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The extension of Li-ion batteries, from portable electronics to hybrid and electric vehicles, is significant. Developing a better
understanding of the role of material properties and manipulating the morphology of the particle clusters comprising Li-ion
electrodes could lead to potential opportunities for attaining higher performance goals, for which the effect of both material
properties and morphology needs to be considered in a physics-based model. In this work, different particle packing arrangements
are analyzed for the calculation of effective transport properties and reaction density that appear in the porous-electrode formulation
due to the volume-averaging process. Surrogate-based analysis is used to systematically construct and validate reduced-order models
for species transport at the particle-electrolyte interface. The low effective solid transport predicted through microscale modeling
indicates the effect of packing arrangement and tortuosity, an aspect not captured by the Bruggeman’s relation. Particle cluster
simulations reveal a Li-ion flux quantitatively different than that predicted by the porous-electrode model due to the variation of
overpotential at the microscale. The present study offers a first-step towards integration of the effect of microstructure into a
macroscale simulation.
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The extension of Li-ion batteries, from portable electronics to
hybrid and electric vehicles, is significant. Typically, optimizing the
design and performance of a battery-pack begins from the material
to the cell level. However, this process can be expensive, both in
time and monetary terms, since a design that may be optimum at the
cell level may not be the best choice at the pack-scale. In addition,
battery performance is directly related to the selection of chemistry,
topology of the electrodes, and their tortuosity.

At the battery-scale, the number of variables governing perform-
ance increases enormously and can only be analyzed at a reasonable
cost in an appropriate mathematical framework. Recent work has
shown that performance of Li-ion technology can be improved
through emphasis on engineering the microstructural architecture of
the electrodes. In such a scenario, developing a better understanding
of the role of material properties and manipulating the morphology
of the particle clusters comprising Li-ion electrodes could poten-
tially lead to attainment of higher performance goals.

Interrogation of cell performance can be achieved through either
experimental or numerical investigations.1–28 However, numerical
simulations provide an advantage over their experimental counter-
parts since they are able to quantify the effects of several variables
in a systematic fashion. As a result, the past two decades has seen a
steady incline in the modeling of Li-ion cells. These analyses have
separately utilized the equivalent circuit models,7,8 single-particle
model,9,10 porous-electrode formulation,11–13 capacity-fade mod-
els14 and microscopic simulations.15–22 While such analyses have
proved successful in predicting the performance of Li-ion cells, fur-
ther improvements are needed to make them comprehensive. Equiv-
alent circuit models offer rapid prediction of performance as they
employ a simplified representation of the cell; however, they do not
take into consideration the architecture and physiochemical proc-
esses that occur inside the cell.22 The single-particle model consid-
ers the electrode to be a lumped mass, without any consideration of
the packing of particles. The porous-electrode models, although
they employ a homogenized representation of the two electrodes, do
not take into account the spatial variation in the microstructure and
local interactions between the solid and electrolyte phases. Another
limitation of the porous-electrode formulation is the use of empirical
models, such as Bruggeman’s equation, which relates the intrinsic

property and porosity with the effective quantity; such an empirical
model does not take the electrode architecture into consideration.

To analyze the cell behavior in a holistic sense, the effect of both
material properties and morphology need to be considered in a
physics-based model. However, constructing a simulation based on
such disparate length scales would be computationally intensive and
may be infeasible given the computational capability of present-day
computers. A possible solution is to combine the processes that
occur at the discharge and electrochemical time scales by including
the microstructure into a porous-electrode based formulation, which
will assist in borrowing the positive features of both formulations.

Microscopic simulations directed towards multiscale modeling
of battery electrodes have previously been successfully demon-
strated.16–22 Through particle-scale modeling of ellipsoidal par-
ticles, it has been shown that larger particles and higher discharge
rates lead to higher intercalation-induced stresses in LiMn2O4 elec-
trodes.16 In a separate study, it was shown that heat generation
increases with an increase in particle size and potential sweep
rate.17 Using a two-dimensional simulation, the effect of electrode
morphology on achievable power has been investigated through mi-
croscopic modeling.18 It was shown that a small, well-dispersed par-
ticle distribution resulted in higher active material utilization and
higher power density. The role of particle size, shape, morphology
and packaging on cell performance has been investigated through
numerical simulations on experimentally obtained electrode micro-
structures.20 However, these aforementioned analyses have been
limited to single particle16,17 or two-dimensional18,20 simulations. In
a separate study, employing interpenetrating tortuous and ordered
branches in electrodes was shown to outperform the conventional
rocking-chair configuration using finite-element simulations.21

Although conceptually attractive, these designs provide added
complexity in manufacturing and a higher likelihood of internal
short-circuit upon fast charging. Clearly, significant milestones are
yet to be achieved before the microstructure can be integrated into a
cell-level simulation.

In this work, we aim to extend multiscale modeling efforts22 by
analyzing the electrochemical processes at the particle-scale in the
cathode of a Li-ion cell. Several electrode microstructures, con-
structed based on randomly packed ellipsoidal particles, have been
simulated to calculate effective transport properties, such as diffu-
sivity and electronic conductivity, and reaction density for incorpo-
ration into cell-based simulations. Volume averaging23–25 has been
used to capture the physics on multiple scales. Since microscopic
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models to analyze a LiMn2O4 electrode are accurate but computa-
tionally expensive, and macroscopic models are simplified but effi-
cient, volume averaging can be used as a bridge between the two
alternatives. Thus, our objectives in this work are as follows:

1. Develop the volume-averaged equations starting from the mi-
croscopic species conservation for both Li-ion and charge in the
solid and the electrolyte and demonstrate the form of the closure
terms that appear in the cell-level simulation.

