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The onset of electrical percolation in nanotube-reinforced composites is often modeled by considering the
geometric percolation of a system of penetrable, straight, rigid, capped cylinders, or spherocylinders, despite
the fact that embedded nanotubes are not straight and do not penetrate one another. In Part I of this work we
investigated the applicability of the soft-core model to the present problem, and concluded that the hard-core
approach is more appropriate for modeling electrical percolation onset in nanotube-reinforced composites and
other high-aspect-ratio fiber systems. In Part II, we investigate the effect of fiber waviness on percolation onset.
Previously, we studied extensively the effect of joint morphology and waviness in two-dimensional nanotube
networks. In this work, we present the results of Monte Carlo simulations studying the effect of waviness on
the percolation threshold of randomly oriented fibers in three dimensions. The excluded volumes of fibers were
found numerically, and relationships between these and percolation thresholds for two different fiber morpholo-
gies were found. We build on the work of Part I, and extend the results of our soft-core, wavy fiber simulations
to develop an analytical solution using the more relevant hard-core model. Our results show that for high-
aspect-ratio fibers, the generally accepted inverse proportionality between percolation threshold and excluded
volume holds, independent of fiber waviness. This suggests that, given an expression for excluded volume, an
analytical solution can be derived to identify the percolation threshold of a system of high-aspect-ratio fibers,
including nanotube-reinforced composites. Further, we show that for high aspect ratios, the percolation thresh-
old of the wavy fiber networks is directly proportional to the analytical straight fiber solution and that the
constant of proportionality is a function of the nanotube waviness only. Thus the onset of percolation can be
adequately modeled by applying a factor based on fiber geometry to the analytical straight fiber solution.
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I. INTRODUCTION

Electrical conductivity in nanotube-reinforced polymers
follows a classic percolationlike behavior [1-11]. Thus the
study of percolation in these materials is of high interest and
is motivated by the potential for their use as electrically
and/or thermally conductive systems with an extremely low
concentration of nanotubes. The classic percolation models
for sticks in three dimensions are often applied to the predic-
tion of percolation onset in nanotube-reinforced composites
[8,12,13]. In these numerical and analytical studies nano-
tubes are modeled as penetrable, straight, rigid, capped cyl-
inders, or spherocylinders. There are two significant differ-
ences between this model and the physical system:
nanotubes embedded in a polymer matrix do not penetrate
each other, and they are typically not straight.

In Part I we investigated the applicability of the soft-core
model to nanotube-reinforced composites by comparing nu-
merical results of simulations using both soft-core and hard-
core approaches and concluded that the hard-core model is
more suitable for modeling electrical percolation onset in
these materials. The more convenient soft-core modeling ap-
proach is widely used in the literature, however, the error
introduced by allowing the fibers to intersect is non-
negligible and is a function of both aspect ratio (length over
radius) and tunneling distance.
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Solutions for percolation onset in wavy systems are nec-
essary to study percolation in nanotubes, given experimental
observations of both structure and mechanical properties.
Recent observations have shown that single-walled carbon
nanotubes (SWCNTs) embedded in polymer matrices are
generally curved or wavy, rather than straight [14—17]. The
effect of fiber waviness on percolation threshold has been
studied in two-dimensional (2D) systems [18], and very re-
cently by Dalmas [19] in three-dimensional systems. Previ-
ously the existing literature on percolation in three-
dimensional (3D) fiber systems considered straight fibers
only [20-25]. Though the exact 3D structure of embedded
nanotubes remains speculative, the effect of nanotube wavi-
ness on the elastic properties of nanotube-reinforced com-
posites has been recently investigated using finite element
analysis [26] where a sinusoidal model is used for the em-
bedded nanotubes and an analytical approach [27] in which
the nanotubes are assumed to be helical. Both studies
showed that the effective modulus decreases significantly
with increasing nanotubes waviness. Thus understanding any
differences in percolation onset due to fiber waviness, in 3D
arrays, appears important both for conductivity and mechani-
cal property prediction.

