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Mobile trap algorithm for zinc detection using protein sensors
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We present a mobile trap algorithm to sense zinc ions using protein-based sensors such as carbonic
anhydrase (CA). Zinc is an essential biometal required for mammalian cellular functions although
its intracellular concentration is reported to be very low. Protein-based sensors like CA molecules
are employed to sense rare species like zinc ions. In this study, the zinc ions are mobile targets,
which are sought by the mobile traps in the form of sensors. Particle motions are modeled using
random walk along with the first passage technique for efficient simulations. The association
reaction between sensors and ions is incorporated using a probability (p;) upon an ion-sensor
collision. The dissociation reaction of an ion-bound CA molecule is modeled using a second,
independent probability (p,). The results of the algorithm are verified against the traditional
simulation techniques (e.g., Gillespie’s algorithm). This study demonstrates that individual sensor
molecules can be characterized using the probability pair (p;,p,), which, in turn, is linked to the
system level chemical kinetic constants, k,, and k.. Further investigations of CA-Zn reaction using
the mobile trap algorithm show that when the diffusivity of zinc ions approaches that of sensor
molecules, the reaction data obtained using the static trap assumption differ from the reaction data
obtained using the mobile trap formulation. This study also reveals similar behavior when the sensor
molecule has higher dissociation constant. In both the cases, the reaction data obtained using the
static trap formulation reach equilibrium at a higher number of complex molecules (ion-bound
sensor molecules) compared to the reaction data from the mobile trap formulation. With practical
limitations on the number sensors that can be inserted/expressed in a cell and stochastic nature of the
intracellular ionic concentrations, fluorescence from the number of complex sensor molecules at
equilibrium will be the measure of the intracellular ion concentration. For reliable detection of zinc
ions, it is desirable that the sensors must not bind all the zinc ions tightly, but should rather bind and
unbind. Thus for a given fluorescence and with association-dissociation reactions between ions and
sensors, the static trap approach will underestimate the number of zinc ions present in the system. ©
2007 American Institute of Physics. [DOI: 10.1063/1.2778684]

I. INTRODUCTION

While zinc is the second most abundant intracellular
trace metal ion, with well-established and essential physi-
ological roles, vanishingly small concentrations of rapidly
exchangeable intracellular zinc have been found in
mammalian' and bacterial®® cells (summarized by Table I,
following Refs. 4-9). Zinc is critical to both catalytic and
structural functions of proteins,lo and plays an important role
in protein folding,“f13 but its reactivity and toxicity during
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uncontrolled release are well documented. Zinc fluxes have
been linked to Alzheimer’s disease'* and to other forms of
neurological damage.li16 The low concentration of readily
exchangeable zinc in cells may thus be explained by the need
for its tight control. But from a modeling standpoint, such
tight regulation may prohibit the application of standard
characterization of fluxes in a diffusion framework, as used
for other intracellular ions, e.g., calcium.'™"

Measurement of intracellular zinc has been principally
accomplished using protein-based sensors wherein affinity of
the sensors is expressed as the equilibrium dissociation con-
stant KD,20 the ratio of two kinetic constants k/k,,. Proteins
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TABLE 1. Prior work in measurement of intracellular zinc concentration.

J. Chem. Phys. 127, 185102 (2007)

Intracellular zinc

Authors Year Cell type Method concentration
Simons (Ref. 4) 1991 Human red blood cell Radioactive %Zn 24 pM
Atar et al. (Ref. 5) 1995 Heart cells Fura-2 and UV 1 nM
fluorescence
Benters er al. (Ref. 6) 1997 E367 neuroblastoma cells 5F-BAPTA and '"F-NMR spectra 0.5 nM
Sensi et al. (Ref. 7) 1997 Cortical neurons Magfura-5 and UV 2 nM
fluorescence
Haase and Beyensmann (Ref. 8) 1999 C6 rat glioma cells Zinquin and UV fluorescence Increases in extracellular zinc concentration

Bozym et al. (Ref. 9) 2006 PC-12 (rat pheochromocytoma)

beyond 200 mM, did not change
intracellular zinc ion concentration
Carbonic anhydrase 5-10 pM

and fluorescence

used in this way are referred to as sensors, binders, or sens-
ing proteins. The constant k,,(M~' s7!), the association rate
or the on rate constant, is a measure of the speed with which
a sensing protein binds a biometal ion, and k.(s™!), the dis-
sociation rate constant, is a measure of the time dependent
tendency of a complex (protein-ion) molecule to dissociate
back into its reactant particles. The fundamentals of this ap-
proach can be described briefly as follows, using carbonic
anhydrase (CA). This protein has been used to sense zinc®?!
because of its high sensitivity and selectivity for zinc ions,
tunable affinity for zinc, and the ability to couple zinc bind-
ing to the binding of a fluorescent sulfonamide ligand; spe-
cific properties are summarized in Table 2% A typical
reaction between CA molecules and zinc ions can be written
simply as

k()n

CA +Zn—CA-"Zn.

kot

(1)

In prior experiments, K was estimated by dialyzing apo-CA
(i.e., CA without bound zinc) with excess zinc ions in a
suitable pH and metal ion buffer solution (see Ref. 23, for
example). After sufficient incubation to assure equilibrium,
the amounts of total CA and enzyme-bound Zn (E-Zn) were

TABLE II. Experimentally determined K, and k. values for various vari-
ants of human carbonic anhydrase. Asterisks indicate unreported values.

CAll Kp kogs
Authors Year variant (pM) (b7
Kiefer and Fierke (Ref. 22) 1994  His94Ala 270000 =140
His94Cys 33 000 0.5
Keifer et al. (Ref. 23) 1995 Q92A 18 1.6
QI92L 30 0.12
Q92N 5 26
Ippolito et al. (Ref. 24) 1995 T199D 4 -
T199H 77 *
Huang ef al. (Ref. 25) 1996 E117Q 4 000 4680
Lesburg er al. (Ref. 26) 1997 HI19N 11 000 9
H119Q 70 000 6
Hunt and Fierke (Ref. 27) 1997 FHMHV 1.6 2.1
MHLHW 10 0.8
Thompson et al. (Ref. 28) 2002 L198C 58 "
McCall and Fierke (Ref. 29) 2004 H94D 8 "
H94N 5 )

quantified after addition of the sulfonamide fluorophore and
measuring its fluorescence. This procedure was repeated for
various values of free zinc concentrations. The dependence
of the concentration of E-Zn as a function of free zinc con-
centration was then fitted to Eq. (2) using a fitting constant
C, whereupon Kp, was obtained, as

[E-Zn] B C
[E]tot I+ KD/[Zn]free ‘

(2)

To estimate k. time dependent dissociation of zinc ions
from a solution of holo-CA (i.e., CA with bound zinc) was
observed (see Ref. 23, for example). At regular time inter-
vals, the E-Zn was quantified and k. was obtained via

[E-Zn] ~
[Elo

The remaining kinetic constant, k,,, was then calculated as
the ratio k.;/ Kp, assuming a simple ligand binding reaction.