2. Introduce surrogate-based analysis to conduct three-dimen-
sional numerical experiments on randomly arranged ellipsoidal par-
ticles in a representative elementary volume (REV) to capture the
physics at the microscale using the boundary conditions based on a
macroscopic simulation.

3. Calculate the effective transport properties and reaction den-
sity at the particle-electrolyte interface and construct reduced-order
models using surrogate analysis for the latter using simulations of
multiple particle clusters.

4. Conduct sensitivity analysis to ascertain the dependence of
the reaction density on the solid and electrolyte concentrations,
potentials, and concentration and potential gradients.

Methodology

In Li-ion cells, the discharge and electrochemical insertion/re-
moval processes occur at scales that are different by orders of mag-
nitude.22 To successfully model the physics of a cell, a framework
that could capture these disparate scales is required. This is only
possible if the selected grid resolution can at least capture the micro-
scale reactions occurring at the particle-electrolyte interface. How-
ever, such direct simulation would be impractical, as present day
computers do not have the power and capability to handle a mesh
that may consist of O(1010) discrete points based on resolving every
single particle in the electrode.22 An alternative approach is to de-
velop a micro-macro model by creating an intermediate scale which
may represent the physics when scales much smaller than the com-
putational mesh are employed. One such option is to include the
effect of the microstructure in a macroscopic model through the vol-
ume averaging technique. This technique has been used effectively
in modeling multiphase flows26 and transport in porous media.27

In this work, the microscopic behavior of a Li-ion electrode has
been simulated using the following microscale governing equations.

Microscale Governing Equations

The particle-electrolyte system, enclosed in a representative vol-
ume, is simulated using Eqs. 1–4 that govern the variation of Li-ion
concentration and the electric potential in the two phases23–25

ocs

ot
þr� �Dsrcsð Þ ¼ 0 [1]

oce

ot
þr� �Derceð Þ þ

~ie�rt0
þ

F
¼ 0 [2]

r� rrusð Þ ¼ 0 [3]

r� �jrue �
jRT

F
1þ o ln f

o ln ce

� �
1� t0

þ
� �

r ln ce

� �
¼ 0 [4]

In Eq. 4, f is the mean molar activity coefficient of electrolyte,
which is typically assumed to be a constant due to lack of data. As a
result, Eq. 4 can be simplified to

r� jrue þ jDr ln ceð Þð Þ ¼ 0 [5]

where jD ¼ jRT=F 1þ o ln f=o ln ceð Þ 1� t0þ
� �

.
The governing equations at the microscale (i.e., Eqs. 1–5) can be

volume-averaged26,27 to obtain the porous-electrode form of the
macroscale governing equations.24,25 The volume-averaged po-
rous-electrode pseudo-2D model11,12 uses a microstructure that is

composed of a single spherical particle placed at each grid location in
the electrode. As a result, it cannot account for the percolation net-
works in particle clusters. Moreover, pseudo-2D models do not solve
for the electric potential variation in the microstructure. Therefore,
the focus in the present work is on the application of microscale
equations to particle aggregate-electrolyte composite to capture
percolating particle networks and the variation of concentration and
electric potential at the microscale, and eventually to couple these
features with a macroscale simulation via surrogate modeling.29,34–36

Basic concepts and theorems that assist in transforming the
microscopic to the macroscopic governing equations are illustrated
in Appendix A.

Volume-Averaged Li-ion and Charge Transport
in Solid Particles

As a precursor to the volume averaging approach, we focus
on the transformation of the equation describing the diffusion of
Li-ions and charge transport in the solid phase of the electrode.
Equation 1 when multiplied by cs can be integrated to give

1

dV

ð
dV

cs

ocs

ot
dV ¼ 1

dV

ð
dV

csr� Dsrcsð ÞdV [6]

From Theorem 1 (Eq. A.6 in Appendix A), the integral on the left
can be written as

1

dV

ð
dV

cs

ocs

ot
dV ¼ o

ot

1

dV

ð
dV

cscsdV

2
4

3
5� 1

dV

ð
dAs

cs~w�~ndA

¼ ocs

ot
� 1

dV

ð
dAs

cs~w�~ndA [7]

From Theorem 2 (Eq. A.7 in Appendix A), the integral on the right
reduces to

1

dV

ð
dV

csr� Dsrcsð ÞdV ¼ r� 1

dV

ð
dV

Dsrcsð ÞcsdV

2
4

3
5

þ 1

dV

ð
dAs

Dsrcsð Þ�~ndA

¼ r� Dsrcsð Þ þ 1

dV

ð
dAs

Dsrcsð Þ�~ndA [8]

Putting the two sides together

ocs

ot
� 1

dV

ð
dAs

cs~w�~ndA ¼ r� Dsrcsð Þ þ 1

dV

ð
dAs

Dsrcsð Þ�~ndA [9]

Since the movement of the solid–electrolyte interface in a Li-ion
cell can be assumed to be negligible,

Ð
dAs

cs w!� n!dA ¼ 0. Therefore

ocs

ot
¼ r� Dsrcsð Þ þ 1

dV

ð
dAs

Dsrcsð Þ�~ndA [10]

where Dsrcsð Þ and 1
dV

Ð
dAs

Dsrcsð Þ�~ndA are the closure terms which
require special treatment. In a similar fashion, the microscopic
transport equation for charge in the solid phase (Eq. 3) can be sim-
plified using the volume averaging approach to the following

r� rrusð Þ þ 1

dV

ð
dAs

rrusð Þ�~ndA ¼ 0 [11]
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Conventionally, the volume-averaged species flux is modeled based
on the effective material properties. For example

