that reversing

the orientation of either or both may give a different knot.

Although it is far from obvious, classification results we use will give the same

answer regardless of which of the two definitions above is used. I will talk about
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knots and equivalence with the understanding that all statements hold using either

formulation.

We will be interested in the following class of n-knots, which has a nice classifica-

tion.

Definition. The knot K is called simple if πi(S
n+2−K) = πi(S

1) for all i ≤ (n−1)/2.

Simple knots are interesting not only because of their classification, but also be-

cause they show up “in nature”: for instance, knots coming from singularities of

algebraic hypersurfaces are simple [24].

The following theorem yields an equivalent condition for being simple. First we

recall the definition of a Seifert hypersurface (also called a Seifert manifold), which

generalizes that of a Seifert surface from classical knot theory.1

Definition. A Seifert hypersurface for an n-knot K is a compact oriented (n + 1)-

manifold V with boundary, embedded in Sn+2 in such a way that ∂V = K.

(Again there is a choice of definitions, and again it ultimately doesn’t matter.)

One reason why Seifert hypersurfaces are a useful tool in knot theory is that they

are guaranteed to exist for any knot. We will reference Farber [10] for the statement of

the following general proposition about the existence of Seifert hypersurfaces, which

was proved by Levine [19] in the case of n ≥ 4 and by others in the low-dimensional

cases.

Theorem 2.1.1 (Farber [10], Theorem 0.5). For n 6= 2, an n-knot K bounds an

r-connected Seifert hypersurface if and only if πi(S
n+2 −K) = πi(S

1) for all i ≤ r.

Comparing this theorem with our definition of a simple knot motivates the fol-

lowing definition:

1Earlier drafts of this paper used the term “Seifert manifold”, but I have changed the terminology
because it is more precise and the term “Seifert manifold” is used for other things inside topology.
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Definition. A simple Seifert hypersurface in Sn+2 is an (n + 1)-manifold V with

boundary embedded in Sn+2 satisfying the following topological conditions (which

are intrinsic to V and do not depend on the embedding):

• V is n−1
2

-connected

• ∂V is homeomorphic to Sn.

The case r = (n− 1)/2 of Theorem 2.1.1 may now be restated as follows.

Corollary 2.1.2. If V is a simple Seifert hypersurface in Sn+2, ∂V is a simple

(n− 1)-knot, and V is a Seifert hypersurface for ∂V . Conversely, any simple n-knot

K has at least one simple Seifert hypersurface; in fact, infinitely many.

We can define equivalence of Seifert hypersurfaces analogously to equivalence of

knots.

Remark. The reason that our definitions put conditions on the homotopy groups up

to dimension (n− 1)/2 and no higher is because this is the strongest such condition

on the homotopy type that we may impose without forcing triviality of the knot. For

any larger value of r, calculations with the Hurewicz theorem and Poincare duality

show that any r-connected Seifert hypersurface V is contractible. For n ≥ 5, the h-

cobordism theorem then implies that V is diffeomorphic to a ball, and that K = ∂V

is the unknot. (In a bit more generality, this implication has also been shown to be

true for all n except possibly 2 and 4 [10]. In the case for n = 4, K is unknotted if

and only if K is diffeomorphic to S4. In the case n = 2 I believe this implication is

now known as a consquence of the 3-d Poincare conjecture.)

One may consider the homology of a simple Seifert hypersurface V . All homology

groups except Hq are forced to be trivial, but the rank of Hq gives us an important

numerical invariant.

Definition. If V is a simple Seifert hypersurface in S2q+1, the genus of V is defined

as 1
2

rkHq(V,Z) = 1
2

rkHq(V,Q).
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This definition always yields a whole number, because Hq(V,Z) has a nondegen-

erate skew-symmetric pairing (the intersection pairing).

We can also define the genus of a knot. This is more complicated, because the

homology of the knot complement does not give us any information. Indeed, the

complement S2q+1 −K of a simple knot always has the same homology as S1.

However, because H1(S2q+1 −K) ∼= Z, there is a unique covering space (S2q+1 −

K)cyc of S2q+1 −K with infinite cyclic covering group.

We can then define the genus of a knot intrinsically.

Definition. Let K be a simple knot in S2q+1 with q ≥ 3. We define the genus of K

as 1
2

rkHq((S
2q+1 −K)cyc,Q).

Theorem 2.1.3. Let K be a simple knot in S2q+1, with q ≥ 3. Then genus(K) is

always finite, an integer, and equal to min(genus(V )) where V ranges over all simple

Seifert hypersurfaces such that ∂V = K.

Proof. This follows from the existence of minimal Seifert hypersurfaces, as proved in

[11].

Remark. In the theory of classical knots in S3, the genus is typically defined as the

minimum genus of a Seifert surface. We choose the equivalent definition in terms of

the infinite cyclic cover here because it is simpler to state.

The homology group Hq((S
2q+1−K)cyc) will also be important to us as an object

in its own right, because it is an Alexander module for K. We will refer to it as

“the Alexander module of K”, because the Alexander modules coming from the ith

homology when i 6= q turn out to be all trivial.

We now go into detail regarding this definition.

Let t be a generator of the group of deck transformations of (S2q+1 − K)cyc:

using the orientations on K and on S2q+1, we can make a canonical choice of t.
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The group of deck transformations acts on Hq((S
2q+1 − K)cyc,Z), and thus makes

Hq((S
2q+1 −K)cyc,Z) into a module over the group ring Z[t, t−1].

Definition. The Alexander module AlexK of a knot K is the Z[t, t−1]-module

Hq((S
2q+1 −K)cyc,Z).

The Alexander module also possesses an important duality pairing, known as the

Blanchfield pairing. We will not get into the details of its construction here, but we

will state its existence.

Theorem 2.1.4 (Blanchfield, [7]). There is a canonical perfect pairing, the Blanch-

field pairing

Bl : AlexK × AlexK → Q(t)/(Z[t, t−1]),

which is Hermitian with respect to the involution of Z[t, t−1] interchanging t with t−1.

2.2 The classification of simple Seifert hypersur-

faces by Sp2g-orbits

The remainder of this chapter will be dedicated to the classifications of simple Seifert

hypersurfaces and of simple knots by algebraic data. We will follow the standard

expository path due to Kearton, Levine, Trotter, and Farber, which starts with the

classification of Seifert hypersurfaces and then passes to knots.

As before, we will study simple knots of genus g inside S2q+1, where g and q are

fixed, and q is at least 3. The results below will depend on the choice of g, but will

be independent of q.

We first consider simple Seifert hypersurfaces inside S2q+1. If V is a simple

Seifert hypersurface, the homology group Hq(V,Z) posseses a natural Z-valued skew-
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symmetric perfect pairing, namely the intersection pairing. We denote it by

α, β 7→ α ∩ β ∈ Z.

Additionally, Hq(V,Z) posseses a pairing which depends on the embedding of V

inside S2q+1. For γ and γ′ in Hq(V,Z), we define the Seifert pairing p(γ, γ′) of γ with

γ′ as

p(γ, γ′) = lk(γ, (γ′)+),

where (γ′)+ is the cycle inHq(S
2q+1−V,Z) produced by pushing γ′ off the hypersurface

V in the positive normal direction (defined in terms of the orientation on V and S2q+1)

and lk : Hq(V,Z) ×Hq(S
2q+1 − V,Z) → Z is the linking pairing given by Alexander

duality.

We can recover the intersection pairing from the Seifert pairing p by the formula

γ ∩ γ′ = p(γ, γ′)− p(γ′, γ).

In some situations, instead of using p, it will be more useful for us to use the

symmetrized pairing

q(γ, γ′) = p(γ, γ′) + p(γ′, γ).

If we know the intersection pairing on Hq(V,Z), we can recover either pairing p or q

for the other.

Note that q is constrained to be congruent to the intersection pairing mod 2.

It will sometimes be useful to us to pick a basis for Hq(V,Z), thereby identifying

Hq(V,Z) with Z2g.

Definition. The Seifert matrix P for V with respect to a Z-basis B of Hq(V,Z) is

the matrix of the asymmetric pairing p on Hq(V,Z) with respect to the basis B.
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Because the intersection pairing is a perfect pairing, any Seifert matrix P must

satisfy det(P −P T ) = 1. We will see later that this condition is sufficient for a matrix

P to be a Seifert matrix of some Seifert hypersurface.

Another consequence of the intersection pairing being a perfect pairing is that we

can, if we wish, choose a basis of Hq(V,Z) in which the intersection pairing is identified

with the standard symplectic pairing 〈v, w〉 = vTJw on Z2g, where J = Jg =
(

0 Ig
−Ig 0

)
.

In this setting, the parity condition on the quadratic form q and on its associated

matrix Q motivates the following definition:

Definition. We say that a symmetric bilinear form m on Z2g is Seifert-parity if

m(x, y) ≡ 〈x, y〉 (mod 2) for all x, y ∈ Z2g.

We say that a symmetric 2g × 2g matrix Q is Seifert-parity if Q is the matrix of a

Seifert-parity symmetric bilinear form, or equivalently,

Q ≡ J (mod 2).

(Note that the Seifert-parity condition is a condition on the parity on the sym-

metric matrix Q, not on the Seifert matrix itself!)

First we introduce some algebraic preliminaries. Let Sp2g(Z) be the group of

integer matrices preserving the standard symplectic form 〈v, w〉 = vTJw on Z2g,

where J = Jg =
(

0 Ig
−Ig 0

)
.

In this way we can go from a simple Seifert hypersurface V to a 2g × 2g Seifert-

parity symmetric matrix Q.

The crucial topological fact is that one can also go in the other direction. The

following correspondence is due to Levine[19].
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Theorem 2.2.1. If Q is a Seifert-parity symmetric 2g× 2g matrix, there is a unique

pair V, (α1, . . . , αg, β1, . . . , βg) with the properties that

(a) V is a simple Seifert hypersurface in S2q+1

(b) α1, . . . , αg, β1, . . . , βg constitute a basis for Hq(V,Z)

(c) αi ∩ αj = βi ∩ βj = 0, and αi ∩ βj = −βi ∩ αj = δij.