Modeling zinc exchange through direct simulation is
highly desirable given its critical role in normal physiologic
and disease states. We prefer the terminology “readily ex-
changeable” rather than “free” zinc, simply because the mea-
sured zinc concentration in any experiment is irrevocably
tied to the affinity of the sensing species to the ion, relative
to other possible binders. And though a diffusive framework
has been used in characterizing experimental zinc binding,
single binding events themselves are the result of possibly
complex combination of path of approach, nearness, and the
state of protein/ion combination preceding a collision,”** as
with other reactions. Further, unbinding of an ion also de-
pends on the above physical factors.*

Earlier work in the reaction modeling includes theoreti-
cal studies of reactions using diffusion equation, Monte
Carlo simulations, and Brownian dynamics simulations. The
reactant particles in these studies are often treated as targets
and traps. Northrup et al.>*** used Brownian dynamics to
simulate a reaction between an enzyme particle and a sub-
strate. Monte Carlo simulations have been used” to simu-
late reactions between particles and also have been used to
estimate the survival time of a target (the time of free exis-
tence before the target is captured by a trap) surrounded by a
number of static traps.37741 Probability theory has been used
to conduct theoretical analyses of the survival time of

A Oe_k()fft .

(3)
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targets.‘u’46 Two equivalent algorithms‘w’48 have been used to
simulate a kinetic reaction using the kinetic constants k,, and
ko, with the central aim of simulating stochastic “noise” in
certain biological phenomena. The diffusion equation has
been solved around a stationary particle to obtain the expres-
sions for kon;49‘50 a recent review’' has appeared on these
techniques.

Here, we aim to directly simulate binding events, spe-
cifically for zinc-CA binding, using a novel approach to
overcome some of the difficulties in prior work at the atom-
istic scale, 2?42 using probabilistic modeling. We further
aim to provide several missing elements specific to the
zinc-CA problem.

Probabilistic techniques must account for large differ-
ences in the speed of the reactants in a medium. CA, with a
molecular weight (M) of 40 kD and the radius of gyration
(Rg) of 16.13 A (please refer to Sec. II for the details of a
CA molecule dimension), at 300 K (7), can be estimated to
diffuse in water at a rate of 9.18 X 10~"1 m2/s,>> obtained
using Eq. (4),

D =6.85 %X 10751/9p\M'R;. (4)

While zinc ions can be estimated to diffuse at a rate of
2.19 X 10~° m?/s under the above mentioned conditions, us-

ing Eq. (5),

kT
=——. (5)
67T7]RH
Prior, direct stochastic simulations of  particle
interactions™>* carried out on a two dimensional (2D), eq-

uispaced grid cannot be readily extended to species of widely
varying mobility. Further, continuum approaches (i.e., simu-
lations in which reactant particles execute random walks in a
homogeneous medium) of direct stochastic simulations of
the particle interactions with different diffusion coefficients™
employ a constant step for all particle motions; for the het-
erogeneous zinc-CA system, this methodology could lead to
missing some particle collisions.

Probabilistic techniques should properly simulate both
the association and dissociation of CA molecules and zinc
ions, all of which are mobile in a three dimensional (3D)
space. With the nature of the cellular cytosol being debated,
the principal texts on cellular biology (e.g., Ref. 13) still
suggest ionic transport in three dimensional (3D). Specific
pathways and trajectories for zinc (and other highly reactive
ions) are not yet conclusively established but their existence
had been proposed.52 In the presence of such diverse opin-
ions, we decided to develop our algorithm for the general
case of 3D transport of zinc ions.

For the zinc-CA system modeled at the particle level, we
expect that the probability of association and dissociation
should remain constant, as long as there are no external
agents that force CA molecules to abruptly change their con-
formations. In prior stochastic approaches (e.g., Gillespie’s
algorithm47’55’56 and STOCHSIM™®), global probabilities of re-
actions do not remain constant in time, nor do these algo-
rithms consider spatial positions and motions of the reacting
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particles. Existing Monte Carlo techniques that simulate a
reaction between two types of particles either with immedi-
ate reaction upon collision®®***° or with a probability of as-
sociation upon collision®” are restricted to the reaction be-
tween the mobile species (targets) and the stationary species
(traps). Theoretical probabilistic techniques, studying reac-
tions between two types of particles, have so far been limited
to grid,42 one-dimensional systems,43’44 systems involving a
single and stationary target reacting with a group of mobile
traps, or vice versa. 457 Other techniques involve deri-
vation of survival probability of reacting particles and indi-
rectly implement the probabilities of association and
dissociation.”® But a probabilistic technique that accounts for
association and dissociation probabilities independently is
required for a number of reacting particles in a 3D con-
tinuum system.

Techniques involving long simulation times, suitable for
comparison with experiments, are critically needed in veri-
fying kinetic assumptions. Techniques involving detailed
random walks of speciesS9’60 are computationally intensive
because they use a very small time increment for particle
position updating. These techniques, such as Brownian dy-
namics simulations,3 33461 simulate a reaction between an en-
zyme and a substrate. As with other approaches, these tech-
niques to date have not considered probabilistic dissociation.

Direct insertion of reaction probabilities obtained
through atomistic simulation is highly desirable, given the
rapidly expanding capabilities of modeling individual bind-
ing events. Gillespie’s algorithm47 and stocHsIM*® do not
employ reaction probabilities at the particle level. Rather
these algorithms employ the kinetic constants k,, and kg,
and the number of reactant particles, to estimate these prob-
abilities. In Monte Carlo techniques and theoretical probabi-
listic studies, only the probability of association was incor-
porated, and only in the special cases that we mentioned
earlier.

The ability to sense zinc in both water and in the cytosol
is essential. In water, a zinc ion is approximately 24 times
more mobile than a CA molecule. But in the cytosol, the zinc
ion is actively chelated.®? Depending on the medium, the CA
molecules and the zinc ions may have substantially different
relative speeds. Employing the static trap technique alone to
model the zinc-protein (CA) reaction by immobilization of
the CA molecules is an oversimplification of the system.

Our present approach addresses this problem using a sto-
chastic framework proposed earlier.>®* Our objectives in the
present work were as follows:

(1) To implement and verify a stochastic computational al-
gorithm using probabilities of association and dissocia-
tion to determine the fate of reactant particles, assum-
ing all reactant particles to be mobile in 3D, with
individual speeds (depending on particle mass and tem-
perature of the system).

(2) To use the algorithm to simulate the zinc-CA reaction
in solution with excess protein molecules, using physi-
cally plausible speeds of protein molecules and ions, to
determine the probabilities of association (using the ex-
perimental value of k,,) and disassociation (using the

Downloaded 11 Jan 2008 to 141.212.137.45. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



185102-4 Inamdar et al.

probability of association and the experimental value of
koff)'

(3) To study the effect of relative speed of zinc ions on the
zinc-CA reaction when CA molecules are mobile and
stationary, thereby determining the limits of application
of static trap algorithms for this reaction.

Il. METHODS

A. Assumptions and implementation of the mobile
trap algorithm

Our simulation procedure is described in the context of
the zinc-CA system. Zinc ions are modeled as mobile targets,
and CA molecules as mobile traps. We refer to our imple-
mentation as a “mobile trap” algorithm to differentiate it
from previous mobile target-static trap approaches (e.g., Ref.
38). Green’s function formulation has been de:veloped64 for
the chemical kinetics but the methodology of the random
walk allows us to implement the first passage principle
which in turn allows us to write the exact expression for the
average time required for a diffusive particle to travel a dis-
tance. This distance of travel can be linked to the positions of
the reacting particles and hence collisions can be detected
more accurately as described in the subsequent paragraphs.

A set of key assumptions follows here. Reactions are
assumed to take place in stationary water, the reactant zinc
ions and CA molecules are assumed to be “well mixed,” and
the motions of particles are considered to be uncorrelated.
Particle motions are assumed to result solely from thermal
energy and are thus modeled as random walks. The mass of
system remains constant, and thus, the time dependent varia-
tion of the complex molecules obeys the law of mass action.
CA molecules and zinc ions are initially distributed ran-
domly in the simulation domain. Interactions among zinc
ions are neglected.

