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Abstract Successful modeling and/or design of engineering
systems often requires one to address the impact of multiple
“design variables” on the prescribed outcome. There are of-
ten multiple, competing objectives based on which we assess
the outcome of optimization. Since accurate, high fidelity
models are typically time consuming and computationally
expensive, comprehensive evaluations can be conducted only
if an efficient framework is available. Furthermore, informed
decisions of the model/hardware’s overall performance rely
on an adequate understanding of the global, not local, sen-
sitivity of the individual design variables on the objectives.
The surrogate-based approach, which involves approximat-
ing the objectives as continuous functions of design variables
from limited data, offers a rational framework to reduce the
number of important input variables, i.e., the dimension of
a design or modeling space. In this paper, we review the
fundamental issues that arise in surrogate-based analysis and
optimization, highlighting concepts, methods, techniques, as
well as modeling implications for mechanics problems. To
aid the discussions of the issues involved, we summarize re-
cent efforts in investigating cryogenic cavitating flows, active
flow control based on dielectric barrier discharge concepts,
and lithium (Li)-ion batteries. It is also stressed that many
multi-scale mechanics problems can naturally benefit from
the surrogate approach for “scale bridging.”
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Nomenclature

b Vector of polynomial coefficients
C Cycling rate, where 1C is the rate required to
charge/discharge the cell in one hour

D Characteristic length scale (m)

D Solid diffusion coefficient (m?/s)

E Expectation value

f Vapor mass fraction/Frequency of applied
voltage (kHz)

F, x-directional Lorentzian force (mN/m)

Fis Domain averaged x-directional Lorentzian
force (mN/m)

F.sr Time and domain averaged x-directional
Lorentzian force (mN/m)

h Enthalpy (kJ/kg)

L Latent heat (kJ/kg)

m* Source term in cavitation model (1/s)

m- Sink term in cavitation model (1/s)

np Particle number density of species p (1/m®)

N Number of sampled design points

Nrgr  Number of neural basis functions

N, Number of design variables

P Pressure (N/cm?); power input due to the charge
current through the upper electrode (W)

P, Saturation vapor pressure (N/cm?)

Pgig L, norm between experiment and predicted
pressure (N/cm?)

Pr Time averaged power input due to the charge
current through the upper electrode (W)

Pr Prandtl number

I Positive-to-negative polarity time ratio of
applied voltage waveform

R? g Adjusted coefficient of determination

R, Solid particle radius in positive electrode (um)
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s Vector of neuron position
S Area of computational domain for gas (m?)
Swm Main sensitivity index
St Total sensitivity index
feo Reference time scale, t, = D/U,, (s)
T Temperature (K) Period of applied voltage (s)
Tar L, norm between experiment and predicted
temperature (K)
u Velocity (m/s)
Up Particle bulk velocity of species p,
(Mx,p, Uy ps uz.p) (m/s)
Reference velocity (m/s)
Variance
Applied voltage to the upper electrode (kV)
Vector of design variables; Space variable (m)
Objective function
Surrogate approximation of objective function
Mean value of objective function
Systematic departure
Liquid volume fraction
Spread coefficient of radial basis neural network
Dielectric constant of insulator
Dynamic viscosity (kg/ms)
Density (kg/m?)
Electronic conductivity (S/m)
Cavitation number based on the free
stream temperature
o, RMS error of polynomial response surface
at sampled points
T Dimensionless time
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1 Introduction

The notion of design variables influencing system perfor-
mance can be found in numerous thermo-fluid and energy
systems. In the computational modeling context, the de-
sign variables can be adjustable parameters associated with
a given mathematical model under different operating condi-
tions and scaling parameters. In the hardware design context,
they are often geometry, materials, and operating variables.
In both situations, there are often multiple, competing ob-
jectives based on which we assess the outcome of optimiza-
tion. Since accurate, high fidelity models are typically time
consuming and computationally expensive, comprehensive
evaluations can be conducted only if an efficient framework
is available. This is especially true in the case of multi-scale
problems involving physical phenomena occurring at multi-
ple length or time scales, which may need to be computed
separately. Furthermore, informed decisions concerning a
model or hardware system’s overall performance rely on an
adequate understanding of the global, not local, sensitivity
of the individual design variables on the objectives.

In reality, most engineering system and modeling de-
signs are conducted as open loop, feed-forward processes.
For example, for turbine design in aerospace and mechani-
cal engineering, one design iteration for a given set of engine
balance conditions may currently take up to several weeks,
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with just the blade geometry design sub-iteration phases tak-
ing several days each. The quest for an acceptable blade sur-
face velocity distribution is accomplished with many ad hoc
rules in what is essentially a manual trial-and-error process.
A systematic approach capable of identifying design opti-
mality and comparing possible trade-offs can significantly
improve productivity and shorten the design cycle.

Objective and efficient evaluation of advanced designs
can be facilitated by development and implementation of
systematic optimization and sensitivity evaluation methods.
To date, the majority of the effort in design optimization has
relied on gradient-based search algorithms. These methods
work iteratively through a sequence of local sub-problems,
which approximate objective and constraint functions for a
sub-region of the design space, e.g., by linearization using
computed sensitivities. Major challenges for these optimiza-
tion approaches are the robust and speedy computation of
sensitivity coefficients [1].

Yet despite recent research advances, formal design op-
timization has yet to see practical use in real design scenar-
ios. The reasons are several-fold:

(1) The objective functions are likely to be multi-modal
or discontinuous over the broad design space [2], rendering
gradient search methods insufficient by themselves. Addi-
tionally, the usual practice to combine multiple goals into a
single quantitative objective function is too restrictive. Qual-
itative goals are often required to correctly characterize a
problem (e.g., maximizing a turbine blade’s aerodynamic ef-
ficiency with a smooth, monotonic surface velocity distri-
bution, while spreading heat load as uniformly as possible).
These goals may have arisen from diverse disciplines and are
usually treated sequentially by different groups.

(2) It is inadequate to think of the final product of a de-
sign process as a mere geometry. A “design” really encom-
passes a whole set of operating, manufacturing, and project
level decisions.

(3) As the interaction between numerical simulation
and physical test data becomes stronger, the future engineer-
ing knowledge base is likely to consist of various heteroge-
neous data sources including experimental data, past product
experiences, semi-empirical modeling, and high fidelity sim-
ulations. Some data are anecdotal; others cover only small
“patches” of the physical domain but are still useful for “real-
ity checks”. A unified framework needs to be constructed for
representation, capturing and mining of all these data types
so the response functions can be continuously improved.

The surrogate-based approach is an excellent technique
for analysis and probing of such issues. It also offers a
rational framework to reduce the number of important in-
put variables, i.e., the dimension of a design or modeling
space. The surrogates can be constructed using data drawn
from pre-computed high-fidelity simulations and physical
measurements, and provide fast evaluations of the various
modeling and design scenarios, thereby making sensitivity
and optimization studies feasible. As discussed by Shyy et
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al. [3], they have several advantages when compared to local
gradient-based methods:

(1) They do not require calculation of the local sensi-
tivity of each design variable;

(2) They can utilize the information collected from var-
ious sources and by different tools;

(3) They offer multi-criterion optimization;

(4) They can handle the existence of multiple design
points and trade-offs;

(5) They easily perform tasks in parallel,;

(6) They can often effectively filter the noise intrinsic
to numerical and experimental data;

(7) They provide an approximation for functions that
can be easily used to bridge disparate length or time scales
in multi-scale problems.

However, there are uncertainties in predictions using
this approach, such as empiricism in computational models
and surrogate model errors. We have developed methods to
estimate and to reduce such uncertainties using multiple cri-
teria because a single criterion may underestimate the error.
We have advanced the techniques of using an ensemble of
surrogates to reduce uncertainties in selecting the best surro-
gate and sampling strategy. We have also developed an aver-
aging technique for multiple surrogates that protects against
poor surrogates and performed at par with the best surrogate
for many problems.