(d) the symmetrized pairing q(α, β) = p(α, β) + p(β, α) has matrix Q with respect

to the basis (α1, . . . , αg, β1, . . . , βg).

Very crude sketch. This fact is proved as part of the proof of Lemma 3 in [19]. We

provide a sketch of that proof here to show the basic details. We note that the last two

conditions listed may equivalently be stated as: the Seifert pairing p on Hq(V ) has

pairing matrix J+Q
2

with respect to the basis (α1, . . . , αg, β1, . . . , βg). Define P = J+Q
2

.

Start with a copy V0 of D2q inside S2q+1. We create V by attaching 2g different

handles to V0 along its boundary. Each handle is homeomorphic to Dq × Dq, and

is glued to V0 at the boundary by an attaching map Sq ×Dq → ∂V0. The resulting

manifold is (q − 1)-connected, and the handle decomposition yields an explicit basis

for Hq(V ;Z); each handle contributes one generator. By appropriately embedding

the handles in S2q+1, we can ensure that the Seifert pairing on Hq(V ;Z) has matrix

P . This gives us items (2) and (3); the one thing left to check is that ∂V is in

fact homeomorphic to S2q−1. It is a straightforward calculation (using the fact that

det J = 1) to check that the boundary ∂V has the same homology as S2q−1. As well,

∂V is simply-connected by construction (it has a cell decomposition using no 1-cells),

so ∂V is homeomorphic to S2q−1 by the (high-dimensional) Poincare conjecture.

To show uniqueness, one uses the fact from handlebody theory that any simple

Seifert hypersurface V has a handle decomposition of the type described above. The

only obstructions to deforming one such handle decomposition into another come

from the linking numbers of the handles, so V is unique up to isotopy.
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Remark. In the classical theory of Seifert surfaces in S3, the construction above will

still produce Seifert manifolds with desired pairing. However, this construction is

very far from unique.

Theorem 2.2.1 can be restated as saying that there is a bijection between the set of

simple Seifert hypersurfaces with homology basis and the set of Seifert-parity 2g×2g

symmetric matrices. This can be stated more concisely using the following definition.

Definition. A symplectic basis for Hq(V,Z) is a basis B = (α1, . . . , αg, β1, . . . , βg) for

Hq(V,Z) such that αi ∩ αj = βi ∩ βj = 0 and αi ∩ βj = −βi ∩ αj = δij.

Corollary 2.2.2. There is a bijection

{
simple Seifert hypersurfaces
V of genus 2g equipped with
a symplectic basis B for
Hq(V,Z)

} ⇔ { Seifert-parity 2g × 2g sym-
metric matrices

}

given by sending the pair (V,B) to the matrix of the symmetric pairing q(γ, γ′)

with respect to the basis B.

Furthermore, this induces a bijection

{ simple Seifert hypersurfaces
V of genus 2g

} ⇔ { Sp2g(Z)-equivalence classes
of Seifert-parity 2g × 2g
symmetric matrices

}
where the Sp2g action is given by (A,Q) 7→ ATQA.

We can also state a version of this corollary using the Seifert matrix P of the

asymmetric pairing instead of Q.

Corollary 2.2.3. There is a bijection

{
simple Seifert hypersurfaces
V of genus 2g equipped with
a symplectic basis B for
Hq(V,Z)

} ⇔ { 2g × 2g matrices P with
P − P T = J

}
14



given by sending the pair (V,B) to the matrix of the Seifert pairing p(γ, γ′) with

respect to the basis B.

Furthermore, this induces a bijection

{ simple Seifert hypersurfaces
V of genus 2g

} ⇔ { Sp2g-orbits on 2g × 2g ma-
trices P with P − P T = J

}
where the Sp2g action is given by (A, J) 7→ ATJA.

Also, if we drop the requirement that the basis be symplectic, we obtain a bijection

{
simple Seifert hypersurfaces
V of genus 2g equipped with
a (not necessarily symplec-
tic) basis for Hq(V,Z)

} ⇔ { 2g×2g matrices P such that
det(P − P T ) = 1

}

given by sending a Seifert hypersurface V with basis (γi) to the matrix P of the

Seifert pairing p(γ, γ′) with respect to the basis (γi).

2.3 The classification of simple knots

We will now summarize the classification theorems for simple knots given by Levine,

Trotter, Kearton, and Farber, without going into much detail. As before, let q ≥ 3

be a fixed odd integer, and g be a fixed positive integer.

Theorem 2.3.1 (Classification of simple knots). [19, 20, 30, 17, 10] The following

are in bijection with each other:

(i) simple 2q − 1 knots of genus ≤ g

(ii) S-equivalence classes of 2g × 2g Seifert matrices P [19]

(iii) Alexander modules of genus ≤ g equipped with Blanchfield pairing. [20, 30]

(iv) R-equivalence classes of Z[z]-modules with isometric structures [10]
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Remark. In (ii), S-equivalence is an equivalence relation strictly weaker than Sp2g-

equivalence, in that it allows operations that alter the size of the matrix as well as

changes of basis.

Regarding (iii), Levine [20] gave explicit conditions for when a Z[t, t−1]-module is

the Alexander module of a simple knot. We will give equivalent conditions when we

discuss conjugate-self-balanced O∆-modules in the next chapter.

We mention (iv) for the sake of completeness, but will not go into any detail,

except to mention it is related to the conjugate-self-balanced Rf -modules discussed

in the next chapter.
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Chapter 3

The arithmetic of Sp2g-orbits on

2g × 2g symmetric matrices

Motivated by the classification of simple Seifert hypersurfaces in terms of Sp2g-orbits,

we now study Sp2g-orbits on 2g × 2g-symmetric matrices from the point of view of

arithmetic invariant theory. We will use general methods from arithmetic invariant

theory to put these orbits in correspondence with natural arithmetic objects. We will

start by analyzing this in the simplest case, of algebraically closed fields, and then

moving on to general fields.

This classification was already understood by topologists. We will however present

here a proof modeled on that given in [3], using Galois cohomology.

3.1 The orbits over an algebraically closed field

and algebraic invariants

Let k be a field of characteristic different from 2. Since 2 is a unit in K, the Seifert-

parity condition for 2g × 2g-symmetric matrices is vacuous over k. We wish to un-

derstand all Sp2g orbits on 2g × 2g symmetric matrices over k.

17



We will rewrite our representation Sym2(k2g) in a manner that is more convenient

for us. Note that the standard representation k2g of Sp2g is self-dual (via the the

symplectic pairing), so we also have Sym2(k2g) ∼= Sym2((k2g)∗) ∼= (Sym2(k2g))∗ (since

we are in characteristic not 2.) Write V = Sym2(k2g)∗

Now V = (Sym2(k2g))∗ is the space of symmetric bilinear forms on the standard

representation of Sp2g. We will show that V is isomorphic to the adjoint representation

of Sp2g, that is, the representation of Sp2g acting by conjugation on its Lie algebra.

Let W be a 2g-dimensional vector space with a unimodular skew-symmetric pair-

ing 〈, 〉. By definition, the automorphism group of W is equal to Sp2g(k). Its Lie

algebra sp2g(k) consists of the skew-self-adjoint endomorphisms T of W ; that is,

those endomorphisms T satisfying 〈Tw1, w2〉+ 〈w1, Tw2〉 = 0 for all w1, w2 ∈ W .

We now proceed to identify V as well with the representation of skew-self-adjoint

endomorphisms of T of W .

By definition, the space of symmetric bilinear forms on W is isomorphic to V .

An element q ∈ V correspends to a symmetric bilinear form q(x, y) on W , which

in turn gives rise to an endomorphism Tq of W determined by the property that

〈x, Tq(y)〉 = q(x, y). The fact that q is symmetric means that

〈x, Tq(y)〉 = q(x, y) = q(y, x) = 〈Tq(y), x〉 = −〈Tq(x), y〉.

Therefore Tq is skew-self-adjoint with respect to the form 〈, 〉, hence lies in the Lie al-

gebra SpW,〈,〉 = Sp2g. By the same reasoning in reverse, any skew-self-adjoint operator

T on V is equal to of Tq for some quadratic form q(x, y) (because 〈, 〉 is unimodular).

It is easily checked that this correspondence is Sp2g-equivariant, and hence that

V is isomorphic to the adjoint representation sp2g as a representation of Sp2g.

It is a fact of Lie theory [8][Ch. 8, §8.3, §13.3 (V)] that the invariant ring of the

adjoint representation is generated by the coefficients of the characteristic polynomial
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of Tq. If J and Q are explicit matrices for the bilinear forms 〈x, y〉 and q(x, y),

respectively, then the operator Tq has matrix J−1Q. Explicitly, the characteristic

polynomial of Tq equals

eq(x) = char(Tq) = det(xI−(J−1Q)) = det(xJ−Q) = x2g+c2x
2g−2+c4x

2g−4+· · ·+c2g.

where the coefficients c2, c4 . . . , c2g of the polynomial eq(x) are all polynomial functions

in the entries of Q. Note that eq(x) has only even degree coefficients of x, that is

to say, it is an even polynomial in x (or equivalently, a polynomial in x2). Define

eq(x) := char(Tq), so that the ring of algebraic invariants of V is generated by the

coefficients c2, c4, . . . , c2n of e(x).

These algebraic invariants allow us to classify the Sp2g-orbits over an algebraically

closed field.

Theorem 3.1.1. Let k be an algebraically closed field. For any monic squarefree even

polynomial e(x) of degree 2g over k, there is a unique Sp2g-orbit [q] with characteristic

polynomial equal to e(x).

Theorem 3.1.2. The map [q] 7→ eq gives a bijection between the Sp2g-orbits on W

with squarefree characteristic polynomial and the space of all monic squarefree even

polynomials e(x) ∈ k[x].

Remark. If e(x) is not squarefree, there will be multiple distinct Sp2g-orbits on W

with characteristic polynomial e(x). We will not go into the details of how to classify

those, because we will not need them in this paper.

