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Abstract

Modeling of the failure of polymer-matrix composites
requires substantial information about the mechanisms
of failure at the interface, and load redistribution
around fiber breaks in the composite. Current interface
experiments involving the use of ‘microcomposites’ of
single embedded fibers in a matrix generally do not
include all the key geometric features of the real
composite; in particular, they do not include the effects
of fiber volume fraction and the higher matrix shear
resulting from closely neighboring fibers. A new ex-
periment was recently devised to assess some of these
effects: it is referred to as the single-fiber pull-out from
microbundle (SFPOM) experiment. It consists of a
hexagonal array of seven fibers in a matrix where the
outer six fibers are restrained and the center fiber is
pulled out. Recent experimental data from tests with
this geometry are analyzed here using three mechanical
models of the failure process, and parametric studies of
the data are performed to assess the appropriateness of
each model. Two of the models, based on fracture
energy considerations as applied earlier to single em-
bedded fibers in a matrix and adapted to our geometry,
were found to model data from the SFPOM experi-
ments poorly. The third model assumes the existence of
three zones near a fiber break, including elastic, plastic
and frictional debond zones, and was found to provide
reasonable fit 1o the data under realistic assumptions.
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The reasons for persisting deviations are also

discussed.

Keywords: interface, puli-out, shear lag,

microcomposite

NOTATION

a Length of a virtual mode II crack

beg Effective fiber spacing in a hexagonal
bundle

¥ Normalized effective fiber spacing in a

hexagonal bundle

bmin Nearest fiber spacing in a hexagonal bundle
(6(0))

brin Normalized nearest fiber spacing in a
hexagonal bundle

b(6) Azimuthal interfiber spacing

C Dimensionless energy model parameter

Cerit Critical energy model parameter

Ciat Total energy model parameter

d Fiber diameter

E Fiber Young’s modulus

G Matrix shear modulus

G. Fracture energy per unit surface area

K Dimensionless sample-holder geometry
constant

K., K;, K5, K, Constants arising in three-zone
shear-lag solution

I Critical length of an embedded fiber

L Embedded length

L, Free length above the embedded region

L, Free length below the embedded region
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r Fiber radius
u Axial displacement of the center fiber
U Normalized axial displacement of the

center fiber
Ui, UR, UP, UL Energy terms

Us Fiber volume fraction

w Acxial displacement of an outer fiber

w Normalized axial displacement of an outer
fiber

z Distance along the fiber direction

Yb Matrix debond shear strain

Yy Matrix yield shear strain

£, Applied fiber strain

gheak Peak applied fiber strain

Ead Critical fiber strain at debonding

Eap Critical fiber strain at yielding

n Normalized length of debond zone

6 Normalized geometry/materials parameter

A Normalized embedded length

u Normalized length of plastic zone

3 Normalized axial coordinate

o* Normalized stress in the fiber (to applied
fiber stress)

o Normal stress in the fiber

o7 Fiber strength (assumed deterministic)

¢ Far-field applied fiber stress

O Normalized applied fiber stress (to fiber
Young’s modulus)

T Matrix shear stress

T* Normalized matrix shear stress

Tp Matrix debond shear stress

TH Normalized matrix debond shear stress

Ty Matrix yeild shear stress

Y Normalized matrix yield shear stress

¢ Normalized geometry/materials parameter

vy Normalized geometry/materials parameter

1 INTRODUCTION

The properties of the interface between components
in a composite material have long been recognized as
important factors in the determination of properties
such as stiffness and strength. Characterization of
these interfaces has been an area of interest to many
researchers in the field in recent decades, and a wide
body of literature is available on both the analytical
and the experimental aspects of the problem. (See
Herrera-Franco and Drzal' for a recent review.)

One of the earliest works on the subject was
published by Cox.> Cox argued for the use of an
elastic ‘shear-lag’ model, in which the full elasticity
solution for a higher-modulus fiber surrounded by a
lower-modulus matrix was replaced by a simplified
model which regarded the surrounding matrix as a
provider of only a shear stress at the interface

between the fiber and matrix. Under even simpler
assumptions, where the shear stress at the interface is
taken as constant (as it is, for example, in a plastic
matrix), Kelly and Tyson® used a simple force balance
to determine an expression for the critical length of a
strained, completely embedded fiber. At embedded
lengths equal to this critical length, the fiber would
fracture at its center because of the matrix shear

tractions,
ol Td

.= ¢))

2Ty

where . denotes the ‘critical length’ of fiber, of'-T

denotes the fiber fracture stress, d denotes the fiber
diameter, and 7y denotes the matrix yield stress. The
result of this very important simplification is that the
effective load transfer length of a fiber can be related
in a simple way to the intrinsic properties of the
components of the composite. That is, there is a
particular critical length of fiber for any given
fiber/matrix combination which will bear load; longer
lengths will simply break at sufficiently high overall
stress, as a consequence of the shear load of the
matrix against the fiber at the interface.