In this paper, we discuss the fundamental issues that
arise in surrogate-based analysis and optimization, highlight-
ing concepts, methods, and techniques, as well as practical
implications. Our focus here is on multi-scale mechanics
problems, instead of practical device design and optimiza-
tion. Furthermore, to aid the discussions of the issues in-
volved, we will summarize recent efforts in investigating
cryogenic cavitating flows, active flow control based on di-
electric barrier discharge concepts, and lithium (Li)-ion bat-
teries. In cavitating flows of cryogenic fluids, such as liquid
nitrogen and hydrogen, thermal effects are very important.
Surrogate-based analysis has been used to investigate the im-
portance of two adjustable parameters, which regulate the
strength of the evaporation and condensation rate in the cavi-
tation model, and the sensitivity of the thermal-sensible fluid
properties, including latent heat and vapor phase density.
The surrogate-based strategy has also been used to establish
appropriate values for these empirical constants. For the di-
electric barrier discharge (DBD) actuator, the impact of the
applied voltage frequency, the insulator dielectric constant
and the polarity time ratio of the voltage waveform on the net
force generation and required power are examined. Multiple
surrogate models consistently identify two branches of the
Pareto front where a positive x-directional net force requires
relatively low power, while a negative net force requires high
power. Moreover, global sensitivity analysis indicates that
the voltage frequency and polarity time ratio are important
in only some portions of the design space, while the dielec-
tric constant is always important. A Li-ion battery cell has

also been analyzed using a surrogate modeling framework
to map the effect of cycling rate, cathode particle size, and
diffusion coefficient and electrical conductivity of the solid
cathode material on the energy density. Through global sen-
sitivity analysis the relative impact of the various parameters
can be quantified under different scenarios. The design space
is split into distinct regions based on characteristic discharge
and diffusion time scales for separate, more refined analysis.
A Pareto front is constructed to quantify the tradeoff between
maximum achievable energy and power levels. It should also
be noted that the surrogate approach offers a natural and ef-
fective framework for “scale bridging”, which is at the heart
of the multi-scale issues arising from many mechanics prob-
lems.

The rest of the paper is structured as follows. We first
present an overview of the surrogate methodology to high-
light the key steps involved. Surrogate tools applied to cryo-
genic cavitation, flow control using DBD actuators, and Li-
ion battery cells are discussed next. We conclude the paper
with a summary of key aspects of surrogate analysis that are
common to all case studies presented and their relevance to
other problems of multi-objective optimization.

2 Surrogate modeling methodology

The key steps in the surrogate modeling process are shown in
Fig. 1. The process begins with constructing a set of experi-
mental or numerical experiments, the output data from which
are used to train surrogates. Separate experiments may also
be conducted to obtain independent test points that are used
to compare the relative accuracy of the surrogates and assess
their predictive capability. Based on this error assessment,
the surrogates may be refined by including data from addi-
tional experiments, and used for further analysis.

Problem setup: design variables,
objective functions, design space

!

Design of experiments:
v 1

design points
Numerical simulations

:

Design space Surrogate model
refinement constructions

* '
Error assessment -

'

Further analysis: global
sensitivity and Pareto front

R —

Fig. 1 Flowchart for the surrogate-based modeling framework
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2.1 Design of experiments

The design of experiments consists of the design points at
which training data for the surrogate models are obtained.
In most problems the nature of the objective function is not
known beforehand, so it may be simplest to use random sam-
pling of the design space to avoid biased sampling. However,
the number of experiments or simulations that can be con-
ducted is often limited, so a more efficient approach is de-
sired. One improvement over pure random sampling is Latin
Hypercube sampling (LHS), which provides a random sam-
pling but ensures a stratified sample within the full range of
each dimension of the sample space [4].

Although LHS can give a representative sample within
design ranges, due to its random nature it does not ensure
sampling at the extrema of the parameter space, which may
be of critical interest. One method considered in this study
for sampling design space boundaries is the two-level face-
centered composite design (FCCD), which includes the face-
center points and vertices of the design hypercube [5].

2.2 Surrogate models

In general, different types of surrogate models should be at-
tempted and compared if possible, since the best method is
problem-dependent (and, as will be seen, region-dependent
within a single design space) and can not be predicted be-
forehand. A brief description of the commonly used models
is as follows; further details can be found in Refs. [6,7].

2.2.1 Polynomial response surface (PRS)

In a polynomial response surface model, the objective func-
tion is approximated as a linear combination of polynomial
basis functions

9x) = D bifitx). (1)

The number of i terms and the maximum degree of fi(x)
are determined by the order of the PRS model. There often
exists an “optimum” polynomial order; higher-order poly-
nomial response surfaces can potentially achieve greater ac-
curacy by allowing more degrees of freedom, but can also
suffer from excessive curvature that can hinder accuracy and
show inconsistent trends in the objective function from ac-
tual data. The coefficient vector b is selected using a least
squares method such that the prediction error at the training
data points is minimized.

The adjusted coefficient of determination quantifies the
prediction capability of the polynomial response surface ap-
proximation. This parameter is defined to account for the
number of sample points

N - 1)

N,
Z(Yi -y
ps)

2 _
Radj—l

2
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A good polynomial fit should have a small RMS error, and
thus an Ridj value close to 1.

2.2.2 Kriging (KRG)

In a kriging model, the objective function is approximated
as a sum of a polynomial regression model and a systematic
departure Z(x) (or a set of basis functions [8])

60) = D bifitx) + Z(x). 3)

The systematic departure components are assumed to be cor-
related as a function of distance between the locations un-
der consideration, and the maximum likelihood estimation is
used to determine the parameter estimates [9]. In this study
a variety of correlation functions are considered: Gaussian,
linear, exponential, cubic, (cubic) spline, and spherical. A
detailed formulation of these correlation functions has been
summarized by Lophaven et al. [10].

2.2.3 Radial-basis neural network (RBNN)

A radial-basis neural network model approximates the objec-
tive function as a linear combination of radial basis functions
[11], also known as neurons

Nrpr

$(x) = w;ia;i(x). 4)
i=1

The Gaussian function has been used as the radial basis func-

tion in this study

ai(x) = e—(l\sf—wILB)z, 5)

where the quantity ||s; — x|| is the distance to the i-th ra-
dial basis function. The number of neurons and associated
weights are determined by satisfying the user defined error
“goal” on the mean squared error in approximation.

2.2.4 PRESS weighted surrogates (PWS)

Weighted average surrogate models combine information
from multiple individual surrogates via a weighting scheme
to reduced uncertainties in selecting the best model based on
limited validation criteria. Various weighting strategies are
possible; we adopt a method based on the PRESS values of
the individual surrogates. Further details of weighting strate-
gies for multiple surrogates can be found in Ref. [12].

2.3 Cross-validation

In order to select appropriate surrogate models for analysis,
methods for evaluating and comparing the accuracy of the
models are required. Procedures for comparing error mea-
sures for kriging and PRS models have been developed by
Goel et al. [13]. One common strategy is to obtain simu-
lation data at test points, which are sampled independently
from design points as a validation data set. The prediction
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error could then be computed at each test point for each sur-
rogate model. While this method is easy to use and is useful
for performing cross-validation, it is also limited by the num-
ber of test points, which usually are computationally expen-
sive to obtain. The use of other cross-validation techniques
in conjunction with test-point prediction error has also been
adopted.

To estimate the accuracy of a surrogate model indepen-
dent of test points, a parameter S s called the prediction
error sum of squares can also be computed. PRESS is com-
puted directly from the training data by summing the “leave-
one-out” prediction errors at all data points. The “leave-one-
out” prediction error is defined as the prediction error at a
particular point using the surrogate model constructed from
all other data points. In a more general formulation allowing
an arbitrary number of data points to be left out at a time,
this parameter is known as the generalized mean square er-
ror (GMSE). In this study, we use the PRESS (RMS) value
as the basis of evaluation and comparison

NS
Spress = Al[ Z (yl - j}f'_i))zv (©6)
S =1

where )35_") represents the prediction at x® using the sur-
rogate constructed using all sample points except (x @, y;).
When the number of design points are sufficiently large, it is
also possible to leave out a group of partitioned data [14] or
every possible combination of multiple design points (leave-

k-out approaches [15]) for cross-validation.
2.4 Global sensitivity analysis

Global sensitivity analysis can be useful for comparing the
relative magnitude of effect of the design variables on the
objective function, especially if the number of design vari-
ables is large. Variables that have little effect on the objective
function can be identified and removed from consideration,
allowing the design space to be reduced. A method similar
to that used by Sobol [16] has been employed in this work.