3.2 The orbits over a general field

Even when k is not algebraically closed, we may still define the invariant characteristic

polynomial eq(x).
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The proof that the map [q] 7→ eq is a bijection (for squarefree characteistic poly-

nomials) no longer holds, but we can still prove that it is a surjection in general.

Proposition 3.2.1. Let k be an algebraically closed field. Then there is a way of as-

sociating to any squarefree even polynomial e(x) of degree 2g over k a “distinguished”

Sp2g-orbit [q] with characteristic polynomial equal to e(x).

Proof. We will construct a “distinguished orbit” by mimicking the construction of [3]

for the case of odd special orthogonal groups.

Let e(x) be an arbitirary monic even polynomial of degree 2g, and let E =

k[x]/e(x). Then E is a 2g-dimensional k-algebra. It has basis 1, β, β2, . . . , β2n−1,

where β is the image of x in E. Because e(x) is an even polynomial in x, E has an

involution that switches β and −β; call that involution α 7→ α. Let E1 be the fixed

subalgebra of that involution.

Let W = E, and let T : W → W be the map given by multiplication by β. The

map T has our desired characteristic polynomial e(x). We wish to make T = Tq,

but first we need to pick a skew-symmetric pairing 〈, 〉. We define such a pairing

by letting 〈λ, µ〉 be the coefficient of β2g−1 in λµ. This is clearly skew-symmetric,

and its determinant can be computed to be 1, so it is nondegenerate. We now let

q be the symmetric bilinear form corresponding to T (with respect to 〈, 〉), that is,

q(λ, µ) = 〈λ, Tµ〉, so Tq = T . Then π maps q to char(Tq) = char(T ) = e. Since f was

arbitrary, this means that the map π is surjective, that is, any monic even polynomial

can be attained as char(Tq) for some q ∈ (Sym2(k2g))∗.

Remark. We call this k-orbit “distinguished” because it mimics the construction of

the distinguished k-orbit of Bhargava and Gross. However, we do not currently have

a criterion for “distinguishing the distinguished orbit,” that is telling if a specific orbit

is equal to the distingished orbit. It would be nice to have such a criterion, and to

compare it with the distinguished orbit given by the Kostant section [28].
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Fix an even polynomial e(x). We now know that there is at least one k-orbit on

V with characteristic polynomial equal to e(x). We will now use methods of Galois

cohomology to analyze the set of all such k-orbits.

In this context, it will be convenient for us to think of V as being the adjoint

representation of Sp2g.

Because there is only one orbit over the separable closure k, we may use princi-

ples of Galois cohomology (see [27]) to conclude that the orbits with characteristic

polynomial e(x) are in one to one correspondence with elements of the kernel of the

map of (nonabelian) Galois cohomology sets

H1(k,GT )→ H1(k, Sp2g),

where GT is the stabilizer of T in SpW , that is, GT is the algebraic group given by

{g ∈ End(W ) : gTg−1 = T}. However, H1(k, Sp2g) is trivial, so we can in fact say

that the orbits are in one-to-one correspondence with elements of H1(k,GT ).

We now compute GT . As in [3][Section 5], any element that commutes with T

must lie in the subalgebra generated by T , hence takes the form of multiplication by

some element α ∈ E. On the other hand, multiplication by α preserves 〈, 〉 if and

only if αα = 1.

It then follows from principles of Galois cohomology that these orbits are in one-

to-one correspondence with elements of the group H1(k,ResE1/k U1(E/E1)) (where

U1(E/E1) is the 1-dimensional unitary group of the quadratic extension E/E1). Using

the short exact sequence

1→ ResE1/k U1(E/E1)→ ResE/kGm → ResE1/kGm → 1,

we conclude that H1(k,GT ) ∼= E∗1/N(E)∗.

We can summarize our results in the following proposition:
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Proposition 3.2.2. The set of orbits V/ Sp2g of Sp2g(k) acting on V = Sym2(k2g) ∼=

Sym2(k2g)∗ has the following properties:

There is a surjective map π from V/ Sp2g to the space of monic even polynomials

e(x) of degree 2g in x (that is, ones that can be expressed as a polynomial of degree g

in x2).

For a fixed squarefree polynomial e(x), the set π−1(e) of orbits that map to the

polynomial e is in one-to-one correspondence with the group E∗1/NE
∗.

(Here, as above, E = k[x]/e(x), E1 is the subalgebra of E fixed under the involution

sending x to −x, and N is the norm map of algebras.)

This gives us a classification of the Sp2g(k)-orbits on Sym2(k2g) with separable

characteristic polynomial, or equivalently of the orbits of Sp2g(k) acting on 2g × 2g

symmetric matrices Q.

In future sections it will often be more convenient to work with the asymmetric

matrix P = Q+J
2

instead. We now restate the results above in terms of this matrix

P .

Let A be the space of all matrices P ∈ M2g(k) such that P − P T = J . Then A

is an affine space over V = Sym2(k2g), and it has an Sp2g action compatible with its

affine space structure. The map Q 7→ Q+J
2

is a bijection between V and A.

We can define an Sp2g-invariant polynomial of an element P ∈ A by

fP (y) = char(J−1P ) = y2g + d1y
2g−1 + d2y

2g−2 + · · ·+ d2gy
0.

This polynomial fP (y) has the symmetry property that fP (y) = fP (1−y). The space

of such polynomials fP is a g-dimensional affine subspace of the space of polynomials

of degree g. (Note that the coefficients of fP are not algebraically independent,

because they are linearly dependent.)
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If P = Q+J
2

, the polynomials eQ(x) and fP (y) are related by

eQ(x) = 22gfP

(
x− 1

2

)
and (3.1)

fP (y) = 2−2geQ(2y − 1). (3.2)

We now state, as a corollary of Proposition 3.2.2, a classification result for Sp2g-

orbits on A.

Corollary 3.2.3. The set of orbits A/ Sp2g of Sp2g(k) acting on the affine space

A = {P ∈M2g(k) | P − P t = J}

has the following properties:

Thre is a surjective map π from A/ Sp2g to the space of monic polynomials f(y)

of degree 2g in y satisfying f(y) = f(1− y) .

For a fixed squarefree polynomial f(y), the set π−1(y) of orbits that map to the

polynomial f is in one-to-one correspondence with the group

F ∗1 /NF
∗,

where F = k[y]/f(y), F1 is the subalgebra of F fixed under the involution sending

y 7→ 1− y, and N is the norm map of algebras.

Proof. Change variables to Q = 2P − J , and apply Proposition 3.2.2.

Remark. Another way of thinking of the proof above is the following. We are inter-

ested in classifying orbits of GLW acting on the set of triples (a, q, T ) such that a(x, y)

(= 〈x, y〉) is a skew-symmetric bilinear pairing on W , q(x, y) is a symmetric bilinear
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pairing, and T satisfies

q(x, y) = a(x, Ty) = −a(Tx, y) = −q(Tx, T−1y).

Given any two among (a, q, T ), the third is uniquely determined.

Hence to study the orbits, one can fix any one of (a, q, T ) and look at the orbit of

the stabilizer of that one on either of the other two.

If we fix a (which has the advantage that there is only a single GL(W )-orbit of

a’s with nonzero determinant), we get the action of the symplectic group Sp(a) on

either Sym2 of the standard representation, or on the Lie algebra sp(a), depending

upon whether we choose q or T . This is the question we have studied above.

If we fix q (in which case classifying the GL(W )-orbits on the space of quadratic

forms is a non-trivial problem; see Milnor and Husemoller [26]), we get the action of

the orthogonal group O(q) on either
∧2 of the standard representation, or on the Lie

algebra o(q), depending upon whether we choose q or T . This was studied in [3].

However, if, as above, we first fix T , things look more different. First, the possible

orbits of T over ksep are given by the characteristic polynomials of T , along with extra

data if T is not semisimple. Once this is fixed, the stabilizer of any given such T is

Cent(T ) ⊂ GL(W ), which equals k[T ]∗ if T is semisimple.

At this point, it does not make much difference whether we study q-orbits or

a-orbits. In the above we have focused on the a-orbits. We are now looking at skew-

symmetric pairings 〈, 〉 on W with the additional condition that 〈Tx, y〉 = −〈x, Ty〉.

This is a fairly restrictive condition that is conducive to further analysis.

Remark. One might ask what happens in characteristic 2. In this case, looking at

orbits of symmetric matrices Q with Q = J (mod 2) is the wrong question; in char-

acteristic 2, a matrix which is congruent mod 2 to J is just equal to J , so the orbit

question on matrices Q becomes trivial. Rather, we should go back to our Seifert
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matrix P with P − P t ≡ J (mod 2), and so P − P t = J . This matrix P is no longer

uniquely determined by Q. We will study this question in the next section in the full

generality of Dedekind domains, and the results we get will specialize to characteristic

2.

3.3 The orbits over Z

We now move to the case of most interest in knot theory, namely the Z-orbits. In

this case the classification of orbits is less simple, but the orbits can still be put into

correspondence with arithmetic objects, namely “conjugate-self-balanced” modules

or ideal classes over certain Z-algebras.

We will define these objects before establishing the correspondence. We first

define a Z-algebra Rf that will serve an analogous function to the k-algebra F of the

previous section. Let f ∈ Z[y] be a polynomial such that f(y) = f(1 − y). Define

Rf = Z[γ] ∼= Z[y]/f(y). The monogenic Z-algebra Rf possesses an involution a 7→ a

such that γ = 1− γ.

We now define a conjugate self-balanced Rf -module.

Definition. A conjugate-self-balanced Rf -module is an Rf -module M equipped with

a bilinear pairing φ : M ⊗M → Rf such that

(a) M is a free Z-module of rank equal to the degree of f

(b) the characteristic polynomial of γ acting on M is exactly f

(c) for m ∈M and n ∈M , φ(m,n) = φ(n,m)

(d) φ induces an isomorphism M ∼= HomRf (M,Rf ).

Remark. This definition is consistent with the definition of a balanced pair of modules

defined by Wood[32] in the following sense. We homogenize f to make a binary 2g-ic
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form F . Then the ring RF defined by Wood associated to the binary 2g-ic form F

is identical to our ring Rf , and the ideal IF is principal: IF = (if ) for if = f ′(γ).