Recently Dalmas [19] investigated the electrical conduc-
tivity of entangled three-dimensional networks of nonstraight
fibers. Briefly, the network geometry was generated and the
contacts between fibers established by considering nearest-
neighbor interactions and allowing fibers to overlap. An

©2007 The American Physical Society


http://dx.doi.org/10.1103/PhysRevE.75.041121

L. BERHAN AND A. M. SASTRY

equivalent resistor network was then developed by assigning
electrical properties to the fibers and the fiber-fiber contacts.
The volume conductivity of the network was then found by
integration using finite element software. In this work, we do
not allow the fibers to intersect and we use an excluded vol-
ume approach to model the percolation of hard-core helical
fibers.

We have previously used direct Monte Carlo simulations
to determine percolation onset in nonstraight, 2D fiber sys-
tems [18]. However, such calculations become prohibitively
intensive for 3D arrays. Thus, here, we return to a classic,
analytical result by Balberg et al. [20] based on the relation-
ship between percolation threshold and excluded volume as
the basis for our work in wavy, 3D fiber systems.

Briefly, for a system of like objects, the number of objects
per unit volume at percolation, g, is inversely proportional
to the excluded volume, V., of one of the objects, that is

1
~—. 1

W=y (1)
It has been shown using a cluster expansion method and
Monte Carlo simulations that for soft-core rods the constant
of proportionality tends to unity as R/L— 0. Since nanotubes
have very high aspect ratios, a popular approach to predict-
ing the percolation threshold, ¢, in nanotube-reinforced
composites is to use the analytical expression

14
=—, 2
b=y o)
where V and V,, are the volume and excluded volume of a
straight, rigid, soft-core spherocylinder with the length and
radius of the average nanotube or nanotube bundle in the
composite.

Since nanotubes within a composite do not penetrate each
other, a hard-core model more accurately represents the
physical problem. In Part I of the present work, we investi-
gated both approaches and showed that the discrepancy be-
tween the results obtained using a soft-core model can be
significant, even for high-aspect-ratio fiber systems. We
showed through Monte Carlo simulations that the excluded
volume rule of Eq. (1) is valid for hard-core spherocylinders
as well, and further that the constant of proportionality is one
in the slender rod limit. We further proposed an alternate
approach to predicting percolation in nanotube-reinforced
composites where the embedded nanotubes are straight, i.e.,

_ (1 + S) Vcore

=y G)

In the above expression, V,, is the excluded volume of the
hard-core spherocylinder with the dimensions of the hard
core the same as the average nanotube, and a soft shell thick-
ness equal to half the tunneling distance. The volume of the
hard core, V., is the volume of the physical nanotube. The
constant of proportionality (I1+s) was determined numeri-
cally using Monte Carlo simulations. We established that for
high aspect ratios (L/R>400) the constant of proportionality
(1+s) is a function of aspect ratio L/R only. For the hard-
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core model, the aspect ratio is taken as the ratio of length L
to the outer radius of the soft shell R.

The relationship between percolation threshold and ex-
cluded volume of Eq. (3) provides a convenient analytical
approach to modeling percolation onset and we use this as
the framework for our investigation of the effect of waviness
on percolation in nanotube-reinforced composites. We de-
velop models applicable to real nanotubes, i.e., helical or
corkscrew arrangements. The specific objectives of the
present work are as follows.

(1) To derive expressions for the excluded volume of
wavy fibers using Monte Carlo simulations given their ge-
ometry.

(2) To find the percolation threshold of systems of wavy
fibers randomly oriented in three dimensions using Monte
Carlo simulations.

(3) To investigate the validity of the excluded volume rule
for systems of nonstraight fibers.

(4) To determine the implications of the results for study
of mechanics and transport properties of high-aspect-ratio
systems such as nanotube-reinforced polymers, and to com-
ment on the applicability of the straight spherocylinder
model to these systems.