An objective function f (obtained from the surrogate
model) can be decomposed as a sum of functions of individ-
ual variables and combinations of variables, known as addi-
tive functions

FEY=fo+ ) [+ D fiflxisx) + o
i i<j
+ v (X1, X250+ X)), (7
where the total variance V(f) is defined as the expected value
of the square of the summation of all non-zero order additive
functions. The total variance can also be expressed as a sum

of partial variances of the individual variables and combina-
tions of variables

Ny
V()= ) Vit D Vig+ -+ Vi, ®)
i=1

i<j

The partial variances are in turn defined in terms of the ex-
pected value of the additive functions

Vi = V(ELfIx:D),
Vij = V(Elflxi, x;D) = Vi =V}, &)

The expected values of the additive functions and their vari-
ances can be expressed as integrals of the additive functions
which are approximated using a five point Gauss quadrature
scheme in this study

1
E[ﬂxi]i:f fi(xi)dx;, (10a)
0

1
V(E[fIxi];) = f SOy (10b)
0
The main sensitivity indices can then be computed from the
partial variances

_ Vi
V()

whereas the total sensitivity index for the i-th variable is de-

fined as the sum of all variance terms involving i, divided

by the total variance. This can be expressed as a sum of the
main sensitivity index and all higher-order terms involving i

Z Vij 4+ e

g
S Ti = S M T

’ ’ V()

The relative importance of the design variables can be ob-
served by comparing either their partial variances (main sen-
sitivity indices) or their total variances (total sensitivity in-
dices). The difference between the main and total sensitivity
indices for each variable also gives an indication of the de-
gree of interaction between variables.

Swmi (11)

(12)

2.5 Pareto front

A single continuous objective function obtained through
surrogate-based modeling may be further optimized by sim-
ply searching the design space for the minimum or maxi-
mum value of the objective. However, if multiple competing
objectives are present, there may be no single optimal de-
sign, but many designs in which one objective is improved
at the cost of another [17]. Pareto-optimal solutions (also
known as Pareto-efficient solutions) comprise the set of de-
signs that are not dominated by any other design. A design
is said to be dominated by another if it is no better in any
objectives, and worse in at least one objective. The set of
Pareto-optimal solutions can be used to construct a Pareto
front, which represents all optimal combinations of the ob-
jectives if their relative importance is not known. In the sur-
rogate modeling framework, a surrogate model can also be
utilized to construct the Pareto front in addition to the ex-
isting training data. Inspection of the Pareto front may then
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reveal the existence of favorable tradeoffs between the com-
peting objectives, and assist significantly in the optimization
process.

3 Case studies to demonstrate surrogate modeling tech-
niques

Having introduced the methodology and basic concepts, we
now present different scenarios where the surrogate-based
modeling and optimization has been used to study the in-
terplay of independent variables and their influence on the
desired objective(s) for cases that include cavitation in cryo-
genic fluids, dielectric barrier discharge actuator and model-
ing of Li-ion cells. A brief overview of the motivation and
methods used in each study has been outlined, followed by a
discussion of the key findings and summary of the contribu-
tions provided by the surrogate-based framework.

3.1 Cavitation in cryogenic fluids

Cryogenic liquids, including liquid oxygen, nitrogen, and
hydrogen, are used as liquid rocket propellants due to their
high power density and clean by-products. A key design is-
sue surrounding rocket fuel and oxidizer pumps is the min-
imum pressure that the design can tolerate for a given inlet
temperature and rotational speed. To keep inlet pressure low
(reducing tank weight) and pump rotational speeds high (re-
ducing engine weight), cavitation, which occurs when the
local pressure in a fluid is lower than the vapor pressure [18—
23], is prone to appear in the inducer section. When this
occurs, the forming vapor phase will replace the liquid in-
side the cavity; in order to maintain the vapor phase, the
surrounding liquid will adjust its thermodynamic state and
experience evaporative cooling, causing a temperature drop
in the surrounding area. Although various cavitation mod-
els have been categorized and documented, for example in
Refs. [24-29], there is, to date, no established method ca-
pable of predicting the actual loads due to cavitation on the
inducer blades. The unsteadiness of the cavitating pump can
be coupled with the feed or discharge system, causing large
component oscillations. Furthermore, thermal effects are
much stronger in cryogenic cavitating liquids than in conven-
tional liquids such as water due to the thermal-sensibility of
properties such as vapor pressure and reduced liquid-vapor
density ratios under such conditions [26].

Due to the complexity of the flow phenomena, validated
computational tools capable of predicting cavitating flow be-
havior are necessary for rocket fuel-oxidizer pump design. In
this study we seek to use surrogate modeling tools to assess
and improve the predictive capabilities of a cavitation model
with respect to model parameters by comparing the output to
experimental data.
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3.1.1 Physical model

The Navier—Stokes equations are well established for multi-
phase fluid dynamics. The set of governing equations for the
cavitation computation under the homogeneous-fluid model-
ing consists of the conservative form of the Favre-averaged
Navier—Stokes equations, the enthalpy-based energy equa-
tion for cryogenic cavitation, the k—& two-equation turbu-
lence closure, and a suitable cavitation model. The details
are well-documented in Refs. [24-28]. Generally, a cav-
itation model is a transport equation for the liquid volume
fraction , which can be written in the following form

() . ANawy)
ot 6Xj
Fluid mixture properties, such as mixture density, can be

evaluated based on the liquid volume fraction, vapor phase
density py, and liquid phase density p

mt+m”. (13)

om = @1 + @y(1 — ), (14)

where the source (m*) and sink (™) terms correspond to the
condensation and evaporation rates, respectively. Multiple
studies documented in Refs. [24-29] have modeled the lig-
uid volume fraction a;(or vapor volume fraction) via the sink
and source terms, which regulate the mass transfer between
vapor and liquid phases with empirical constants. Liquid-
vapor evaporation and condensation rates for this transport-
based cavitation model can be written in the following form

_ Caestn oy min(0, P — P,)

m 2
lo Py (050U%) (15)
= Cprod(1 - ) max(0, P — Py)
foo 0.50U%)

where P is the local pressure and P, is the vapor pressure.
U, is the reference velocity scale, and 7., is the reference
time scale, defined as the characteristic length scale D di-
vided by the reference velocity scale. The conditional state-
ments in the source and sink terms indicate that evaporation
occurs when the pressure is less than the vapor pressure, and
that condensation occurs when the pressure is greater than
the vapor pressure, under the assumption of thermal equi-
librium. Based on current flow conditions, the cavitation is
attached, and hence the steady-state calculation is used. Note
that in addition to the fluid properties and flow parameters,
Eq. (15) also relies on two empirical constants, Cges and
Cproa- Furthermore, Cgesr and Cproq are material dependent
constants [24-26].
In the case of cryogenic cavitation, the thermal effects

can not be neglected and an additional equation is required
0 [( ML pr )3/1
5)6]' PrL PVT 5)6]'
Note in Eq. (16) that the subscripts “L” and “T” indicate
laminar and turbulent flow, respectively. The temperature 7'
can be computed based on the enthalpy 4 [23], and the vapor
mass fraction is expressed as

0
ox; [omuj(h + fuL)] = : (16)
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- pv(l - Q’])
Pm

In summary, this homogeneous fluid cavitation model con-
sists of the conservative form of the Favre-averaged Navier—
Stokes equations, the enthalpy-based energy equation for
cryogenic cavitation, the k—e two-equation turbulence clo-
sure based on a filter approach [24-28], and a transport equa-
tion for the liquid volume fraction. More details of cavitation
modeling can be found in Refs. [24-28].

In this study, we use surrogate modeling techniques to
assess the influence of parameters regulating the condensa-
tion and evaporation rates and uncertainties in material prop-
erties on the performance of the transport-based cryogenic
model.

fv 7)

3.1.2 Surrogate modeling process

(a) Design of experiments and cross-validation

In this study we consider cryogenic cavitation with thermal
effects in a 2D domain. A schematic of this problem setup
is illustrated in Fig. 2. Two cases corresponding to exper-
imental data reported in Ref. [30] are investigated with the
conditions listed in Table 1. In both cases the working fluid
is liquid nitrogen, and the computational domain consists of
2x10* structured grid elements.

Table 1 Cryogenic cavitation cases conditions

Case T oo Re T./K
290C 1.70 9.1x10° 83.06
296B 1.61 11.0x10° 88.54

Since we wish to assess the overall predictive perfor-
mance of the cavitation model, the objective functions of in-
terest are the RMS values of the differences between com-
puted and experimental [30] temperature (7qi) and pressure
(Pgir) values, evaluated at five different locations along the
hydrofoil surface shown in Fig. 2.

No-slip

— | Outlet

Hydrofoil surface (no-slip)

Inlet |

~_
Symmetry

Fig. 2 Schematic of the geometry and boundary conditions

Table 2 lists the design variables considered and their
ranges, as well as the objective functions. The ranges of
the two empirical constants Cyest and Cproq, Which directly
control the evaporation and condensation rates in the cavita-
tion model, are selected in accordance with those found in
Ref. [30]. The effects of perturbations in the fluid properties
are also examined by varying the vapor density, which dom-
inates the evaporating cooling term and also appears directly

in the cavitation sink term, and latent heat, which determines
the energy absorbed or released during the phase change, rel-
ative to the NIST database values [23].