If M is a conjugate-self-balanced Rf -module with pairing φ, then the pair (M,M)

equipped with the map if · φ : M ⊗M → IF is a balanced pair in the sense of Wood.

(Note that the identification of these two defintions is not quite canonical, in the

sense that we had to choose a generator if for IF ; the choice if = −f ′(γ) would have

been equally good.)

Remark. Note the similarities of this definition to the “Levine conditons” introduced

in [20] to classify Alexander modules of knots, and later used by Trotter in [30] to

give another proof of the classificaton via Seifert matrices.

A large family of conjugate-self-balanced Rf modules are isomorphic as Rf mod-

ules to ideals of Rf . This will lead us to define a notion of “conjugate-self-balanced

ideal class”.

We will first need to define the absolute norm of a fractional ideal of Rf .

Definition. For a fractional ideal I of Rf , let |I| denote the absolute ideal norm of

I. This is a function from the set of ideals of I to Rf uniquely determined by the

following two properties.

• |I| is equal to the index [Rf : I] when I is an ideal of R

• |κI| = |(κ)|I for any κ ∈ Rf and any fractional ideal I of Rf .

Definition. A conjugate-self-balanced ideal class of Rf is an equivalence class of

pairs (I, α) where I is a fractional ideal of Rf and α ∈ Rf ⊗ Q, such that II ⊂ α

and |I|2 = |(α)|, modulo the equivalence (I, α) ∼ (κI, κκα) where κ is any invertible

element of Rf ⊗Q.

If [I, α] is a conjugate-self-balanced ideal class of Rf , then I is also a conjugate-

self-balanced Rf module with self-balancing map given by a⊗ b 7→ ab/α. The proof
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that this is in fact a self-balancing map is the same as the proof of Theorem 5.5 in

[32].

If f is squarefree the converse holds; every conjugate-self-balanced Rf -modules

comes from a unique conjugate-self-balanced ideal class of Rf . Again, this follows

from the proof of Theorem 5.5 in [32].

We now show that Sp2g-orbits exactly parametrize conjugate-self-balanced mod-

ules. The ideas behind this proof are similar to those found in Trotter [30].

In this case, we will use the bijection we already saw in knot theory, which puts

Seifert-parity 2g×2g-symmetric matrices Q in one-to-one correspondence with 2g×2g

matrices P such that P − P t = J .

Theorem 3.3.1. Let f ∈ Z[y] be a monic polynomial of degree 2g with f(y) =

f(1− y).

The set of Sp2g-equivalence classes of matrices P with P − P t = J and given

characteristic polynomial f(y) = det(yJ − P ) is in one-to-one correspondence with

the set of classes of conjugate-self-balanced Rf -modules.

Before proving this, we define a Z-linear map c2g−1 : Rf → Z motivated by

definitions of Wood [32] and of Trotter [30, 29] that will be useful here.

Definition. We define c2g−1 : R→ Z to be the linear functional that maps an element∑2g−1
i=0 ciγ

i ∈ R to the coefficent c2g−1 of γ2g−1.

Note that for any x ∈ Rf , c2g−1(x) = −c2g−1(x).

We now establish some useful properties of c2g−1. The lemma below is a special

case of Proposition 2.5 in [32].

Lemma 3.3.2. (a) The Z-bilinear pairing r1, r2 7→ c2g−1(r1r2) on Rf is a perfect

pairing.
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(b) If N is any Rf -module, then the map c2g−1 : Rf → Z induces an isomorphism

(c2g−1)∗ : HomRf (N,Rf ) ∼= HomZ(N,Z).

given by ψ 7→ c2g−1 ◦ ψ.

Proof. For (i), we observe that the pairing matrix with respect to the basis given by

powers of y has 0s above the antidiagonal and 1s on the antidiagonal.

For (ii), we apply (i) to get an isomorphism

Rf
∼= HomZ(Rf ,Z).

Applying the functor Hom(N, ·) gives an isomorphism

HomRf (N,Rf ) ∼= HomRf (N,HomZ(Rf ,Z)) ∼= HomZ(N,Z),

which is exactly (c2g−1)∗.

Proof. We will construct explicit maps going in both directions. The ideas here are

the same as those used in [32].

We first construct a map M 7→ PM from conjugate-self-balanced Rf -modules to

Sp2g-orbits.

Given a conjugate-self-balanced module M , equipped with an isomorphism

φ : M ⊗M → Rf , define a Z-valued pairing on M by

〈m1,m2〉M = c2g−1(φ(m1 ⊗m2)).

This pairing is easily checked to be skew-symmetric. The fact that it is a perfect

pairing over Z follows by composing the given isomorphism M ∼= HomRf (M,Rf )
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induced by φ with the isomorphism (c2g−1)∗ : HomRf (M,Rf ) ∼= HomZ(M,Z) from

Lemma 3.3.2.

Choose a basis B of M with respect to which 〈, 〉M has matrix equal to J . Then

let PM be the matrix of the asymmetric Z-valued pairing

m1,m2 7→ φ(γm1 ⊗m2)

on M with respect to B. It is then easily checked that P − P T = J and that J−1P

has the desired characteristic polynomial.

Now we construct a map P 7→ MP going in the other direction, from Sp2g-orbits

to conjugate-self-balanced Rf -modules.

To define MP as an Rf = Z[γ] module, it suffices to specify the structure of MP

as a Z-module and the action of γ on MP . Let MP equal the Z-module Z2g where γ

acts as multiplication by TP := J−1P . By the Cayley-Hamilton theorem, f(TP ) = 0,

so MP is a well-defined Z[γ]-module.

We now run our previous construction in reverse. Let 〈, 〉 be the standard (with

matrix J) symplectic Z-valued pairing on Z2g ∼= MP . Applying Lemma 3.3.2 again,

in the reverse direction, we conclude that there is a unique Rf -linear map φP : MP ⊗

MP → Rf such that

〈m1,m2〉 = c2g−1(φ(m1 ⊗m2))

for all m1,m2 ∈ MP , and that φP makes MP into a conjugate-self-balanced Rf -

module.

The following proposition summarizes all of our results:

Proposition 3.3.3. Let f be a squarefree monic polynomial of degree 2g satisfying

f(y) = f(1− y). Then the following objects are in bijection with each other:
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• Conjugate-self-balanced ideal classes of the ring Rf = Z[y]/f(y)

• Conjugate-self-balanced modules over Rf = Z[y]/f(y)

• Sp2g-equivalence classes of Seifert-parity 2g × 2g symmetric matrices Q such

that the characteristic polynomial of J−1Q is equal to 22gf((x− 1)/2)

• Sp2g-equivalence classes of asymmetric pairing matrices P with P − P T = J

and such that the characteristic polynomial of J−1P is equal to f(y)

• Simple Seifert hypersurfaces V such that, for one or any symplectic basis B of

Hq(V ), the matrix P of the asymmetric Seifert pairing p(γ, γ′) = lk(γ, (γ′)+)

with respect to B satisfies the property that the characteristic polynomial of

(J−1P ) is equal to f(y)

• Simple Seifert hypersurfaces V such that the Alexander polynomial ∆(t) of the

knot ∂V is equal to (1− t)2gf(1/(1− t)).

30



Chapter 4

Connections to the Alexander

module and related knot invariants

So far, we have only discussed invariants of Seifert hypersurfaces. In this section we

will discuss how they relate to known invariants of knots.

Let V be a Seifert hypersurface in S2q+1, and let P be a Seifert matrix for V with

respect to a symplectic basis of Hq(V ).

The matrix P is unique up to Sp2g-equivalence. Hence we can apply the invariants

constructed in the previous section. We define an invariant polynomial

fV (y) = det(yI − J−1P ). (4.1)

We also define an invariant conjugate-self-balanced module [MV , φV ] over the ring

RfV = Z[y]/fV (y). When the polynomial fV (y) is squarefree, we can also define the

corresponding conjugate-self-balanced ideal class [IV , αV ].

In this chapter, we will show:

• after change of variables, fV becomes an Alexander polynomial for the boundary

knot K = ∂V .
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• after localization, the conjugate-self-balanced module MV becomes identified

with the Alexander module of K.

4.1 The Alexander polynomial

We now describe the relationship between the polynomial fV and the Alexander

polynomial of K coming from q-dimensional homology. As a result, we will see that

fV depends only on the boundary knot K = ∂V and on the genus g of V .

We first review the standard definition of the Alexander polynomial in terms of

the Alexander module.

Recall that we have defined (S2q+1 −K)cyc to be the unique infinite cyclic cover

of S2q+1 − K. Let t be the “positively oriented” generator of the group of deck

transformations of (S2q+1 − K)cyc (where this orientation is defined in terms of the

orientations on S2q+1 and on K). Then t has an induced action on all homology groups

of (S2q+1 −K)cyc. We can extend this action to give a Z[t, t−1]-module structure on

those homology groups. These modules are referred to as the Alexander modules of

K. In the setting of simple knots, the only nontrivial Alexander module is the one

coming from qth homology, which we will refer to as the Alexander module.

Definition. We define the Alexander module AlexK of K as the Z[t, t−1]-module

Hq((S
2q+1 −K)cyc,Z).

We may define the Alexander polynomial for this Alexander module.

Definition. The Alexander polynomial ∆K is the generator of the first Fitting ideal

of the Z[t, t−1]-module AlexK , which is well-defined up to multiplication by units in

Z[t, t−1].

We have a choice about how to normalize it. The standard choice is the unique

normalization which makes ∆K(t) is a polynomial in t with nonzero constant term

satisfying ∆K(1) = 1, which is always possible.
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We note the following facts from high-dimensional knot theory that are true about

the Alexander polynomial using the standard normalization.

• The Alexander polynomial ∆K(t) has degree equal to 2 genus(K).

• The Alexander polynomial satisfies the identity ∆K(t) = t2 genus(K)∆K(t−1).

• ∆K(1) = 1.

• The Alexander polynomial annihilates the Alexander module.