Dsrcsð Þ ¼ Deff
s rcs [12a]

rrusð Þ ¼ reffrus [12b]

where

Deff
s ¼ Dse

a
s [13]

In the porous-electrode theory, a is typically assumed to be given by
the Bruggeman’s exponent (i.e., a ¼ 1:5). Fuller et al.12 and Patel
et al.28 have observed that for real electrodes and separators, the
exponent varies significantly from 1.5. The former used an exponent
of 4.5 to model electronic conductivity that matched with
experimental measurements, whereas the latter reported that the
exponent varied between 2.8 and 10.4 for microporous separators.
In addition, pseudo-2D models11–13 that are based on the porous-
electrode theory solve the volume-averaged species and charge con-
servation equations in the electrolyte; however, the species transport
equation in the solid is solved based on the intrinsic diffusion coeffi-
cient (i.e., using Eq. 1). For the volume-averaging process to be ap-
plicable at each grid location in the electrode, the estimation of
effective diffusivity and conductivity in both particle and electrolyte
phases is essential.

The second closure term on the right hand side of Eq. 10 can be
written as

JCs
¼ 1

dV

ð
dAs

Dsrcsð Þ�~ndA [14]

and is known as the volumetric flux density. This integral has tradi-
tionally been modeled in pseudo-2D simulations as the product of
interfacial specific area and a mean interfacial flux11,12,24 through

JCs
¼ asjflux ’

3es

Rs
jflux [15]

where

jflux ¼ kc0:5
e ct � csð Þ0:5c0:5

s exp
F

2RT
g

� �
� exp � F

2RT
g

� �� �
[16]

is the reaction flux per unit area computed from the Butler-Volmer
equation based on local Li-ion concentration in the solid, volume-
averaged Li-ion concentration in the liquid and volume-averaged
electric potentials in the solid and electrolyte phases. In addition,
the overpotential is given by

g ¼ us � ue � UOCP [17]

A more accurate approach to calculate the volumetric flux is to use
the local values of the variables and perform surface integration of
the local flux at the particle-electrolyte interface using Eq. 14.23,25

The computed reaction density can then be used to construct
reduced-order models which in turn can be readily integrated into a
macroscopic simulation. To achieve this crucial step, surrogate tools
have been uniquely adopted to identify the reduced-order relation-
ships between microscopic simulations and the closure terms of the
volume-averaged equations.

Surrogate Modeling and Analysis

Surrogate modeling is concerned with the determination of a
continuous function of a set of independent variables from a limited
amount of data.29 In other words, it can be employed to correlate
design variables of a mathematical or experimental set-up with the
outcomes (or objective functions) of the design process. The surro-

gate models constructed in such a manner can be used for fast pre-
diction and evaluation of the design problem. In the multiscale
modeling framework, surrogate models constructed on numerical
simulations used to calculate the closure terms and effective trans-
port properties provide an opportunity to combine the physics at
various scales in a computationally efficient manner.

The surrogate modeling process begins by constructing a set of
experiments known as design of experiments (DOE) at selected
points in design space. The simplest way to select these points is to
use random sampling; however, such a method may require a large
number of points to avoid any particular bias in the design space.
Latin hypercube sampling (LHS) is an improvement, since it ensures
a stratified sample within the full range of the sample space.29 How-
ever, LHS cannot ensure sampling at the extrema of the variables. As
a result, face centered composite design (FCCD) is also used to sam-
ple the face-center and vertices of the design hypercube.

Results

In this work, we intend to calculate the closure terms and effec-
tive material properties that appear in the volume-averaged equa-
tions using microscopic scale simulations based on a cluster of par-
ticles enclosed in an REV. The solid phase was assumed to be
composed of 10 LiMn2O4 ellipsoidal particles of aspect ratio 2. The
volume fraction of the initial solid phase packing was held at 0.6.
These uniform-sized particles were arranged using a molecular dy-
namics based packing algorithm30 for an initial volume fraction of
the solid phase of 0.6, such that they contacted each other at the
boundary. Thereafter, to create an overlapping region and thus a
conduction path for the transport of electrons inside the solid, the
size of the ellipsoidal particles was increased along the major and
minor axes by a factor of 1.1. The particle cluster was discretized
using uniform sized cubic voxels,15,31,32 a method commonly
adopted for finite-element analysis of complex structures. The por-
tion of the solid that remained outside a 10 lm cubic domain was
removed. The equivalent particle size that occupies the same vol-
ume in a 10 � 10 � 10 lm domain would be 5.23 lm. The void
space surrounding the particle cluster was prescribed as the electro-
lyte phase, chosen to be LiPF6 in EC:DMC (a mixture of ethylene
carbonate and dimethyl carbonate).

The governing equations were solved using the finite-element
based solver COMSOL. A total of 24 random realizations were gen-
erated to statistically average the effective properties and reaction
density closure terms that appear in the macroscopic equations. The
material properties used for the solid and electrolyte phases are
given in Tables I and II respectively. To check for grid independ-
ence of results, a selected microstructure at different mesh resolu-
tions was simulated. The generalized minimal residual (GMRES)
solver with the symmetric successive over-relaxation (SSOR) pre-
conditioning method33 was used to solve the discretized equations.
Lagrange-quadratic elements were used for interpolation. With a
sample mesh spacing of 0.5 lm (i.e., 9261 voxel elements), approxi-
mately 4 to 6 GB of memory (on an Intel 7 desktop) was required in
simulating each sampling point of the design of experiments. The

Table I. Material properties for LiMn2O4.

