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Abstract

Chemical crosslinks in collagens resulting from binding of advanced glycation end-products, have long been presumed to alter the
stiffness and permeability of glycated tissues. Recently, we developed a stochastic mechanical model for the response and failure of uniax-
ially deformed sciatic nerve tissue from diabetic and control rats. Here, we use our model to determine the likely correlation of fibril
glycation with failure response, by quantifying statistical differences in their response. Our four-parameter model describes both the
non-linear toe region and non-linear failure region of these tissues; the four parameters consist of (1) collagen fibril alignment, (2) fiber
bundle waviness, (3) Weibull shape parameter for fibrillar strength, and (4) modulus-normalized Weibull scale parameter for fibrillar
strength. Using an equal load sharing model we find that diabetic and control tissues had shape parameters of 9.88 4+ 5.50 and
4.33 + 3.67 (p = 0.043), respectively, and scale parameters of 0.28 4+ 0.07 and 0.58 + 0.25 (p = 0.033), respectively, implying that the dia-
betic tissue behaves in a more brittle manner, consistent with more highly crosslinked fibrils. We conclude that biochemical crosslinking
directly affects measured mechanical properties. Further, this mechanical characterization may prove useful in mapping alterations in
stiffness and permeability observed in glycated tissues.
© 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction have been shown to amplify the effects of collagen glyca-

tion [11-13].

A clear pathway from the binding of advanced glycation
end-products (AGEs) to alterations in the mechanical
response of collagenous tissue has not yet been directly
established, though they are clearly linked. Glycation-
induced crosslinkings of fibrillar collagens of types I, III,
V and XI [2-7] have been implicated, for example, in stiff-
ening of skin [8,9] and reduced fracture toughness in bone
[10]. Greater duration and intensity of exposures to glucose
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Nerve tissue contains ~10-16% collimated collagen by
mass fraction [14-16]. This tissue undergoes glycation
[17,18], and exhibits altered mechanical properties, which
can be modeled using micromechanics [18,19]. The gross
mechanical properties of peripheral nerve [20,21] and colla-
gen fibrils [22,23] have been quantified, but until our own
work, there was apparently no model correlating glycation
with mechanical properties at the tissue scale. Our method-
ology [18,19] was an application of classical bundle theory,
applied to the fibrillar collagen of the nerve sheath [24-26].
The model was developed for the fibril scale (Fig. 1), at
which the individual fibrils may be modeled as spatially
periodic and finite in length. The concept underlying this
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Fig. 1. A series of figures from molecular scale to tissue scale. The letters C—H correspond to failure functions [24,25] used to predict failure at a larger
scale based on known properties at a smaller scale. The function F was chosen to represent the fibril scale and is the scale of interest for the present work.
In (a) a left-handed triple helix of a fibrillar collagen is depicted with glycine occupying every third position, see e.g., Refs. [81,82]. In (b) three triple helices,
see e.g., Ref. [83], self-assemble into (c) microfibrils of varying size prior aggregating into (d) fibrils [55,84]. These fibrils are then organized into (e) wavy
tape-like bundles in the epineurium that encase (f) whole nerve [50,85]. Dimensions given for fibrils, bundles and whole nerve are those of rat sciatic nerve.

present work is based on weakest-link scaling: a structure
comprised of distinct subcomponents placed in series fails
when one subcomponent fails. For structures comprised
of parallel subcomponents, all subcomponents in a given
link must fail before the entire structure fails. Here,
we model nerve tissue as a set of load-supporting collagen
fibrils in parallel.

More generally, the order in which neighbors of broken
fibrils rupture depends upon the nature of the “matrix;” in
this case, the matrix is the ground substance, which can be
assumed to have negligible mechanical effect in collimated,
collagen-reinforced nerve tissues. For glycated tissues,
however, collagens can be assumed to exhibit substantial
crosslinking under these conditions, and so, the effect is
similar to that of a matrix of low contrast ratio to the rein-
forcing phase (i.e., similar mechanical modulus). One
extreme strategy for modeling sequential rupture in such
a material is to assume that all surviving fibrils carry load
equally (equal load sharing, or ELS). The other extreme
is to assume that only the fibrils in the immediate vicinity
of the broken fibril assume all overload (an example of
local load sharing, or LLS). These models correspond,
respectively, to a matrix of low or high contrast ratio. With
glycation, it can be reasonably hypothesized that response
of collimated collagens would be closer to LLS, due to
increased correlation of fibrils.

In this work, we present a parametric constitutive failure
model for peripheral nerve, to test this hypothesis, using
the following key variables: fibril waviness, as defined by
the ratio between the spatial amplitude and fibril periodic-
ity, fibril angle with respect to the primary tissue axis,
Weibull shape parameter, and Weibull scale parameter.

Other variables included are collagen fibril modulus, tissue
scale collagen density, and microscale packing density [19].
The model is capable of capturing the full behavior of the
non-linear behavior of the nerve tissue from the toe region,
through the linear region and up to failure. The fibril wav-
iness and fibril angle capture the shape of the toe region,
while the Weibull scale and shape factors describe the fail-
ure region.