We use random walks to simulate particle motions.
Simulating individual step random walks is very time con-
suming, and hence the first passage methodology is used to
speed up the simulations. Particles that execute a random
walk must obey the first passage rule’’

o

P(r,x=0;R)=1+ 22 (= 1)" exp(— Dn*7*7/R?), (6)
n=0

where P(7,x=0;R) is the probability that a particle starting
at the center of sphere (x=0) reaches the surface of the pre-
scribed sphere of radius R for the first time after time 7. The
expected value of 7 can be obtained by integrating Eq. (6),
ie.,

_ (TaP R
7= | —dr=—. (7)
o dt 6D

Equation (7) holds for individual particles, zinc ions as well
as CA molecules. When CA and zinc particles react, the dis-
tance R will be the neighbor distance that permits the event
of a collision between the reacting particles in a time 7.

J. Chem. Phys. 127, 185102 (2007)

mobile traps (CA molecules)

(b)

FIG. 1. (a) Movement of a zinc ion (smaller circle) through randomly dis-
tributed CA molecules (larger circles) and binding to a CA molecule. The
paths of CA molecules are not shown. (b) Various variables used in simula-
tions that are obtained from the current particle positions.

Collisions are detected using zones of influence around
mobile traps. We note that we use the term “collide” to refer
to collocation of particles within a zone of interaction of one
another. This zone comprises a radial thickness &, around a
CA molecule, expressed as

5=fRCA 0<f<1, (8)

where Rc, is the radius of a CA molecule.

The first passage approach and the collision detection
condition are used to simulate the interplay between zinc
ions and CA molecules. A CA molecule is modeled as a
sphere of 25.5 A radius (corresponding to E117Q structure®)
and a zinc ion is modeled as a particle of negligible size.

Our algorithm dynamically selects time steps such that
only one collision would take place either between a free
zinc ion and a free CA molecule or between two apo- or
holo-CA molecules (Fig. 1). First, two types of minimum
distances are obtained from the instantaneous particle
positions:
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(1) d;, the minimum distance between two CA molecules
(apo or holo) and

(2) d,, the minimum distance between a free CA molecule
and a zinc ion.

Then the expected times, required to travel d; and d, by the
participating particles, so that they can collide, are given by

d% = 24DCAt| N (9)

d% = 6t2(DZn + DCA + ZV’DZnDCA) N (10)

where D, and D¢, are the diffusion coefficients of a zinc
ion and a CA molecule, respectively. Equations (9) and (10)
are direct outcomes of Eq. (7) applied to mobile particles.
The minimum between ¢, and 7, (denoted by ¢ henceforth)
ensures that during the time interval ¢, only one collision is
possible either between CA molecules or between a free zinc
ion and a CA molecule, depending on which one of #; and 7,
is less.

After the ¢ estimation from the current positions of par-
ticles, all CA molecules are moved to a random point on the
surface of the spheres whose radii are given by

reca = V”6DCAI (11)

and all zinc ions are moved to a random point on the surface
of the spheres whose radii are given by

Fzn = \J"GDZnt. ( 12)

Each particle has its own such sphere centered at the current
location of center of the particle. The distances between all
pairs of a free zinc ion and a free CA molecule are calculated
for the collision check. The procedure is repeated and the
simulation is carried out for the specified time duration.

In modeling the zinc-CA reaction to incorporate stochas-
tic interactions, the conventional chemical equation [Eq. (1)]
is rewritten as

P
CA +Zn«CA -Zn. (13)
P2

The probability of association, p;, determines binding based
on the availability of a binding site and correct mutual ori-
entation of the zinc and CA trajectories at collision. The
probability of dissociation, p,, determines dissociation of
complex molecules to its reactant particles. The probability
of dissociation is the same for every instant of time.*® The
probabilities (p,,p,) are defined at the particle interaction
level unlike k., and k.; which are system level constants.
The zinc-CA association events are implemented in the
mobile trap algorithm with the help of p,. Whenever a free
zinc ion collides with a free CA molecule, a random number
is generated to simulate p;. If the generated random number
is less than p;, then the CA molecule is assigned occupied
status and the collided zinc ion is moved along with the CA
molecule until the occupied CA molecule dissociates. The

J. Chem. Phys. 127, 185102 (2007)

dissociation of a complex molecule is implemented as fol-
lows.

Before the estimation of the distances d; and d,, a CA
molecule is selected randomly. If the selected CA molecule is
occupied, then a random number is generated to simulate p,.
If the generated random number is less than p,, then the
selected CA molecule is assigned free status and the algo-
rithm continues with calculating d,, d,, t, t,, and the rest of
the stages. The dissociation event is checked before the as-
sociation event so as to prevent the dissociation of a complex
molecule that would be formed without getting the associa-
tion event unrecorded. A CA molecule is selected for disso-
ciation after every ¢ time interval and the simulation of
association-dissociation events is carried out until the pre-
scribed time is reached. During a simulation, the values of
each time increment (i.e., #’s) and the number of increments
are stored. When the simulation ends, the average time in-
crement is obtained by dividing the sum of individual time
increments by the total number of increments and this aver-
age value of ¢ is referred to as #4, henceforth. The 74 and p,
values are then used to estimate the value of k.

B. Verification of implementation: Satisfaction
of the law of mass action

The rates of chemical reactions obey the law of mass
action (mass balance law),’*®” which states that the rate of
reaction is directly proportional to the product of the concen-
trations of the reactants. For a general reaction involving two
reactants A and B, and the product C, the law of mass action
is written as

A _gas (14)

dt
where k is the on rate constant. When N4, number of A
particles react with Ny, number of B particles, the solution to
Eq. (14) is

1 — oKiNao=Npo)

1 = (Nyo/Ngo) e MaoNpo)*

Nc=Nyo (15)
where N is the number of C particles present at time ¢, V' is

the system volume, and A is Avogadro’s number. K is given
by

K=—. 16

VA (16)
The uncertainty analysis68 of k can also be carried out using
the following equation:

INe  NcIK — wi N
ANg=De,, DN _ Wi c

dk K ok VA oK

where AN is the uncertainty in N due to the uncertainty w;,
in k. Uncertainties in the values of other parameters are ne-
glected. The mobile trap algorithm gives the reaction data
(i.e., number of product molecules as a function of time) and
these data for various values of N,y and Ny, are verified
using Egs. (15) and (17).
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C. Correlations between p; and k,, and between p,
and Kk

The law of mass action for CA-zinc forward reaction is

d[CA - Zn]

= kon CA][Zn]. (18)
dt

The left hand side of Eq. (18) is the slope of reaction data
curve. When the first zinc-CA complex is formed, the
straight line, joining the reference system origin and the
point on the reaction data plot corresponding to the first com-
plex molecule formation, represents the initial rate of reac-
tion. As a limiting case, if we study the interaction of a zinc
ion with a number of CA molecules, then Eq. (18) reduces to

1

e kon[CAL. (19)
Equation (19) shows that the rate with which first zinc-CA
complex molecule would form is simply the reciprocal of the
survival time (dr) of the zinc ion in the mobile pool of CA
molecules. From the theory of chemical kinetics, k,, is a
constant as long as the temperature and the pressure of the
system remain constant. Hence we obtain the survival time
of a zinc ion for various values of CA concentrations using
the mobile trap algorithm and then, (1/dr) versus [CA] data
is curve fitted using a straight line to obtain k,, (the slope of
the line). Alternatively a rectangular hyperbola can be fitted
into dt versus [CA] data and the constant of the curve would
be a measure of k.