Property Expression

Ds 10�13m2=s

r 3.8 S/m

ct 23634 mol/m3

y cs=ct

Uocp 4:06279þ 0:0677504 tanh �21:8502yþ 12:8268ð Þ

�0:105734 1:00167� yð Þ�0:379571 � 1:575994
h i

�0:045e�71:69y8 þ 0:01e�200 y�0:19ð ÞV
k 3 � 10�11mol�1=2m5=2=s
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variation of surface integrated reaction density with increasing num-
ber of voxel elements (and decreasing mesh spacing) is shown in
Fig. 1. A sample simulation with the two resolutions of 0.5 and 0.2
lm took about 3 and 43 min respectively, with the maximum differ-
ence in computations observed to be 5.99%. As part of the construc-
tion of surrogate models, approximately 104 simulations were con-
ducted, which took 21 days of CPU time with a mesh resolution of
0.5 lm. Any further increase in the resolution (i.e., decrease in mesh
spacing) would have increased the CPU time by at least a factor of
two. Since the gain in accuracy with an increase in resolution is not
significant as compared to increase in computational time, a grid re-
solution of 0.5 lm was adopted for computing the closure terms,
namely the effective transport properties and reaction density, of the
volume-averaged equations.

Effective Transport Properties

We first begin by calculating the effective transport properties
that appear in Eq. 12 as a result of the volume-averaging process.
The ratio of the effective transport to the bulk property carries the
same value (i.e., Deff

s and reff
s for the solid phase and Deff

e , jeff and
jeff

D for the electrolyte) since they share the same functional relation-
ship with the corresponding bulk properties (see, for example,
Eq. 12). For simplicity, only the results for the calculation of effec-
tive diffusivity for the solid and electrolyte are presented.

To calculate the ratio given by Deff
k =Dk where (k ¼ s; e), the 3D

particle realizations were packed in a 1 � 1 � 1 m cubic domain,
and the steady-state diffusion equation given by

r� Drcð Þ ¼ 0 [18]

was solved with concentration boundary conditions imposed at the
top c ¼ 1 mol=m3ð Þ and bottom c ¼ 0 mol=m3ð Þ and with sym-
metry for the other boundaries. For reference, the bulk diffusion
coefficient was defined as D ¼ 1 m2=s. From the steady-state con-
centration profile in the solid, the effective diffusivity Deff was com-
puted through Eq. 12a as

Deff

D
¼

Ð
A

rcdA

� �����
z¼L

As c z ¼ Lð Þ � c z ¼ 0ð Þ½ �=L
[19]

where As ¼ 1 m2 and L ¼ 1 m.
For the 24 particle realizations analyzed in this work, Eq. 19 was

used to compute the ratio of the effective and bulk diffusivity for
both the solid and electrolyte phases. Table III summarizes the
results for the average ratio and the standard deviation recorded in
the numerical simulations. Steady state concentration profiles for
the maximum and minimum effective solid diffusion coefficients
observed in the simulations are also shown in Fig. 2.

Surrogate Analysis for Reaction Density

To bridge the gap between microscopic simulations of particle
clusters and cell-level simulations and estimation of volume-averag-
ing closure terms, Li-ion concentration, electric potential and their
gradients in the solid and electrolyte phase were chosen as design
variables for formulating reduced-order models using surrogate-
based analysis. The range of these eight design variables, as shown
in Table IV, were chosen to cover the range of values that appear in
a macroscopic simulation using the pseudo-2D formulation.11,12

The Li-ion concentration was normalized with the theoretical
maximum so that it may be represented in terms of instantaneous
state of charge (SOC) at any location in the electrode. The ranges
were determined based on a maximum possible discharge rate of
3C. This range of design variables was used to construct a prelimi-
nary DOE consisting of points selected based on filling the design
space using FCCD and LHS. However, to avoid numerical instabil-
ity issues, arising due to the exponential terms in the Butler-Volmer
equation, the initial DOE was filtered through the condition
�0:1 � us � ue � UOCP ~cs

� �
� 0 to a reduced DOE which con-

sisted of 12 FCCD and 375 LHS points. Numerical simulations
were run on these sample points for further analysis, including con-
struction of reduced-order surrogate models. For cross-validation of
these surrogate models, 16 additional test points were created using
LHS so as to reduce their correlation with the original DOE. To fur-
ther estimate the accuracy of surrogate models, a parameter called
the prediction error sum of squares (PRESS) was also computed.
PRESS quantifies the error in the construction of surrogate models
based on existing data and is computed from the training points of
the DOE using the leave-one-out strategy. The root-mean-square
PRESS was computed directly from the training data by summing
the prediction errors at all data points13,29 through the following
equation

PRESSRMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Ns

XNs

i¼1

yi � ŷ
�ið Þ

i


 �2

vuut [20]

where Ns is the number of sampling points, yi is the prediction of the
surrogate model at xi, and ŷ

�ið Þ
i respresents the prediction at xi using

the surrogate constructed using all sample points except xi.
13,29

Although expensive to compute for a large number of training points,

Figure 1. (Color online) Reaction density (in A/m2) computed for increas-
ing number of voxel elements and different mesh spacings (in m) for a
sample simulation.

Table II. Material properties for LiPF6 in EC:DMC.

Property Expression

De 5:34� 10�10e�0:65ce1000m2=s

j 0:0911þ 1:9101 ce

1000

� �
� 1:052 ce

1000

� �2 þ 0:1554 ce

1000

� �3
S=m

Table III. Computed ratios of the effective to bulk transport

properties averaged over 24 microstructures using 3D microscale

simulations compared with the Bruggeman’s equation for the

solid and electrolyte phases. The solid volume fraction is 0.6.

Microscale simulations (Deff
k =Dk)

Mean Standard deviation Bruggeman’s equation

Solid 0.267 0.068 0.465

Electrolyte 0.273 0.041 0.253
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PRESS offers quality assessment for best model selection when many
alternatives are available.