Table 2 Objective functions and design variables with
corresponding ranges

Symbol  Design variable Range

Cest Evaporation rate 0.578-0.680

Cprod Condensation rate ~ 46.2-54.4

Py Vapor density* -10%-10%

L Latent heat* -10%-10%

Symbol  Objective function

P Pressure difference between CFD and exp. data
Taite Temperature difference between CFD and exp. data

*: Vapor density and latent heat are relative to database values.

Figure 3 shows the sensitivity of Ty and Pgg with re-
spect to the empirical constants for Case 290C without per-
turbations in material properties. Case 296B also shows sim-
ilar results. Clearly, the temperature and pressure distribu-
tion shows some dependence on the empirical constant val-
ues, so no immediate reduction in problem dimensionality is
available. An example of a cavity outlook (Cgesy = 0.639,
Cproa = 54.4) is also shown in Fig. 3c.

Table 3 Cross-validation measures for surrogates

(70 training points)
Piig T
Surrogate 290C 296B 290C 296B
S press PRS/% 6.38 11.90 9.11 10.02
S press KRG/% 297 293 2.48 6.62
S press RBNN/% 13.91 11.67 13.31 19.03
S press PWS/% 3.97 5.44 5.50 9.20

A design experiments consisting of 70 training data
points is selected using a combined FCCD strategy (25
points) and LHS (45 points) by maximizing minimum dis-
tances between points. PRS, KRG, RBNN, and PWS mod-
els of both objectives in normalized variable space are con-
structed, and objective function values are also normalized.
Second order polynomials for PRS and spread coeflicients in
the range between 0.4 and 0.7 are considered.

Cross-validation measures are summarized in Table 3.
Based on the PRESS criterion, the KRG model is found to
have the best overall performance while the RBNN has the
worst. Five additional independent test points are also con-
sidered for cross-validation; the KRG model also shows the
best agreement for both Case 290C and 296B in Ref. [30].
Based on these cross-validation results, the KRG model is
selected for global sensitivity analysis.
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Fig. 3 Cryogenic cavitation cases Case 290C (0o, = 1.7, Re = 9.1 x 10°, T, = 83.06 K). a Pressure; b Temperature; ¢ Liquid volume

fraction

(b) Global sensitivity analysis

Figures 4 and 5 show the overall impact of each design vari-
able on both objectives for Case 290C and 296B, respec-
tively. The overall sensitivity results are similar for the pres-
sure prediction in the two cases, where the effects of the
evaporative and vapor density terms are very important while
the contributions from the condensation and latent heat terms
are much less significant. However, the effect of latent heat
on the temperature distribution is much more significant in
Case 296B than in Case 290C. Since Case 296B has a greater
inlet temperature, this suggests that the sensitivity of the ther-
mal field to thermodynamic properties increases with tem-

Fig. 5 Global sensitivity indices for Case 296B
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perature. In both cases, the condensation term has negligible
influence on both objectives, allowing a reduction in problem
dimensionality.

(¢) Dimensionality reduction

In the next step of the surrogate process, we can optimize
the evaporative term Cges Within its design range to min-
imize the pressure and temperature discrepancies between
computed results and experimental data. Since the conden-
sation term does not influence the performance of the present
cryogenic cavitation model, it is appropriate to fix its value
(Cproa = 54.4). Additionally, since material properties are
not variables that can be tuned for optimization and are stud-
ied only to compare the relative sensitivity of the pressure
and temperature distribution to uncertainties in these proper-
ties, we fix the temperature-dependent material properties py
and L to values obtained from the NIST database [23].

The two objectives are plotted against the evaporative
term for both cases in Fig. 6. Note that while in Case 296B
the two objectives show a similar trend to each other, they
show very different trends in Case 290C. Due to these op-
posing trends, the optimal value for Cy.y depends on which
objective should be minimized. Instead of a single optimum,
there exists a Pareto-optimal set of solutions among which
one objective may only be improved at the cost of the other.

(d) Multiobjective optimization

Tradeoffs between the two objectives for both cases are plot-
ted in Fig. 7. Despite the similar trends in the two objectives
in Case 296B as shown in Fig. 6b. Figure 7b shows that there
also exists a Pareto-optimal set, although much smaller than
in Case 290C. Note that in Case 290C, significant reductions
in Pgg can be realized while incurring a small penalty in
T4ir- Combined with the fact that pressure fluctuations play
a more important role in determining the cavitation dynamics
and the loadings on fluid machinery, this nonlinear tradeoff
strongly favors reducing Py, suggesting an optimal value
of about Cyese = 0.65, which also coincides with one of the
Pareto-optimal solutions in Case 296B. This is also the value
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used for other liquid nitrogen cases in Ref. [30], suggesting
that the optimum is insensitive to differing thermal effects,
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since these cases correspond to different operating tempera-
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Fig. 6 Location of points (Cyey) and corresponding (P is shown on the left y-axis, and Ty is shown on the right y-axis) used for

calibration of the cryogenic cavitation model
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Fig. 7 Pareto fronts showing tradeoffs between objectives for both cases. a 290C; b 296B

This exercise has helped to validate the model param-
eter values. Note that since the model parameters are mate-
rial dependent, the optimal evaporative parameter will vary
with different cryogenic fluids. For example, repeating the
process with liquid hydrogen showed that the optimal value
should be Cyese = 0.78.

3.1.3 Major outcome

To assess the effects of model parameters and material prop-
erty uncertainties on the predictive performance of the cryo-
genic cavitation model, we select Cyegt, Cprods Py, and L as de-
sign variables and computed predictive errors in the pressure
(Pgigr) and temperature (7gg) distribution. The KRG model
is found to be the most suitable surrogate model due to its
PRESS value and independent test point prediction. Global
sensitivity analysis shows that the performance of the cur-
rent cavitation model is affected most by the evaporative and
vapor density terms, while the condensation term is not im-
portant at all within this design space, and the latent heat is

significant only in temperature prediction. This enabled a
reduction in the problem dimensionality, allowing the evap-
orative term to be optimized to minimize prediction error of
the cavitation model when compared to experimental data.
Although a Pareto front is found demonstrating tradeoffs be-
tween the pressure and temperature prediction, we recom-
mend a value of Cgesy = 0.65 due to the large gains available
in pressure prediction at a small sacrifice in temperature pre-
diction. Furthermore, this optimum is not affected by the
different thermal effects from our current selected cases.

3.2 Dielectric barrier discharge for flow and thermal man-
agement

The DBD plasma actuator is a flow control device that is
comprised of two asymmetrically placed electrodes sepa-
rated by a dielectric barrier (insulator) and driven by the
kilohertz radio frequency AC or pulses with kilo-volt ampli-
tude as shown in Fig. 8. The discharge generates a weakly
ionized gas and charged particles influenced by the electric
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field can deliver momentum to the neutral particles [31,32].
Asymmetric geometry and charged particle dynamics, as a
result, contribute to generate a unidirectional wall jet type
flow [33,34].

Insulator
(Dielectric material)

Plasma

Lower electrode
Radio frequency
AC voltage

Upper electrode

Fig. 8 Dielectric barrier discharge actuator configuration

In spite of the inherent advantages (no moving parts
and vast control potential) of the DBD actuator, little insight
is available regarding efficient operating conditions to ac-
commodate various performance needs. With relatively high
magnitudes of applied voltage (15kV at 5-10kHz AC) re-
quired for a uniform discharge, the force per unit width gen-
erated by a single actuator is less than 10 mN/m in air [35].
The flow velocity induced by a single actuator is usually
less than 5 m/s for pulsed input voltage [36] as well as sinu-
soidal voltage waveforms [37]. In their efforts to understand
the operating mechanism and possible optimal conditions for
the actuator, various researchers have conducted parametric
studies in terms of the waveform and frequency of the ap-
plied voltage, actuator geometry, and dielectric constant [37—
39].