To obtain the relationship between p, and k., we de-
velop separate selective dissociation simulations and we use
the 74, value that is obtained from the mobile trap simula-
tions. A group of zinc-CA complex molecules is considered
for the dissociation reaction and the number of zinc-CA com-
plex molecules is the same as the number of CA molecules
used in the corresponding mobile trap simulations. A com-
plex molecule is chosen at random from the initial pool. If
the chosen molecule is a complex one, then a random num-
ber is generated (ran2) to simulate p,. If ran2 is less than p,,
then the selected molecule is assigned free status. The disso-
ciated zinc ion is assumed to be chelated by other agents;
therefore the free CA molecule does not become a complex
one during the rest of the simulation. If the selected molecule
is not a complex one then no dissociation takes place during
that step. The number of free CA molecules and correspond-
ing step numbers are recorded. We repeat the selection-
probabilistic dissociation-recording steps until all complex
molecules are free. The time duration between two succes-
sive selections is tg4;. If it takes n steps to dissociate a group
of complex molecules then the total physical time required
for the reaction is n times t4,. The number of free CA mol-
ecules versus time data is curve fitted using Eq. (20) and the
kg value is extracted:

Nea(t) = Nepg(1 — 7o), (20)

where N¢a(7) is the number free CA molecules at time 7 and
Ncao is the number of complex CA molecules present at time
t=0. The uncertainty analysis for the kg value is also carried
out as per Eq. (21) and

J. Chem. Phys. 127, 185102 (2007)

INc(t)
—=y

off

ANca(t) = (21)

Kot
In order to verify that the probability pair (p,,p,) yields
same results as those obtained using the kinetic constant pair
(kon»kofp), the reaction data generated by the mobile trap al-
gorithm using (p,,p,) pair are compared with the reaction
data generated by Gillespie’s algorithm using the corre-
sponding (k,, ko) pair. We note that during mobile trap and
selective dissociation simulations, a CA molecule is chosen
at random for possible dissociation. We can also check all
CA molecules for possible solutions. But random selection of
one CA molecule saves the computational time. Also, for a
CA molecule with finite dissociation constant, both the meth-
ods of CA molecule selection are equivalent. Please see Ap-
pendix for the details.

The reaction probability pair (p;,p,) can be correlated to
either phenomenological rate constants or the intrinsic rate
constants.”” But these rate constants are correlated to each
other® and the phenomenological kinetic constants are ex-
perimentally determined. The accuracy of the intrinsic ki-
netic constants depends on the accurate estimation of the
reaction distance, which is not known in the case of CA.
Hence in order to demonstrate the mobile trap algorithm, we
have chosen the phenomenological rate constants to correlate
the reaction probability pair.

D. Comparative study between static
and mobile traps

The mobile trap algorithm with constant values of p; and
p» is used for this study. The p, and p, values higher than
those obtained for E117Q CA variant are used to generate the
reaction data quickly. Two systems of number of particles
along with two cases of relative mobility are studied. The
particle systems are (1) excess number of mobile and station-
ary CA molecules over the number of zinc ions and (2) ex-
cess number of zinc ions over the number of stationary and
mobile CA molecules. The relative mobility cases are (1) the
zinc ions 24 times faster than the CA molecules, (2) the zinc
ions 10 times faster than the CA molecules, and (3) the zinc
ions 2 times faster than the CA molecules. First, the forward
reaction is simulated and the k., values are obtained. Then,
the reversible reaction is simulated and the k. values are
obtained. After this first round of simulations, the second
stage of simulations is carried out to study the behavior of
the reaction data from the static and the mobile trap method-
ologies. The relative mobility of zinc ions is kept constant at
2 and one of the reaction probability values is varied while
keeping the other constant. These simulations are run to
study the time at which the reaction data from the mobile
traps deviate from the reaction data from the static traps.

lll. RESULTS AND DISCUSSION
A. Verification of implementation

Mobile trap simulations were carried out for a generic
reaction [Eq. (14)] with (6, 60, 20, and 30) and (12, 60, 200,
and 60) as the initial numbers of A and B particles, respec-
tively. The simulation domain was a 1 X1X1 ,um3, with
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+ simulation data
— analytical solution

number of C particles

0 0.01 0.02 0.03 0.04
time (sec)

FIG. 2. Reaction data obtained from the mobile trap algorithm with a p; of
0.9. The numbers and diffusion coefficients of particles of types A and B are
6 and 12 and 107 and 107'! m?/s, respectively. Reaction data were fitted
with an analytical solution with k of 1.82% 10'© M~ s~! and uncertainty of
54%.

periodic boundary conditions. Assumed diffusion coefficients
were 107 and 107"" m?/s for species A and B, respectively.
Particles of species B were assumed to be spheres of 20 A
radius; particles of species A were assumed to be negligibly
small. Value § was assumed to be 5% of the radius of the B
particle. Simulations were carried for four different p; val-
ues: 0.9, 0.5, 0.1, and 0.001. Figure 2 shows a typical mobile
trap data along with the analytical solution [Eq. (15)] and the
uncertainty in k that would envelope the standard deviation
bars [Eq. (17)], for p, value of 0.9. Figure 2 shows that the
reaction data obtained from the mobile trap simulations sat-
isfy the law of mass action and also give the uncertainty
value in k (the on rate) that would be impossible to obtain
using the diffusion approach.

B. Correlation between k,, and p,

Properties of the E117Q variant of CA were used for this
study.25 The survival time of a zinc ion among a number of
CA molecules was obtained using the mobile trap algorithm
ina 1X1X1 um® domain with periodic boundary condi-
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FIG. 3. Survival time vs concentration of CA with a rectangular hyperbola
curve fit [per Eq. (19)] for three different p; values, 0.05, 0.01, and 0.005.
Simulation times shown are average values for 100 realizations of each case.
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FIG. 4. Average reaction rate (1/survival time) vs concentration of CA with
a straight-line curve fit [per Eq. (19)] for three different p,; values, 0.05,
0.01, and 0.005. Simulation times shown are average values for 100 realiza-
tions of each case.

tions. CA molecule concentrations of 0.1, 0.2, 0.3, 0.4, and
0.5 uM were simulated. Diffusion coefficients for CA mol-
ecules and zinc ions were assumed to be 9.18 X 107! and
2.20X 107 m?/s, respectively. The & value for these simula-
tions was taken as 1% of radius of the CA molecule. CA
molecules were randomly distributed at r=0, and zinc ions
were initialized at random points among CA molecules. For
each initial configuration of CA molecules, five simulations
were carried with five different initial positions of a zinc ion;
20 realizations were simulated, for each of three values of p,,
0.05, 0.01, and 0.005. When the total number of simulations
for a CA concentration value exceeded 100, all running
simulations were halted, and results were tabulated. For CA
concentrations of 0.1, 0.2, and 0.3 uM, 100 sequential simu-
lations were performed. Due to the need to run parallel simu-
lations on multiple processors for the 0.4 and 0.5 uM CA
concentrations because of their computational intensity and
high run times, the number of completed simulations was
variable, depending on when completion of 100 simulations
was reached. Thus, for the higher concentrations, the total
number of simulations ranged from 100 to 133. Survival
times for various CA concentrations are shown in Fig. 3;
reaction rates (1/average survival time) versus CA concentra-
tions are shown in Fig. 4. The k,, values corresponding to
three p; values are listed in Table III. Figure 3 shows that the
survival time versus [CA] data follows a rectangular hyper-
bolic trend and Fig. 4 shows that the average reaction rate
versus [CA] data follows a linear trend as described by Eq.
(19). A rectangular hyperbola is a much higher order curve
than a straight line. By plotting the data in two such forms, it

TABLE III. k,, values of CA-Zn reaction obtained using the straight lines as
well the rectangular hyperbola method. Asterisks indicate unreported values.

kon M71s7h) ko, M7Ps7Y) Average k,,  Experimental
P (straight line) (hyperbola) M~1s7h ko (M~'s7h)
0.05 2.49%10° 2.37%x10° 2.43%10° )
0.01 5.35%10% 5.27% 108 531108 :
0.005 2.78 X 108 2.55% 108 2.66 X 108 2.95 X 108"

“Reference 25.
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FIG. 5. A straight line passing through &, vs p, data allows interpolation for
a particular k., value corresponding to a particular p; value.

can be seen that the on rate constants are very close (Table
IID), and thus the average of those values can be used to
obtain the final correlation between the on rate and the reac-
tion probabilities. Figure 5 shows that k,, versus p, data
follow a linear relationship and hence the p, value corre-
sponding to the k,, value of 2.95X 1078 M~! s~! can be ob-
tained using interpolation and it is 0.0055.