Remark. The last two facts are still true for classical knots. The first becomes false

(using the standard definition of knot genus as the minimal genus of a Seifert surface).

The second fact is false as stated but becomes true after replacing 2 genus(K) with

the degree of ∆K(t).

If V is a Seifert hypersurface for K (not necessarily of minimal genus), the Alexan-

der polynomial of ∆K(t) can be obtained from the polynomial fV (t) by a change of

variables. For this purpose, it is better to normalize the Alexander polynomial dif-

ferently, as we will do below.

Note that ∆K,V (t) = tgenus(V )−genus(K)∆K(t). The functional equation now be-

comes ∆K,V (t) = t2 genus(V )∆K,V (t−1), and the property ∆K,V (1) = 1 is still satisfied.

Note that ∆K,V (t) depends only on K and the genus of V , not on the choice of Seifert

hypersurface V for K. When V is a minimal genus Seifert hypersurface, we have

genus(V ) = genus(K), hence ∆K,V (t) = ∆K(t).

We now state the theorem showing that fV (t) is an Alexander polynomial.

Theorem 4.1.1. The polynomials ∆K,V (t) and fV (y) are related in the following

manner:

fV (y) = y2 genus(V )∆K,V (1− 1/y) (4.2)
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and

∆K,V (t) = (1− t)2 genus(V )fV (1/(1− t)). (4.3)

Proof. This follows from the standard formula ∆K,V (t) = det(Pt−P T ) and algebraic

manipulations.

4.2 Conjugate-self-balanced O∆-modules

We now wish to compare the Alexander module AlexK of a knot K with the invariant

conjugate-self-balanced module MV constructed in Section 3.3.

Again, let V be a simple Seifert hypersurface with boundary knot K. Let f(y) =

fV (y) be the invariant polynomial for V , and let ∆(t) = ∆K(t) be the Alexander

polynomial of K. For convenience we will restrict our attention to the case when the

matrix P is nonsingular, which is equivalent to the condition that genusK = genusV .

This implies that ∆K,V has nonzero constant term and is equal to ∆ = ∆K .

To do this, we must first change our point of view on the Alexander module. As

it stands, the Alexander module is a module over the ring Z[t, t−1], while MV is a

module over Rf = Z[y]/fV (y). However, the Alexander module is annihilated by

the Alexander polynomial ∆(t), and thus can also be viewed as a module over the

quotient ring, which we now give a name.

Definition. Let

O∆ = Z[t, t−1]/∆(t).

Let θ denote the image of t in O∆, so that O∆ = Z[θ, θ−1].

The ring O∆ has a natural involution interchanging θ with θ−1. We denote it by

x 7→ x.
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We would ultimately like to say that the the Alexander module AlexK is a

conjugate-self-balanced module for O∆, but to do this we must first define what

this means.

We define it in a manner similar to Definition 3.3, but with the first condition

modified because O∆ need not be a finitely-generated Z-module.

Definition. A conjugate-self-balanced O∆-module is an O∆-module M equipped with

a bilinear pairing φ : M ⊗M → O∆ such that

(a) M is a finitely generated O∆-module.

(b) M ⊗Z Q is a free Q-module of rank equal to the degree of f .

(c) The characteristic polynomial of θ acting on M⊗ZQ by multiplication is exactly

∆.

(d) For m ∈M and n ∈M , φ(m,n) = φ(n,m).

(e) φ induces an isomorphism M ∼= HomO∆
(M,O∆).

In this context we can also define the related concept of a conjugate-self-balanced

ideal class. First we define a Z-valued absolute norm on the set of fractional ideals of

O∆ exactly as in Definition 3.3. We can then carry over verbatim the definition of a

conjugate-self-balanced ideal class from 3.3.

Definition. A conjugate-self-balanced ideal class of O∆ is an equivalence class of pairs

(I, α) where I is a fractional ideal of O∆ and α ∈ O∆ ⊗Z Q, such that II ⊂ α and

|I|2 = |(α)|, modulo the equivalence (I, α) ∼ (κI, κκα) for any invertible element κ

of O∆ ⊗Z Q.

TODO:add results about ideals

35



4.3 The Alexander module as a conjugate-self-

balanced module

We will use the Blanchfield pairing, introduced in Theorem 2.1.4, to endow the

Alexander module with a conjugate-self-balancing map.

Theorem 4.3.1. If K is a simple knot with Alexander polynomial ∆(t), the Alexander

module AlexK is a conjugate-self-balanced O∆-module with balancing map given by

φK(m,n) = ∆(t) · Bl(m,n) ∈ Z[t, t−1]/∆(t) ∼= O∆.

Furthermore, the map sending a knot K to the conjugate-self-balanced module

(AlexK , φK) induces a bijection:

{ simple knots with Alexan-
der polynomial ∆(t)

} ⇔ { CSB modules (M,φ)
over the ring O∆ =
Z[t, t−1]/∆(t)

}.
Proof. Theorem 4.4 of Levine [20] implies that (AlexK , φK) is a conjugate-self-

balanced module, and Theorem 12.1 of the same paper shows that any conjugate-

self-balanced module can be realized in this way. The classification of simple

knots by Alexander module and Blanchfield pairing then tells us that the map

K 7→ (AlexK , φK) is a bijection.

4.3.1 Comparing conjugate-self-balanced modules

We now have two different conjugate-self-balanced modules, MV and AlexK . We will

show that they are related via change of base ring.

We first define a homomorphism between the base rings Rf and O∆. Recall that

Rf = Z[γ] = Z[y]/f(y), and O∆ = Z[θ, θ−1] = Z[t, t−1]/∆(t). Note that the element
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1− θ is a unit of O∆, because ∆(1) = 1, and that 1
1−θ is a root of the polynomial f

by (4.3). Hence the following homomorphism is well-defined:

Definition. Let ι : Rf → O∆ be the homomorphism from Rf to O∆ determined by

f(γ) = 1
1−θ .

Under our assumption that genusK = genusV , it is easily checked that ι is an

injection. Therefore ι identifies Rf with the subring of O∆ generated by 1
1−θ .

In the other direction, with the same assumption, one can also identify O∆ with

the localization Rf [(γγ)−1] = Rf [γ
−1, (1 − γ)−1]. Here the element θ is identified

with 1 − γ−1, and θ−1 is identified with 1 − (1 − γ)−1. Under our assumption that

genus(K) = genus(V ), this induces an identification of the ring O∆⊗Q = Q[θ, θ−1] =

Q[θ] with Rf ⊗Q = Q[γ].

We now give the map from CSB(Rf ) to CSB(O∆).

Proposition 4.3.2. The map ι induces a map ι∗ from the set CSB(Rf ) of conjugate-

self-balanced Rf -modules to the set CSB(O∆) of conjugate-self-balanced O∆-modules,

given by

(M,V ) 7→ (M ⊗Rf O∆, φ⊗Rf O∆).

Proof. All conditions except the last are straightforward to check.

For the last one, we are given an isomorphism

M ∼= HomRf (M,Rf ).

Tensoring both sides with O∆ gives

M ⊗Rf O∆
∼= HomRf (M,Rf )⊗Rf O∆.
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Now, because O∆ is a flat Rf -module (it is a localization), it follows that (see exercise

1.2.8 in [22])

HomRf (M,Rf )⊗Rf O∆
∼= HomO∆

(M ⊗Rf O∆,O∆).

Composing the two isomorphisms, we see that M ⊗Rf O∆ also satisfies the final

condition for a conjugate-self-balanced module.

We now show that ι∗ maps the conjugate-self-balanced module (MV , φV ) con-

structed from the Seifert pairing on V to the conjugate-self-balanced module

(AlexK , φK) coming from the Alexander module of K.

Theorem 4.3.3. We have

ι∗(MV , φV ) = (AlexK , φK).

Proof. Let P be a Seifert matrix for V . We will use explicit presentations, due to

Kearton, of the Alexander module and Blanchfield pairing of K in terms of P .

Kearton [17][§1] gave the following presentation of the Alexander module

O2g → O2g → AlexK → 0.

where the first map is multiplication by θP − P t. We will show that

ι∗(MV ) = MV ⊗Rf O∆

fits into the same exact sequence.

First, note that, because Rf is monogenic, there is a short exact sequence of

Rf -modules.

Rf ⊗Z Rf → Rf ⊗Z Rf → Rf → 0
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where the first map is multiplication by 1⊗ γ − γ ⊗ 1 and the second map is induced

by the multiplication map Rf ×Rf → Rf .

By right exactness of the tensor product, we may tensor this sequence over Rf

with MV . This gives:

Rf ⊗Z MV → Rf ⊗Z MV →MV → 0.

Recall that we constructed MV by setting MArith = Z2g as a Z-module and having

γ act as left multiplication by J−1P . Using this identification of MV with Z2g, we

obtain a short exact sequence

R2g
f → R2g

f →MV → 0,

where now the matrix of the first map is given by J−1P − γ = J−1 · (P − γJ), as

desired.

Now, tensoring over Rf with O∆, we get a short exact sequence

O2g
∆ → O

2g
∆ →MV → 0.

where the first map is left multiplication by J−1 · (P − ι(γ)J).

But

P − ι(γ)J = P − 1

1− θ
J = (1− θ)−1((1− θ)P − (P − P T )) = −(1− θ)−1(θP − P T ).

Because J is invertible and −(1−θ)−1 is a unit of O∆, this means that there is another

short exact sequence

O2g
∆ → O

2g
∆ →MV → 0.

where the first map is left multiplication by θP − P t. This shows the first part.
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To compare the conjugate-self-balancing maps, we use the presentation of the

Blanchfield pairing due to Kearton in [17, §8]. He shows that the Blanchfield pairing

Alex×Alex→ Q(t, t−1)/Z[t, t−1] is induced, in the presentation above, by the pairing

on O2g
∆ with matrix (t− 1)(tP − P t)−1.

By the first half, we have AlexK ∼= MV ⊗Rf O∆, and so we can identify MV with

a submodule of O∆. Then it suffices to show that the restriction of φK to a bilinear

pairing MV ×MV → O∆ agrees with the pairing φV .