1.1. AGE binding of collagens

The basis for the presumably increased mechanical cor-
relation of glycated fibrils is the known increase in AGE
binding in blockage of binding sites of extracellular matrix
(ECM) proteins such as collagen IV and laminin, impeding
cell adhesion, growth, and tissue remodeling [27]. AGE-
specific fluorescence and enzyme-linked immunosorbent
assay (ELISA)-based binding have been shown to increase
with time in the coronary collagen of diabetes-induced rats
[28]. ELISA and solubility assays have been used to show
that collagen crosslinks form both in the presence and
absence of either free glucose or oxygen or a combination
of glucose and oxygen [4]. Overall, extensive chromatogra-
phy experiments with high performance liquid chromatog-
raphy have resulted in the identification of over 30 distinct
AGEs [29,30]. Indeed, the presence of AGEs coincident
with glucose exposure has been shown to stiffen human
skin exposed to glucose-6-phosphate in vitro by as much
as 80% [9] and rat tail tendon by 100% [31] in vitro, and
to diminish stiffness by 50% and strength by 29% in healing
rat femoral bone, in vivo [10]; the crosslinks that are pre-
sumably responsible for stiffening skin are also responsible
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for reducing the repair rate in bone by altering the kinetics
of collagenases as well as collagen self-assembly mecha-
nisms responsible for tissue remodeling.

1.2. Measurements in diabetic tissues: prior art

Collagen upregulation has been measured in explanted
human fibroblasts in the presence of diabetic-level glucose
concentrations, in vitro, at both the translation and tran-
scription levels for Type III collagen and fibronectin, but
not Type I [32]. Upregulation has also been documented
in vivo in rat skin studies, where higher glucose concentra-
tions in diabetic animals have been implicated in higher,
non-specific collagen concentrations, based on hydroxy-
proline levels. Upregulated Type I collagen and fibronectin
with elevated glucose concentrations has also been mea-
sured in explanted sciatic rat nerve tissue, via Northern
hybridization [33]. Type VI collagen accumulation in dia-
betic human and rat nervous tissues has further been quan-
tified by immunoelectron microscopy; Type IV translation
upregulation has been quantified in rat neural cells [34].

Morphologically, collagen fibril diameter enlargement
has also been quantified in a number of models for diabe-
tes. In an in vivo rat model, larger-than-normal, non-
specific (Type I/Type III) collagen fibril diameters were
measured in diabetic rat endoneurium via transmission
electron microscopy (TEM) [35]. This was also found
in vivo in diabetic humans with TEM [36], and both
in vivo and in vitro with rat tail tendon with atomic force
microscopy (AFM) [3] and finally, in vitro in endoneurium
and epineurium in two diabetic rat models with AFM [17].

These morphological alterations are presumed to result
from AGE binding and subsequent irreversible crosslink-
ing of collagen. Collagen has naturally occurring crosslinks
in the form of dehydrohydroxylysinonorleucine [37,38].
Portions of the collagen molecule, not typically crosslinked
by lysyl oxidase, however, can become irreversibly cross-
linked in the presence of glucose [39-41]. When exposed
in vitro to reducing sugars such as glucose, ribose and gly-
ceraldehydes, rat tail tendon has shown a radial expansion
of collagen fibril lattice, due to covalent bonding of the
sugar with the lysyl and hydroxylysyl groups of the colla-
gen, leading to crosslinks [42].

In recent work using liquid chromatography/mass
spectroscopy, over 20 advanced glycation end products,
in particular those forming crosslinks such as GOLD
(glyoxal-derived lysine dimer), MOLD (methylglyoxal-
derived lysine dimer), and DOLD (3-deosyglucosone-
derived lysine dimer) were quantified in human blood
plasma samples [43]. If such a technique could be used to
account for all crosslinks in structural proteins such as col-
lagen, a non-destructive or minimally invasive method for
assessing AGE concentration could be used to predict
mechanical properties in heavily glycosylated tissue.

Methods such as detection with fluorescence or autoflu-
orescence have also been used to determine the relative
concentrations of various AGEs, see e.g., Ref. [44], though

the biochemistry of these crosslinks has not been fully elu-
cidated. Fluorescence emission has been correlated with
intermolecular spacing in corneal collagen; fluorescent
emission increased with age as did intermolecular spacing,
presumably due to an increase in crosslink density [45].
More recent work [46] has employed an immunochemical
detection method to detect AGEs. And most recently a
positive correlation has been shown [47] between autofluo-
rescence in skin at that 440 nm range and the amount of
pentosidine, a known crosslinking agent [48]. However,
the absorption spectra investigated may have overlapped
with that of other fluorophores such as nicotinamide ade-
nine dinucleotide (NADH) and hemoglobin.

1.3. Modeling and hypotheses

Though we expect glucose-induced crosslinking to pro-
duce classically altered mechanical response in collagen-
reinforced tissue, our prior work [18] showed no significant
differences in mechanical response between diabetic and
control tissues up to 40% strain. This strain is nearly coin-
cident with the strain required to “straighten’ collagen
fibers, which exhibit significant waviness; we may presume
that after this point, the mechanics of the actual crosslinks
are investigated.