C. Correlation between k. and p,

Again, the E117Q variant of CA was modeled, with a
previously published value of k. of 1.3 g1 t4is Was ob-
tained by running the mobile trap simulations for 1 s with p,
of 0.005 and p, of 6 X 10 in a 1X1X 1 um?® volume do-
main and identical diffusion coefficients as for the p,—k,,
relationship. Twenty CA dissociation simulations were per-
formed to obtain the number of free CA molecules as a func-
tion of time. k. was obtained using these data and Eq. (20).
The numbers of CA and zinc particles used for these simu-
lations and corresponding #g4;; and k. values are shown in
Table IV. The value of p, used in the mobile trap simulation
was arrived at by trial and error, such that the 74, value
yielded the required k. value. A typical plot of the number
of the free CA molecules as a function of time is shown in
Fig. 6. The k. values in Table IV show that the moderate
change in number particles has little effect on k. values as
long as p, and p, values are same.

D. Comparison with Gillespie’s algorithm

Our mobile trap algorithm with 12 CA and 12 zinc
particles was run for 1 s, with a p; of 0.0055 and p, of
6.5 107%. The number of particles (12) was calculated for a

J. Chem. Phys. 127, 185102 (2007)
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FIG. 6. A typical plot of the number of free CA molecules as a function of
time, obtained from selective CA dissociation simulations, with 12 complex
CA molecules, and p, and p, of 0.0055 and 6.5 X 107, respectively. The
time duration between two successive CA selections for dissociation was
4.25X 1077 s; the total simulated duration was 5 s. For this case, the ko
value is 1.342 s7!, which is very close to the experimental ky value of
1.3s70

20 nM concentration in a 1X1X1 um?® domain, per pub-
lished estimates of concentration of CA in live cells. The
diffusion coefficients of CA molecules and zinc ions were as
previously used in the k,,—p; study.

Gillespie’s algorithm was run with 12 CA molecules and
12 zinc ions. k,, and kg values for these simulations were
2.95X% 108 M~'s72 and 1.3 s7!, respectively; ten runs of each
type of simulation were performed. Reaction data obtained
from these simulations are shown in Fig. 7, with numbers of
association and dissociation events contained in Table V.
Table V and Fig. 7 show that the mobile trap algorithm de-
livers results similar to those obtained using our implemen-
tation of Gillespie’s algorithm. This study further corrobo-
rates that the individual particle level probabilities, p; and
P2, are capable of modeling a chemical reaction.

E. Static versus the mobile traps

Two systems of particles were studied, with 20 zinc ions
and 200 CA molecules, and 200 zinc ions and 20 CA mol-
ecules. Three cases of particle speed were selected, one with
a Dy, value of 2.19X10° m?/s and a D¢, value of
9.18 X 107! m?/s (i.e., with zinc ions 24 times faster than
CA molecules, or the “fast zinc” case), the second with a
Dy, value of 9.18X107m?/s and a Dg, value of
9.18 X 107" m?/s (i.e., with zinc ions 10 times faster than
CA molecules, or the “slow zinc” case), and the third with a
Dy, value of 1.83X107m?/s and a D¢, value of

TABLE IV. k. values for various initial numbers of CA and zinc particles. These data were obtained from the
mobile trap implementation and the selective CA dissociation simulations.

No. of zinc No. of CA Lais kot Uncertainty
ions molecules (s) P/ P2 (s7h in kog (%)

10 20 4.12x1077 0.005/6 X 107° 1.46 45

12 12 4.25%1077 0.0055/6.5x 107° 1.34 40

20 30 2.17X 1077 0.005/6 X 107° 1.46 33

30 60 1.34x 1077 0.005/6 %107 1.52 35
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FIG. 7. Comparison between reaction data obtained from our implementa-
tion of Gillespie’s algorithm and the mobile trap simulations. The numbers
of CA and zinc particles were 12 each, and the simulated duration was 1 s.
Data represent average values for ten realizations for each case.

9.18 X 107" m?/s (i.e., with zinc ions 2 times faster than CA
molecules, or the slow zinc case). The values of probabili-
ties, p; and p,, were 0.055 and 6.5 X 1074, respectively. Thus,
higher values of p; and p, than those obtained for E117Q
variant allowed efficient generation of comparative reaction
data.

For stationary CA simulations, the diffusion coefficient
of the CA molecule was added to the diffusion coefficient of
a zinc ion. First, the forward reaction was simulated to study
the effect of particle number-zinc speed configuration k,
values. Then the reversible reaction was simulated using the
(p1>p2) pair.

Figures 8(a) and 8(b) show the numbers of complex
zinc-CA molecules as a function of time for fast and slow
zinc ions, respectively, reacting with excess stationary and
mobile CA molecules in the forward CA-Zn reaction. Table
VI shows k,, and the numbers of particles associated with
these reactions for each case. Figures 9(a) and 9(b) show the
number of complex zinc-CA molecules as a function of time
for fast and slow zinc ions, respectively, reacting with excess
mobile and stationary CA molecules in the reversible CA-Zn
reaction. The corresponding values of k. are shown in Table
VIL

Figures 8 and 9 reveal the importance of exploring the
effect of static trap and mobile trap approaches when the zinc
ions have different mobilities. Biometal ions such as zinc are
detected using the protein-based sensors such as CA. To de-

J. Chem. Phys. 127, 185102 (2007)
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FIG. 8. Number of complex CA-Zn molecules as a function of time when
20 zinc molecules react with a hypothetical variant of CA having a p; of
0.055 via the forward CA-Zn reaction. The number of CA molecules is 200.
Reaction curves are shown for stationary (solid) and mobile (dotted) CA
molecules. Cases shown are for fast zinc ions reacting with CA molecules
(a) and slow zinc ions reacting with CA molecules (b).

tect the sources and sinks of zinc ions in a cellular medium,
the mobile sensor CA molecules are used and these mol-
ecules fluoresce (with the help of a fluorescent ligand) when
they bind to the mobile zinc ions. In a cell a large number of
other zinc-binding proteins and ligands exist; therefore ob-
taining reaction probabilities is a better way to understand
how a typical protein molecule acquires a zinc ion, a rare
species.

Figure 8(a) shows reaction data curves obtained using
the static trap and the mobile trap approaches. The small
difference (<10%) [Table VI(a)] in the k,, values for all
four cases of fast zinc-CA reaction shows that the static and

TABLE V. Average numbers of CA-Zn association events and complex CA dissociation events from ten mobile
trap and Gillespie-type simulations. For the mobile trap simulations, p; and p, values were 0.0055 and 6.5
X 107°, respectively. For Gillespie’s algorithm simulations, k,, and k. values were 2.95X 108 M~'s™! and

1.3 s7!, respectively.