Furthermore, the efforts in numerical analysis to en-
hance or optimize the actuator’s performance are hin-
dered by the disparity in time and length scale inherent in
the discharge dynamics and its influence on neutral flow.
The first-principle-based DBD simulation is very expen-
sive due to the multi-physics phenomena (such as ioniza-
tion/recombination, charged particle drift, and discharge cy-
cle) and often infeasible for design purposes. Furthermore,
for an application to an airfoil of O(10)cm chord, for ex-
ample, there is O(10%) difference between the convective
time scale of the induced airflow and the DBD operation fre-
quency, which are 0(107") second and O(10*)Hz, respec-
tively. As a result, it is critical in designing a flow and/or
thermal management system using the DBD actuator to at-
tain a reliable approximate model with computational effi-
ciency.

The present study focuses on understanding the effect
of three chosen parameters—waveform and frequency of the
applied voltage and dielectric constant of the insulator—on
the DBD actuator performance characterized by power in-
put and generated force using surrogate models. The main
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objective is to assess the importance and impact of those
variables, which have significant interplay on the actuator
performance. The accuracy of each surrogate model for this
application is also addressed, and the surrogate models with
reasonable accuracy are shown to successfully refining the
design space and resolving the region of interest with higher
accuracy.

3.2.1 Physical model

The DBD actuator is modeled with the continuity and mo-
mentum, and electric field equations derived from the Boltz-
mann and Maxwell’s equations, respectively. Since the at-
mospheric pressure is sufficiently high to assume local ther-
modynamic equilibrium, the fluid model is reasonably ac-
curate and the local electric field density (E/N) can be
used to approximate the phenomena related to the collision
processes—ionization/recombination, diffusion and drift—
instead of solving the energy equation [40]. Governing equa-
tions are given as Eq. (18) to Eq. (20) for only two species
He™ (subscript p = i) and electron (subscript p = ¢) for sim-
plicity in this paper. S ;. and r are ionization and recombina-
tion rate coefficients, and u and D are mobility and diffusivity
of charged particles, respectively. ¢ is electric charge of one
species particle, and gy is permittivity of vacuum.

np
or + V- (myu,) =nsSi —rnn,, (18)
npipE —V(n,Dp) = nplt p, (19)
V. (g4E) = qini — gelle . (20)
€0

Equation (19) is the well-known drift-diffusion equation,
which is valid also for ions in high pressure (atmospheric
regime) discharge. To solve this set of equations, the source
terms are handled with 4th-order backward differentiation
formula (BDF) and the Poisson equation with the algebraic
multigrid method, and the second-order central difference
and upwind methods are employed for the diffusion and con-
vection terms, respectively [41]. The charged particle den-
sities and electric field are coupled by solving the Poisson
equation between the predictor and corrector steps where the
first order source splitting is used as noted in Ref. [40]. The
coefficients of gaseous properties of helium regarding par-
ticle collisions and ionization/production are obtained from
Refs. [31,32,42].

The computational domain with the actuator geometry
is presented in Fig 9. The thickness of the insulator (hy) is
set as 0.5 cm and the lengths of upper (l.,) and lower elec-
trodes (/) are 0.2cm same as the gap distance (d.). The
applied voltage to the upper electrode has sinusoidal shape
with 1kV amplitude but the positive-to-negative half cycle
ratio ¢ can be varied. Boundary conditions for the charge
species at the dielectric surface are set to satisfy the current
continuity that allows the accumulation of particles, and only
electrons are allowed to be absorbed in the upper electrode
without the secondary emission. Gas pressure of helium is
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set as 300 mmHg, and the ion temperature is 300 K. The elec-
tron temperature is calculated as a function of the local elec-

tric field strength using a local field approximation approach,
which is discussed in detail in Ref. [41].

] N, .

Gas: £,,=1.0055

Upper electrode (/)

y
x

!'|‘=f|l'll'3

d.

g

Dielectric material: 4

4l

Lower electrode (/)

Fig. 9 Computational domain and applied waveform

3.2.2 Surrogate modeling process

3.2.2.1 Design of experiments and cross-validation

Among the many possible parameters affecting the actuator
performance, three are chosen as design variables to assess
their impact on the actuator efficiency.

The dielectric constant of the insulator material (gq4),
frequency of the applied voltage (f,) and positive-to-negative
half cycle ratio (7¢) are chosen for this study because they are
among the key parameters which have non-simple effects on
the resultant force by affecting both the peak value of domain
averaged force and asymmetry in its waveform [43]. The
constraint of each design variable is devised by considering
the existing choice of materials and the general working con-
ditions of previous DBD actuators. The objective functions
are chosen to represent the actuator performance, namely the
time and domain averaged x-directional force (F s7) and av-
erage power input to the circuit (Pr) based on the charge cur-
rent through the upper electrode. The time and domain aver-
aged Lorentzian force to the charged particles is assumed to
be equivalent to the body force acting on the neutral gas, es-
pecially at atmospheric pressure conditions. The definitions
and parameter ranges are presented in Table 4.

The first level design of experiments, level 0 using the
combination of 15 FCCD points and 5 LHS points and the
simulation result of &4 for those 20 points are presented in
Fig. 10. Although the sampled points are well distributed in
the design space, the response points cluster in some parts of
the response space as in Fig. 10.

The surrogate models are obtained using these sampled
points and their PRESS errors are presented in Table 5. Due
to the insufficient number of sampled points and their com-
plex responses, significant PRESS errors exist at this level
especially in force prediction. For this case the KRG model
shows the best performance in predicting the force while the
PWS model does the same for power.

Table 4 Design variables, constraints, and objective functions

Design variable Constraint
Dielectri tant of
1f:ecrlcconsan0 2 <oy <15
insulator &4
F f th lied
requency of the applie 5<f <20
voltage f,/kHz
Positive-to- ti larit
OS‘I ive o. negative polarity <r<l15
time ratio ry
Objective function Definition

Time and domain averaged

1 — _
F.sr = F.(r,n)ded
ST ST .fs‘jr‘ (r,n)drdr

1
Pr=_ fT (1) Vipp(1)dt

x-directional force
—|Fys7l/(mN-m™)

Power input for one cycle

by the charge current where

through the upper I(t) = (gini(Huy (1)
leu

electrode Pr /W =gene(Dity,o(1))dx

0.08 -
o
0.06
=
= 0.04 15
&~ 12
10
7
0.02 5
2
0 T T T
—0.015 -0.010 —0.005 0

—|Fysr|/(mN-m™)

Fig. 10 Contours of &4 with simulation results in objective function
space in level 0
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In order to explore the objective function distribution
corresponding to the design space, a grid with 31 points
evenly distributed in the whole design space is employed,
and the result using the PWS is presented in Fig. 11. It can
be observed that the Pareto front is not continuous and there
are two distinct regions that are marked with two windows
and correspond to the higher magnitude of force generation.
Though the two regions lie on the same side of the force
axis due to our adopting the absolute values of the force, the
one with higher power corresponds to the negative (minus
x-direction in Fig. 9) force generation, and the lower to the
positive. On the other hand, the region corresponding to the
positive force generation ensures a gain in force generation
with much lower power.

= Design points, level 0

- Predicted, level 0 PWS
0.08 - « Points on Pareto front
Il;evel 1-2 » Design points level 1-1
' Design points level 1-2
0.06 1 |
=
= 0.04 1
a,
0.02
0 T 1 : T
-0.015 -0.010 —0.005 0

—|Fsrl/(mNe-m™)

Fig. 11 Design and predicted points and Pareto fronts by the
PRESS weighted surrogates in level 0

In Fig. 11, since the distribution of sampled points near
the Pareto front are too sparse to resolve the regions of in-
terest properly, two windowed regions are used as the con-
straints for design space refinement.

Prconstramt

W. Shyy, et al.

Level 1-1, low power region

—-0.009 < —|F,s7| < =0.005(mN/m), 0 < Pr <0.02(W)

Level 1-2, high power region
—-0.014 < —|F,g7| £ =0.009 (mN/m),
0.05 < Pr £0.07(W)

The design variable constraints corresponding to these ob-
jective function constraints, namely design-space-constraints
are generated based on the surrogate models at level 0. In or-
der to generate the constraint surfaces, responses of a set of
grid points uniformly distributed in the design space are ob-
tained by using the surrogate models, and the surfaces con-
fining the points whose responses satisfy the objective func-
tion constraints are then specified. Although the PWS has
a smaller PRESS error in P as presented in Table 5, the
design space confined by its design-space-constraints is in-
cluded in that of the KRG model, and the refined regions are
chosen conservatively to cover as much space as possible.

Table 5 PRESS errors of the surrogate models in level O

—|Fystl Pr
KRG 0.0020 (16)* 0.0032 (5.0)
PRS 0.0027 (22) 0.0033 (5.2)
RBNN 0.0095 (77) 0.0063 (9.9)
PWS 0.0028 (23) 0.0023 (3.6)

#: () %= 100 XPRESS/(Xmax—Xmin), X = —|Fy.s7| or P7 in level 0.

