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Severe, particle-level strains induced during both production and cycling have been putatively linked to lifetime limiting damage
in lithium-ion cells. Because of the presently unknown contributions of manufacturing and intercalation induced stresses in Li
cells, this correlation is critical in determining optimal materials and manufacturing methods for these cells. Both global and
localized loads must be estimated, in order to select materials able to resist fracture. Here, we select the LiMn2O4 system for study.
We present results of a set of simulation techniques, ranging from one-dimensional finite difference simulations of spherical
particles, to fully three-dimensional �3D� simulations of ellipsoidal particles, to systematically study the intercalation-induced
stresses developed in particles of various shapes and sizes, with the latter 3D calculations performed using a commercial finite
element code. Simulations of spherical particles show that larger particle sizes and larger discharge current densities give larger
intercalation-induced stresses. Simulations of ellipsoidal particles show that large aspect ratios are preferred to reduce the
intercalation-induced stresses. In total, these results suggest that it is desirable to synthesize electrode particles with smaller sizes
and larger aspect ratios to reduce intercalation-induced stress during cycling of lithium-ion batteries.
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Severe, particle-level strains induced during both production and
cycling have been putatively linked to lifetime limiting damage in
lithium-ion cells. Intercalation and deintercalation of Li ions into
cathodic lattices, including LiCoO2,1 LiMn2O4,2 and LiFePO4,3

have been postulated to result in fraction inside the particles, as
determined by experimentation on model systems. In LiMn2O4, for
example, a 6.5% percent volume change has been reported when
Mn2O4 is lithiated into LiMn2O4;4 simulations of LiMn2O4 sug-
gested that intercalation-induced stress may exceed the ultimate
strength of the material.5 Also, stress generation due to cell-scale
loads by compression during manufacturing has been shown to re-
sult in localized particle stresses that are much higher in the graphite
anode material6 �the ratio between local and global stresses is
around 25 to 140�. Indeed, stresses of these orders exceed the known
strengths of these materials including the most commonly used, and
most promising, cathode materials �Table I �Ref. 7, 8, 4, and 9��.

Stress generation due to Li-intercalation, and more generally in
other processes, has been modeled in prior work at the particle scale.
Christensen and Newman estimated stress generation in lithium in-
sertion into the carbon anode10 and LiMn2O4 cathode5 particles.
More broadly, stresses induced by species diffusion have been stud-
ied in other fields, including metal oxidation and semiconductor
doping. Prussin11 first treated diffusion-induced stress by analogy to
thermal stress. In this study, stress generation during doping of bo-
ron and phosphorus into silicon wafer was studied. Li12 studied
diffusion-induced stress or chemical stress in elastic media of simple
geometries following this method as well.12 Yang13 studied the evo-
lution of chemical stress in a thin plate considering the interaction
between chemical stress and diffusion following the thermal stress
analogy by Prussin.11

Though these sets of efforts offer a means of stress estimation at
the particle scale, by different physical assumptions, the implemen-
tations to date have not been applied to the problem of three-
dimensional stresses. Because of the presently unknown contribu-
tions of manufacturing and intercalation-induced stresses in Li cells,
this correlation is critical in determining optimal materials and
manufacturing methods for these cells. Both global and localized
loads must be estimated in order to select materials able to resist
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fracture. Further, the role of localized particle fracture in capacity
fade has been implied, but not quantified, given the general lack of
understanding of localized loads in batteries.

Thus, the present work is focused on determination of localized
particle stresses in cathode particles. Here, we selected the LiMn2O4
system, following Ref. 14-18 on battery performance modeling, Ref.
19 and 20 on atomic scale simulations of structure, and Ref. 5 on
intercalation-induced stress simulation because of the low cost and
environmental safety of LiMn2O4. We have the following objectives
in this study:

1. To determine diffusion-induced stresses according to an anal-
ogy to thermal stress, following Ref. 11-13 for single particles, and
determine the correspondence with prior work5 in Li cells;

2. To verify the implementation of a single-particle model nu-
merically, using a finite difference scheme and validation of simple
results; and

3. To implement this model into a full finite element scheme,
and simulate stresses induced by intercalation in particles of non-
spherical geometry.