Average number of

Parameter

Average number of

associations dissociations
Algorithm (standard deviation) (standard deviation) 12 P
Mobile trap algorithm 15.6 (2.5) 7.9 (2.4) 0.0055 6.5%X 107
Gillespie 15.8 (2.3) 9.0 (1.8) Variable Variable
implementation®

“Reference 47.
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TABLE VI. The on rate constant values for CA-Zn reactions involving (a)
fast zinc ions reacting with mobile and stationary CA molecules and (b)
slow zinc ions reacting with mobile and stationary CA molecules. The prob-
ability of association is 0.055 in each case.

No. of CA  No. of zinc

DCA

DZn

k

on
molecules ions (m?/s) (m?/s) M~ts7h)
(a) 20 200 0 229X 107 2.66x10°
20 200 9.18X 1071 2.19%x10° 2.67%x10°
200 20 0 229X%107°  2.90%10°
200 20 9.18x 107" 2.19%x 1070 2.83x10°
(b) 20 200 0 2.75% 10710 2.88x10%
20 200 9.18x 107" 1.83x107'0 3.32x108
200 20 0 2.75% 10710 3.98x 108
200 20 9.18x 107" 1.83x107'° 516x108

the mobile trap algorithms give essentially the same results.
On the other hand, Fig. 8(b) shows that the reaction data
curves produce similar results only for the initial 1.8 ms,
whereupon results diverge. The substantial difference
(>10%) in the k,, values (Table VI) for all four cases of
slow zinc-CA reaction shows that the static trap approach
yields relatively slower reaction rates, and thus will generally
overestimate the reaction probability.

Figures 9(a) and 9(b) show that the saturation point ob-
tained by the static trap algorithm is higher than the one
obtained using the mobile trap algorithm. Also, the off rate
values obtained using the static trap approach are lower than
those obtained using the mobile trap approach (Table VII).

The data in Figs. 8(b), 9(a), and 9(b) were also analyzed
using curve fitting to check the long time behavior exponent.
These data follow the general equation

CA(H) =A(1 - 7P, (22)

where A and B are constants. Hence instead of plotting the
data in log-log scale, Eq. (22) was curve fitted and the values
of constants A and B are shown in Table VIIL. It can be seen
that the data in these figures are characterized not only by
different exponents (B values) but also by the A values. And
the A values represent the saturation point of the reactions.

This study also revealed that the reaction data curve us-
ing the static and the mobile trap approaches deviate after
some time (we call this point of time as deviation time or
time of deviation). This point of time was studied by simu-
lating Zn-CA association and dissociation reactions with
static and mobile CA molecules. The relative zinc mobility
was 2 and the values of the reaction probabilities for differ-
ent simulations are shown in Table IX (italic and nonbold
values). The deviation time values were also recorded from
the simulations that were ran for different relative zinc mo-
bilities. All simulation parameters and the corresponding de-
viation times are shown in Table IX.

Figure 10(a) shows the normalized time of deviation
plotted as a function of relative zinc mobility. The normal-
ized time of deviation was obtained as follows:

J. Chem. Phys. 127, 185102 (2007)

[ mobile CA molecules
11— stationary CA molecules

number of complex molecules

0 . L . . ,

0 0.001 0.002 0.003 0.004 0.005
(a) time (sec)

127

------ mobile CA molecules

0 — stationary CA molecules
2 10¢t
j
Q
@
[S) L
£ 8
x
o S e e
Q
£ 6
o
o
T 4t
o)
0
€ | S
2 2f

0 L . . L S

0 0.002 0.004 0.006 0.008 0.01

(b) time (sec)

FIG. 9. Number of complex CA-Zn molecules as a function of time when
200 zinc ions react with 20 CA molecules in the reversible reaction. The
reaction curves are for stationary CA (solid curve) as well as mobile CA
(dotted curve) molecules. The p, value was 0.055 and the p, value was
6.5 107*. Cases shown are for fast zinc ions reacting with CA molecules
(a) and slow zinc ions reacting with CA molecules (b).

14Dy
Td = TH 5 (23)

where 7, is the normalized time of deviation, ¢, is the devia-
tion time obtained from the simulations, D, is the diffusion
coefficient of zinc ions, and L is the length of the simulation
domain. T, versus relative zinc mobility data follow a
straight line. Thus as zinc ion diffusivity becomes compa-
rable to the protein molecules, the static trap and the mobile
trap approaches deviate quickly and one must resort to the
mobile trap approach for correct interpretation of the experi-
mental results.

Figure 10(b) shows the reciprocal of the deviation time
plotted as a function of the probability of association. These
data also follow a straight line; conversely the product of the
deviation time and the association probability is a constant.
This finding suggests that for a slowly reacting protein sen-
sor, the static and the mobile trap methodology matters for
proper interpretation while for a very reactive protein sensor,
it does not. In practice, it is very difficult to make a protein
sensor with a p; value of close to 1 (which would lead to
diffusion controlled reaction rate) and this study reveals the
importance of the mobile trap methodology. Figure 10(c)
shows the deviation time plotted as a function of the prob-

Downloaded 11 Jan 2008 to 141.212.137.45. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



185102-11 Mobile trap algorithm for zinc protein sensors

J. Chem. Phys. 127, 185102 (2007)

TABLE VII. On rate and off rate constants for CA-Zn reactions involving fast and slow zinc ions reacting with

mobile and stationary CA molecules.

No. of CA No. of zinc Dy, Dca kon kgt
molecules ions (m?%/s) (m?/s) Mts™h )
20 200 229X 107 0.0 2.66 X 10° 1031
20 200 2.19%107° 9.18x 107! 2.67%10° 1584
20 200 2.75%x 10710 0.0 2.88x 108 117.1
20 200 1.83%x 10710 9.18x 107! 337X 108 268.7

ability of dissociation. These data do not show the straight
line trend and the deviation time is small for the two extreme
p, values.

The results of static versus mobile trap methodology can
be summarized as follows. Protein-based sensors, such as
CA molecules, are either expressed or injected into a cell.
These sensors diffuse into the cell and bind ions whenever
they encounter the ions they are sensing. When such ion-
bound sensors are excited, they emit fluorescence. The fluo-
rescence yield is read against a precalibrated scale to quan-
tify the number of ions and hence the ionic concentration.
Ideally, the number of sensors should be much larger than
the expected maximum number of free/exchangeable ions.
But there is a cost associated with injecting/expressing a pro-
tein sensor and a live cell will limit the number of sensors it
can admit. If the sensor molecules have very low dissocia-
tion constant and very high association constant, then the
number of ions bound to the sensors is not a true measure of
available number ions. For a tightly regulated species, such
as zinc ions, the cell will actuate its homeostasis mechanism
to make the necessary number of ions available for the cel-
lular activities. Hence the sensors are required to associate
and dissociate with the ions relatively quickly and the fluo-
rescence from such a sensor-ion reaction at equilibrium can
be used as a measure of the number of ions. From the basics
of probability, it is clear that a fraction of the total zinc
population will be sensed. To estimate the number of zinc
ions present in the system so as to obtain the number of
bound ones, one can either simulate the sensor-ion reaction
using the static trap or the mobile trap methodology. The
static trap methodology has been employed classically49 but
experimental data necessarily result from traps that are
physically mobile (CA molecules). Thus for a given fluores-
cence and with association-dissociation reactions between
ions and sensors, the static trap approach systematically un-
derestimates the number of zinc ions present in the system.