In the present work, we perform simulations and exper-
iments to determine the behavior of the collagens sur-
rounding nerve tissue. Our hypotheses are:

(1) Diabetic nerve tissues exhibit significantly greater
shape parameters than normal nerve tissues. Qualita-
tively, this means that the stress—strain curve of the
diabetic tissue will be more sharply peaked at failure.

(2) Diabetic nerve tissues exhibit significantly lower
failure-stress-to-modulus ratios than normal nerve
tissues.

(3) A local load sharing rule will have a better goodness-
of-fit for the stress—strain responses of diabetic nerve
than controls; conversely, the equal load sharing rule
will produce stress—strain responses that fit the con-
trol curves better than the diabetic curves.

2. Methods

Our model employs the Weibull distribution as devel-
oped classically [49] and as later applied to composite
materials [24,25], assuming parameters at the fibril scale
(Fig. 1d, Table 1). Data from our own experiments on
whole rat sciatic nerve from diabetic and control animals
[18,19] were compiled for model input. Prior to this, pub-
lished collagen images [50] were analyzed to guide our esti-
mations of collagen fibril bundle morphology. Published
failure strengths of collagen fibrils were found to range
from 2 to 70 MPa [22,51,52]. Collagen fibril stiffnesses were
also taken from the literature, for reassembled fibrils (1-
6 MPa) [53] and bovine Achilles tendon (430 MPa) [22].
Data on the molecular structure of collagen fibrils, such



598 B.E. Layton, A.M. Sastry | Acta Biomaterialia 2 (2006) 595-607

Table 1
Size scales in collagenous structure of peripheral nerve
Structure In-plane Axial Load Series Parallel
dimension  dimension sharing  elements elements
notation (m) (n)
Amino 1 nm 0.5 nm
acids
Alpha 1.4 nm 300 nm C 1400 1
helices
Triple 4 nm 300 nm D 1 3
helices
Microfibril 10 nm 600 nm E 1 5-17
Fibril 20-150 nm <1 mm F 10,000 50-2000
Bundle (1-5) x <10 mm G 1 200-70,000
(2-20) pm
Nerve 1 mm <20 mm H 1 500-5000

Values for m and n represent the number of structural elements from the
preceding structural scale that comprise the given structure. For example,
approximately 5-17 fibrils comprise a microfibril in parallel and a
microfibril has length on the order of one triple helix. Values given for
collagen fibril diameter, bundle dimension, and nerve diameter are for rat
sciatic nerve.

as the three-dimensional packing order, were taken from
published values determined via X-ray diffraction [54,55].

We made the following assumptions in our model for
whole-nerve response: (1) collagen fibrils are contiguous
within a typical (~10 mm) tissue sample (Fig. 2); (2) the
fibril scale is the functional scale for stiff elements within
the tissue; (3) fibril waviness can be modeled adequately
as finite and periodic functions; and (4) the load-sharing
interdependence of fibrils can be assumed to fall within
the extreme bounds of ELS and LLS. Also, the following
assumptions were implicit in our model: (1) crosslinks
within triple helices affect the axial properties; and (2) tis-
sues containing larger-diameter fibrils are not necessarily
stiffer, since the larger diameters result mainly from decora-
tions of ECM proteins (Fig. 3) such as Amadori products
[56], and do not affect the backbone stiffness.

b c
< _

PG matrix
\

N

Fig. 2. A schematic of two possible mechanisms for load transfer within
collagenous tissue: (a) photograph of rat sciatic nerve being tested
uniaxially for the current study shows (b) load transferred solely within
fibrils vs. (c) load transferred via shear within matrix among fibrils.
Adapted from Ref. [86].
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Fig. 3. A molecular view of collagen, where three left-handed helices
form a right-handed triple helix held together by hydrogen bonds (http://
www.ncbi.nlm.nih.gov/). At the secondary scale of collagen, where left-
handed alpha helices form and glucose, or another monosaccharide, may
spontaneously form a open-loop structure, freeing an aldehyde which has
the potential to form a Schiff base and finally an Amadori product or
advanced glycation end-product (AGE) [30] with one of the over 1000
nitrogen atoms of each collagen molecule which occupy every third atomic
position of the peptide chain.

Tissue response was simulated by selecting values for the
following parameters (Table 2): average fibril modulus, Ef,
collagenous area of nerve, A., packing fraction of collagen,
/. average, 7, and standard deviation, o,, of collagen fibril
bundle angle, y, average, a, and standard deviation, a,, of
collagen fibril amplitude, @, Weibull modulus, x,, and Wei-
bull shape parameter, «. Ideally, E;, A, and fare known for
a given tissue sample a priori. In this work, 4. was set to
0.1, which is near the lower end of the literature values;
for example, a value of 0.106 was reported for human pel-
vic cavity nerve [14], a value of 0.16 was found by for
human posterior tibial nerve [15] and a value of ~0.15
was reported for adult Sprague-Dawley rat sciatic nerves
[16]. The packing fraction of collagen within the collage-
nous portion, f, was set to 0.7, an approximation made
after analysis of images of diabetic and non-diabetic
BioBreeding rats [35], the same species used in this study.
The value of E; was taken directly from data from
our own uniaxial stress—strain experiments, and calculated
from

EFAJM7 (1)
EH — €L

for each tissue specimen, where ¢ and oy represent the
lower deviation from linearity on the stress—strain curve
and ey and oy represent the upper deviation from linearity.