In the current microscopic simulations, each point of the DOE
identifies the local values of the design variables at a given node on
the macroscopic mesh of a Li-ion positive electrode. To simulate
the microstructure based on macroscopic variation of concentration
and electric potential, boundary conditions as shown in Fig. 3 were
enforced. For the solid phase, constant concentration and potential
boundary conditions were imposed at the planes corresponding
to z¼ 0 and z¼L. For instance, for the solid at z¼L,
c z ¼ Lð Þ ¼ ~cs þ L=2� o~cs=oz, where ~cs and o~cs=oz are based on
the sampling point of the DOE. The four other boundary planes (x–z
and y–z) were prescribed as symmetric and insulated. A similar pro-
cedure was also adopted for the electrolyte phase. At the interface
between the solid and the electrolyte, flux based on the Butler-
Volmer reaction current was enforced such that the net flux between
the two phases was zero. The concentrations and electric potentials
in the solid and electrolyte were initialized to the values correspond-
ing to those obtained through the DOE. Steady-state simulations,
using Eqs. 1–3 and 5 were conducted to calculate the variation of
concentration and the electric potential in the particle-electrolyte do-
main. The DOE (consisting of 387 sample points) was simulated for
each of the 24 different particle arrangements, and the reaction
density at the particle-electrolyte interface recorded. A mean value
of the normalized reaction density was considered for surrogate
analysis.

Several different models were trained on the sample points,
including polynomial response surface (PRS), kriging (KRG) and
radial-basis neural network (RBNN). Details on the form of each of
these models are described in Appendix B. The current design of
experiments contained a sufficient number of data points to fit at
most a 3rd order polynomial surface. Attempts to fit higher-order
PRS yielded poor results due to an inadequate number of data
points. For kriging, both first- and second-order polynomial regres-
sion models were considered with the Gaussian and cubic spline
correlation functions. The best kriging model was obtained by using
only the maximum test point prediction error as the optimization cri-
terion and ignoring the RMS error to minimize prediction error at
the selected test points. As shown in Fig. 4, for a second-order poly-

nomial regression and Gaussian correlation model, the prediction
errors at test points were greatly reduced. Additionally, PRESSRMS

values were also significantly reduced with the optimized kriging
model. To construct the RBNN models, a total of 100 neurons were
used in all cases. An optimized spread coefficient value of 3.683
was found to maximize the adjusted coefficient of determination.
While this optimized RBNN model performed better, it could not
match the quality of fit of the optimized kriging model.

Based on the second-order regression with Gaussian correlation
kriging model, global sensitivity analysis was conducted to under-
stand the importance of concentrations, electric potentials and their
gradients on the normalized reaction density calculations. The im-
portance of each of the eight variables is quantified based on main
and total indices. The main index represents the influence of a
design variable on the objective function when analyzed in isola-
tion; the total index indicates the combined contribution due to any
partial variance in which the design variable may be involved.29

The main and total index for the three main design variables com-
puted from the kriging model with least error measures is shown in
Fig. 5. The indices computed for the other variables, namely electro-
lyte concentration and gradients of concentrations and potentials in
both phases, were found to be negligible and thus are not shown.

Comparison of Micro- and Macroscale Models

The predictions from the microscale simulations for different par-
ticle clusters were also compared with the pseudo-2D cell model. For
the cell model, Carbon was chosen as the negative electrode with
electrode thickness, particle size, diffusion coefficient, conductivity
and porosity given by dn ¼ 100 lm, Rs;n ¼ 10 lm, Ds;n ¼ 3:9
� 10�14 m2=s, jn ¼ 100 S=m and en ¼ 0:4 respectively. Material
properties listed in Table I were used for the LiMn2O4 electrode,
including an electrode thickness of dp ¼ 100 lm. The separator was
chosen to have a thickness of ds ¼ 25 lm. Cell simulations were run
for two discharge rates of C/2 and 1C to record the macroscopic time
variation of concentrations and electric potentials in the two phases.
The procedure adopted in the calculation of reaction density at three
different locations can be described as follows. First, the pseudo-2D
model was simulated under galvanostatic conditions. The variation of

Table IV. Design variables and their ranges used in the particle-cluster modeling.

Variables Minimum value Maximum value

Li-ion concentration in the solid (~cs) 0.2 0.9

Li-ion concentration in the electrolyte (ce) 600 mol/m3 1000 mol/m3

Electric potential in the solid (us) 3.0 V 4.15 V

Electric potential in the electrolyte (ue) �1.0 V 0

Li-ion concentration gradient in the solid (o~cs

oz ) �3500 m�1 0

Li-ion concentration gradient in the electrolyte (oce

oz ) �6:5� 106 mol/m4 0

Electric potential gradient in the solid (
ous

oz ) �40 V/m 0

Electric potential gradient in the electrolyte (
oue

oz ) �550 V/m 0

Figure 2. (Color online) Concentration
profiles in two contrasting cases for effec-
tive property calculation.
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concentration, potentials and their gradients at three different spatial
locations at different time instants were recorded. These values were
then used to impose concentration and potential boundary conditions
across the microstructure (as described earlier), and steady-state com-
putations on the microstructure were then performed. From the steady
state profiles, the surface integrated reaction density was retrieved
and compared with that predicted by the pseudo-2D formulation.
Three unique particle arrangements shown in Fig. 6 were probed to
understand the role of particle packing and tortuosity on the predic-
tion of local reaction density. Microstructures 3 and 15 were selected
due to their low effective transport. Microstructure 22 was selected
since the effective transport from this cluster is similar to the average
recorded for the 24 arrangements.