In Sec. II, we numerically obtain expressions for the ex-
cluded volume of helical fibers of different morphologies.
Methodology and results of Monte Carlo simulations to de-
termine the percolation threshold of systems of randomly
oriented helical fibers are presented in Sec. III. In Sec. IV
these results are discussed in the context of determination of
a suitable relationship between percolation threshold and ex-
cluded volume for wavy fibers.

II. DETERMINATION OF THE EXCLUDED VOLUME
OF HELICAL FIBERS

A. Method

A first step in investigating the effect of waviness on per-
colation threshold and the validity of the excluded volume
rule for systems of wavy fibers is to determine the excluded
volume of the wavy fibers. Five different fiber geometries,
which we label fibers A, B, C, D, and E, were considered in
this study, and are shown in plan and elevation views in Fig.
1. All fibers were modeled with hemispheric caps on each
end. A helical model was chosen for fibers B-E with geom-
etry defined by the parametric equations

X=acost,
y=asint,
z="bt. (4)

For fiber B, a=b and 0<t¢=< ; for fiber C, a=b and 0=¢
<241, for fiber D, a=b and 0=<t=<4; and for fiber E, a
=5b and 0=<r=<2m. The running length of any helical fiber
minus the end caps is given by

L=1d®+ 1. (5)

In both the excluded volume simulations and the percolation
threshold simulations described later, the centerline of each
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FIG. 1. (Color online) Straight (A) and helical (B, C, D, E)
fibers used in the excluded volume study.

helical fiber was modeled using straight line segments. The
fibers can thus be considered to be comprised of a series of
cylindrical segments, capped with hemispheres on each end
of the helix. For convenience we use a soft-core model for
our simulations, thus two fibers are considered to intersect if
the shortest distance between their centerlines, the distance
between their end caps, or the distance between the end cap
of one fiber and the centerline of the other fiber is less than
or equal to the fiber diameter. Later we will present a method
for calculating the excluded volume of hard-core wavy fibers
based on the results of the soft-core simulations.

The excluded volumes of the four types of helical fibers
were determined numerically, following the procedure out-
lined by Saar and Manga [28]. For each fiber geometry, the
center point of a fiber of running length L=1 was placed in
the center of a simulation cube with sides of length 2. Next,
10° fibers were placed randomly one at a time within the
cube, and each checked to determine whether it intersected
the original fiber. The number of intersections with the origi-
nal fiber divided by the number of trials multiplied by the
volume of the simulation cube gives the excluded volume of
the fiber. For each fiber type, the simulation was performed
ten times to determine a mean and standard deviation for V..
For all fiber types, the excluded volume was found for se-
lected L/R ratios between 20 and 400.

Since the helical fibers are modeled as capped helices, we
expect that the excluded volume in each case will be reduced
to the excluded volume of a sphere of radius R, Vexsphere, in
the limit L=0. The excluded volume of a sphere of radius R
is given by

_ 327 .
eXsphere: 3 :

(6)

We begin with the assumption that the expression for ex-
cluded volume in each case will take the same general form
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as the excluded volume of the straight capped cylinder, and
thus can be expressed as

- L Ly
Vex = Vex e 1+ 1 FAITYAL (7)

We introduce the term 0., to represent the excluded volume
of a fiber of radius R normalized with the excluded volume
of a sphere of radius R such that

Vex

(8)

17ex =
Xgphere

In Part I we established that the hard-core model is more
suitable for modeling the onset of electrical percolation, thus
we will use the hard-core model for our wavy fiber investi-
gation as well. Since the hard core and the surrounding soft
shell can be viewed as capped helices of the same running
length and shape with different radii, the excluded volume of
a hard-core curly fiber is simply the excluded volume of the
core minus that of the impenetrable shell. Thus for the wavy

hard-core fiber

2
Vex= Vexsphcrc|:(1 _t3) +611<1%>(1 _tz) +a2<1£2> (] _t)j|y
)

where ¢ is the ratio of the radius of hard core to the outer
radius of the soft shell. The soft-core limit corresponds to a
value of =0 while =1 represents the hard-core limit.