Simulation

Stress-strain relations.— For intercalation processes, the lattice
constants of the material may be assumed to change linearly4 with
the volume of ions inserted, which results in stresses. Therefore, one
can calculate intercalation-induced stress by analogy to thermal
stress. Prussin11 previously treated concentration gradients analo-
gously to those generated by temperature gradients in an otherwise
unstressed body.

Stress-strain relations including thermal effects are written clas-
sically for an elastic body21 as

�xx − �T =
1

E
��xx − ���yy + �zz�� �1a�

Table I. Stress and strain in cathode materials in the intercala-
tion process.

Material Measurement technique Stress or strain

LiCoO2 film �Ref. 7� Laser beam deflection �1 GPa �stress�
LiMn2O4 film �Ref. 8� Laser beam deflection �0.64 GPa �stress�
LiMn2O4 �Ref. 4� Neutron-diffraction 0.027 �strain�
LiFePO �Ref. 9� X-ray diffraction 0.022 �strain�
4
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�yy − �T =
1

E
��yy − ���xx + �zz�� �1b�

�zz − �T =
1

E
��zz − ���xx + �yy�� �1c�

�xy =
�xy

2G
�yz =

�yz

2G
�xz =

�xz

2G
�1d�

where �ij are strain components, �ij are stress components, E is
Young’s modulus, � is Poisson’s ratio, G is modulus of elasticity in
shear, � is thermal expansion coefficient, and T is the temperature
change from the original value. Analogously, the stress-strain rela-
tion with the existing of concentration gradients can be written as13

�ij =
1

E
��1 + ���ij − ��kk�ij� +

c̃�

3
�ij �2�

where c̃ = c − c0 is the concentration change of the diffusion species
from the original �stress-free� value, and � is partial molar volume
of solute. Equation 2 can be rewritten to obtain the expression for
the components of stresses

�ij = 2��ij + ���kk − 	c̃��ij �3�

where � = E/2�1 + ��, � = 2��/�1 − 2��, and 	 = ��3� + 2��/3.
As usual in elasticity, the strain tensor is related to displacement u
as21

�ij =
1

2
� � ui

� xj
+

� uj

� xi
� �4�

and the equilibrium equation, neglecting body forces, is21

�ij,i = 0 �j = 1,2,3� �5�
Substitution of Eq. 3 and 4 into Eq. 5 leads to the displacement
equations22

��2ui + �� + ��uk,ki − 	c̃,i = 0 �i = 1,2,3� �6�
The boundary condition for the case of a single particle is that the
particle surface is traction-free. This condition can be expressed as22

pnx = �xxl + �yxm + �zxn = 0 �7a�

pny = �xyl + �yym + �zyn = 0 �7b�

pnz = �xzl + �yzm + �zzn = 0 �7c�

where l,m,n denote the direction cosines between the external nor-
mal and each axis. Substitution of Eq. 3 and 4 into boundary con-
ditions Eq. 7 yields

��ui,j + uj,i�nj + ��uk,k − 	c�ni = 0 i = 1,2,3 �8�

where n1 = l, n2 = m and n3 = n. Therefore, we are left to solve Eq.
6, with the boundary condition of Eq. 8.

Diffusion equation.— As shown in Eq. 2 and 3, concentrations
are needed to calculate intercalation-induced stresses. To obtain a
concentration profile, the insertion and extraction of ions are mod-
eled as a diffusion process. The effect of existing electrons in the
solid on the species flux of lithium can be neglected, because elec-
trons are much more mobile than intercalated atoms.23 The chemical
potential gradient is the driving force for the movement of lithium
ions. The velocity of lithium ions can be expressed as

v = − M � � �9�

where M is the mobility of lithium ions, and � is the chemical
potential. The species flux can then be written as23