This simple model has also been incorporated into
many other models for determining interfacial
behavior, in such experiments as the single-fiber
composite test (SFC) in which a single fiber is
encapsulated in a dogbone-shaped bar of surrounding
matrix material. However, several researchers, in-
cluding Netravali et al.,* have noted its limited
usefulness in predicting the interfacial shear strength
when mode 1 fracture or debonding is involved as the
failure mode of the single-fiber composite specimen.
Netravali er al.* found that for high-modulus epoxy
composites, debonding occurred at the interface. It
was also found that for the lower-modulus epoxies
tested, the interface never failed; instead, failure
occurred in the composite with a mode I crack in the
matrix, transverse to the fiber. The observed
mechanism change in the fragmentation process in
SFC specimens with different constitutive behaviors
for the epoxies was an important result.

Several researchers have used other types of
so-called microcomposite experiments to correlate
experimental parameters with interfacial failure by
using criteria derived through energy analyses in a
fracture mechanics setting, with simplified assumptions
about the stress distribution. Specifically, Piggott,’
Chua and Piggott® and Penn and Lee’ have developed
models for the prediction of the occurrence of fracture
at or near the interface. These models share the same
fundamental assumptions and techniques: (1) an
energy balance is used to predict fracture in mode II
of classic fracture mechanics, with shear-lag theory
being used to calculate the stress distribution; (2) the
resulting model is a function of several geometric and
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material parameters, but not a function of fiber
volume fraction; (3) the experiments performed to
test the hypotheses involve the use of microcompos-
ites, or specimens fabricated with only a single fiber
surrounded by matrix, and where the fiber is pulled
out of the matrix. Thus, the experiments in these
cases were variations on the single-fiber pull-out test,
in which the fiber is pulled from a thin section of
epoxy with an embedded length smaller than a critical
length estimated from eqn (1).

Gulino et al.® have developed a different type of
interfacial model, based on experimental observations
in a three-fiber graphite/glass/epoxy composite. Their
model considered the effect of three possibly
coexisting zones of matrix and interface along the
embedded length, each with different constitutive
behavior. In this model, formulation of the problem is
made by using displacement and strain boundary
conditions, with continuity conditions in displacement
and strain applied across each constitutive zone. In
the context of a classic fracture mechanics model,
these zones are much larger than what is typically
regarded as the ‘process zone’ at the crack tip, where
plastic deformation is assumed to relax the stress
singularity.

The choice of an appropriate interface model for
use in models of macrocomposite strength is the focus
of this research. Criteria in each of three models,
described in the next section, are evaluated by the use
of experimental results from a novel interface
experiment. The models are examined for their
suitability in describing the mechanics of stress
transfer and debonding near broken fibers in a fiber
array.

2 ANALYTICAL METHOD

The analyses described here are based on an
experiment developed to give a better simulation of
the in situ conditions of a fiber/matrix interface loaded
in shear than previous methods. This test, the
single-fiber pull-out from a microcomposite experi-
ment (SFPOM experiment), developed by Qiu and
Schwartz,’ is also shown schematically in Figs 1(a) and
1(b). The nearness of the fibers to one another more
closely mirrors the conditions attained in a real
assembly of fibers (Fig. 1(c)). In their experiments,
Qiu and Schwartz found that a debonding failure
occurred in the bundle, as the Kevlar fibers used were
found to have only small areas of matrix still clinging
to them after being pulled out of the bundles.
However, in pull-out experiments of this type with a
single fiber surrounded by a large cylinder of matrix
only, it was found by others that data fitted the
analytic predictions derived through fracture
analyses.>”’

Three models are examined here as possible

upper grips pull out center fiber

4

¢— center fiber

& Z bundle tied together
ith a Dacron

fiber

[4+— six surrounding
fibers

(a)

/7222
(b)

Fig. 1. SFPOM sample geometry. (a) Schematic repre-

sentation of test specimen; (b) definition of geometric terms

in the specimen; (c) cross-sectional schematic. (Note that in
(c), b(0) at 8 > By .x is set equal to b + 2r.)

explanations of the behavior of the fiber pull-outs in
the SFPOM experiments. Two of these are based on a
fracture energy point of view, and use shear stresses in
the matrix and normal stresses in the fibers derived
from shear-lag considerations. Conditions for growth
of mode Il cracks have been derived,’® and the
models tested here are modifications of those models
for the unique seven-fiber geometry of the SFPOM
experiment.

In the first model, Piggott® derived the conditions
for interface failure under various assumptions about
the failure mechanism, including shear failure of the
matrix, frictional debonding, free-length contribution
of the fiber in the test grips, and mode II failure of the
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interface. He assumed that all of the relevant stored
elastic energy terms could be computed and then
simply set equal to the total work of fracture of the
interface. In the second model, Penn and Lee” used a
Griffith-type method in which the same types of
energy terms were used, but in a differential
framework with respect to an assumed, initial virtual
starter crack of length a, thus leading to a critical
condition for crack propagation. Specifically, the sum
of the derivatives with respect to a of each
contributing energy term against the derivative of the
work of fracture for the new fracture surface, and
taking the limit as a goes to zero, gave the condition
critical for crack growth. The third model, examined
below, is an adaptation of the model of Gulino et al.®
to the specimen geometry in the SFPOM experiment.®
Again, shear-lag considerations were used to derive
expressions for the shear stresses, but the distinguish-
ing characteristic is the assumption that three zones of
matrix and interface deformation and debonding in
shear occur in succession along a fiber away from a
break. In the original SFPOM experiments,
insufficient data were available to directly calculate all
of the model’s parameters, but parametric studies
based on the experimental data are performed below
to assess the applicability of the model.