Sinusoidal fibrils were modeled as 10 connected line seg-
ments, denoted by vectors

u=1{0,01,02,...,1.0},...,27, and (2)

v =asinu, (3)


http://http:www.ncbi.nlm.nih.gov/
http://http:www.ncbi.nlm.nih.gov/

B.E. Layton, A.M. Sastry | Acta Biomaterialia 2 (2006) 595-607 599

Table 2
Measured, estimated and calculated parameters used as input to the
mechanical model of peripheral nerve

Parameter Value Description

Measured Dy ~1 mm Whole nerve diameter
&L 0.07-0.37 Lower strain limit of linear
portion of stress—strain curve
eH 0.15-0.63 Upper strain limit of linear
portion of stress—strain curve
oL 0.15-0.63 Lower stress limit of linear
portion of stress—strain curve
OH 0.15-0.63 Upper stress limit of linear
portion of stress—strain curve
Ex 4-50 MPa Elastic modulus of whole nerve
Estimated A 0.1 Area fraction of collagenous
portion of nerve
f 0.7 Area packing fraction of

collagen within collagenous
portion of nerve

100-500 MPa Elastic modulus of
collagen fibrils

Calculated Er

Model 7 0 Average fibril angle in
radians (zero for all
simulations)

[ 0-0.82 Standard deviation of fibril

angle in radians (0 = parallel
to nerve axis)

0-1 Fibril amplitude normalized
to fibril sinusoidal
spatial wavelength

Ql

Oa 0-0.35 Standard deviation of
fibril amplitude

E. 0-1 Normalized fibril Weibull
scale parameter
strength/modulus

o 0-10 Fibril Weibull shape parameter

Measured parameters were taken directly from uniaxial tension stress—
strain curves of whole sciatic nerves from BioBreeding rats [18]. Estimated
value for 4. was taken from [14]. Estimated value for f was taken from
[35]. The value for E; was calculated based on Eq. (1) and is used to match
the linear region of the stress—strain curve. Of the parameters used to
define the model, 7, g,, @, o, describe the shape of the toe region and the
final two E, and o describe the shape of the failure region.

where « is absolute fibril spatial amplitude. To simulate the
angle, 7, each fibril makes with the nerve axis, each fibril

was rotated via

g cosy —siny
()= Gor )G ®

v siny  cosy v
prior to simulated straining.

Eleven fibrils were used in each simulation; this value
produced a satisfactorily smooth toe region stress—strain
match with experimental results, and also resulted in a trac-
table computation (1-10s on the computation platform
described at the end of this section). Greater angles
required longer computation times. Since statistics for both
normalized fibril amplitude, a, and fibril angle, y, affect the
simulated toe-region shape independently, in our simula-

tions we systematically varied the non-dimensionalized
parameter, a, from 0 to 1, in increments of 0.025,

a=" ()

where L is the fibril period. Angle standard deviation, o,
was varied from 0 to ~0.85 (radians) in 40 increments, fol-
lowing our prior work [19].

This range was found to be sufficient to cover the entire
range to minimize root mean square (RMS) error between
simulated and experimental curves. Though solutions min-
imizing RMS error are frequently non-unique, i.e., there
are several combinations of a and ¢, or a and ¢, that
map to a given RMS error, for the two domain variables,
a and o, or a and ¢, the RMS error is single-valued. We
bounded the combinations of these variables that mini-
mized within 2.5% (40 values per axis) of the range of val-
ues of physiological interest for this tissue. To verify that a
local minimum was not mistaken for the global minimum,
several simulations with four times the discretization in
each dimension were run. Simulations only up to ey
(Fig. 4) were run to fit a and o, in one simulation set, then
combinations of a and ¢, that minimized RMS error in a
second simulation set were found. In this manner, we were
assured of bounding all reasonable values of our geometry
variables. For example, curve 1 in Fig. 4 has a relatively
smaller a or ¢, than curve 3. Fig. 5 depicts a typical consti-
tutive response from a control and a diabetic sample, and
demonstrates the ability of the combined fibril-scale mor-
phology stochastic failure prediction model to capture
and parameterize behaviors as diverse as those shown.

Once the toe region was mapped with @ and ¢, or @ and
o, we used the Weibull distribution to model the fibril
strength distribution according to

true stress

true strain

Fig. 4. A family of curves depicting the effects of average fibril amplitude,
a, and fibril amplitude standard deviation, o, (four leftmost curves) on the
behavior of the toe region. The two rightmost solid curves depict the
effects of the Weibull shape, «, and scale, E, parameters on model results
for matching uniaxial tension stress-strain curves for whole rat sciatic
nerve. Generally, large « and large E, result in a high, tight failure peak,
whereas a small o and small E, result in a low, broad failure plateau.
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Fig. 5. Representative failure stress—strain curve from (a) control and (b) diabetic whole nerve uniaxial tests depicting strain limits, ¢ and &y of linear
portion of curve used to determine whole nerve modulus, Ey. Initial toe region stress data points less than 0.5% of maximum stress were removed since
data were taken from nerves which had been strained to 10%, 20%, 40%, and 80% prior to being stretched to failure. Vertical post-failure tail of control

curve resulted from termination of test prior to complete tissue separation.