The values of the constants in Eq. (9) can be found from
simulations to find the excluded volume of soft-core fibers as
described above. Once the constants are found, the excluded
volume for the hard-core fibers can be easily found from Eq.

).
B. Results

For each fiber type, 0., was plotted against the aspect
ratio L/R and the data fit to a second order polynomial with
the intercept on the U, axis set to 1. The results are shown in
Fig. 2, together with the analytic solution for straight fibers.

Each data point represents the mean value for the ten
simulations performed for the given fiber type and aspect
ratio, with the error bars indicating plus and minus one stan-
dard deviation. The constants a; and a, [Eq. (7)] for each
case are shown in Table I below.

III. NUMERICAL DETERMINATION OF PERCOLATION
THRESHOLD: WAVY FIBERS

A. Method

In our simulations for straight fibers performed in Part I,
we established that the percolation threshold, 9ps is inversely
proportional to the excluded volume for both soft-core and
hard-core fiber models and found that g, followed the gen-
eral form

; (10)

where
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FIG. 2. Normalized excluded volume o, vs aspect ratio for fiber
types A-E.

3261(5)02 (11)

for both soft-core and hard-core models. Thus we confirmed
that in the slender rod limit (i.e., as R/L—0) the constant of
proportionality is unity for straight fibers.

In order to derive an analytical approach to predicting
percolation threshold in wavy fiber systems, we must first
investigate whether the excluded volume is valid for wavy
fibers. Since the simulations for soft-core fibers are less com-
putationally intensive than those for hard-core fibers, we will
establish the relationship between percolation and excluded
volume for wavy fibers by considering a soft-core model.

The percolation threshold for soft-core wavy fiber sys-
tems of fiber types C and E, respectively, were found follow-
ing the same approach used for the straight fibers and de-
scribed in Part 1. In the case of fibers of type C, the
percolation threshold of systems of fibers of length L=0.15
and 0.2, with aspect ratios 20, 30, 40, and 60, were found.
For fibers of type E, the percolation threshold was found for
systems of fibers of L=0.2 and the same values of aspect
ratio. One-hundred simulations were performed for each
case. The mean number of fibers within the unit cube at
percolation, N., was found for each aspect ratio and fiber
type. Since a simulation cube of unit volume was used, the
number of fibers per unit volume at percolation, g,, is nu-
merically equal to N..

In order to investigate the relationship between the perco-
lation threshold and the excluded volume, we use the nu-

TABLE I. Coefficients a; and a, in Eq. (7) for fibers A-E.

Fiber type a )

A 0.750 0.094
B 1.132 0.080
C 0.374 0.084
D -0.050 0.082
E 0.646 0.074
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FIG. 3. In(s) vs In(R/L) for fiber types C and E (L=0.2).

merical expressions for the excluded volume of the wavy
fibers as derived in the previous section. Substituting the
values of a; and a, from Table I into Eq. (7) for fibers C and
E, the excluded volume for soft-core fibers of these types can
be written as

27, L L\?
Vo= ——R3|[ 1+0.374( — | +0.082( — (12)
3 R R

and

N7 L L\?
Vo= —R}| 1+0.646( — | +0.074| =] |, (13)
3 R R

respectively. As in the straight fiber case, the value of s for
each aspect ratio was calculated using the mean number of
fibers per unit volume at percolation from the simulation
results using the expression

§s=q,Vex— 1. (14)

B. Results

The average values of In(s) were plotted against In(R/L).
Figure 3 below shows In(s) versus In(R/L) for systems of
fibers of length L=0.2 and fiber types C and E. As in the
straight fiber case, In(s) was found to vary linearly with
In(R/L) for both types of wavy fibers considered. Thus the
percolation threshold ¢, for all cases can be expressed using
Eq. (10), with s given by Eq. (11). The values of ¢, and ¢,
obtained in each case are given in Table II.