The analyses for the first two models proceed along
similar lines and are considered first. Hereafter,
Piggott’s model’ will be referred to as the ‘total energy
model’, and the model of Penn and Lee’ will be
referred to as the ‘critical energy model’. The total
energy model, considered to be only an ad hoc
curve-fitting model by Piggott,' is used for com-
parison even though the primary assumptions are
called into question, as outlined in the discussion
section of this paper. It yields a functional form for an
interface cracking criterion that is significantly
different from that of the critical energy model.

2.1 Analysis for the two fracture energy models
For the two energy models, the derivation of each of
the energy terms for the SFPOM follows the method
used by Piggott,> and is revised here for our
experimental geometry. We consider the geometry
shown in Fig. 1(b), with Fig. 1(c) describing a
cross-section comprising both fibers and matrix. This
hexagonal geometry has much in common with the
geometry chosen by Greszczuk!'' and we follow his
approach, although with slightly different notation.
The axial coordinate, z, is the distance along the
center fiber into the composite as measured from the
plane where the center fiber emerges from the matrix
towards the upper grip. Following the shear-lag
assumption, the center fiber stress, o, satisfies the

differential form

o; 21,

-_— 2

dz r 2)
where r is the fiber radius and 7., is the

circumferential average of the shear stress at the
fiber/matrix interface at fiber position z. Following
Greszczuk,! the circumferential average is required
because the shear stress on the center fiber surface
will vary with azimuthal angle, 6, depending on the
radial proximity to the surface of the nearest outer
fiber or some characteristic distance when projecting
out between fibers. On the other hand, this average
shear stress, 7.,, within the matrix follows the linear
constitutive relationship

_(u=-w)G

ca beﬂ
where « is the longitudinal displacement of the center
fiber, w is the longitudinal displacement of the outer
fibers and G is the shear modulus of the matrix. Also
following Greszczuk,!' b.4 is the effective interfiber

spacing radially from the surface of the center fiber to
the outer fibers, as given by

T /6 de -1

b2 ([ 20 .

=5, 58 4

where b(6) is given by

sin(sin”'{(2 + byin/r) sin 6} — 6)
sin @

3

b(6) =r[ 1] (5)

for 0<0<86,,, and b(0) =b,;, +2r for 0,,<0<
n/6, where

b = 2{(%) e 1] ©)

is the closest distance between fibers and v is fiber
volume fraction. Thus b(68) describes an outside
matrix boundary as the radial distance from the
surface of the center fiber to the surface of the nearest
outside fiber, or to a circle circumscribing all six
outside fibers when no outside fiber is in radial
proximity. Figure 2 demonstrates the importance of
the integration in eqn (4), particularly at high fiber
volume fractions.

Normalization of the key parameters in the problem
to one fiber diameter gives the following dimension-
less quantities for dimensionless axial coordinate,
center fiber displacement, outer fiber displacement,
effective interfiber spacing and embedded length:

z

=7 )

c
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Coupled differential equations of motion for the
center fiber and the outer fibers can then be written in
terms of normalized fiber displacements in the wholly
elastic situations of the fracture energy methods.
Eliminating 7., by combining eqns (2) and (3),
normalizing variables as in eqns (7)-(11), and taking a
derivative with respect to & while eliminating U
through substitution of the fiber constitutive equation
(where o; denotes the center fiber stress)

o=E g—g =F %—g (12)

leads to the equations
U'+2¢(W-U)=0 (13)
W'+20(U-W)=0 (14)

where the double prime denotes the second derivative
with respect to the normalized axial coordinate &, and
¢ and 0 are defined below.

Because of the presence of the free lengths in the
specimen, the real geometry approximates that shown
in Fig. 3. For purposes of solving the strain and
displacement boundary value problem, the scheme of
Fig. 4 was used, as it yields stresses as in Fig. 3.

Application of the four boundary conditions

§=0: U=¢g, (15a)
W = (15b)
E=A U=0 (15¢)
W=0 (15d)

'\

<+—————— cross-head moving at
constant strain rate

<« free length of
Kevlar fiber

< free lengths of
2 Kevlar fibers

2

/A

Fig. 3. Schematic of the three-zone model: schematic of
actual situation in the presence of free lengths in the
specimen.