Fxy=1—¢ (’) (6)

where x¢ and «, are scale and shape parameters, respec-
tively. We determined the ranges of x, and « that produced
RMS minima for all experimental curves, by extending
them until global minima were found. Global minima for
each case were inspected visually to verify that the numer-
ical best fit matched the constitutive curve. To reduce
excessive computation time and minimize spurious results
resulting from running simulations to total failure strain
¢r (Fig. 4), simulations were run to a stress, oy, defined
as 95% of the maximum stress attained in the experimental
data. For convenience, x, was normalized to fibril modu-
lus, E; and fibril strength, E,, was defined as

X0

E =2
Ey

(7)

It is well established that a composite material with
many, small independent load-carrying members is less
likely to fail abruptly than one with a few large members
whose overload is highly dependent on local failure [24].
In our simulations, we used the extreme LLS and ELS
schemes mentioned previously, to model tissue failure in
the nerve. A classic model [25] allows for a composite to
be modeled as a chain of bundles, where the links of the
chain act in series and the bundle fibrils act in parallel.
Essentially, if all the fibrils, F, within any of the bundles,
G, fails, then the composite, H, fails via

Hyo(x) =1—[1-G,x)]" forx >0, (8)
where 7 is the number of fibrils in parallel for a given bun-
dle G in a composite with m bundles (Table 1). Our imple-
mentation was slightly modified in that we assumed that
fibrils and thus bundles were tissue-spanning (i.e., m =1)
at both the tissue-bundle scale and at the bundle-fibril
scale. A full treatment is given in Refs. [24,25] but, briefly,

bundle failure equations have the form

Gi(x) = F(x),
Gy (x) = 2F (2x)F (x) — F(x)’, )
Gs(x) = 6F (x)F (%x)F(h) —3F (%x) F(x),

where F(x) is the familiar Weibull function (6).

Closed-form solutions for G with n > 9 become intracta-
ble, and those which include solutions for non-straight
fibrils do not exist; thus, binning fibril behavior in a small
set (11) was identified as a practical solution. As an exam-
ple of an extension to this model which we will mention,
but not explore here, a similar solution could be con-
structed for bond failure, within a single type I collagen
alpha helix, according to
Dm,n(x) =1- [1 - C3(X)}", (10)
where D represents the failure probability function of three
bound collagen alpha helices, C. This equation could be
used to bridge scales C and D, (Fig. 1) where # in this case
could be further compartmentalized into its approximately
1100 covalent peptide bonds within a single triple helix plus
its variable (~50-100) crosslinks.

The mathematical descriptions of the ELS and LLS are
given as follows. As the name implies, in ELS, when one
fibril breaks, all the surviving fibrils share the remaining
load equally. In LLS, fibrils neighboring a broken fibril
sustain the majority of the load, shielding the other fibrils.
This is the equivalent of a stress concentration factor. In
simulations here, we used

r
Ko=1+2. 11
+5 (11)

So in our example with 11 fibrils, in ELS, for one broken
fibril, K for each remaining fibril was 11/10. But in LLS, K
for the two fibrils nearest the broken one was 1.5, with the
remaining nine having a K= 1. Since each simulation
employed a random variable mapped into the Weibull dis-
tribution, sets of 10 simulations were run for each pair of
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E, and o. For each simulation the RMS error was calcu-
lated as

RMS =

where 6 is the vector of experimental stress values and o is

the vector of simulated stress values. These were then con-

tour mapped and the minima reported according to [57].
An aspect ratio, 4, was defined for each failure curve as

_ #(UTS/2)

OuUTS

A , (13)

where ¢(UTS/2) is the width of the full failure curve taken
at a height of one-half the ultimate tensile stress, oyrs.

For each sample, a total of 6000 simulations, each taking
approximately 30 s on the Sun Blade-1000 (900 MHz, 2GB
RAM) platform, were run. To compare results between the
diabetic and control groups, Student’s unpaired two-
tailed r-tests were used, and p-values calculated for each
comparison.

3. Results

While our primary objective of this work is to demon-
strate that our modified Weibull-Harlow—Phoenix model
is useful for relating the macroscopic failure behavior of
soft biological tissue to the molecular scale modifications
in diabetic tissue, we realize that future work in this
area may include models employing a continuum mechan-
ics approach. As a matter of convenience for those using
such approaches, we have made a first approximation as
to the shape of the toe region. The intent of this paper is
primarily to determine tissue-morphology-based parame-
ters, y and a, rather than the polynomial parameters that
follow.

Stress—strain curves were curve-fitted to quadratic
equations

o =ce’ +de. (14)

No constant term was included, because less than 0.5%
of maximum stress was truncated and shifted in the toe
region, since data were from nerves that had been previ-
ously strained. These results show that the quadratic term
was significantly stronger (p =0.038) in the diabetics
(Table 3). This trend was repeated when a cubic approxi-
mation was used. Using a cubic function to approximate
the toe region, increased R? values of 0.998 and 0.999 for
diabetics and controls, respectively, were found. A quartic
model found increased R* values to greater than 0.999. A
larger higher-order term implies that the onset of load hap-
pens more suddenly once a certain strain is reached,
whereas a stronger contribution from the linear term
implies that loading occurs more gradually.