Recall from the proof of Theorem 3.3.1 that the pairing φV is uniquely character-

ized by the property that

〈m1,m2〉 = c2g−1(φV (m1 ⊗m2))

for all m1,m2 ∈MV .

It suffices to check that the restriction of φK has the same property.

Using Kearton’s presentation matrix for the Blanchfield pairing, it is a simple

computation to show that the matrix of the restriction of φK(m1 ⊗m2) to MV , with

respect to the standard basis, is given by (P −γ(J))ad (where ad refers to the adjoint

matrix from Cramer’s rule), and therefore the restricted pairing takes values in Rf .

We now apply c2g1 . The only terms with a γ2g−1 in the expansion of (P − γJ)ad

come from the (−γJ)ad = −γ2g−1Jad, and so c2g−1((P − γJ)ad) = −Jad = J .

Hence the pairing c2g−1(φV (m1 ⊗ m2)) also has matrix J with respect to the

standard basis of M ∼= Z2g, as desired.
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4.3.2 Conjugate-self-balanced ideal classes of Dedekind rings

Before we move on to counting, we will note some ways in which the theory of

conjugate-self-balanced ideal classes is particularly nice when the base ring is a

Dedekind domain.

Recall that a Dedekind domain is a Noetherian integral domain of Krull dimension

1 which is integrally closed in its field of fractions. The rings Rf and O∆ are always

Noetherian and of Krull dimension 1, so they will be Dedekind domains precisely

when f (respectively ∆) is an irreducible polynomial and when Rf (respectively O∆)

is integrally closed.

Let A be a general Dedekind domain. Because every ideal of A is invertible,

the set of conjugate-self-balanced ideal classes of A forms a group with the natural

multiplication induced by multiplication of ideals: [I, α] · [I ′, α′] = [II ′, αα′]. This

group, which we will denote CSBA, has a natural homomorphism to the ideal class

group Cl(R) (see [18] for definition of the ideal class group of a Dedekind ring). This

homomorphism is given by forgetting α, and its image is exactly the kernel of the norm

map from Cl(R) to Cl(R1). On the other hand, the kernel of this homomorphism is the

image of the norm homomorphism on the unit groups R× → R×1 . We can summarize

this by saying that the group of conjugate-self-balanced ideal classes fits into a short

exact sequence

0→ R×1 /N(R×)→ CSBR → ker(N : Cl(R)→ Cl(R1))→ 0.
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Chapter 5

Counting

5.1 Finiteness theorems for Seifert hypersurfaces

and simple knots

We would now like to put some notion of “size” on a knot in such a way that there are

only finitely many simple knots of bounded size. The following finiteness theorems

will be useful to us here.

Theorem 5.1.1 (Bayer and Michel,[1], Propositions 6 and 8).

• If ∆ ∈ Z[t] is a squarefree polynomial, there are only finitely many simple knots

K with ∆K = ∆.

• For any squarefree f ∈ Z[y], there are only finitely many simple Seifert hyper-

surfaces V such that fV = f .

Therefore, we can and will measure the size of K by the size of the Alexander

polynomial of K. For knots K of fixed genus g, we can measure this size by the size

of the coefficients of ∆K(t), or of fV (t) (where V is any genus g Seifert hypersurface).

There is still the question of how to “weight” the different coefficients with respect

to each other.

42



One way is to treat all coefficients equally; this leads to the standard definition of

the height of a polynomial.

Definition. The height ht(P ) of a polynomial P (x) = anx
n+an−1x

n−1 + · · ·+a0x
0 ∈

Z[x] is equal to

max
0≤i≤n

|ai|.

One advantage of using height is that, for fixed g, the asymptotics for ht(fV (y))

are identical to those for ht(∆K,V (t)).

Note that ht(P ) < X if and only if all coefficients of P have absolute value at

most X.

For specific constrained families of polynomials, there may be other reasonable

ways to define size. For instance, for monic polynomials, we may defined a “weighted

height” function modeled after the definition in [4]

Definition. The weighted height htw(P ) of a monic polynomial

P (x) = xn + an−1x
n−1 + · · ·+ a0x

0 ∈ Z[x]

is equal to

max
0≤i≤n−1

|ai|n(n−1)/(n−i).

This definition is nice because it behaves nicely with respect to rescaling the

variable, that is, replacing P (x) with P (ax). However, such transformations do not

have an obvious interpretation in knot theory.

Since there are only finitely many integer polynomials with bounded height, we

obtain the following finiteness statement as a corollary of Theorem 5.1.1:

Corollary 5.1.2. • For any q ≥ 3 and g ≥ 0, and for any X, there are only

finitely many equivalence classes of simple Seifert hypersurfaces V in S2q+1 of

genus g such that the Alexander polynomial ∆K(t) is squarefree of height ≤ X.
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• For any q ≥ 3 and g ≥ 0, and for any X, there are only finitely many simple

2q− 1-knots of genus g such that the Alexander polynomial ∆K(t) is squarefree

of height ≤ X.

5.2 Strategies

We will now use the algebraic machinery developed in the previous chapter to tackle

the following asymptotic counting question:

Question. How many simple 2q− 1-knots of genus g have squarefree Alexander poly-

nomial of height ≤ X?

We will also ask the analogous question for Seifert hypersurfaces:

Question. How many simple Seifert hypersurfaces of genus g in S2q+1 have squarefree

Alexander polynomial of height ≤ X?

Both of these (originally topological) questions can be converted into purely arith-

metic questions by means of Theorem 2.2.1. We now discuss these arithmetic ques-

tions.

We have seen that Seifert hypersurfaces are in bijection with the Sp2g orbits on

Seifert-parity symmetric matrices. These orbits can be counted using general methods

from the geometry of numbers for counting orbits of an algebraic group over Z acting

on a lattice in a vector space.

The most näıve of these is the following: find a fundamental domain R for the

action of Sp2g(Z) on Sym2(R2g), and let RX be the subregion of R consting of points

with height ≤ X. Then the orbits with Alexander polynomial of height ≤ X are in

bijection with lattice points in RX . We can get an approximate count of the latter

using the volume of RX .

This does not quite work as stated, because Sp2g(Z) does not act properly discon-

tinuously on all of Sym2(R2g). First, we need to omit the points where the Alexander
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polynomial has repeated roots. This splits Sym2(R2g) into several connected com-

ponents. On some of these components, Sp2g(Z) does act properly discontinuously

and we can count orbits by counting lattice points in a fundamental domain. On the

others, there is no fundamental domain, and the counting problem is substantially

harder.

For example, in the case of genus 1, there are three connected components. The

ones coming from definite quadratic forms have fundamental domains, and their

counting question is very well-understood. The indefinite component is less well

understood, though heuristics suggest it contains a small number of orbits compared

to the others.

There are two difficulties with this approach. The first is that error terms become

more complicated to estimate as g gets large. A more specific issue is that the region

R is unbounded, with a cusp going off to infinity. In order to get a finite error term,

one must “chop off” the region at some point along the cusp, and deal with the cusp

separately.

In the case g = 1, the region R is 3-dimensional, and it is possible to do this

estimation explicitly. This was done, in the equivalent context of positive definite

binary quadratic forms, by a number of people, including Mertens [23]. We will use

these same methods to prove Theorem 5.3.2, which counts positive definite binary

quadratic forms with a congruence condition on the discriminant, which is an essential

ingredient to our sieving argument.

For larger g, this approach becomes more complicated. [5, 6, 4, 31] have recently

developed more streamlined methods for asymptotic orbit-counting. They count or-

bits by averaging over a continuously varying family of fundamental domains. The

author is currently working on applying these methods to count genus g Seifert hy-

persurfaces for g ≥ 1.
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5.3 Counting genus 1 Seifert hypersurfaces

5.3.1 2×2 Seifert-parity symmetric matrices, binary quadratic

forms, and ideals in quadratic rings

In the simplest example where V has genus 1, the polynomial fV will be of the form

x2 − x + m, for an arbitrary integer m. If m 6= 0, the boundary knot K will also

have genus 1, and the Alexander polynomial ∆K of the boundary knot K will be

mt2 + (1− 2m)t+m. We henceforward assume that m is nonzero.

The corresponding ring Rf = Z[y]/(y2−y+m) = Z[1+
√

1−4m
2

] is a quadratic ring of

Z with discriminant 1− 4m. If 1− 4m is not square, Rf is an order in the quadratic

field Q[
√

1− 4m], and if 1 − 4m is squarefree, Rf is the entire ring of integers of

Q[
√

1− 4m].

The ring O∆ also has a nice form: it is equal to Z[ 1
m
,
√

1− 4m], and can be viewed

as a quadratic extension of the ring Z[ 1
m

] with discriminant 1− 4m.

In this setting, all the “size functions” we have considered are the same up to

linear change of variables. The height of fv is |m| and the height of ∆K is |2m− 1|.

Now we consider conjugate-self-balanced ideal classes in the rings Rf and O∆.

We now show that any ideal class of these rings can be equipped with a (not

necessarily unique) balancing map.

Lemma 5.3.1. (i) If I is an ideal of Rf , and a = |I| = [Rf : I] is the absolute

norm of the ideal I, then [I, a] and [I,−a] are (possibly equal) conjugate-self-

balanced ideal classes of Rf .

(ii) The same is true of O∆.

(iii) The set of conjugate-self-balanced ideal classes of Rf = Z[1+
√

1−4m
2

] can be iden-

tified with the set of oriented ideal classes of Rf , as defined in [2]. These are

the ideal classes I of Rf equipped with an isomorphism of Z-modules
∧2 I → Z.
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(iv) The number of simple Seifert hypersurfaces of genus 1 with Alexander polynomial

mt2 + (1− 2m)t+m is equal to the narrow class number of Rf .

Proof. Part (i) amounts to saying that |(a)| = a2 and II ⊂ (a). These are both

standard facts from the theory of imaginary quadratic orders. Part (ii) is analogous.

For (iii), recall the map c1 = c2g−1 from Definition 3.3. We have explicitly

c1(x+ yγ) = y.