J = cv = − Mc � � �10�

where c is the concentration of the diffusion component �lithium
ions�.
The electrochemical potential in an ideal solid solution can be
expressed as13,24

� = �0 + RT ln X − ��h �11�

where �0 is a constant, R is gas constant, T is absolute temperature,
X is the molar fraction of lithium ion, � is partial molar volume of
lithium ion, and �h is the hydrostatic stress, which is defined as
�h = ��11 + �22 + �33�/3 �where �ij are the elements in stress ten-
sor�. Equations 10 and 11 show that the diffusion flux depends on
concentration, temperature, and stress field. Substitution of Eq. 11
into Eq. 10, assuming temperature is uniform, and noting that

��RT ln X� = RT
1

X
� X = RT

1

c
� c �12�

an expression of species flux �when there is no temperature gradient
inside the particle� can be obtained as

J = − D��c −
�c

RT
� �h� �13�

where D = MRT is diffusion coefficient. Conservation of species
gives

� c

� t
+ � · J = 0 �14�

Then, substituting Eq. 13 into Eq. 14 gives finally

� c

� t
= D��2c −

�

RT
� c · � �h −

�c

RT
�2�h� �15�

as the governing equation for the diffusion process. The initial con-
dition is c = c0, with the boundary condition

J = − D��c −
�c

RT
� �h� =

in

F
�16�

where in is the current density on the particle surface �which is
assumed to be a constant, known value in this study�, and F is
Faraday’s constant.

Numerical methods.— Finite difference method for 1D prob-
lem.— For the case of a spherical particle, the above equations be-
come one-dimensional. The stress tensor contains two independent
components, radial stress �r and tangential stress �t. The equilib-
rium equation �refer to Eq. 5� for this case is simply

d�r

dr
+

2

r
��r − �t� = 0 �17�

and the stress-strain relations �referring to Eq. 2� are

�r =
1

E
��r − 2��t� +

�

3
c̃ �18�

�t =
1

E
��t − ���r + �t�� +

�

3
c̃ �19�

The strain-displacement relations �referring to Eq. 4� are

�r =
du

dr
�t =

u

r
�20�

and the displacement equation �refer to Eq. 6� is

d2u

dr2 +
2

r

du

dr
−

2u

r2 =
1 + �

1 − �

�

3

dc̃

dr
�21�

Integration of this equation yields a solution for u, from which
stresses may be obtained. Noting that stresses are finite at the center
of the sphere �r = 0�, and that radial stresses are zero, �r = 0, at the
particle surface �r = r0�, the two constants in the solution can be
determined as
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�r =
2�E

3�1 − ��� 1

r0
3�

0

r0

c̃r2dr −
1

r3�
0

r

c̃r2dr� �22�

and

�t =
�E

3�1 − ��� 2

r0
3�

0

r0

c̃r2dr +
1

r3�
0

r

c̃r2dr − c̃� �23�

Equation 22 shows that radial stress actually depends upon the dif-
ference between the global and local averages of concentration.

The diffusion equation is �referring to Eq. 15�

� c

� t
= D	 �2c

� r2 +
2

r

� c

� r
−

�

RT

� c

� r

� �h

� r
−

�c

RT
� �2�h

� r2 +
2

r

� �h

� r
�


�24�
Equations 22 and 23 allow calculation of hydrostatic stress as

�h = ��r + 2�t�/3 =
2�E

9�1 − ��� 3

r0
3�

0

r0

c̃r2dr − c̃� �25�

By assuming that the characteristic time for elastic deformation of
solids is much smaller than that for atomic diffusion, the elastic
deformation can be treated as quasistatic.13 Therefore, Eq. 25 can be
substituted into Eq. 24 to obtain

� c

� t
= D	 �2c

� r2 +
2

r

� c

� r
+ 
� � c

� r
�2

+ 
c� �2c

� r2 +
2

r

� c

� r
�
 �26�

where 
 = ��/RT���2�E�/9�1 − ���.
Substituting Eq. 25 into boundary conditions Eq. 16, one has

J = − D�1 + 
c�
� c

� r
=

in

F
at r = r0 �27�

In this way, the two variables, concentration and stress, are decou-
pled.