Table 3
Model input parameters and model results for diabetic (» = 8) and control
(n = 6) uniaxial testing and simulations

Model Parameter Diabetics Controls
(a) Ly (mm) 10.0 + 0.0 10.0 0.0
Dy (mm) 1.18 £ 0.08 1.23 +0.07
&L 0.11 £ 0.04* 0.25 +0.10
ey 0.20 £ 0.05* 0.40 +0.18
a1 (MPa) 0.88 +0.40 0.96 +0.25
oy (MPa) 2.83 +£1.07 2.39 £+ 0.60
En (MPa) 259+ 14.1 16.1 +£5.8
Er (MPa) 365+ 167* 169 4+ 75
A 0.050 4+ 0.031* 0.171 £ 0.097
W, (kJ/m?) 24.73 +23.17* 62.39 + 33.88
(b) o = c&? + de ¢ 71.1 £51.1* 23.3 +20.6
d 1.49 +1.02 1.58 +£0.52
R? 0.979 +0.014 0.983 4+ 0.013
(c)a,=0 a 0.51 £ 0.12* 0.63 40.06
Oa 0.12+0.03 0.20 +£0.10
RMS 0.641 +0.272 0.457 £+ 0.089
R? 0.998 + 0.001 0.998 + 0.001
(d) g,=0 a 0.43 +0.09 0.53 +0.09
o, 1.51 +£0.39 1.57 £0.17
RMS 0.561 4+ 0.235 0.107 £ 0.000
R 0.987 4 0.005 0.988 4 0.002
(e) ELS o 9.9 + 5.50* 4.33 +3.67
E, 0.28 +0.07* 0.58 +£0.25
RMS 0.150 4 0.130 0.162 £ 0.056
(f) LLS o 21.8 +3.87* 10.17 +10.91
E. 0.30 +0.07* 0.73 +£0.27
RMS 0.288 4 0.293 0.284 £+ 0.143

(a) Whole nerve diameter, Dy strain and stress at the onset ¢, o1 and end
&y, oy, of the linear region, whole nerve modulus, Ey and fibril modulus,
Ef, used as input to the simulations. Aspect ratio 4, was defined as the
width-to-height ratio of the failure curves. Strain energy, W, = f ode
under the toe region is also shown. (b) Results of quadratic curve fitting of
toe region (up to ¢ ) of unaxial test data from diabetic and control whole
rat sciatic nerves. (c¢) Results for RMS minimization with @ and ¢, as
parameters (o, = 0). (d) Results for RMS minimization with @ and g, as
parameters (o, =0). (e) Results for RMS minimization of Weibull
parameters, o and E, under equal load sharing (ELS). (f) Results for RMS
minimization of Weibull parameters, « and E, under local load sharing
(LLS).

To study the effects of actual fibril geometry, amplitude,
a, and amplitude standard deviation, o, were found, up to
¢q, for eight diabetic and six control specimens. A typical
result (Fig. 6) is shown, demonstrating that control tissues
(Fig. 6a) had both higher amplitude averages and standard
deviations than those of diabetics (Fig. 6b). To further
examine the effects of actual fibril geometry, amplitude
and angle standard deviation were also simulated to strains
up to ey for each specimen. A typical result (Fig. 7) reveals
a similar trend, with control specimens (Fig. 7a) requiring a
larger amplitude and standard deviation than those of dia-
betics (Fig. 7b), to minimize RMS error.

The relative responses resulting from ELS vs. LLS
assumptions in a typical control specimen can be seen in
the contour plot of Fig. 8, which shows that to sustain a
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Fig. 6. RMS error contour plot of results from fitting a single rat sciatic nerve uniaxial stress—strain curve from (a) control and (b) diabetic specimens up
to &y, with parameters a (average fibril amplitude) and o, (standard deviation of fibril amplitude) holding y = 0. In all simulations, = 0. The plot is only
half-populated since, for example, in all simulations where a = 0, o, = 0. Key features are that the combination of a and ¢, has been found that minimizes
RMS error: a =0.7, g, =0.33 for control and a = 0.525, ¢, =0.115 for diabetic. The four icons on the boundary of the contour plot depict the

approximate fibril geometry used to generate that region.
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Fig. 7. RMS error contour plot of results from fitting a single rat sciatic nerve uniaxial stress—strain curve for (a) control and (b) diabetic specimens up to
ey, With parameters a (average fibril amplitude) and ¢, (standard deviation of fibril angle), holding o, = 0. In all simulations, 7 = 0. Generally speaking,
larger amplitudes and variations in angle are found to best represent the more compliant control tissue, whereas smaller amplitudes and smaller variations
in angle are found to best represent diabetic tissue. The four icons on the boundary of the contour plot depict the approximate fibril geometry used to

generate that region.

given load, in the case of the LLS scenario (Fig. 8b) the
fibrils must be stronger than in the ELS scenario
(Fig. 8a). Values of E, and « for all diabetic specimens were
also plotted; a typical result for diabetic tissue (Fig. 9)
demonstrates that application of the LLS model implies
stronger fibrils for a given load, to fit experimental data.
In this case, the ELS assumption resulted in lower local
RMS errors, but to a lesser degree than was the case for
the control data.