Figure 12 shows the iso-force, iso-power surfaces and
the design-space-constraint surfaces based on the KRG
model (blue is for the lower bounds and red the upper
bounds). Considering the lower and upper bounds of the
objectives, each level has one refined space along with con-
straint surfaces. Since these surfaces are contours of constant
force or power, based on their slopes it can be said that the
force generation is relatively less sensitive to the dielectric
constant than power.

Prconstramt —|Fxsr | constraint

Fig. 12 Constraints, contours and design points for design space refinement. a Level 1-1: low power region; b Level 1-2: high power

region
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Since the design space corresponding to level 1-1 and
level 1-2 constraint windows is irregular in shape, it is im-
possible to use the design of experiments for a rectangular
hexahedron or sphere. For the design of experiments at the
refined level, in order to sufficiently characterize the design
space, the LHS is utilized to generate 5000 points. Then,
20 points are selected by maximizing the minimum distance
between those points. The design points generated by this

x10"?

Particle number density/m’

approach are also shown in Fig. 12 along with the constraint
surfaces.

3.2.2.2 Multiobjective optimization

To investigate the phenomena in the high- and low-power
regions in depth, two points corresponding to the minimum
—|Fysrl| condition are selected and the time history of the
solution is compared in Figs. 13 and 14.
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Fig. 13 Domain-averaged particle number density histories for two design points near the Pareto front. a Low power region: &4 = 8.5,
fv =5.0, ry = 1.0; (b) High power region: g4 = 15.0, f, = 20.0, y = 0.5
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Fig. 14 Force and power histories for two design points near the Pareto front. a Low power region: £4=8.5, f, = 5.0, ry = 1.0; b High

power region: g4 = 15.0, f, = 20.0, r; = 0.5

In Fig. 13, it can be observed that for the case with
lower frequency that belongs to the low power region,
domain-averaged ion number density is higher. This can be
explained by considering the fact that lower frequency allows
more time to generate the particles, which is consistent with
that found in Ref. [43]. The electron saturation instances in
these cases—about /T = 0.8 in the low power and 0.9 in the
high power—coincide with the start of plateau or second dip
in Fig. 14, which is also mentioned as one of the key factors
affecting the solution with frequency.

From the force history results, one can deduce the effect

of the positive-to-negative polarity time ratio, ry. Although
positive force belongs to the first half cycle and negative to
the second, elongating the period of each part in the applied
voltage source does not necessarily induce increased force
either in positive or negative. While decreasing r¢, i.e. in-
creasing the second half cycle corresponds to the decreased
—|Fysrl| point in the high power region, increasing ry does
not mean increasing the duration of positive force cycle. The
value of r¢ corresponding to the maximum force generation
in the positive x-direction is about 0.8 in the low power re-
gion according to the PWS model. The reason is that gener-

@ Springer



858

ating the positive force is mainly related to the plateau region
of the second half cycle in F' ¢ time history as in Fig. 14.

3.2.2.3 Global sensitivity analysis

Figure 15 shows the result of the variance-based, non-
parametric global sensitivity analysis for each refined level.
Compared to the level 1-2, level 1-1 shows a stronger param-

i 59 Total sensitivity
re I Main sensitivity

T T T T T T T T

0 10 20 30 40 50 60 70 80 90
Sensitivity/%

Total sensitivity
B Main sensitivity

W. Shyy, et al.

eter correlation, which can be identified from the difference
between total and main sensitivities. Also, the frequency of
applied voltage, f, in level 1-1 has a significant effect on both
the average force and power. On the other hand, in the high
power region (level 1-2) the effect of the positive-to-negative
time ratio, r¢ is prominent compared to that of f, while the
insulator dielectric constant is always important.

Total sensitivity
B Main sensitivity

f N Total sensitivity
% . B Main sensitivity

0 10 20 30 40 50 60 70
Sensitivity /%

0 10 20 30 40 50
Sensitivity/%

Fig. 15 Global sensitivity indices for the average force and power. a F, s, level 1-1; b Pr, level 1-1; ¢ F, g7, level 1-2; d Pr, level 1-2

3.2.3 Major outcome

Multiple branches of Pareto front within two regions apart
from each other in the original design space are observed.
In these low and high power regions, the orientation of the
time-averaged force, degree of correlation between design
variables and their global sensitivity indices are very differ-
ent. The results can be used to enhance the performance of
the actuator by devising effective control variables and un-
derstanding their influence on performance. The major im-
pacts of design variables on the objectives are summarized
below.

The dielectric constant of the insulator affects the
amount of charged particle clouds above the insulator wall
during the second half cycle. With a smaller constant, par-
ticle clouds thicken, increasing the asymmetry between the
two half cycles. As a result the average force, F, increases.
On the other hand it also affects the density of the charged
particle layer on the insulator surface. With a larger constant,
a higher electric field is produced, resulting in the increase of
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F, magnitude, but along the negative direction.

The applied voltage frequency affects the amount of
overall charged particle generation. With a higher frequency,
the discharge duration and the asymmetry between the two
half cycles decrease, resulting in a larger F, along the neg-
ative direction. Higher frequency accompanied by high di-
electric constant induces larger power usage.

The positive-to-negative polarity time ratio also con-
tributes to the overall charged particle generation. With
a larger ratio, the first half cycle discharge becomes more
prominent. As a result, F, increases. On the other hand, the
amount of charged particle clouds above the insulator wall
during the second half cycle is also influenced. The larger
ratio induces a smaller level of charged particle generation,
which means insufficient electric field for the plateau region
in the second half cycle. As a result F', decreases.

Having demonstrated the use of global sensitivity anal-
ysis and Pareto front for mapping the design space in the pre-
ceding case studies, we conclude with a study on the model-
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ing of lithium ion battery cells, where a reduction in problem
dimensionality is shown to provide significant performance
gains for the surrogate model.

3.3 Li-ion battery modeling

Li-ion batteries offer distinct advantages over other battery
technologies due to their high energy density and low weight.
However, despite significant experimentation and modeling
effort, the competing effects of operational, geometric, and
material parameters on battery performance are still not well
understood. This may be attributed in part to the disparity
in the measurement of material properties, such as the dif-
fusion coefficient and electronic conductivity of the active
materials, as well as the large number of variables and the
difficulty of tuning them for experimental studies. Although
various parametric studies have examined the role of indi-
vidual design variables on cell performance capabilities, the
combined effects of simultaneously varying several design
variables and the relative magnitudes of their influence have
not been established. Cross-interactions between variables
are especially important as they may be responsible for crit-
ical design regions that can not be identified by adjusting
individual variables. These critical design regions are par-
ticularly useful in battery design due to the aforementioned
limited ability to tune certain material properties, as well as
the varying discharge rates experienced in the cell during op-
eration.

Due to these considerations, as well as the fact that
there are often multiple competing objectives such as gravi-
metric and volumetric energy density, power, and cycle life,
a comprehensive examination and comparison of the role of
various design variables on cell performance requires a sys-
tematic and efficient mathematical framework. In this study,
we seek to use surrogate-based analysis tools to construct
models that can efficiently and accurately predict the spe-
cific energy and power of a Li-ion cell with respect to the cy-
cling (or discharge) rate and the size and ion diffusivity and
electronic conductivity of the active solid material. These
models can thus be used to conduct global sensitivity anal-
ysis to identify critical design thresholds, observe combined
effects due to cross-interactions, and quantify the relative im-
portance of various parameters under different scenarios. An
improved understanding of the most important performance-
limiting factors will ultimately aid in cell optimization.