To solve the above equation numerically, it is, along with bound-
ary and initial condition, transformed into dimensionless form first
as

� ĉ

� t̂
=

�2ĉ

� r̂2 +
2

r

� ĉ

� r̂
+ 
̂� � ĉ

� r̂
�2

+ 
̂ĉ� �2ĉ

� r̂2 +
2

r̂

� ĉ

� r̂
� �28�

0 � r̂ � 1 0 � t̂ � T̂ �where T̂ satisfies ĉ�r̂ = 1, t̂ = T̂� = 1�

r̂ = 1 − �1 + 
̂ĉ�
� ĉ

� r̂
= I r̂ = 0

� ĉ

� r̂
= 0

t̂ = 0 ĉ = c0/cmax

where dimensionless variables are defined as

r̂ =
r

r0
t̂ =

tD

r0
2 ĉ =

c

cmax

̂ = 
cmax I =

inr0

DcmaxF

In the above equations, cmax is the stoichiometric maximum concen-
tration and c0 is the initial concentration. It may be seen that the
effect of discharge current density, particle radius, and diffusion co-
efficient are all combined into the dimensionless current density I.

The numerical procedure is as follows. For each time step, con-
centration distribution is solved first by Eq. 28. Then, the concen-
tration is substituted into Eq. 22 and 23 to calculate stresses. Equa-
tion 28 is a nonlinear, parabolic partial differential equation. The
finite difference method is used here to solve the equation.

First, Eq. 28 is rewritten as

� ĉ

� t̂
= �1 + 
ĉ�

�2ĉ

� r̂2 + �2

r̂
+ 
̂

� ĉ

� r̂
+

2
̂ĉ

r̂
� � ĉ

� r̂
�29�

To discretize the differential equation into difference equations, the
problem is linearized by taking the value from the previous time
step for the terms in the two parentheses on the right side. The
Crank-Nicolson method is used for other terms. The difference
equation obtained is

ĉi
n+1 − ĉi

n

�t̂
= �1 + 
̂ĉi

n�
�ĉi+1

n+1 + ĉi−1
n+1 − 2ĉi

n+1� + �ĉi+1
n + ĉi−1

n − 2ĉi
n�

2��r̂�2

+ � 2

r̂i

+ 
̂
ĉi+1

n − ĉi−1
n

2�r̂

+
2

r̂i


̂ĉi
n� �ĉi+1

n+1 − ĉi−1
n+1� + �ĉi+1

n − ĉi−1
n �

2�2�r̂�
�30�

Terms including 1/r̂ will be singular at the particle center r̂ = 0. To
solve this difficulty, noting that

� ĉ

� r̂
= 0 when r̂ = 0 �31�

L’Hopital’s rule

lim
r̂→0

1

r̂

� ĉ

� r̂
=

�2ĉ

� r̂2 �32�

can be used to eliminate the 1/r̂ factor. Thus, Eq. 28 becomes

� ĉ

� t̂
= �3 + 3
̂ĉ�

�2ĉ

� r̂2 + �
̂
� ĉ

� r̂
� � ĉ

� r̂
�33�

which has no singularity at r̂ = 0. Therefore, Eq. 33 will be solved at
r̂ = 0 while Eq. 29 is solved elsewhere.

At two boundary points, imaginary points �out of the boundary�
are used to discretize the governing equation; the concentration val-
ues of these imaginary points are obtained by central differencing of
the flux boundary condition at the boundary points.

The Thomas algorithm is used to solve the tridiagonal system of
the difference equations. The simulation is halted when the concen-
tration on the particle surface r̂ = 1 reaches the stoichiometric maxi-
mum.