TABLE VIIIL. The values of constants obtained from curve fitting Eq. (22) in
Figs. 8(b), 9(a), and 9(b) data. These values show that the reaction data from
the static trap and the mobile trap methodologies are characterized by dif-
ferent exponents and the saturation points.

Static trap Mobile trap

Figure (A/B) (A/B)
8(b) 12.18/282.6 19.27/204.1
9(a) 11.09/1371 8.69/1899
9(b) 10.88/228.7 6.89/368.1

F. Contrast with the well-stirred hypotheses
and general implications of work

Though we can conceive of a mathematical framework
for well-stirred systems, i.e., systems in which all species are
distributed as Poisson points, such a framework is only a
base line at best, for real systems. Green’s function solutions
for closed-form probabilities of association of heterogeneous
mixtures might be available; yet the boundary conditions for
locations and rates of sources and sinks in the cell will ulti-
mately require detailed simulation based on nanoscale imag-
ing. Thus, rather than pursue a closed-form solution for such
a system, we instead focused on the stochastic problem be-
cause of its flexibility in application to realistic situations.
The present mobile trap algorithm is developed as an inte-
grated approach that simulates a reaction between particles
using their spatial positions and the temporal probability of
being in a particular state into account. Our findings demon-
strated this approach to be both fast and capable of reproduc-
ing other less-refined techniques. Perhaps most importantly,
our results demonstrate that experimental data can be seam-
lessly incorporated into this framework.

G. Implications of findings for intracellular modeling
of zinc transport and comparisons with other
approaches

When reactant concentrations are very small, particle
flux in describing motion cannot be used. All such particles
interact with each other that eventually give rise to the
chemical reaction involving the reactants and products. At
the particle level, the concept of concentration is replaced by
the probability of existence of the particle at a distance x at
time 7,p(x,1). Theoretically, an equation of motion such as
Eq. (24) could be written for each particle and possible
association/dissociation events could be monitored.

ap(x,1) #p(x,1)
=D
ot ox

(24)

Thus one must use probabilistic techniques to rationally
model chemical reactions at very small reactant concentra-
tions.

Indeed, solution of linear equations to produce diffusion
coefficients belies a great deal of complexity in the atomistic
and molecular interactions that determine the fate of ions.
Building upon very early and clever work by von
Smoluchowski,"’ generations of workers have employed
“rule-based” models for interactions of species in modeling
chemical kinetics. This theory has been used to model ionic
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TABLE IX. The values of parameters used to simulate Zn-CA association-dissociation reactions using the static
trap and the mobile trap approaches. The values of the deviation times were obtained using simulations.

No. of CA No. of zinc Dy, Dcp Deviation time
molecules ions (m?/s) (m?/s) i Pa (s)

20 200 2.19x107° 9.18 x10°11 0.055 6.5x1074 0.0018

20 200 1.83x1071 9.18 x 10~ 0.055 6.5x107* 0.0021

20 200 9.18 < 10710 9.18 x 10~ 0.055 6.5x1074 0.0036

20 200 1.83x1071° 9.18x10711 0.55 6.5x107* No separation

20 200 1.83x1071° 9.18 x 107! 0.0055 6.5x107* 0.003

20 200 1.83x 10710 9.18x 107" 0.055 6.5%x107 0.0012

20 200 1.83x 10710 9.18x 107! 0.055 6.5X107 0

30,50

as well as colloidal systems and can account for long-
range interparticle potentials.33 This theory has been the ba-
sis for the protein-protein simulation method.* von Smolu-
chowski theory gives the maximum possible k., value (also
referred to as the diffusion controlled rate constant), and
modifications such as the probability of association upon
collision®* and uses of an effective radius (smaller than the
physical radius)’! have been suggested to account for experi-
mentally observed rates® (e.g., for the CA-zinc system, the
diffusion controlled rate constant is about 4.418
X 10" M~ s~! but the experimentally observed maximum
on rate constant is 2.95X 108 M~!s~!). The concentration-
based diffusion approach (von Smoluchowski theory) models
association rate between reactant particles using the flux of
one reactant molecule, say, A, at a surface, called the reaction
surface of radius R of the second reactant molecule, say, B,
that is stationary and at the origin of the system. This ap-
proach does not track the individual particle movement and
also it does not account for possible dissociation of product
molecules.

When the number of reactant particles is very low, con-
centration must be replaced by the probability distribution of
particle positions. This method used the basic diffusion equa-
tions and the concentration was replaced by the probability
distribution to obtain the time dependent evolution of prob-
ability of finding a particle at a particular location.”® For 2D
or 3D reaction space, either targets were stationary or traps
were stationary. The relative motion was accounted using the
effective coefficient of diffusion.”” The limitation of this
method is that in the real world, a physical reaction takes
place with mobile traps and mobile targets and their motion
is random and uncorrelated. The particle motion does take
place in the continuum and in three-dimensional space and
under these conditions, it is difficult to solve the probability
equations that are set up using this method.

Brownian dynamics simulations estimated the probabil-
ity of association between a pair of an enzyme molecule
(protein) and a substrate (an ion).>*3* This probability was
used to estimate the on rate constant using the diffusion-
controlled rate. The motion of individual particles was mod-
eled as Brownian motion with friction effects. This method
considered the directed nature of substrate binding site on the
enzyme molecule. The enzyme molecule was stationary dur-
ing the simulation and only one pair was simulated. This
method did not model random motion of the enzyme mol-
ecule. Because of very small time increments, it is computa-

tionally intensive to simulate a reaction between mobile re-
actant particles.

Gillespie’s algorithm47 has been extensively used to
study the fluctuations in the reaction data. This method is
very useful when reactant to product path consists of a large
number of intermediate reactions and the variation in the
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FIG. 10. The point of time (deviation time) at which the reaction data from
the mobile trap and the static trap methodology deviate from each other,
plotted as a function of relative zinc mobility, the probability of association
and dissociation; (a) normalized time of deviation as a function of relative
zinc mobility, (b) reciprocal of deviation time as a function of the probabil-
ity of association, and (c) deviation time as a function of the probability of
dissociation.

Downloaded 11 Jan 2008 to 141.212.137.45. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



185102-13  Mobile trap algorithm for zinc protein sensors

product concentrations affects the system behavior. This
method does not consider the fate of an individual molecule
nor does it consider the spatial positions of reactant particles.
Another alternative method that can simulate the fluctuations
in the reaction data is the STOCHSIM algorithm.48 This
method tracks the fate of individual reactant particles. The
recent version can model simple 2D structures and interac-
tion between two nearest neighbor particles. This algorithm
is equivalent to Gillespie’s algorithm. Both Gillespie’s algo-
rithm and STOCHSIM use k., ko values as well as the current
number of reactant and product molecules to calculate the
probability of forward and backward reactions. These prob-
abilities are not defined for individual particles but rather are
the global probabilities. Hence strictly speaking, these algo-
rithms do not model probabilistic association and dissocia-
tion on an individual particle basis.

Monte Carlo methods are nothing but the numerical so-
lutions to simulate probability-based diffusion approach at
particle level. The method of static traps has been used to
determine the survival time of a target in 3D.*** This sur-
vival time was a measure of the rate constant of trap-target
reaction. In its probabilistic binding variation,* this method
has been used to simulate trapping of a target by static traps
with a probability of association of other than 1. This method
tracks the motion of individual particles and their fate but
still, the traps are immobile.

The Monte Carlo mobile trap-mobile target approach has
been implemented in continuum™® as well as on the grid.BS’54
A continuum study was carried out to simulate irreversible
diffusion controlled reactions in two dimensions with par-
ticles executing Pearsonian random walk. The grid study was
carried out to understand the kinetics (Michaelis-Menten) in
a fractal medium, simulating association and dissociation re-
actions. As a variation, this method has been used to simulate
binding of receptors to a substrate in the form of a flat
surface.”’ The limitations of these approaches have been ad-
dressed earlier.