By the proof of Theorem 3.3.1, the map I × I → Z given by i1, i2 7→ c1(i1i2/a) is

a perfect skew-symmetric pairing, and so induces an orientation on I. The other

direction of the proof of Theorem 3.3.1 shows that any orientation on I arises in this

way.

Finally, (iv) follows from the definition of the narrow class number as the number

of oriented ideal classes of I.

Fortunately for us, the asymptotics for the average behavior of the narrow class

number of quadratic rings are well-understood, as we shall see next.

5.3.2 Counting Seifert forms of negative discriminant

Because the Seifert form of a Seifert hypersurface uniquely determines the isotopy

type of its boundary knot, one can obtain an upper bound for the number of genus

1 knots with Alexander polynomial mt2 + (1− 2m)t+m by counting the number of

SL2(Z)-equivalence classes of Seifert-parity binary quadratic forms with that Alexan-

der polynomial. It is easier to do this counting if we average over all m within a

certain range.

It turns out that one gets two different types of behavior depending upon whether

the form is definite (signature 2 or −2), or indefinite (signature 0).
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The problem of counting binary quadratic forms of bounded discriminant is a

classical one in number theory and the additional condition of Seifert parity is very

minor: in fact, it is just a parity condition on the discriminant. In the definite case,

one can obtain an asymptotic result via the geometry of numbers as done in [23].

The indefinite case is much harder; the same methods used in the definite case obtain

an upper bound of the same size, but standard heuristics suggest that the answer is

much lower. Our geometry of numbers argument here will be essentially the same as

that used in [23].

Ultimately we will prove a more general result that will be useful in the next

section:

Theorem 5.3.2. Let X be a real number, and let s be a positive integer with s ≤ X.

The number of Seifert-parity definite (m > 0) binary quadratic forms with Alexander

polynomial mt2 + (1− 2t)x+m where |m| < X and s | m is asymptotically equal to

c1ρ(s)X3/2 +O(ρ(s)sX max(s, logX)). (5.1)

Here ρ(s) =
∏

p|s
p+1
p2 . The value of the constant c1 can be made explicit, as can the

constant implicit in the big-O notation for the error term, but we will not compute

them here.

The number of Seifert-parity indefinite (m ≤ 0) binary quadratic forms with

Alexander polynomial mt2 + (1 − 2m)t + m where |m| < X is bounded by a con-

stant times X3/2.

Remark. The bound for the indefinite case is extremely weak. The heuristics of Hooley

[15] suggest that the actual asymptotic should be X(logX)2.

It is also possible to get an upper bound of the same form as (5.1) for the number

of indefinite forms with s | m, but this is not useful to us.
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Before we prove Theorem 5.3.2, we first change the normalization of our binary

quadratic form to produce an integer-valued quadratic form ax2 + bxy + cy2.

Lemma 5.3.3. There is a bijection between Seifert-parity binary quadratic forms with

Alexander polynomial mt2 +(1−2m)t+m and binary quadratic forms ax2 +bxy+cy2

with discriminant D = b2 − 4ac = 1− 4m.

Proof. Indeed, any Seifert-parity binary quadratic form has matrix of the form

 2p 2q + 1

2q + 1 2r


and so can be written, as a binary quadratic form, as 2(px2 +(2q+1)xy+ry2). Hence,

after dividing out the 2, we get the corresponding binary quadratic form. Conversely,

any binary quadratic form ax2 + bxy + cy2 with discriminant congruent to 1 mod 4

must have b odd, and hence lies in the image of this map.

Proof. We are now ready to prove Theorem 5.3.2. We do the definite case first. We

will count positive definite forms only, as it changes the answer only by a factor of 2.

By the lemma above, it suffices to get an asymptotic for the number of SL2-

equivalence classes of binary quadratic forms ax2 + bxy + cy2 with discriminant D

with −X < D < 0 and D ≡ 1 (mod 4s). Note that this condition is also equivalent

to: b is odd and D ≡ 1 (mod s).

By standard fundamental domain arguments, any SL2-orbit of positive definite

binary quadratic forms has a unique representative (a, b, c) with 0 ≤ a ≤ c and

−a < b ≤ a. We call such a triple (a, b, c) “reduced”. Again, the Seifert-parity

condition means that b is still odd.

Thus to count the total number of SL2-orbits of positive definite binary quadratic

forms with discriminants in the range [0,−X] and ≡ 1 (mod 4s), we need only count
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the number of lattice points (a, b, c) in the region

RX = {(x, y, z) ∈ R3 | 0 ≤ x ≤ z,−x < y ≤ x, 0 < y2 − 4xz ≤ X}

such that b2 − 4ac ≡ 1 (mod 4s).

Our strategy will be to use Davenport’s theorem on counting integer lattice points

inside regions.

Theorem 5.3.4 (Davenport [9]). Let R be a bounded semi-algebraic region in Rn,

defined by k polynomial inequalities of degree at most `. Then the number of points

(a, b, c) ∈ Zn ∩R can be asymptotically expressed as

vol(R) + ε(R)

with the error term ε(R) bounded in size by ε(R) < κmax(R, 1) where R runs

over all projections of R onto subspaces of Rn spanned by coordinate axes, and

κ = κ(n,m, k, `) is some explicit constant depending only on n,m, k, and `.

We will be unable to apply Davenport’s theorem to RX , because some of its

shadows have infinite volume. Therefore we will use a truncated region, RX,t =

{(x, y, z) ∈ R | z < t}.

We now state some facts about the size of the various projections onto coordinate

axes and planes. Let Px, Py, Pz denote the projection maps onto the x, y, z axes

respectively, and likewise define Px,y, Px,z, Py,z as the projections onto the coordinate

planes.

Lemma 5.3.5. We have the following bounds:

vol(RX,t) = c0X
3/2 +O(t−3X3), (5.2)
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area(Px,y(RX,t)) = O(X) (5.3)

area(Px,z(RX,t)) = O(X log(tX−1/2))) (5.4)

area(Py,z(RX,t)) = O(X log(tX−1/2)), (5.5)

and

length(Px(RX,t)) = O(X1/2) (5.6)

length(Py(RX,t)) = O(X1/2) (5.7)

length(Pz(RX,t)) = t. (5.8)

Proof. This is a calculation.

We first prove (5.1) for the case when s = 1. Note that if (a, b, c) is a lattice point

in R, then c can be at most 1
4
(X + 1) ≤ X. Therefore all lattice points in RX also

belong to the truncated region RX,X , and we may count the latter instead. To do

this, we estimate the number of lattice points in the region RX,t for general t and

then set t = X.

Note that we are not counting all lattice points, only the ones with b odd. How-

ever, we can apply an affine transformation to the second coordinate, to convert our

question into one about counting lattice points.

We then apply Davenport’s theorem, and set t = X

#(RX,t ∩ Z3) = c1X
3/2 +O(max(X log(tX−1/2), t)) = c1X

3/2 +O(X logX). (5.9)

Now we do the same analysis, but with s a general positive integer. The following

lemma will allow us to replicate the argument above.
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Lemma 5.3.6. Let s be a squarefree integer. The set of triples of integers (a, b, c) ∈

Z3 such that b2 − 4ac ≡ 1 (mod 4)s is a union of ρ(s)s3 translates of the lattice

sZ× (2s)Z× sZ. (Where as before ρ(s) =
∏

p|s
p+1
p2 ).

Proof. By the Chinese Remainder Theorem we may reduce to the case when s is

prime.

First we consider the case when s is an odd prime. We count the number of

solutions to b2 − 4ac = 1 in (Z/pZ)3. If b 6≡ ±1 (mod p), there are p− 1 possibilites

for the pair (a, c), while if b ≡ ±1 (mod p), then there are 2p− 1 possibilities. This

gives a total of p2 + p = ρ(p)p3 as desired.

The power of 2 case may be done by hand: to get b2 − 4ac equal to 1 mod 8, we

need b to be odd, and at least one of a and c to be even. The set of such is a union

of 6 translates of the lattice 2Z× 4Z× 2Z.

Let L1, L2, · · · , Lρ(s)s3 be the translates of sZ3 in the lemma above. We bound

the number of points in each Li individually. Doing a homothety by a factor of s−1,

and applying Davenport’s lemma again, we get

#(RX,t ∩ Li) =c1s
−3X3/2

+O(s−2X max(log(tX−1/2)), 1) +O(s−1X1/2) +O(s−1t) +O(1).

(5.10)

Setting X = t and combining terms, we obtain

#(RX ∩ Li) = c1s
−3X3/2 +O(s−2X log(X)) +O(s−1X). (5.11)

Now, we sum over all Li to get a total of

ρ(s)(c1X
3/2 +O(sX log(X)) +O(s2X)), (5.12)
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as desired.

The upper bound for indefinite forms can be proved in a similar manner, by

noting that any indefinite form is SL2-equvalent to at least one such with (a, b, c)

with 0 ≤ |a| ≤ |c| and −|a| < b ≤ |a|.

Alternatively, it can be proved by showing a result using regulators.

5.3.3 Counting Seifert forms of positive discriminant

We now consider counting the Seifert forms with positive description, namely, the

indefinite quadratic forms. The crude bound given above is far from tight. We

expect the following heuristic:

Heuristic 1. The total number of indefinite Seifert-parity quadratic forms whose

Alexander polynomial is mt2 + (1− 2m)t+m with m ∈ [1, X] is asymptotic to

c3X(logX)2.

The justification for this is that, as we have seen, indefinite Seifert-parity quadratic

forms are the same as indefinite binary quadratic forms with odd discrimiant. Hooley

[15] gives an asymptotic proportional to X(logX)2 for all indefinite binary quadratic

forms, and

Comparing with the bound for definite quadratic forms, we see that, according to

the heuristic, most genus 1 Seifert pairings have symmetric part which is definite.

5.4 Counting genus 1 simple knots

5.4.1 The map ι∗

We now move to the question of conuning equivalence classes of genus 1 simple knots,

which we have put in bijection with conjugate-self-balanced ideal classes of O∆.
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It is harder to count conjugate-self-balanced ideal classes of O∆, because they are

not in one-to-one correspondence with Z-orbits of an arithmetic group. However, we

do have the surjection

ι∗ : CSB(Rf ) � CSB(O∆).