Finite element method for 3D problem.— The 3D problem was
simulated using FEMLAB �COMSOL Multiphysics�. Two models are
included in the multiphysics simulation, PDE �partial differential
equation� model �general form� and solid stress-strain model. In
PDE model, the diffusion process is described by the generalized
form

� c

� t
+ � · 
 = 0 �34�

where


 = − D��c −
�c

RT
� �h� �35�

In the solid stress-strain model, “thermal expansion” is included as a
load based on the variable of concentration c instead of temperature
in thermal stress calculation.

Material properties.— All the material properties used in the
simulation for Mn2O4 are listed in Table II.5,25 From Eq. 2, we see
that that partial molar volume plays a role analogous to a thermal

Table II. Material properties of Mn2O4.

Parameter Symbol and dimensions Value

Young’s modulus E �GPa� 10 �Ref. 25�
Poisson’s ratio � 0.3 �Ref. 25�
Diffusion coefficient D �m2/s� 7.08 � 10−15 �Ref.
Partial molar volume � �m3/mol� 3.497 � 10−6

Stoichiometric maximum
concentration

cmax �mol/m3� 2.29 � 104
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expansion coefficient, in calculating intercalation-induced stress. To
obtain the value for this property, the volume change of 6.5% for
y = 0.2 to y = 0.995 of LiyMn2O4 is used.5 The volume change of
6.5% gives a strain of 0.0212, which corresponds to the concentra-
tion change as y = 0.2 to y = 0.995. Therefore, partial molar volume
is, by noting the analogy between thermal expansion coefficient and
�/3

� =
0.0212 � 3

�0.995 − 0.2�cmax
= 3.497 � 10−6 m3/mol

Results and Discussion

1D finite difference simulations.— Christensen and Newman5

modeled the stress generated in LiyMn2O4 during lithium intercala-
tion on the 4 V plateau �0.2 � y � 1�. The same parameters and
properties are used here, except for the diffusion coefficient. In their
simulation, they used a state of charge-dependent diffusion coeffi-
cient, which includes a binary interaction parameter and a thermo-
dynamic factor. Here, a constant diffusion coefficient, taking the
value of the reference binary interaction parameter in their paper, is
used. The simulation results from the thermal stress analogy model
and the Christensen and Newman model are shown in Fig. 1. Al-
though different approaches are applied to calculate the
intercalation-induced stress, the results qualitatively show the same
trend.

We used the 1D model to simulate cycling of the active material
between y = 0 and y = 1, giving an initial condition for Eq. 26 of
c0 = 0. Results show that that maximum radial stress is located at
the center of the particle. The magnitude of the spatial maximum
dimensionless radial stress is given by

�̂r,max =
�r,max

E
=

2�cmax

3�1 − ����
0

1

ĉr̂2dr̂ − �1

3
ĉ�

r̂=0
� �36�

Figure 2 shows how dimensionless maximum radial stress �̂r,max
�both temporally and spatially during the discharge process� varies
with dimensionless current density �or dimensionless boundary flux�
I.

As shown in Fig. 2, maximum radial stress �spatially and tem-
porally� inside an electrode particle during the discharge process
increases with increasing dimensionless current density when 0
� I � 2.7. However, maximum radial stress decreases with increas-
ing dimensionless current density when it is larger than 2.7. The
decrease in stress is attributable to the fact that the concentration
profile is not fully developed, so that the global average term �first
term in the parentheses� in Eq. 36 decreases with dimensionless
current density, while the local average �second term in the paren-
thesis� remains constant. This is not desirable in the cycling of bat-

Figure 1. Comparison of simulation results of two models.
teries, because it reduces the utilization of the material. Therefore,
only the increasing branch of the curve is actually feasible. The
increasing branch shows that increase of discharge current density
and particle radius will increase the intercalation-induced stress. In
other words, smaller particles should be used to reduce intercalation-
induced stresses.