Comparisons for the normalized reaction density were conducted
at three different locations in the positive electrode, at locations cor-
responding to distance of 25, 50 and 75 lm from the separator-posi-
tive electrode boundary. Figures 7 and 8 show the variation of nor-
malized reaction density in the micro- and macroscopic simulations
as a function of time for discharge rates of 1C and C/2 respectively.
The microscale variation of concentration in the solid phase and
reaction density at the interface was also analyzed at a location
which was fixed at 25 lm from the separator (Fig. 7a). The Li-ion

Figure 5. (Color online) Main and total sensitivity indices computed using
the kriging model with second-order regression and Gaussian correlation.
The indices for the other design variables were negligible, and hence are not
shown.

Figure 4. (Color online) Error measures obtained through different
surrogate models trained on the design of experiments for prediction of
normalized reaction density.

Figure 3. (Color online) Voxel representations of the solid and electrolyte
phases with the boundary conditions imposed across the two phases for one
sample particle cluster arrangement, where L ¼ 10 � 10�6m.

Figure 6. (Color online) Three solid microstructures with different effective
diffusivities simulated for comparison with pseudo-2D simulations.
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concentration (state of charge) in the solid for microstructure 22 for
1C discharge rate at selected time instants is shown in Fig. 9. In
addition, the local reaction density for microstructure 22 corre-
sponding to the three time instants is shown in Fig. 10.

Discussion

Based on the calculation of effective transport properties, as
shown in Table III, a few observations can be made. First, the effec-
tive solid diffusivity calculated through 3D modeling of particle

clusters is much lower than that predicted using Bruggeman’s equa-
tion. Secondly, the average effective diffusivity of the electrolyte is
higher than that predicted through Bruggeman’s equation. Third, a
higher value of the standard deviation for the solid phase as opposed
to the liquid electrolyte indicates a wider range of values recorded
in the current numerical simulations. This indicates the strong influ-
ence of the packing arrangement, and hence tortuosity, and a higher
resistance to conduction of Li-ions and charge inside the solid, an
aspect not captured by the empirical prediction of Eq. 13. While par-
ticle realization in Fig. 2a reveals a variation in concentration which
is near uniform at each cross-section, Fig. 2b shows a larger pocket
of solid which does not take part in the conduction process. As a

Figure 8. (Color online) Normalized reaction density (in A/m2) calculated
at three different locations in the positive electrode for C/2 discharge rate.

Figure 7. (Color online) Normalized reaction density (in A/m2) calculated
at three different locations in the positive electrode for 1C discharge rate.
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result, the effective diffusivity for the latter is much lower compared
to the former and indicates that using Bruggeman’s equation in a
macroscale simulation to characterize the packing of particles may
not be accurate.

Surrogate based global sensitivity analysis reveals the dependence
of normalized reaction density on the solid concentration and electric
potential as well as the electrolyte electric potential. The difference
between the total and main indices indicates the degree of cross-inter-
action between design variables. The volumetric reaction density, given
by Eq. 14, can be regarded as a sum of jflux at the particle-electrolyte
interface, where jflux is a function of local concentrations and overpo-
tential (g). To gain an insight into the dependence of reaction density
on ~cs, us and ue, a separate surrogate-based analysis was performed to
quantify the relative importance of ~cs, us and ue on the overpotential
g. In the variable range given in Table IV, while us and ue vary by
�1V, the maximum change in UOCP due to variation in ~cs is 0.24V.
Using kriging with the second-order regression model, and in the
range given by 3:0V � us � 4:15V, �1:0V � ue � 0V and
0:2 � ~cs � 0:9 with the constraint �0:1 � us � ue

�UOCP ~cs

� �
� 0, it was observed that the main effect of us (main

index¼ 0.55) and ue (main index¼ 0.42) dominated over that of
~cs (main index¼ 0.03), and the cross-interaction between variables
was negligible (<10–3). As a result, it can be expected that the

integrated reaction density will also show a negligible main effect
due to solid concentration. As shown by the indices in Fig. 5, the
main effect of solid concentration on the normalized reaction density is
minimal, which corroborates the overpotential analysis. Moreover, for
the normalized reaction density at the particle-electrolyte interface, the
cross-interaction between variables dominates over the main effect. It
should be noted that the current microscale analysis considers local var-
iation in concentration and electric potential as boundary conditions for
a more refined analysis, whereas pseudo-2D models use volume-
averaged electric potential and electrolyte concentration in Eq. 16 to
incorporate the reaction flux at the interface. Thus, it can be expected
that using averaged values in Eq. 16, depending on the spatial variation
in electric potential, together with a homogenized representation of the
electrode, may lead to predictions inconsistent with a real system.

Normalized reaction density computed from micro- and macro-
scopic simulations reveals that the packing of solid in the REV had
little effect, as microstructures corresponding to different effective
transports yield similar results. As shown in Figs. 7 and 8, near the
beginning of discharge for both rates, particle simulations indicate a
Li-ion flux into the solid matrix higher than that predicted by the
homogenous model. While the simulation results from the two
methodologies are different during the course of discharge, the pre-
dictions are much more consistent near the end of the discharge
cycle. To highlight the reasons for the wide temporal variation in
reaction density, microscopic variation of concentration and flux at

Figure 10. (Color online) Normalized reaction density (in A/m2) at different
time instants for 1C discharge rate.

Figure 9. (Color online) Solid state of charge (cs=ct) profiles at different
time instants for 1C discharge rate.
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three time instants corresponding to t¼ 60, 600, and 2400 s are
examined here in greater detail. As shown in Fig. 9, near the initial
stage of discharge corresponding to t¼ 60 s, the particle model indi-
cates a narrow variation in the state of charge in the REV. From Fig.
10a it can be observed that the magnitude of normalized reaction
density predicted by the microscopic simulations is highest at
t¼ 600 s. As shown in Fig. 9, the state of charge variation in the
solid phase is found to be wider at this time instant. At t¼ 2400 s
the variation is again narrow.