[} pEBOND ZONE: 1
PLASTIC ZONE: II

I ELASTIC ZONE: 11

E=2

’ U'm/='0

Wi =0

Fig. 4. Normalized coordinate system for the wholly elastic
case with the boundary conditions of egns (15).
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leads to the following solution for o* (normalized
fiber stress):
o _1dU

* — e —

" Ee, £, d&

-9 sinh(WE) — sinh[W(& - 1)] + —qsinh(lPA)
_9 ¢
= o7 (16)
[1 +$] sinh(WA)

Materials and geometry constants ¢ and 6 follow, in
the special geometry where the six surrounding fibers
each have shear tractions applied through the matrix
to only 60° of their circumferences and the center fiber
has shear tractions, applied over its entire circum-
ference (that is, the shear force on each outer fiber is
one-sixth of that on the inner fiber)

2G
b= 7)

G
(7] =E:; (18)
W=[2(0 + ¢)]'" (19)

We also define the following normalized applied peak
strain arising in the fracture energy solutions:

Ed\'”
el = a(—) 0
el G (20)
where G, is the usual work of fracture per unit area of
the crack in mode II.
From eqns (2) and (16), the resulting expression for
the shear stress along the center fiber is obtained:

1 &
Ee, 4¢, dE?

™=

cosh(W§) — W cosh[W(& — 1))

1)

4[1 + g] sinh(WA)

This is a normalized shear stress based on a
circumferential average around the center fiber. Again
following Greszczuk,'' the peak shear stress on the
center fiber occurs at the six equi-spaced circumferen-
tial positions where the radial distance to an outer
fiber is the smallest value b,,,, as indicated in Fig.
1(c). This shear stress is easily obtained from a
modification of eqn (3) to be

-w)G
o W= wG 22)
bmin
which, from eqns (3) and (22), is
beﬁ'
tmax = tca bmin (23)

where o, is the stress applied to the center fiber at the
clamp.
The stress profile in the outer fibers, oy, is given

simply b
i 00 = (0 — /6 (24)

where o is given by eqn (15), and of course
Ot = 05,/6 in the bottom free lengths.

From these expressions, the various elastic energy
terms can be evaluated. Overall, the energies of
interest are the stored elastic energies in the
embedded length, Uy, and in the free lengths, Ug.
There is, in this case, a free fiber contribution from
both the top and the bottom of the embedded length,
as shown in Fig. 1(b). Each of these terms in turn is
composed of several terms. For the stored extensional
energy in the embedded length, U;, we have

UL — U{:center + U{,outer_'_ UIT (25)

where the superscripts refer in succession to the center
fiber, the outer fibers and the matrix. For the energy
stored in the free lengths, Ug, we have

UF = U;scentcr + Ut‘;.outer (26)

where the superscripts refer in succession to the center
fiber (going to the top clamp), and the outer fibers
(going to the bottom clamp).

In terms of the fiber and matrix stresses given by
eqns (3), (16), (21) and (24), we calculate the various
terms as follows:

2 oL d’Ee2 (*
U{,centel’ - ;_; J(; 012' dz = i 8 ea J(; 0'* dE (27)
U{‘:outcr = U{:cemcr/6 (28)
L dZEZ Zb: A ,
Uf=1trj Talu—w)dz == ZGEa ﬂf ' dg
o (4
(29)
Ind’EL
Uiemer fﬂ_gﬁ_l (30)
ind’EL
Ug,outcr = S_nTSE_Z (31)

For the total energy model, the various terms are
summed and set equal to the total work of fracture of
the interface, which is 2arLG..

G.Q2nrL) = U, + Up (32)

which results in the normalized center fiber peak
strain
1

& =" [671] (1+%)zsinh2(‘m)

[0+ () Hg mern -3
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1
x sinh(WA) + A sinh*(WA) + —
inh(WA) + A sinh?( )2lp

x ( _34 4(%) + (%’-)2) sinh(W1) cosh(W)]

Ll =

(1 + 5) sinh(W1)

X [(1 + (%)2> (% + % sinh(WA) cosh(‘I’A))]

—-1/2

+ % [A cosh(WA) + Zilp sinh(‘l’/l)] + K’ (33)

The constant K is essentially a sample holder-
geometry constant, and is given by

_ L+ Ly/6

K
L

(34)
The resulting expression for the fracture of a
composite microbundle with the geometry of the
SFPOM experiment differs from Piggott’s original
expression’ in that we include extra terms for the
energy stored in the free lengths of the fibers, which
leads to the constant K. In the geometry of the
SFPOM samples, the value of the constant K
overwhelmed the other terms in magnitude in the
expression for £). In analysis of the data we
arbitrarily took K =0, so that the data could be
reasonably fitted. Inclusion of the term K would have
resulted in virtually a constant for the right-hand side
of eqn (33), regardless of changing the geometry in
the SFPOM samples. It should be noted further that
the constant G. is by necessity a fitted parameter for a
given matrix/fiber combination, but can be studied by
matching different parameters among experiments to
the governing equation, and back-calculating its value.