As mentioned earlier, the model used here to simulate the
intercalation-induced stress is a diffusion-stress coupling model. The
effect of stress on diffusion will be discussed briefly using the 1D
equations for a spherical particle. Substituting Eq. 25 into Eq. 13,
we obtain

J = − D�1 + 
c�
� c

� r
�37�

In Eq. 37, 
c is always a positive number, and the effective diffusion
coefficient is essentially D�1 + 
c� � D. Therefore, the diffusion is
enhanced due to the extra term 
c, which basically comes from the
hydrostatic stress gradient term in Eq. 13. In other words, stress
enhances the diffusion. This stress enhancement effect is also dem-
onstrated numerically, as shown in Fig. 3. It shows the concentration
profile at t = 1000 s with discharge current density i = 2 A/m2 on
the surface. The profile including the effect of stress has a smaller
gradient than that excluding the stress effect, confirming that stress
enhances diffusion.

Substituting the material properties into the expression of 

= 2�2E/�9�1 − ��RT�, we obtain 
 = 1.557 � 10−5 m3/mol. If the
maximum concentration is used, 
cmax = 0.356, which is not negli-

Figure 2. Maximum dimensionless radial stress vs dimensionless current
density.

Figure 3. Numerical results for the effects of stress.
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gible compared to unity. Therefore, stress effect cannot be neglected
here for the case of LiMn2O4. From the expression for 
, it can be
observed that 
 has smaller magnitude when the material has
smaller modulus E and smaller partial molar volume �. Thus, the
stress effect on diffusion may be negligible when the material is soft
�i.e., having a low modulus�.

3D finite element simulation results.— The 1D finite difference
simulation, with 4001 grid points and a time step of 0.001 s, was
used as the reference solution to study the convergence of the finite
element method. Figure 4 shows the 2-norm errors �differences�
between the finite element solutions and finite difference reference
solutions at t = 1000 s. The parameters used in the simulations are
current density i = 2 A/m2, and particle radius r0 = 5 �m. The fi-
nite element solutions converged to the reference solution as the
number of elements used increased. At the same time, Fig. 4 also
shows that solutions from 1D finite difference method and 3D finite
element method were consistent, because the nondimensionalized
errors of concentration and stress from 17,359 elements simulation
were 6.5 � 10−7 and 1.5 � 10−5, respectively �if nondimensional-
ized by the maximum values at t = 1000 s inside the particle�.

To study the effect of aspect ratios on the intercalation-induced
stress, ellipsoids with different aspect ratios were studied. The cur-
rent density on the surface is fixed at i = 2 A/m2. For the ellipsoid,
the lengths of three semiaxes a, b, and c satisfy a = b, and the
aspect ratio is defined as � = c/a, as sketched in Fig. 5. The vol-
umes of the ellipsoids were fixed at V = 4� � 53/3 �m3. A set of
simulations, with different aspect ratios, was run by FEMLAB.

Figure 4. Convergence plot of finite element solutions for �a� hydrostatic
stress and �b� concentration.
Characteristic solution profiles of concentration, von Mises stress
and shear stress �yz, are shown in Fig. 6 at the end of the discharge
process �when the surface concentration reaches the stoichiometric
maximum� for an ellipsoid with aspect ratio 1.953. Figure 6 shows
that �i� the concentration is higher around the poles, �ii� the von
Mises stress is larger around the equator, and �iii� shear stress has its
maximum on the surface. The solution profiles have the same pat-
terns for other ellipsoids with different aspect ratios.

Figure 7 shows how the maximum von Mises stress inside the
particle varies during the discharge process, for particles with dif-
ferent aspect ratios. It takes less time for particles with larger aspect
ratios to completely discharge. Also, during discharge, von Mises
stress increases first, and then drops. In Fig. 7, it can be observed
that when aspect ratio increases, the stress increases first �for aspect
ratios from 1.0 to 1.37� and then decreases �for aspect ratios from
1.37 to 3.81�. For ellipsoids with aspect ratio 2.92 and 3.81, the
intercalation-induced stress is smaller than that inside a sphere �as-
pect ratio 1.0�.