Goodness of fit, ¢, was evaluated as the difference
between the minimum RMS error value for each of the
two models, normalized by the LLS error:

b= RMS;15

The LLS model, in general, fit the diabetic failure curves
better than the ELS model; the ELS model fit control fail-
ure curves better than the LLS model (Fig. 10). Across all
samples, the ELS model had a lower RMS value; however,
when we compare the two models with (15) we see that this
difference is greater (i.e., relatively lower RMS ELS for
controls compared to diabetics). This supports Hypothesis
3. The aspect ratio, 4, was found to differ significantly be-
tween diabetic failure curves and control failure curves,
0.050 vs. 0.171 (p < 0.05) (Table 3a).

(15)
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curve from a control animal for (a) equal load sharing and (b) local load sharing. In (b) local load sharing the fibrils must be stronger on average to carry
the same global load. The four icons on the boundary of the contour plot depict the approximate shape of the Weibull cumulative distribution function
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its minimal E\ (normalized Weibull scale parameter) value is less than that of the control (Fig. 8) since its E; (fibril modulus) is greater (Fig. 5). The four
icons on the boundary of the contour plot depict the approximate shape of the Weibull cumulative distribution function used to generate that region.
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Fig. 10. A plot depicting relative goodness-of-fit, ¢, (15) as a function of
failure curve aspect ratio, 4 as defined in (13). Squares denote diabetic
results and circles denote control results. Three diabetic and control
stress—strain curves are shown. The solid line depicts a least-squares fit to
the diabetic data. The dashed line is a least-squares fit to the control data.

4. Discussion

As may be seen from the results of Table 3, Hypothesis 1
is supported by experimental evidence. Diabetic nerve
tissues exhibited a significantly (p < 0.05) greater shape
parameter, o for ELS (9.88 vs. 4.33) and for LLS (21.81
vs. 10.17). The results of Table 3 also support Hypothesis
2; a significantly (p < 0.05) lower modulus-normalized scale
parameter, E,, was found in diabetic vs. control tissues,
for both ELS (0.28 vs. 0.58) and for LLS (0.30 vs. 0.73)
assumptions. Hypothesis 3 was also supported by experi-
mental and numerical findings; the normalized RMS error
for the LLS model for diabetics had a relatively lower error
than the ELS model. This implies that the diabetic nerves
behaved in a more brittle manner. Likewise, in support
of Hypothesis 3, the failure data for the control nerves
tended to fit the ELS model better than it did the LLS
model. This implies that the ability of the ELS model to
shield or protect unbroken fibrils from local overload in
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the vicinity of failed fibrils may offer insight into the micro-
and nanoscale failure processes within collagenous tissue.

The broader implications of these results are as follows.
For more highly correlated fibrils, either due to an increased
number of crosslinks or due to higher correlations within
individual triple helices, peripheral nerve would be more
likely to fail with elevated endoneurial fluid pressure
(EFP). This relationship is suggested by prior literature
[58], though we have not studied the degree of the effect of
this reduction in failure stress in light of very classic EFP
data.

Fibril modulus was assigned based upon whole-tissue
response and assumed collagen volume and packing frac-
tions. Ideally, a smaller specimen on the order of just a
few fibrils, or a single bundle of almost purely collagenous
epineurium could be taken from the nerve sample and tested
separately to obtain a fibril modulus. This approach would
not only allow insight into the degree to which glycation
affects fibril properties, but would also serve to narrow
the bounds on the load-sharing rule. As additional informa-
tion becomes available with advanced imaging and labeling
technologies, our methodology will be applied more readily.

There is extensive literature on the molecular modeling
of the elastic properties of collagen, see e.g., Refs. [59-61]
and failure mechanics of collagen, e.g., Ref. [52]. The incor-
poration of the results of such approaches would augment
our model by serving as a front-end refinement to our lin-
ear elastic model of individual fibrils, as well as a source of
failure distribution data to our Weibull curves. The effect
of employing molecular mechanics simulations might
improve the accuracy of our model, and could serve to
refine a bundle model of glycated collagen-reinforced tissue
to a model intermediate to extreme LLS and ELS behavior.

In previous work [19], we considered the sciatic nerve as
a pressure vessel where the transverse properties of this
pressure-vessel structure were considered. The main under-
lying assumption is that collagen is the major load-carrying
component of nerve. Similar approximations have been
made for other soft-tissue models based primarily on vol-
ume-fraction assumptions. For example, Ault and Hoffman
[63] assume that the protein elastin contributes negligibly to
mechanical behavior of tendon due to its low volume frac-
tion. A similar argument may be made for our neglect of the
contribution of cellular material in nerve. Experimental val-
ues of cellular material in individual axons [62] have shown
that the maximum force individual neurons can sustain is
on the order of 1 nN. With approximately half a million
neurons in a sciatic nerve, this represents a total force of less
than a mN, or a contribution three orders of magnitude
lower than the forces generated by the collagen matrix.