As the normalized reaction density in the microscopic simula-
tions is computed based on local distribution of flux at the particle-
electrolyte interface, detailed analysis of the temporal variation of
the former can be achieved by examining the latter at the particle
scale. Figure 10 reveals two features of reaction density distribution
at the microscale. First, the magnitude of local reaction density at
t¼ 60 and 2400 s is predominantly lower that that for t¼ 600 s.
Although the presence of high reaction density regions is noticed for
t¼ 2400 s, these are fairly local and confined. As a result, the inte-
grated reaction density at either t¼ 60 s or 2400 s is very different
from that at t¼ 600 s. Second, as shown in Figs. 9 and 10, the mag-
nitude of Li-ion flux into the solid is higher in regions where the
state of charge is lowest. The open circuit potential of LiMn2O4 is
related to the state of charge such that any increase in the latter
results in a decrease in the former. Moreover, the flux at the parti-
cle-electrolyte interface depends on the concentration in the two
phases and the surface overpotential given by Eq. 17. A closer
inspection of the microscale results at t¼ 60 and 2400 s reveals that
the overpotential varies between –0.01 to –0.005 V and –0.028 to
0.0002 V respectively. However, at t¼ 600 s the overpotential is
much larger, and varies from –0.04 to –0.021 V. As a result, flux of
Li-ions into the solid phase at this time instant can be expected to be
the highest due to the higher magnitude of overpotential and
explains the inconsistency in the prediction of reaction density using
macro- and microscale simulations.

A discussion on the comparison of microscopic and pseudo-2D
models is essential. In Figs. 7 and 8, the microstructures that are
placed at different locations in the positive electrode are not corre-
lated; i.e., the governing equations at each location are solved inde-
pendently of other microstructures. Moreover, the microstructures
are not coupled to the cell-level simulation. As a result, the summa-
tion of reaction density across the electrode may not be the same as
the discharge rate, as the microscale and macroscale have not yet
been coupled in the presented framework, which highlights the
motivation behind the selection of surrogate based modeling to
bridge the gap between these scales. Since the objective in this work
is to accomplish the first stage of the multiscale model, we have
quantified the impact of the electrode architecture on the microscale
reaction density and transport properties and formulated reduced-
order surrogate models for the same. In the future, we will present a
complete framework by coupling these reduced-order models with a
cell-level one-dimensional framework which will show that the
summation of flux at any time instant across the electrode is a
constant.

Conclusions

In this work, the electrochemical processes occurring at the parti-
cle-scale in the cathode of a Li-ion cell are analyzed through a mul-
tiscale modeling framework. Electrode microstructures constructed
based on randomly packed ellipsoidal particles were simulated. As
the discharge and electrochemical processes occur at different time
and length scales, volume averaging is proposed as a tool to capture
the physics on multiple scales.

Particle cluster simulations were used for the calculation of clo-
sure terms, such as effective transport properties and reaction den-
sity, which are introduced as part of the volume-averaging process.
As the ratio of the effective to the bulk quantity remains the same
irrespective of the transport property, only the results for the calcu-
lation of effective diffusivity for the solid and electrolyte are shown

in this work. A total of 24 random particle packings were used to
compute the ratio of the effective and bulk diffusivity for both the
solid and electrolyte phases. Through three-dimensional modeling
of particle clusters it is shown that the calculated effective solid dif-
fusivity could be much lower than that predicted using empirical
relations such as the Bruggeman’s equation. A higher value of the
standard deviation for the solid phase also indicates the strong influ-
ence of packing, tortuosity and increased resistance to conduction
inside the solid matrix, an aspect not captured by the Bruggeman’s
equation.

In addition to the calculation of effective transport, three-dimen-
sional simulations using 24 different particle clusters in an REV
were also conducted to capture the local variation of variables at the
microscale using the boundary conditions based on a cell-level
pseudo-2D simulation. Variables, namely the concentrations, elec-
tric potentials and their gradients were chosen for the construction
of reduced-order surrogate models for the normalized reaction den-
sity. To achieve this, a rigorous procedure was followed that
included (a) determining the ranges of variables in a cell-level simu-
lation (based on a maximum possible discharge rate of 3C), (b) con-
struction of design of experiments consisting of 387 sample points,
(c) numerical experiments on these sample points, (d) formulation
of reduced-order surrogate models, and (e) cross-validation. Of the
different surrogate models trained on the DOE, a kriging model
with second-order polynomial regression and Gaussian correlation
was found to lead to the lowest prediction and PRESS errors.

Using this surrogate model, global sensitivity analysis was con-
ducted to quantify the influence of solid and electrolyte concentration,
electric potential and their gradients on the normalized reaction den-
sity. The main and total sensitivity indices for the electrolyte concen-
tration and gradients of concentrations and potentials in both phases
were found to be negligible, indicating the weak influence of these
variables on the normalized reaction density. The cross-interaction
between solid concentration, solid electric potential and electrolyte
electric potential, quantified in terms of the difference between total
and main indices, was found to dominate over the main effects in the
reduced-order surrogate model for the normalized reaction density,
indicating high correlation between variables.

Results from macroscopic and microscopic simulations were
also compared. For microscopic simulations, different particle clus-
ters were considered. It was shown that the packing of solid particles
had little influence on the normalized reaction. However, particle
simulations revealed a Li-ion flux different than that predicted by
the porous-electrode model. The three-dimensional simulations
show that the local variation of state of charge and overpotential
leads to accumulation of Li-ions at selected regions in the REV, a
phenomenon not captured by macroscopic formulations.