3.3.1 Physical model

In this study, the discharge process of a cell consisting of an
MCMB 2 528 graphite anode and a lithium manganese oxide
(spinel) cathode is modeled using a porous electrode formu-
lation. In this model, the continuum-scale governing equa-
tions are solved in a pseudo-2D domain spanning the thick-
ness of the cell and including assumed spherical particles at
nodes in the positive and negative electrodes. The spherical
particles are used to account for the effects of particle size,

by solving the diffusion equation for the ion concentration
within the particle

0cy &e; 20c
= Dj , 21

ot ‘(8;’2 +r(9r) (212)
with boundary conditions
a{; =0, at r=0, (21b)
Q{ oc

F’ = -D, arl’ at r=R,,, 2lc)
where j = n (anode) or p (cathode). In the liquid electrolyte

0ca -4 . i) v
€ o =V~(D§“ch)+ F+V-12— F * (22)

In Egs. (21) and (22), c¢; and ¢, denote the Li-ion concen-
trations in the solid and liquid phases, respectively. A gra-
dient of the chemical potential is the driving force for the
Li-ion diffusion across the width of the cell. In the existing
model, the chemical kinetics at the particle-electrolyte inter-
face is described using the Butler—Volmer equation, in which
the flux at the particle surface is a function of the exchange
current density and the surface overpotential, as shown in
Eq. (23)

) . Ao jF @, jF

i = "”[e’(p( RT '”) B CXP( T ORT '”)]’
where n; = ¢ — ¢2 — Uocp is the surface overpotential.
The surface overpotential is estimated based on the electri-
cal potentials in the solid (¢;) and liquid (¢,) phases, using
Egs. (24) and (25)
V- (oVp)-J =0,

V- (kVg2) + V - [kpV(nc2)] + J = 0.

(23)

(24)
(25)

The volumetric reaction current J is calculated using
Eq. (26), where &1, (&1,,) and Ry, (R;,,) are the porosity and
particle size in the positive (negative) electrode, respectively.
Further details of the porous electrode model can be found in
Refs. [44-46].

(381
Ry

J=40,

(381
Ry

) inp, 1n the positive electrode,
p

in the separator, (26)

) inn, 1n the negative electrode.
n

3.3.2 Surrogate modeling process
3.3.2.1 Design of experiments and cross-validation

The design variables considered in this study and their cor-
responding ranges are summarized in Table 6. Since the fo-
cus of the study is on the cathode, the particle size and ma-
terial properties apply to that electrode only. The selected
cycling rate range corresponds to typical automotive appli-
cation requirements, while the particle sizes are consistent
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with those found in real electrodes [47]. The diffusion coef-
ficient is known to be sensitive to the cell’s state of charge,
and reported values in the literature vary widely due to dif-
ferences in electrode microstructure and measurement tech-
niques [48]. Therefore, a wide diffusivity range needed to be
considered to remain consistent with values reported in the
literature. Further details of appropriate choices for the de-
sign ranges can be found in Ref. [49]. A fixed thickness is
assigned to all cell components: 100 um for each electrode
and 25 um for the separator and each current collector. A
uniform initial state of charge in each electrode is specified
for each simulation, and the cell is discharged until the ter-
mination voltage of 2.0V is reached.

Table 6 Design variables and corresponding ranges

Variable Range
Cycling rate C/C 0.1-4
Particle radius R, , /um 0.2-20
Diffusivity D,/(m?-s™") 0.1-10x10713
Conductivity o-/(S'm™!) 1-100

Three types of surrogate models are considered in this
study: polynomial response surface (PRS), kriging (KRG),
and radial basis neural network (RBNN). For the kriging
models, first and second-order polynomial regressions are
tested. In the RBNN models, the spread coefficient and er-
ror goal parameters are tuned to adjust the fit; however, the
total number of neurons is fixed. For cross-validation of the
PRS models, the adjusted coefficient of determination Ri f is
considered in addition to PRESS and independent test point
prediction.

A preliminary design of experiments consisting of
25 points in a FCCD arrangement is initially selected to
roughly evaluate the magnitude of effects of all design vari-
ables before constructing a comprehensive design of experi-
ments. Since achieving a good surrogate model fit in a high-
dimensional design space can be difficult [11], this first step
is done to check for any variables that could be immediately
removed from consideration, thus reducing the problem di-
mensionality. It is found that in all cases within the face-
centered design, the effect of the electronic conductivity is
negligible even when varied between its minimum and max-
imum values. This can also be verified with test points in
the interior of the design space to check for interactions with
other variables; in all cases varying the conductivity within
the selected range causes less than a 1% change in the total
cell energy. As a result, all subsequent analysis is performed
on a reduced design space consisting of only the first three
variables listed in Table 6.

The initial design of experiments consisted of the 15
non-redundant points from the previous four design variable
FCCD, in addition to 35 LHS points. However, error mea-
sures computed based on this initial design shows that it is
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too sparse to achieve sufficient model fit, with the minimum
PRESS value being over 20% of the mean function value.
Additionally, the region with high cycling rate, large particle
size, and low diffusivity shows a sharp gradient in the spe-
cific energy, and the sparse distribution of points in this re-
gion contributes to poor overall model fit. To ensure a greater
density of points in this sharp gradient region, a domain re-
finement is performed with an additional 100 design points
in a logarithmic distribution.

Although this refinement improves model prediction in
the previously sparse region, it also causes a shift in fidelity,
leaving unacceptably large prediction errors elsewhere in the
design space. To improve model fit in the entire design
space, another refinement consisting of 165 design points se-
lected using Latin hypercube sampling is made, resulting in
a total of 315 points in the design of experiments. A kriging
model constructed using this data set yields a PRESS value
of 3.0% of the mean function value and a mean prediction
error of 2.5% at 64 test points, suggesting a sufficient model
fit to perform global sensitivity analysis.

3.3.2.2 Global sensitivity analysis

Sensitivity indices computed from a wide range of surro-
gate models all indicate that the effects due to all three vari-
ables are strong, preventing further problem dimensionality
reduction by direct variable elimination. However, it is also
found that the global sensitivity indices vary among the dif-
ferent regions of the design space. As shown in Fig. 16, the
effect of diffusivity vanishes in the diffusivity range above
some critical value at about 1x10713 m?/s. This diffusion-
independence in the high-diffusivity range presents an op-
portunity to split the design space into multiple regions in
which the problem dimensionality may be reduced for sepa-
rate, more refined analysis.

Main sensitivity index

2.0
1.5

1.0} o EEm
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ALD D>02 D03 D>05 D>10 D>2.0
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Total sensitivity index
2.0 i ; ;

1.5

8 Nl

ff-\ll D D=02 D=03 D>05D=10 D>20
| Cycling rate W Particle radius W Diffusivity

Fig. 16 Sensitivity indices for KRG models constructed on selec-
tivity diffusivity ranges (107'% m?/s)

3.3.2.3 Dimensionality reduction and design space splitting

Within the low-diffusion range, it is found that the specific
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energy rapidly decreases with increasing discharge rate and
particle size, as well as decreasing diffusivity. To further re-
fine the analysis, we introduce a dimensionless time term 7
to characterize the discharge and diffusion time scales
Dy
T= RC
sp
As shown in Eq. (27), this dimensionless time parameter
combines all three design variables into a single expression
relating the relative rates of the discharge and diffusion pro-
cesses in the cell. As shown in Fig. 17, the specific energy
decreases for low values of this parameter, where the diffu-
sion rate is low compared to the required discharge rate. Also
note the clear monotonic trend for values of 7 < 0.2.
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Fig. 17 Specific energy vs. dimensionless time, for D; < 1 X
1073 m?/s
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This suggests a further splitting of the diffusion-
dependent region into a diffusion-limited region defined ex-
clusively by the single dimensionless time parameter, and
an intermediate region between the diffusion-limited and
diffusion-independent regions, where all three variables are
important. The process for splitting the design space and re-
sulting sub-regions are summarized in Fig. 18.

3-Design variable
problem
(Jais, R, D)

l
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Fig. 18 Process for splitting design space into separate reduced-
dimensionality regions based on sensitivity indices and critical dif-

fusion values
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Fig. 19 Specific energy as a function of the design variables. a Diffusion-limited (1 DV); b Intermediate (3 DV); ¢ Diffusion-Independent

(2DV)

To assess the effect of design space splitting on surro-
gate model fit, various error measures are computed for the
best of each surrogate model type and compared between
the non-split model for the entire design space and the split
sub-regions. The results are summarized in Table 7, which
shows significantly improved model fit in each split sub-
region when compared to the single model for the entire do-
main. Perhaps more importantly, this improved model fit can

be achieved without requiring any new data. Line and sur-
face plots for the specific energy in the split sub-regions are
shown in Fig. 19; the energy decreases rapidly at very low
values of the dimensionless time parameter, as well as high
cycling rates and large particle sizes. A weaker diffusivity
effect can be observed in Fig. 19b; however, the diffusiv-
ity effects are strongest in the diffusion-limited region where
they are reflected in the dimensionless time parameter.
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Table 7 Effect of design space splitting on performance metrics
Surrogate Parameter Non-split Split
Diffusion-limited Intermediate Diffusion-independent
Design points 315 42 32 236
Design variables 3 1 3 2
PRS Ridj 0.875 0.995 0.997 0.932
RMSE/% 6.98 3.99 0.09 0.87
PRESS/% 8.11 6.29 0.84 0.95
RMS test error/% 10.0 — 0.48 —
Max test error/% 34.6 — 1.46 —
KRG PRESS/% 3.50 5.21 0.43 1.53
RMS test error/% 5.24 — 0.65 —
Max test error/% 21.2 — 1.96 —
RBNN PRESS/% 6.05 — 1.39 4.63
RMS test error/% 7.34 — 1.06 —
Max test error/% 29.2 — 2.79 —

3.3.2.4 Multiobjective optimization

The preceding results have shown that specific energy can be
increased by reducing the discharge rate. However, the dis-
charge rate is also directly related to the battery cell’s power
output, another critical objective. Since the power is directly
dependent on the discharge current, a competing effect can
be expected between specific energy, which favors low cy-
cling rates, and specific power, which favors higher rates.
To quantify these competing effects, a Pareto front is con-
structed from additional randomly sampled points and fitted
with the split surrogate models shown in Table 7.