For the critical energy model of Penn and Lee’
applied to this geometry, we replace L by the quantity
(L —a) in the energy terms given by eqns (26)—(28)
and replace L, by L, + a in eqn (30), as the initiating
crack of length a exists between z =0 and z = a. Next,
we sum these modified terms to obtain the total elastic
energy, U+ U, for given a. We then take a
derivative with respect to a and set this equal to the
work of fracture per unit change in length a, which is
27xrG,. Finally, we take the limit as a approaches zero
to obtain the following expression for the normalized
peak applied strain:

1
£ =(8)"? [g] <1 +%’)2sinh3(‘l’l)

x [ (—1 + 2(%’) + (%)2) sinh(W1)
+ 2 sinh(WA) cosh(WA) — sinh3(WA) — WA

X ((1 + (%)2) cosh(WA) + (%’)(1 + coshz(‘l‘/\)))]

Wi (2%
+ % (1 N %) e [(1 + (0) ) cosh(W4i)

172

+ (= )(cosh’(WA) +1) | +1 35)
(3) ]

Because of the differentiation, the terms for the free
lengths drop out of the final expression.
We can write eqns (33) and (35) more simply as

follows:
8 172
2=(2) (36)

where constants C represent the quantities in curly
brackets in eqns (33) and (35), and are designated C,,
and C;, for the total energy model and the critical
energy model, respectively. The values C will be
referred to as the energy model parameters, and are
dimensionless quantities.

Figure 5 shows the normalized shear stress for the
center fiber at §=0 plotted for four values of fiber
volume fraction v; over various values of 8 around the
center fiber to show the sensitivity in a realistic
microcomposite of stresses to both of these param-
eters. The plots apply for both the total energy and
critical energy models.

2.2 Analysis for the three-zone deformation model

In the three-zone model put forward by Gulino et al.,?
the experimental basis for the existence of the three
zones was set forth for the geometry of a planar array
of three fibers. The center fiber was a carbon fiber,
and the outer two fibers were much larger diameter
glass fibers. These fibers were placed in a film of
epoxy and strained. Breaks developed along the
carbon fiber axis, and as the specimen strain was
increased the breaks were studied locally for plastic
yielding in the matrix, debonding at the interface and
residual interfacial friction. At sufficiently high strain
one would begin to see all three types of behavior,
leading to three corresponding, distinct zones in
succession as one moved along the fiber towards a
break. The debonded zone with residual friction was
closest to the fiber end and would tend to expand with
increasing strain. Glass fibers were used to ensure that
the strain to failure of the outer fibers would be much
higher than the strain to failure of the carbon fiber.
The glass fibers would continue to deform without
fracturing while the carbon fiber fragmented, main-
taining rigid constraints for the matrix next to the fiber
breaks as they would occur in a real composite.
Motivating the use of this model was the observation
that epoxies behaved differently in small volumes and
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Fig. 5. Shear stress in the matrix at the interface calculated from eqn (21) with A = 20 as it varies azimuthally, for various fiber
volume fractions. (Note that the value of Gy.x changes with fiber volume fraction, and that, at 6 > Oyax, b = byin +2r.)
Materials constants used are as in Section 3.

films compared with their behavior in bulk (where the
epoxy could appear brittle), locally undergoing high,
plastic shear strains before rapid strain hardening and
sudden failure. With the assumption, then, that the
locally high matrix strain, rather than an elastic
analysis with a work of fracture approach, was the
determining basis in the stress transfer and debonding,
the epoxy’s constitutive behavior in thin films rather
than in bulk was used to model load transfer in the
composite.

The geometry of the SFPOM experiment is
somewhat different from the case of Gulino ez al.,® but
we would expect to see all three zones develop in
succession along the fiber from £=0 to £= A with
increasing applied strain to the center fiber, provided
that the embedded length A is sufficiently long. This is
shown in Fig. 6 in dimensionless terms where the key
distances and positions along the center fiber are all
normalized by the fiber diameter d as before in eqns
(7), (8), (9) and (11). The governing differential
equations for each of the three zones, elastic, plastic
and frictional debond, follow from a simple balance of
linear momentum on a small fiber element in each
zone, assuming a shear-lag model with the appropriate
matrix constitutive rule in respective zones. Initially,
we assume that the normalized embedded length, 4, is
sufficient for all three zones to coexist in some range
of applied strain g,. The transition points u and 75
represent the dimensionless boundaries between the
elastic and plastic zones, and the plastic and debond
zones, respectively, whose precise determination is
given below.

General solutions for displacements and strains in
the center and outer fibers are obtained for given

upper surface of center fiber:
/ U=e
u

pper surface of outer fibers:

Fig. 6. Schematic of the three-zone model: idealized
situation used for modeling, including expected axial
constitutive zones for high embedded lengths.

transition positions u and n between the respective
zones. Later, shear strain criteria are used to calculate
the length and growth of these zones as the
displacement of the center fiber increases. The
governing equations below are written as before in
eqns (13) and (14) in terms of normalizations U and
W of displacements u (center fiber displacement) and
w (common outer fiber displacement), and are as
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follows for the three distinct zones:

(I) Debond zone:

0=§=n: Uj—arp=0 37
Wi - Btp=0 (38)
(II) Plastic zone:
n=E=u: Up—ary=0 39)
Wi~ Bty =0 (40)

(III) Elastic zone:
u=E=i Upu+2¢(W-U)=0 41
m+26(U-W)=0 (42)

where the double prime again denotes the second
derivative with respect to dimensionless distance &,
with the following definitions of parameters:

a =4¢, (43)
p=-ie. (+4)
=g (45)
e (46)

where ¢, is the applied strain on the center fiber.
Following Gulino et al.,® these parameters apply again
to the special geometry where the six, surrounding
fibers each have shear tractions applied through the
matrix to only 60° of their circumferences and the
center fiber has shear tractions applied over its entire
circumference.