This map is a homomorphism of monoids, and when 1− 4m is squarefree it is also a

group homomorphism. We wish to know what we can say about its fibers.

Because we are working with conjugate-self-balanced ideal classes of both Rf and

O∆, we will use subscripts to clarify: we will write [I, α]Rf to specify that we mean

an element of CSB(Rf ).

In that case, we have the following criterion:

Lemma 5.4.1. Suppose that I and J are ideals of Rf such that IO∆ = JO∆. Then

I = aJ for some fractional ideal a of Rf of the form

a =
∏
p|m

pep (5.13)

where the product is over all ideals p of Rf dividing m.

Proof. The condition I = aJ holds if and only if it holds locally at all primes of Rf ,

that is, if and only if I(Rf )q = aJ(Rf )q for all primes q of Rf .

First consider the case when q divides m. Then q is invertible and the localization

(Rf )q is a DVR. So we can pick eq to satisfy the condition at q.

For each q that does not divide m, the ring O∆ = Rf [1/m] is contained in (Rf )q,

and so the condition I(Rf )q = J(Rf )q is automatically satisfied.

Because O∆ = Rf [1/m] is obtained from Rf by inverting the element m, it will

be useful for us to know the factorization of the ideal mRf in Rf . Fortunately for us,

mRf has an explicit factorization as a product of distinct prime ideals of Rf , given
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by

mRf =
∏
p|m

(p, γ) · (p, 1− γ). (5.14)

where p ranges over all prime factors of m in Z.

The following observation is easily checked, and will be useful later on: if p is a

prime factor of mRf , then pp is a principal ideal generated by some prime factor (p)

of m. As a consequence, p is an invertible ideal of Rf .

We may then refer to the primes appearing in (5.14) as “the prime factors of

mRf”.

We now use these prime factors to define a special subgroup of K of CSB(Rf )

which we will see we can view as the “kernel” of the monoid homomorphism ι.

Definition. Let K be the subgroup of the monoid CSB(Rf ) generated by

[p(p)−1, 1]Rf ,

where p ranges over the set of prime factors of mRf .

Because pp is a principal ideal for any prime factor p of Rf , this definition can also

be restated as follows: K is the subgroup of CSB(Rf ) generated by [p2, |p|2] = [p, |p|]2

where p ranges over the prime factors of mRf .

Theorem 5.4.2. A conjugate-self-balanced ideal class [I, α]Rf ∈ CSB(Rf ) maps to

the identity under ι∗ if and only if [I, α]Rf ∈ K.

More generally, the ideals [I, α]Rf , [J, β]Rf ∈ CSB(Rf ) map to the same element

of CSB(O∆) if and only if [I, α]Rf = k[J, β]Rf for some k ∈ K.

Proof. We will prove the second part, which is a strictly stronger statement (because

CSB(Rf ) is a monoid and not a group).

For the “only if” direction, it suffices to show that generators of K are sent to the

identity by ι∗. This is easily checked.
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For the other direction, suppose that

ι([I, α]Rf ) = ι([J, β]Rf ).

It follows from the definitions that IO∆ = cJO∆ and α = ccβ for some c ∈ FracO∆ =

FracRf . Let I ′ = c−1I, so that

[I, α]Rf = [c−1I, cc−1α] = [I ′, β]Rf .

Hence I ′O∆ = JO∆, and Lemma 5.4.1 applies, so we can write I ′ = aJ , where a

is a product of (possibly negative) powers of primes dividing m.

By comparing I ′I ′ with JJ , and localizing at each prime dividing m, we can show

that a is a product of ideals of the form p−1p, where p | m, as desired.

This theorem has the following useful consequences. Recall that the 2-rank of an

abelian group G (with the action written multiplicatively) is the rank of the F2-vector

space G/G2.

Corollary 5.4.3. The 2-rank of NCl(O∆) is the same as the 2-rank of the narrow

class group NCl(Rf ).

Remark. This 2-rank can be computed explicitly using genus theory.

Corollary 5.4.4. Suppose that m > 0. Then the map ι∗ : NCl(Rf )→ NCl(O∆) is a

bijection if and only if m is prime.

Proof. Proof of ⇒: Suppose that m is not prime, and let p be a prime factor of m.

Then the ideal (p, γ) is a prime factor of m with norm p, but cannot be principal

because Rf = Z[1−4m
2

] does not contain any elements of norm strictly less than m.

Proof of ⇐: In this case m = p is prime, and γ(1 − γ) = p. Hence pRf factors

as the product of the two principal ideals (p, γ) = (γ) and (p, 1− γ) = (1− γ).
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In this case, we will wish to divide up into cases, depending upon whether or not

m is prime. As seen above, if m is a prime, the map ι∗ is a bijection, whereas in the

case where m is composite, it cannot be one-to-one. Therefore we will get a larger

answer in the case when m is prime. We quantify this below.

We can use the bounds in Theorem 5.3.2, to show

Theorem 5.4.5. The total number of distinct Alexander modules (with pairing) hav-

ing Alexander polynomial equal to pt2 + (1 − 2p)t + p for p running over all primes

in the range [1, X] is (unconditionally) bounded above by O(X3/2/ logX).

Proof. We will prove this by proving the following statement, which will imply the

desired result. For any real number z, let P (z) =
∏

p prime <z p. Let α be a real

constant, whose value will be chosen later, but will satisfy α < 1.

Then it will suffice to show:

∑
X≤m≤2X

(m,P (Xα))=1

#((a, b, c) ∈ Z3 : b2 − 4ac = 1− 4m) = O(X3/2/ logX). (5.15)

5.4.2 A sieving argument

We follow the approach of Rosser’s sieve [16], modifying the terminology to suit our

approach. We name the quantity that we wish to bound:

S(X, z) :=
∑

X≤m≤2X
(m,P (z))=1

#{(a, b, c) ∈ Z3 : b2 − 4ac = 1− 4m}

for z = Xα.

To apply the sieve, we need estimates on the following quantities for all squarefree

d:

Sd(X, z) :=
∑

m∈[X,2X]
d|m

#{(a, b, c) ∈ Z3 : b2 − 4ac = 1− 4m}. (5.16)
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Applying Theorem 5.3.2 for two different values of X, and subtracting, we obtain he

following estimate for Sd(X, z)

Sd(X, z) = c4ρ(d)X3/2 +Rd(X, z), (5.17)

where the error term Rd(X,Z) is bounded by

|Rd(X, z)| ≤ c5Xρ(d)(max(d, logX)). (5.18)

(Here c4 and c5 are explicit constants.)

We now have the inputs to the sieve, and need to calculate the “sieving density,”

also known as the “dimension”. The following inequality is analogous to (1.3) in [16]:

for all z > w ≥ 2 we have

∏
w≤p<z

(1− ρ(p))−1 ≤
(

log z

logw

)κ(
1 +

K

logw

)
. (5.19)

where κ = 1 and K is a sufficiently large constant. This is true by comparing to the

product
∏

w<p<z(1− 1/p) and applying Mertens’ formula for the asymptotic growth

of the latter.

Therefore we may apply (the first half of) Theorem 1.4 of [16] with y = z (so that

s = 1) to obtain

S(X, z) < X3/2
∏
p<z

(1− ρ(p))
(
F (1) + e

√
KQ(1)(log z)−1/3

)
+

∑
d<z squarefree

|Rd(X, z)|

(5.20)

where F (s), Q(s) are specific functions defined in [16]; we will not need any properties

of them, just that F (1) and Q(1) are constants.

Using our previous result that
∏
p < z(1− ρ(p)) ∼ 1/ log(z), we see that the first

term is O(X3/2/ log z).
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Applying (5.18) to the second term gives

∑
d<z squarefree

|Rd(X, z)| ≤ c5X
∑

d<z squarefree

ρ(d)d(max(d, logX)). (5.21)

We estimate ρ(d). Since d is squarefree, we can write d as a product of distinct

primes: d =
∏nd

i=1 pi. Then

ρ(d) =

nd∏
i=1

pi + 1

p2
i

=
1

d

nd∏
i=1

(
1 +

1

pi

)
=

1

d

∑
d′|d

1

d′

≤ 1

d

∑
1≤d′≤z

1

d′

≤ log z + 1

d
.

(5.22)

Plugging (5.22) into the sum in (5.21), we obtain

∑
d<z squarefree

|Rd(X, z)| ≤ c5X(log z + 1)
∑
d<z

max(d, log x)

≤ c5(log z + 1)
∑
d<z

(d+ logX)

≤ c5X(log z + 1)(z2 + z logX)

≤ c5X(α logX + 1)(X2α +Xα logX).

(5.23)

In the last line we have set z = Xα.

For fixed α and X varying, we get the following asymptotics for our remainder

term

∑
d<z squarefree

|Rd(X, z)| = O(X1+2α logX). (5.24)
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This will be o(X3/2/ logX) for any α < 1, and so our error term is bounded.

5.4.3 Heuristics

Heuristically, we expect that this theorem is sharp. That is, we expect

Heuristic 2. The total number of distinct Alexander modules (with pairing) having

Alexander polynomial equal to pt2 + (1− 2p)t+ p for p running over all primes in the

range [1, X] is asymptotic to O(X3/2/ logX).

The error bound in Theorem 5.3.2 is too large to be used in the sieve to obtain a

lower bound. Although one can get better estimates by using the geometry of numbers

more carefully, this technique does not appear to give a sufficient improvement.

For all other discriminants, we expect there to be substantially fewer Alexander

modules.

Heuristic 3. The total number of distinct Alexander modules (with pairing) having

Alexander polynomial equal to mt2 + (1 − 2m)t + m for m running over all integers

in the range [−X,X] that are not positive primes is (heuristically) bounded above by

O(X(logX)2).

Combining the two heuristics above suggests the following, weaker, heuristic

Heuristic 4. Most Alexander modules (with pairing) have Alexander polynomial of

the form pt2 + (1 − 2p)t + p for p > 0 prime. Equivalently, most simple knots have

Alexander polynomal of the same form.
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