Specific power data are fit by constructing an additional
4th order PRS model. The resulting Pareto front is shown in
Fig. 20.
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Fig. 20 Pareto front showing tradeoff between specific energy and
specific power
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The front shows stiffness in favor of high power, which
can be achieved with relatively little sacrifice in energy.
However, a greater amount of scatter in the specific energy
data can also be observed as the specific power is increased.
This suggests that the cell performance becomes increas-
ingly sensitive to the other design variables as the cycling
rate is increased, resulting in a greater penalty for large par-
ticle size or low diffusivity in the cathode.

3.3.3 Major outcome

For simplicity, it is often preferable to represent a full de-
sign space with a single surrogate model. However, due to
the difficulty encountered in attempting to achieve a reason-
able model fit with a single global surrogate, a split design
space strategy is adopted instead. Although the splitting of
the design space does not provide any advantage in terms of
computational speed, it does allow for much improved sur-
rogate model fit as shown in Table 7, even in the interme-
diate region in which a reduction in dimensionality did not
occur. This is likely due to differing dominant physical phe-
nomena within the design space, as suggested by the shift
in fidelity caused by the initial domain refinement and the
dimensionless time scale analysis. The improved surrogate
model performance is critically important to the construc-
tion of a meaningful Pareto front to study the competition
between specific energy and specific power.

One limitation of the current approach is that the physi-
cal model does not account for the microstructure of the elec-
trode material, which can have a significant impact on the
overall cell performance. To address this limitation, Gupta
et al. [50] have recently developed a framework based on
the mechanics and transport approach presented by Zhang
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et al. [51,52] to accomplish the first stage of a multiscale
model by quantifying the impact of the electrode architecture
on the microscale reaction density and transport properties
and formulate reduced-order models for the same. In their
study, surrogate models have been constructed on effective
transport properties to provide an opportunity for combin-
ing physics at various scales in a computationally efficient
manner. Different particle packing arrangements have been
analyzed for the calculation of effective transport properties
and reaction density that appear in the porous-electrode for-
mulation due to the volume-averaging process. To bridge the
gap between microscopic simulations of particle clusters and
cell-level simulations and estimation of volume-averaging
closure terms, Li-ion concentration, electric potential and
their gradients in the solid and electrolyte phase have been
chosen as design variables for formulating reduced-order
models using surrogate-based analysis.

For the microscopic simulations in Ref. [50], each
point of the DOE identifies the local values of the design
variables at a given node on the macroscopic mesh of a Li-
ion positive electrode. As in the cell-scale simulations, the
surrogate models trained included polynomial response sur-
face (PRS), kriging (KRG) and radial-basis neural network
(RBNN). The design of experiments contained a sufficient
number of data points to fit at most a 3rd order polynomial
surface. For kriging, both first- and second-order polynomial
regression models were considered with the Gaussian and
cubic spline correlation functions. The best kriging model
was obtained by optimizing the kriging model parameters
to minimize the maximum prediction error at selected test
points. For a second-order polynomial regression and Gaus-
sian correlation model, the prediction errors at test points
were greatly reduced. Additionally, PRESS values were also
significantly reduced with the optimized kriging model.

Based on the second-order regression with Gaussian
correlation kriging model, global sensitivity analysis has
been conducted to understand the relative importance of
concentrations, electric potentials and their gradients on the
normalized reaction density. The main and total index for
the three main design variables computed from the kriging
model with least error measures is shown in Fig. 21. The
indices computed for the other variables, namely electrolyte
concentration and gradients of concentrations and potentials
in both phases, were found to be negligible and thus are not
shown. Their study offers a clear step towards integration of
the effect of microstructure into a macroscale simulation via
a multiscale model. Note that an important advantage of us-
ing a surrogate framework to accomplish the scale bridging
is that the framework allows the individual scale models to be
refined separately. For example, data from additional micro-
scopic simulations conducted for a greater range of poros-
ity levels can be readily incorporated into the macroscopic
model via refined surrogates.

Main index = Total index
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Fig. 21 Error measures obtained through different surrogate mod-
els trained on the design of experiments for prediction of normal-
ized reaction density [50]

4 Conclusions

In this paper, we present three case studies that fall under
different domains of engineering, namely cavitation, dielec-
tric barrier discharge (DBD), and Li-ion batteries. The cost
and time constraints associated with each of the problems
are highlighted. To enable the design of better engineered
systems, different criteria may be applied. Validated cavita-
tion model parameters are needed that can predict its onset.
On the other hand, operating and material conditions that
achieve better performance goals are not known for DBD.
In Li-ion batteries, the effect of simultaneous variation of
several design variables on its performance should be quan-
tified.

Surrogate modeling and analysis offers a unique design
tool for each of these problems:

(1) The surrogate analysis is used to assess

(a) the sensitivity of the cavitation model to parame-
ters and uncertainties in the thermal-sensible material
properties,

(b) the impact of waveform, frequency and dielectric
constant on DBD performance, and

(c) the relative importance of discharge rate, particle
size, diffusivity and conductivity of battery perfor-
mance.

(2) The surrogate models can be particularly useful in an-
alyzing competing objectives, such as the accuracy of
temperature and pressure prediction in cavitation, power
input and force generation in DBD, and specific energy
and power in Li-ion batteries.

(3) The surrogate-based global sensitivity analysis facilitates
identification of dominating and less-influential design
variables. Based on the insight gained, dimensionality
reduction can be conducted to reduce the complexity of
the issues. This benefit is particularly significant for
complex problems which are expensive to simulate/test
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and involve a large number of design variables. For in-
stance, it is shown that

(a) the condensation term has minimal influence on the
cavitation model compared to the evaporation term,

(b) the dielectric constant is always influential, but the
importance of frequency and time ratio alternates de-
pending on low and high power capabililty, and

(c) the dimensionality of the battery case can be reduced
based on the diffusivity of the solid, which could be
ignored from the analysis beyond a certain critical
value.

(4) In addition to sensitivity analysis, surrogate tools offer
the capability to identify optimal solutions in regions
where competing objectives may be present. In such
cases, construction of a Pareto front can assist in elu-
cidating the gain achieved by sacrificing the other ob-
jectives. In the context of the case studies presented,
we show that multiple Pareto fronts, which may be dis-
connected with each other, may also exist, as evident in
the case of DBD. For cavitation, it was shown that a se-
lected value of the evaporation model parameter mini-
mizes the pressure difference through a small penalty in
the temperature difference. Since pressure prediction is
more critical in design of components that may be sub-
jected to heavy loads, the tradeoff between pressure and
temperature is beneficial in this situation. In the case
of Li-ion batteries, the high slope of the Pareto front
suggests that substantial gain in power, which is desir-
able for power-tools and automotive applications, can be
achieved through minor sacrifice in energy storage.

In summary, we have developed a surrogate-based
framework to assess the role of design variables on multiple
competing objectives for a wide range of engineering prob-
lems. The framework allows for both local and global do-
main refinement strategies to be utilized in conjunction with
multiple error criteria to estimate and reduce uncertainties,
since a single criterion may lead to high errors. These tech-
niques prove to be very valuable in advancing the capabili-
ties of surrogate modeling. The surrogate modeling frame-
workalso offers a clear-step towards integration of the ef-
fect ofmulti-scale physics via scale-bridging and dimension-
alityreduction. Similar approaches can be extended to nu-
merousother mechanics, thermo-fluid and energy problems.
Such an approach can further enhance the multi-scale ap-
proach previously developed in, e.g., Refs. [53-56].
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