Compared with the description here, the transition
zones may be less well defined in reality, as plastic and
elastic, or debond and plastic zones may coexist
around the circumference of the center fiber
depending on the proximity of an outer fiber. In other
words, the matrix material in the region where the
surfaces of the inner and outer fibers are closest will
be the first to yield or debond. The implications of
these effects on the interpretation of pull-out data will
be discussed below.

These six differential equations are solved with four
boundary conditions at the dimensionless positions
E=0and £ = A, namely,

§=0: U=g¢, (47a)
W;=0 (47b)
E=A4: Upy=0 (47¢)
Wy =0 (47d)

We also have eight continuity conditions in strains and
displacements for the transition values £=pu and
E=n, eg. U=Uy at =1, etc. The general
solutions for displacements and strains with arbitrary

plastic and debonded zones are as follows:

Displacements:
center fiber:
Uy =iatpe’ + ef +ia(zh—tOn’ + K, (48)
Uy = 10738 + [a(th— 190 + &) + K, (49)

b= efere 0w v

—w —wai[ 8 _
+ K4{e Ste [¢ LW(E A)]} (50)
outer fiber:
W, = 3BThE + 1B(rh— T + K> (51)
Wy = 3B13E% + B(zh— tYnE + K, (52)

W= K3{— g e¥s+ e“’*[g -P(E- A)]}
+ K.,{— g e Vi + e“"‘[% +W(E- A)]} (53)

Strains:

center fiber:
Ui=atif+ ¢, (54)

Up= at3§ + a(th— 19)n + &, (55)
U= W(Ks[ewg - e'“] + Ka[_e_l“§ + e—l“]} (56)

outer fiber:

W; = Bt (57)
Wy = B35 + B(1h— 91 (58)
¢] 6 _ _
W= ‘I’{K;[— p e¥s— e‘“] + K,[—d; e ¥Yit+e '“]}
(59)

where the constants K, K,, K; and K, are defined as
follows:

K, = ~latip® - [a(tp— 0 + £]u
+ K3{e""‘ + e‘“[g -Y(u - /1)]}
+ K4{e“'"‘ + e““[—g +W(u - A)]} (60)
K, = —1ptiu’ - B(zb— t)nu
+ K3{— g e¥r+ e‘”[g - W(u— A)]}

+ IQ{—%e’“"‘ + e"“[-g +W(u-— A)]} (61)

) £+ K}P[(l + %)e“"” + (—1 + %)e"“] )

w[(1+Z—‘;)e‘""+(—1+%>he‘“]
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and
ozt + (5 r¢)n][(§+g)ew
R

7]
‘P(l + 5)[e‘l’(u—ll) - e‘l‘(l—ﬂ)]

It should be noted that the solutions above collapse to
the much simpler solution of the system of eqns (13)
and (14) when there are no plastic or debond zones
present.

The lengths of the three zones along the embedded
length are determined by shear strain criteria. We
have, at each of the zone fronts,

Ulll - u/lll

»  =vy for
eff

Un - W

I
——=1vp for
eff

E=u (64)

E=n (65)

where 0=n<p=A, yp>yy, and b is given by eqn
(10).

As the applied strain is increased from zero, two
critical strains will be achieved in the free length of
the center fiber in succession, for sufficiently long
embedded lengths. The critical strain at which a
plastic zone initially develops in the matrix, &,,, will
first be reached. Clearly, as yp > Yv, there will be no
debond zone in the matrix at this point. The critical
plastic strain, €,,, can easily be calculated by solving
eqn (64) at E=p=n=0 for ¢,, and setting €, = ¢,,,.
Subsequent straining of the center fiber will result in
the axial growth of the plastic zone. Thus at strains
somewhat larger than ¢,,, both a plastic and an elastic
zone will coexist, with eqn (64) defining the boundary.

The next critical condition, at which debonding is
initiated in the matrix, is given by eqn (65) at £=0.
Simultaneous solution of eqns (64) and (65) with n =0
is required for determination of applied strain and
length of plastic zone, u, at this critical point; the ¢,
obtained by this solution is £,4. At strains somewhat
higher than this critical strain, all three zones can
coexist along the fiber.

Coexistence of zones in a sample is governed largely
by the embedded length. In long embedded lengths,
we expect to be able to observe all three regions
simultaneously. In extremely short embedded lengths,
however, the plastic zone may encompass the entire
length of the specimen before debonding begins.
Thus, only two zones at a time may occur during an
experiment, elastic and plastic zones for ¢, < €,4, and
plastic and debond zones for €, > €£,4. Coexistence of
elastic and plastic, then plastic and debonded regions
will occur only briefly over a small region of applied

strain, the latter being unstable. For long embedded
lengths, however, we expect to see all three zones
develop with high enough applied strain.