Thus, particle cluster simulations indicate the limitations associ-
ated with the use of empirical correlations in macroscale simula-
tions, such as Bruggeman’s equation, as these may under or over-
predict the transport processes occurring inside a Li-ion cell.
The present study offers a first-step towards integration of the effect
of microstructure into a macroscale simulation through the calcula-
tion of effective transport and closure terms. These closure terms
derived from the particle-cluster simulations could be incorporated
into a macroscopic model to gain fast-prediction of battery per-
formance. In future work, this analysis will be used to construct
reduced-order models and ascertain variables that weakly in-
fluence battery performance, and thus greatly assist in eliminating
variables so as to affect the experiments conducted on these energy
systems.
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Appendix A. Volume Averaging: Concepts and Theorems

Volume averaging relies on two averages, defined as the intrinsic (�wk
k) and the su-

perficial averaged (�wk) quantities.23–27 These identities are given as

�wk
k ¼

1

dVk

ð
dV

wkckdV [A-1]

�wk ¼
1

dV

ð
dV

wkckdV [A-2]

where dVk is the volume occupied by the phase k and ck is the phase function, given as

ck ¼
1; in phase k

0; otherwise

�
[A-3]

The volume fraction ek is given by

ek ¼
1

dV

ð
dV

ck ~r; tð ÞdV [A-4]

The two averages are related through the volume fraction as

�wk ¼ ek
�wk

k [A-5]

In addition to these identities (Eqs. A1 and A2), volume averaging employs two theo-

rems to simplify the averaging procedure when applied to partial differential equations

that may involve spatial and temporal derivatives. Theorem 1 relates the average of the

time derivative to the time derivative of the average,23 and is given by

1

dV

ð
dV

owk

ot
ckdV ¼ o

ot

1

dV

ð
dV

wkckdV

2
4

3
5� 1

dV

ð
dAk

wk~n � ~wdA [A-6]

where dAk is the interfacial area, ~n is the outward unit normal and ~w is the velocity of

the microscopic interface. Theorem 2 relates the average of the spatial derivative to the

spatial derivative of the average23 as

1

dV

ð
dV

rwkð ÞckdV ¼ r 1

dV

ð
dV

wkckdV

2
4

3
5þ 1

dV

ð
dAk

wk~ndA [A-7]

Appendix B. Surrogate Models

Polynomial response surface.— In this model, function of interest f is approxi-

mated as a linear combination of polynomial functions of design variables x (Refs.

29,34,35)

f xð Þ ¼
X

j

bjaj xð Þ þ e [B-1]

where bj is estimated through a least-squares method so as to minimize the variance,

aj xð Þ are basis functions, and the errors e have an expected value equal to zero.

Kriging (KRG).— The kriging model estimates the objective function as a sum of

two components: a polynomial regression trend (h) and a high frequency variation

(Z).29,35 Thus, the objective function is approximated as

f xð Þ ¼
X

j

bjhj xð Þ þ Z xð Þ [B-2]

The departure function Z xð Þ is correlated based on the distance between sampling

locations. Commonly used formulations for the departure function include Gaussian,

exponential, linear, cubic and spline functions.

Radial basis neural network (RBNN).— In this model, the objective function is

approximated as a linear combination of NRBF radially symmetric basis functions

(gj xð Þ) and coefficients wj (Refs. 29,35) as

f xð Þ ¼
XNRBF

j¼1

wjgj xð Þ [B-3]

Weighted-average surrogate (WAS) model.— In addition to individual surrogate mod-

els, a weighted averaging concept that is based on combining different surrogates for a

more robust approximation36 can also be utilized. A weighted average surrogate model

can be written as

fWAS xð Þ ¼
XNSM

i¼1

wi xð Þfi xð Þ [B-4]

where NSM is the number of surrogate models, fWAS xð Þ is the predicted response by the

weighted average model, fi xð Þ is the predicted response from the ith surrogate model,

and wi xð Þ is the weight associated with the ith surrogate model at design point x (such

that
PNSM

i¼1

wi xð Þ ¼ 1).36

List of Symbols

as interfacial area per unit volume

ce Li-ion concentration in the electrolyte

ce volume-averaged Li-ion concentration in the electrolyte

cs Li-ion concentration in the solid

~cs fractional Li-ion concentration in the solid

�cs volume-averaged solid concentration

ct maximum stoichiometric concentration

dAs interfacial area element

dV volume element

De diffusivity in the electrolyte phase

Deff
e effective diffusivity in the electrolyte phase

Ds diffusivity in the solid phase

Deff
s effective diffusivity in the solid phase

Ds;n solid diffusion coefficient of the negative electrode

Ds;p solid diffusion coefficient of the positive electrode

f mean molar activity coefficient

F Faraday’s constant

jflux normalized reaction flux density

JCs
volumetric reaction density

k rate of reaction

~n normal vector

~r position vector

R universal gas constant

Rs;n particle radius in negative electrode

Rs;p particle radius in positive electrode

t Time

t0
þ Cation transference number

T Temperature

UOCP open circuit potential

V Volume

~w interface velocity

z Coordinate

Greek

a Bruggeman’s exponent

dn thickness of negative electrode

dp thickness of positive electrode

ds thickness of separator

en volume fraction of solid in negative electrode

es volume fraction of solid

ue electric potential in the electrolyte

ue volume-averaged electric potential in the electrolyte

us electric potential in the solid

us volume-averaged solid electric potential

cs solid phase function

g overpotential

j ionic conductivity of the electrolyte

jeff effective ionic conductivity of the electrolyte

r electronic conductivity of the solid

reff effective electronic conductivity of the solid
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