Neither continuum nor multiscale models developed to
date can provide the complete description we show here,
though each has specific strengths. Continuum models
are essentially phenomenological, as is our polynomial
curve-fitting (Table 3) model, while the stochastic failure
model presented here registers individual substructures,
indexes them by their location within the material, and

assigns individual collagen fibrils, a mathematical contribu-
tion in the stress-strain curve, based on data from the
structures themselves. Attempts to model the viscoelastic
properties of peripheral nerve with continuum-mechanics-
based approaches [21,65], have the central shortcoming
of inability to incorporate fibril load sharing. Multiscale
models, some even using seven or more parameters [66],
have been used to span the macro-microscale dimensions,
in tendon. As other authors have pointed out, however,
these methods neglect what may occur in the case of local
failure from overloading due to stochastic nature of the
material. A micromechanics-based model for mechanical
properties of connective tissue [67], and even an attempt
to quantify the toe region-to-failure curve for low volume
fraction reconstituted ECM [68] have also been proposed.
But the present model goes beyond that of traditional con-
tinuum approaches for modeling nonlinear tissues, see e.g.,
Refs. [69,70], and gives us a better understanding of how
the molecular scale of tissue affects global properties for
the purpose of predicting how and where failure is likely
to occur.

One common difficulty in reporting results of soft tissue
experimental mechanics is the decision on where to mark
the “zero load” condition. Two methods include defining
zero load at the precision limit of measurement of the device
recording load, or selecting some fraction of in vivo strain to
define zero load. The former has the difficulty that the mass
of the specimen is likely larger than the precision limit of the
measuring device; the latter has the difficulty that anatomi-
cal posture affects in vivo strain, and thus is not an unambig-
uous or repeatable value.

In our tensile apparatus, specimens were suspended
above an analytic balance. The balance was tared while the
specimen was still slack, leaving a small fraction of the mass
supported by the scale. The mass of each specimen was
approximately 100 uN. If one-tenth of the specimen was
supported by the scale, this represents a force of 10 uN or
~10E—06 of our maximum loads of around 10 N. One might
like to know the true load during tensile testing normalized
to in vivo values. Such a method would involve non-invasive
or minimally invasive imaging and sample marking prior to
sample excision, coupled with a method of replicating the
true in vivo loading mode. Here, we have placed the zero load
condition at 0.5% of maximum load. This was identified as a
simple, convenient, consistent and repeatable method.

The terms most likely affected by our choice of zero load
are the coefficient ¢ of (14) as well as the angle, y and ampli-
tude a terms. However, since a greater fraction of low-load
toe region was eliminated from the control specimens as
compared with diabetic specimens, this would only exag-
gerate the effects found in Table 3. Another term likely to
be affected by our choice of zero load is the strain-energy
term, W. The strain-energy term is less sensitive to the
selection of absolute zero than those mentioned above. If
the toe region were allowed to extend further to the left,
giving additional area under the stress strain curve, the ds
term would be small due to the very small slope (ds/de)
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of the curve. This change would be small compared to the
total area under the curve, regardless of the duration of the
straining. For the results of our experiments, the effects
would be exaggerated since the control nerves tended to
have more protracted failure regions.

The modeling described here, in mapping the failure
mechanics of the tissue Weibull statistics, follows from
classic literature on rope, cable, and other engineered mate-
rials [71,72]. Tt is likely in the future that adaptation of such
models will become more common, as detailed investiga-
tion of the structure of tissue becomes possible. Indeed,
the biomechanics literature has shown a recent increase
in the application of micromechanics tissue models, see
e.g., Refs. [67,68,73]. Indeed, our work can explain the
recent findings [74] demonstrating that for collagenous tis-
sue such as bovine pericardium, that the stiffness of actual
collagen fibrils is not measured until ~10-15% strain.

Recent activity in failure mechanics modeling to extend
the ELS and LLS load sharing strategies [75,76], to greater
numbers of fibrils and with novel strategies for parameteriz-
ing behavior that falls somewhere between the two extremes,
has appeared. An interesting extension of the current work
would be the application of these methods of Refs. [63,64]
to problems of biological relevance, especially in the fields
of disease modeling and tissue engineering.

In conclusion, the central advantage of a microme-
chanics approach is that histological and anatomical data
can be used directly in mechanics models, and can further
allow direct use of biochemical data in prediction of
mechanical behavior. In the specific case of peripheral
nerve, alterations in function have been linked with axi-
ally several stretching; these include membrane potential
[77], compound nerve action potential [78], blood flow
[79], and nerve conduction velocity [80]. When peripheral
nerve is compressed with a tourniquet [79] nerve conduc-
tion velocity also diminishes. The efforts initiated here
may prove useful in interrogating a number of functional
losses in glycated peripheral nerves. More accurate exper-
imental data on intra- and interfibril mechanical proper-
ties as well as more extensive nanomorphological data
to resolve our tissue-spanning hypothesis will allow better
approximations for load sharing and fiber recruitment
during load, and ultimately, prediction of mechanical
properties of collagenous tissues undergoing biochemical
alterations.
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