Figure 8 shows how aspect ratio affects �a� peak value of maxi-
mum von Mises stress, and �b� peak value of maximum shear when
the volumes of particles are fixed. Figure 8a shows that peak value
of maximum von Mises stress inside the particle increases first and
then decreases, as aspect ratio increases. For aspect ratios larger than
2.2, maximum von Mises stress decreases to less than that inside
spherical particles �aspect ratio 1�. Figure 8b shows that peak value
of maximum shear stress decreases as aspect ratio increases. The
results of Fig. 8 show that larger aspect ratios reduce the
intercalation-induced stresses, over particles of lower aspect ratio
when volume is preserved.

The peak values of maximum von Mises stresses are shown in
Fig. 8a. Maximum stress first increases, then decreases with aspect
ratio. This is due to two competing effects. When particle volume is
preserved, increased aspect ratios result in increase of the longer
semiaxis c, and reduction of shorter semiaxes a and b. Elongation of
the longer semiaxis tends to increase maximum stress, while reduc-
tion of the shorter semiaxes tends to decrease the maximum stress.
This competition results in a global maximum of stress at an aspect
ratio of �1.37.

To further illustrate the effect of semiaxes on maximum stress, an
additional set of simulations was performed in which the shorter
semiaxes a and b were fixed, and aspect ratio � was increased by
elongation of the longer semiaxis, c. Results obtained with a dis-
charge current density i = 2 A/m2 are shown in Fig. 9. Stress first
increases with aspect ratio because of the increase of the longer
semiaxis, and then decreases slightly until asymptotically approach-
ing the cylinder-fiber limit, i.e., � → �. As represented by the
dashed line in Fig. 9, no physically relevant solutions are obtained
for � � 7.9, because the discharge process stops when the concen-
tration on the particle surface reaches stoichiometric maximum, be-
fore the maximum stress actually reaches the peak value. To quan-
titatively illustrate this point, for an ellipsoid with aspect ratio 10,
the stress reaches its peak value at t = 721 s. However, the simula-
tion should terminate at t = 617.5 s, when the surface concentration
already reaches stoichiometric maximum. The maximum stress at
t = 721 s is 52.47 MPa, and the stress at t = 617.5 s is 52.26 MPa.
Therefore, the stress when the process is terminated is only slightly
smaller than the peak value.

Figure 5. Schematic of an ellipsoidal particle, with coordinate system.
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Conclusion

Intercalation-induced stresses during the discharge process were
simulated in this study using a stress-diffusion coupling model.
Intercalation-induced stresses were simulated by analogy to thermal
stress. Simulations of spherical particles show that larger particle
sizes and larger discharge current densities give larger intercalation-
induced stresses. Furthermore, internal stress gradients significantly
enhance diffusion. Simulation results for ellipsoidal particles show

Figure 6. Solutions at the end of discharge for an ellipsoid of aspect ratio
1.953. �a� Concentration, �b� von Mises stress, and �c� shear stress �yz. �Di-
mensions in µm.�
that large aspect ratios are preferred to reduce the intercalation-
induced stresses. In total, these results suggest that it is desirable to
synthesize electrode particles with smaller sizes and larger aspect
ratios to reduce intercalation-induced stress during cycling of
lithium-ion batteries.
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List of Symbols

a,b,c lengths of the three semi-axes of ellipsoid, m
c concentration of lithium ions, mol/m3

c̃ concentration change from initial value, mol/m3

D lithium diffusion coefficient, m2/s
E Young’s modulus, GPa
F Faraday’s constant, 96,487 C/mol
I dimensionless current density

in current density, A/m2

J species flux, mol/�m2 s�
M mobility, m2 mol/�J s�
R gas constant, 8.314 J�mol K�
r0 particle radius, �m
T temperature, K
u displacement, m
v ion movement velocity inside solid particles, m/s
X molar fraction of lithium in the electrode

Figure 9. The effect of aspect ratio, for fixed shorter semiaxes.
Greek

� aspect ratio
�ij strain
� chemical potential, J/mol
� Poisson’s ratio

�ij stress, Pa
� partial molar volume, m3/mol

Subscript

h hydrostatic �stress�
max maximum

r radial direction
t tangential direction

Others

∧ dimensionless variables
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