The fiber volume fraction also plays an important
role in the development of the different constitutive
zones in the matrix material. At a given embedded
length, a higher volume fraction specimen will exhibit
a lower ¢,,, as the proximity of the stiff boundaries
provided by neighboring fibers drives up the matrix
elastic shear stress and shear strain at £ = 0 and forces
local yielding at a lower £, Furthermore, for the
higher fiber volume fraction specimens, the rate of
fiber stress decay axially in the elastic zone is higher
(through eqn (2)), thus making coexistence of
debonded, plastic and elastic zones possible, as the
plastic zone will not encompass the entire embedded
length before local debonding is initiated at & = 0.

3 EVALUATION OF ANALYSES

The data from SFPOM experiments reported by Qiu
and Schwartz'? are fitted to the two energy-based
expressions given by eqns (33) and (35) by using the
normalizations contained by eqn (36). They are shown
in Fig. 7. The fiber Young’s modulus was reported to
be 166-31 GPa (Kevlar 149), the matrix shear modulus
was reported to be 525MPa (70% Dow DER331,
30% DER732, 12-74 phr DEH No. 26 hardener).!?
Figure 7 clearly shows that the data do not support the
energy approaches.

Simulations of the three-zone model derived here
were also performed by using the data reported by
Qiu and Schwartz'? to assess its suitability. Simula-
tions of each experiment performed with the
three-zone model are plotted versus experimental
results for failure strain in Fig. 8. It should be noted

40
3sp total energy modet .
36 ¢ . e o

34 F o ® °

30f
3 critical energy model

28

o@p ® uﬂ a

26 S g

24 ¢+

22F

2-0 L il 1 L A 1
0.002 0.004 0.006 0.008 0.010 0.012 0.014

experimental ea

Fig. 7. Fit of experimental data to the total energy model,
eqn (33), and to the critical energy model, eqn (35).
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Fig. 8. Three-zone model simulation results for each

experiment, with experimental results, for simulated center

fiber peak strain vs experimental center fiber strain at failure

with yy assumed to be 0-055 and y,, assumed to be higher

than that reached at specimen failure. Materials constants
used are as in Section 3.

that each point piotted in this figure represents a
different fiber volume fraction and embedded length.
Shear strain at yield for the matrix, yy, was assumed
to be 0-055 and debonding shear strain, yp, was
assumed to be higher than that reached at the peak
center fiber strain at failure; for the materials and
geometry of the SFPOM specimens, a value of 0-30
was sufficient. Assumed values for t} and % were
zero and 2-53 X 107*, respectively (the latter quantity
was chosen to insure continuity in the matrix
constitutive law in the elasto-plastic region). Results
for peak strain were not dependent upon t}, provided
IH< 1%

4 DISCUSSION

The SFPOM experiment provides a more realistic
setting in which to assess fiber/matrix interfacial
properties than many other experiments currently
performed. One of the advantages of the sample
geometry is that the ‘rigid wall’ boundary condition is
effectively simulated, because, as in real composites,
the matrix is sandwiched between rigid fibers. That
this situation differs markedly from the single-fiber
experiments performed previously can be seen in Figs
2 and 5, which show that effective interfiber spacing is
a critical quantity for shear stress calculation.
Observation of the variation of shear stress with & in
Fig. 5 clearly shows that shear stress varies through
small distances in even a moderately low fiber volume
fraction microcomposite. This geometry may, in fact,
better capture some of the ‘interphase’ effects
reported in the literature.”® Zones of varying
compliance extending radially outward from the

4——— maximum
volume
fraction

minimum volume
fraction

Fig. 9. Schematic of actual geometry of the SFPOM
specimens.

center fiber may be better simulated in a microcomp-
osite in which nearly impinging fibers (at high volume
fraction) are present.

Mechanical modeling of the experiment, however,
is problematic. As a consequence of the fabrication
technique used by Qiu and Schwartz,!' the specimens
had a geometry resembling the exaggerated diagram
in Fig. 9. Although the seven fibers were assumed to
be axially parallel in the mechanical analyses in
Section 2, the interfiber spacing actually decreased
linearly from the top of the specimen to zero at the
center of the specimen (A/2). The result of such a
variation is that the shear stress computed in a
shear-lag model does not decay monotonically along
the center fiber axially from z =0 (see Fig. 1(b)).
Instead, there is a competing effect in the specimen
against shear stress decay, as the reduction in
interfiber spacing at the knot increases shear stress, or
equivalently, increases the effective shear modulus of
the matrix, as seen by eqn (3). One expects that this
‘spike’ in shear stress will cause short specimens to fail
by debonding initiated at the center of the specimen
instead of at the top. In sufficiently long specimens,
we expect this effect to subside, as effective shear
stress and fiber load decay substantially axially before
reaching the center of a specimen, where the spike
becomes non-critical. This effect is illustrated in Fig.
10(a). The effect of this geometry on the resulting
peak center fiber strain is illustrated in Fig. 10(b),
with a schematic fit to the SFPOM data under the
assumption that this effect plays a role in stress
transfer.