The percolation threshold for fiber C of lengths 0.15 and
0.2 are within 3% of each other for R/L=0.05 and differ by
less than 1% for R/L<<0.005, suggesting that the fibers of
length L=0.2 can be used without loss of accuracy due to
scale effects.
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TABLE II. Values of ¢; and ¢, for fiber types A, C, and E.

Fiber type Fiber length cy c

A 0.15 5.231 0.569
A 0.20 5.159 0.560
C 0.15 11.156 0.664
C 0.20 11.782 0.667
E 0.20 29.012 0.756

C. Hard-core model

Since the relationship between excluded volume and per-
colation threshold has been established for the soft-core
wavy fibers, we assume that a similar relationship exists for
wavy hard-core fibers. While the values of the constants c;
and ¢, in Eq. (11) are expected to vary with 7, we extend the
findings of Part I and conjecture that for high aspect ratios, s,
and therefore the proportionality constant (1+s), will vary
with aspect ratio only and be independent of ¢.

We therefore propose the use of Eq. (3) as an analytical
method for calculating the percolation threshold for high-
aspect-ratio wavy fibers using a hard-core modeling ap-
proach. In evaluating the expression, the excluded volume is
calculated from Eq. (9), V.. is the volume of the hard core
of the model fiber (i.e., the volume of the nanotube itself),
and s is calculated from Eq. (11) using the values of ¢, and
¢, obtained from the soft-core model Monte Carlo simula-
tions.

The radii of single nanotubes and nanotube bundles found
in nanotube-reinforced composites range from ~0.7 nm to
several nanometers. Assuming that the intertube/interbundle
spacing required for electron transport (i.e., tunneling dis-
tance) is approximately 5 nm or less [ 14], the range of values
of ¢ likely in these materials is 0.2-0.8.

We introduce the quantity g, which serves as a measure of
the effect of fiber waviness on percolation threshold.

_ Gp(wavy)

(15)

P - ’
Qp(strai ght)

where q,(wavy) 18 the number of wavy fibers of running length
L and aspect ratio L/R per unit volume at percolation, and
p(straighy) 1S the number of straight fibers of the same running
length and aspect ratio per unit volume at percolation. Both
Gp(wavy) AN Gp(suaiohyy are derived using Eq. (10) with the
appropriate values of s and v.,. We define v, as follows:

Uex(wavy)

(16)

Uex = .
vex(straight)

Figure 4 shows 0., versus L/r for the value of t=0. Figure 5
is a plot of g, versus L/r for fiber types C and E.
IV. DISCUSSION

For aspect ratios greater than ~1000, the value of U, for
a given fiber is independent of aspect ratio as shown in Fig.
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4 which exhibits the quantity v,, for fiber types C and E
calculated at t=0. Similar plots of v, versus L/r at the other
values of ¢ considered show that for L/r greater than 1000,
U 1s also independent of 7. Thus at these high aspect ratios,
Uy 1S a constant, a, that depends on fiber geometry only. The
values of « for fiber types C and E are 0.79 and 0.89, re-
spectively.
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FIG. 6. (Color online) Sample networks (L=0.2 and aspect ratio=10) at percolation for networks of (a) fiber A (straight), (b) fiber C, and

(c) fiber E.

As shown in Fig. 5, the effect of fiber waviness on perco-
lation threshold is dependent on both aspect ratio and the
ratio of the soft shell to hard-core radii, ¢, for aspect ratios
less than 1000. As the aspect ratio increases, the effect of ¢
decreases and the values of g, converge. This result is in
agreement with our simulations for straight fibers presented
in Part I and with the findings of Balberg and Binenbaum
[21] as discussed in Part I. Thus the number of intersections
per fiber B, [i.e., (I1+s) in our simulations] for elongated
objects appears to be independent of ¢ as L/R— 0 regardless
of object geometry. Further, for aspect ratios greater than
1000, the magnitudes of g, at all values of 7 are numerically
within 5% of the inverse of the constant a.