The presumed low concentration of intracellular zinc
stems from the relatively recent experimental work, in which
the concentration of free intracellular zinc was estimated by
observing the response of the zinc uptake pump protein
ZnuC and the zinc excursion pump protein ZntR regulators
in E. coli.’ In these experiments, it was observed that the
increase in free zinc concentration suppressed ZnuC expres-
sion and increased ZntR expression. The switchover point at
which those activities took place was found to be at 10~°M
free zinc concentration. When compared to the concentration
of one zinc ion in E. coli. 1 nM, the switchover point was
very small, and hence it was concluded that there was virtu-
ally no free zinc in E. coli. But if we assume a spherical E.
coli bacterium, and further assume free diffusion of a protein
molecule such as CA, the expected time that a protein would
take to reach the surface starting from the origin would be of
the order of millisecond. These travel times can be estimated
using the studies that showed that the apparent diffusion co-
efficient of a protein through the cell was of the order of
10712 m2/s."17 Study of diffusion of protons also revealed a
diffusion coefficient of ~107"! m%/s.” As a limiting case, if
we assume that the diffusion coefficient of zinc ions is the
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same as that of protons, then in E. coli, the time required for
a protein to travel a distance of 0.62 mm (radius of E. coli
based on 107 1 volume of the sphere) is of the order of
0.192 s and for a zinc ion it is of the order of 0.0192 s.

This prior work assumed, but did not establish, that the
regulatory proteins ZnuC and ZntR were “fast” enough to
sense extra free zinc ions in the cellular environment thus
leading to an underestimate of the “free zinc” concentration.
Recently the intracellular free zinc concentration in eukary-
otic cells was estimated at 10 pM using the CA-based sen-
sors under conditions where zinc binding was at a steady
state. In general, the term free zinc might properly be recast
as “readily exchangeable zinc,” in the mathematical sense,
since, as recently discussed by Sastry and Lastoskie,” the
putatively low concentrations of intracellular zinc ions are
tightly regulated and are thus the subject of competition for a
multitude of binding proteins within the cell. These issues,
collectively, suggest use of stochastic modeling for zinc-
protein interaction.

IV. CONCLUSIONS AND FUTURE WORK

A mobile trap algorithm was implemented for a general
(A+B) case and was verified, i.e., probability-based simula-
tions were shown to satisfy the law of conservation of mass.
A specific CA-zinc reaction was also simulated via the mo-
bile trap approach. The probability pair (p;,p,) was postu-
lated to be a forward mapping for the Kkinetic constants
(ko kof) in each case.

Implementation of this mobile trap algorithm revealed
that accounting for mobility in both sensors and ions is im-
portant, when their mobilities are similar (i.e., zinc ions and
CA molecules). Specifically, we found that a ratio of the
mobilities for ion/sensor equal to two resulted in deviations
between static, and mobile trap simulations. For the specific
case of ionic, intracellular zinc, which has relatively low mo-
bility inside a cell due to chelating tendency of the proteins
in the cell, the mobile trap approach appears more suitable.
Also, the present understanding in prior work is that the
number of free zinc ions in a cell is very small. Though zinc
is the second most abundant biometal in humans, intracellu-
lar ionic zinc concentrations have been found to be vanish-
ingly low. It seems clear that zinc is tightly bound, and prob-
ably competed for, by a number of proteins. The mobile trap
algorithm is particularly well-suited to map the outcomes of
this putative competition, because the particular mobilities of
protein “competitors” can be accounted for, directly. There is
the additional possibility that zinc is sequestered at specific
locations in a cell, and that the environment is not spatially
homogenous, either in traps or targets. Again, the mobile trap
algorithm can be used to directly simulate such inhomog-
enous domains.

The association methology adopted in this algorithm
also suggests a more general, theoretical means to estimate
the collision frequency. The approach involves use of a like-
lihood of minimum distance between the particles and distri-
bution of the minimum distance, after a specified time, to
predict binding events.

These findings may have broader implications and util-
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ity, for intracellular modeling. The approach of characteriz-
ing a protein molecule by the probabilities of association and
dissociation makes no assumptions about is spatial position.
Further, the presence of cytoskeleton, endoplasmic reticu-
lum, and other organelles, along with viscosity gradients and
anisotropy of the cell interior, can be directly modeled, with
improvements in computational processing speeds. This
methodology, in conjunction with advancements in sensing
technology,74 cluster statistics for sensor-type partic:lesjsf77
and mapping of nano-fiber networks, " may be employed
to estimate the probability of sensing a rare species with
specific sensors, and enable improved sensor design.

We are presently modifying our existing algorithm, to
simulate competitive binding between two types of protein
molecules, and more specifically, per the points raised above,
to simulate rate experiments on zinc and CA.* The ultimate
aim is to allow the seamless integration of atomistic simula-
tions with characterization of protein interactions, which is
not possible with prior models. The pair association/
dissociation probabilities (p;,p,) mathematically character-
izes a protein molecule completely, and can be readily ex-
tended to simulate the competition of multiple proteins for
very few targets, after characterization of probabilities from
atomic simulations. Further, the probabilities p; and p, im-
mediately map to experimental kinetic constants. Thus, we
anticipate that this general approach will ultimately allow
direct comparison of experimental and atomistic simulations
in a single, statistically robust framework.
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APPENDIX: DERIVATION OF THE NUMBER OF
COMPLEX CA MOLECULES AS A FUNCTION

OF TIME USING TWO APPROACHES OF SELECTIVE
CA DISSOCIATION

The approach of checking each CA molecule for disso-
ciation and the presently implemented approach of randomly
selecting a CA molecule for dissociation are equivalent. This
can be proved using the basic probability theory. We start
with a group of n complex (zinc bound) CA molecules and
go on dissociating them one after another using these two
methods.

Method 1: Checking all complex CA molecules for dis-
sociation. Let the probability of dissociation of a complex
CA molecule upon selection be p. After the first turn of
checking, the expected number of CA molecules that will be
dissociated is pn. Hence the number of complex CA mol-
ecules after the first turn of dissociation is
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ni=n-pn=n(l-p). (A1)

After the second turn of dissociation checking, the number of
complex CA molecules can be estimated using the above
procedure and it is

ny=n;—pn;=n(l-p)-p(l-pn=n(1-p)*>.  (A2)

After the mth turn of dissociation checking, the number of
complex molecules is

(A3)

n,=n(l —p)" = ne ",

Method 2: Selecting a CA molecule at random and
checking it for dissociation. It is easy to derive an expression
for n,, assuming that the ith turn of dissociation has taken
place. Let the number of complex CA molecules be n; and
the number of free CA molecules be ng. The initial number
of CA molecules is n. Let the probability of dissociation of a
complex CA molecule be p, (to distinguish it from p used in
Method 1). The number of complex CA molecules after the
i+1th turn is

Mig1 =M l"‘”i;l(l—l’z)"'(”i—l)jpz’

Ny =”i(1 - &)
n

We can obtain the expressions for ny,n,, ..
(A5) and they are as follows:

(A4)

(A5)

.,n,, using Eq.

nlzn(l—&>, (A6)
n
P P\
n2=n1(1—_2>:n<1—_2>, (A7)
n n
nm=n<1 —&) =ne P2, (AR)
n
From Egs. (A3) and (AS), it can be seen that
p=paln. (A9)

Selecting a random CA molecule for dissociation is more
efficient because it saves the physical time required for a
simulation run.
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