Therefore for systems of high-aspect-ratio (i.e., L/r
>1000) wavy fibers, including nanotube-reinforced compos-
ites

o
quz’ (17)

where « is a parameter that is a function of fiber waviness
only. Rewriting Eq. (17), we can express the number of wavy
fibers at percolation as

4 p(straight)

dp(wavy) = o . (1 8)

Thus the number of wavy fibers per volume at percolation
appears to be directly proportional to the number of equiva-

lent straight fibers at percolation, with the constant of the
proportionality independent of modeling approach and tun-
neling distance. For wavy fiber systems of high aspect ratio,
the percolation threshold can be expressed by a modified
form of Eq. (3),

_ (1 + S(straight))vcore . (19)

c
aVex(eraight)

In the above equation, s is calculated using c¢; and ¢, values
for an equivalent straight, soft-core fiber, i.e., having the
same running length and aspect ratio as the average wavy
fiber in the system. Vey(saigny 18 the excluded volume of the

equivalent straight fiber using a hard-core approach given the
fiber radius, aspect ratio, and tunneling distance (from which
t can be calculated). As before V. is the volume of the hard
core, which is the actual volume of the average fiber in the
real system. The only additional simulations required when
dealing with high-aspect-ratio wavy fiber systems are those
required to determine the aspect ratio, and thus to obtain the
value of a.

For aspect ratios less than 1000, the effect of waviness on
percolation threshold increases with decreasing aspect ratio
and with increasing ¢. At an aspect ratio of 20, for example,
the critical concentration of fibers of types C and E at =0
are 1.46 and 2.09 times the critical number of straight fibers
of the same length. This is illustrated in Fig. 6, which shows
the fibers (and portions of fibers) present in the unit cube at

041121-6



MODELING PERCOLATION... . II. THE EFFECT OF ...

percolation for sample networks of fiber types A, C, and E,
respectively. All fibers have an aspect ratio L/r=20. The
actual three-dimensional shapes of the fibers contained in the
percolating clusters are shown, with the centerlines of the
remaining fibers represented as lines for clarity. For an actual
composite this effect is even more pronounced. For example,
for an aspect ratio of 20 and #=0.3, the critical concentration
of fibers of types C and E are ~1.87 and 2.74 times that of a
system of equivalent straight fibers.

V. CONCLUSIONS

The percolation threshold of systems comprised of high-
aspect-ratio wavy fibers was found to be inversely propor-
tional to the excluded volume of a wavy fiber, and to obey
the rule that the constant of proportionality is one in the limit
R/L—0. The percolation threshold of these systems was
also found to be proportional to the percolation threshold for
a system of equivalent straight fibers for aspect ratios above
1000, with the constant of proportionality being governed by
the fiber waviness only. For the two wavy types C and E
considered, this constant of proportionality, 1/a, was nu-
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merically equal to 1.12 and 1.27, respectively.

For systems comprised of highly curved or wavy fibers,
an analytical approach can be used to determine the percola-
tion threshold. Although numerical simulations would be re-
quired to first determine the excluded volume of the fibers
under consideration, these simulations are far less computa-
tionally intense than those that would be required to numeri-
cally determine the percolation threshold of these networks.

The straight fiber hard-core model is therefore most ap-
propriate when modeling composite materials with straight
or very mildly curved fibers of high aspect ratio. If fibers are
highly curved or coiled, the discrepancy between models us-
ing straight and curved fibers is significant. For short fiber
composites, the effect of fiber waviness is predicted to be
even more pronounced and inclusion of this effect is critical
in predicting percolation threshold.
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