This geometry effect would explain the negative
intercept reported by Qiu and Schwartz™'! in a plot of
pull-out load vs. embedded length for the SFPOM
experiment. In the specimens used, higher embedded
lengths were generally coincident with lower fiber
volume fractions. Thus, in Fig. 8, the embedded
lengths are higher and the fiber volume fractions are
lower for the higher peak experimental loads, as is
predicted by the three-zone model. However, the
skew caused by this geometry effect is apparent.
Although the three-zone model fits the higher
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Fig. 10. Effect of the conical geometry in the SFPOM

experiment on (a) axial shear stress decay, and (b) SFPOM

data for peak center fiber strain for increasing embedded
lengths.

embedded length data reasonably well at yy = 0-055,
the lower embedded length data are overestimated
with respect to ef54X. In fact, the three-zone model is
ﬁtt;ngg)a more simplified geometry (compare Figs 1(b)
and 9).
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Another view of this situation is shown in Fig. 10.
Figure 10(a) illustrates the effect of the conical
geometry on the shear stress distribution for three
regions of embedded lengths. For sufficiently high
embedded lengths such as A,, it is expected that the
modification to axial shear stress distribution will
produce only a small effect. For the shortest lengths,
however, such as A3, the spike in shear stress is high
enough to cause failure at very low &, because the
peak shear stress is high whereas the area over which
it acts is low. A sketch of the effect of the difference in
behavior of the three regions of embedded lengths of
Fig. 10(a) is drawn in Fig. 10(b), along with a resuit
for the unmodified three-zone model, shown for a
single fiber volume fraction.

The effects of debonding shear strain, yp, and fiber
volume fraction in the three-zone model are
illustrated by Figs 11(a) and (b). Materials constants
are again as given in Section 3. The three debonding
shear strains chosen represent a range of possible
behavior in the model. If yp, = yy, as in the first curve
in each plot, we see that the peak strain possible for
any embedded length is limited to that reached for a
matrix failing at its elastic limit. In the case of an
intermediate yp, long embedded lengths will produce
lower peak strains at failure than they would if yp
were infinite, as a debonded zone is unstable, whereas
the shortest embedded lengths show no difference in
the two cases. The short embedded lengths are
unaffected by increases in these intermediate debond-
ing shear strains because the plastic zone in these
cases encompasses the entire length of the specimen
before even the moderate yp is reached at the top of
the specimen, thus making the peak strain equal to
that obtained by solution of eqn (64) at u = A, with
n=0. At the highest debonding shear strains, even
the long embedded lengths will behave in this manner,
making the analysis of peak strains elasto-plastic. The
effect of increasing fiber volume fraction in each of
these cases is to lower the peak strain, as discussed in
Section 2. Comparison of Figs 11(a) and (b) illustrates
this effect for fiber volume fractions of 0-1 and 0-8.

The re-derived energy models of Piggott® and Penn
and Lee’ for the SFPOM geometry failed to model the
experimental data with any degree of closeness, and

. have other deficiencies for use in strength simulations.

Figure 12 shows the normalized analytic predictions
for peak center fiber strain vs. normalized embedded
length in the total energy model and critical energy
model for 0-5 fiber volume fraction specimen, using
the materials constants given in Section 3. The critical
energy model shows an asymptotic approach to a
constant value of peak center fiber strain with greater
embedded lengths. However, for greater embedded
lengths with an elastic matrix, one expects the peak
center fiber strain to increase, reaching a constant
only when the fiber ultimate strain .is reached, at
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?‘ig. .11. Analytic predictions for peak center fiber strain for increasing embedded length for yy =0-055 and y, = vy, 0-08 and
infinity for (a) a 0-3 fiber volume fraction specimen, and (b) a 0-6 fiber volume fraction specimen for the three-zone model.
Materials constants are as in Section 3.

which point the center fiber itself fractures. There is
no way to impose this ‘critical length’ on the resulting
embedded length at which peak strain reaches a
maximum in the critical energy model. Furthermore,
Griffith-type approaches such as this are more
appropriate in the case of brittle materials; the
polymeric composites generally used in microcompos-
ite experiments may exhibit large plastic deformations
relative to the process zones of the debonded regions

between fibers and matrix, relaxing the stress
singularities which drive crack growth.

The total energy model, on the other hand, shows
an ever-increasing peak center fiber strain with
increasing embedded length. However, the primary
assumption in this model, that a simple balance of
energies at failure can be performed, suggests that a
fracture takes place suddenly and catastrophically,
regardless of materials or geometry. This method of
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Fig. 12. Analytic predictions for peak center fiber strain for

increasing embedded length for a 0-5 fiber volume fraction

specimen for the total energy model and the critical energy
model. Materials constants used are as in Section 3.

determining the failure criterion would suggest that
the strength of any material can be calculated using a
surface energy of a cross-section computed by
balancing the stored elastic energy with work of
fracture in a simple tension test, which is certainly not
the case.

Piggott'® recommended use of the critical energy
model in analyzing brittle fracture processes with an
equivalent debonding stress

7p = [Em(1 + va)(G/r) In(R/r)]** (66)

with R defined as the specimen outer radius and V,, is
defined as the matrix Poisson’s ratio. However, the
possibility of coexistence of several constitutive axial
zones in an interface was not considered in this
approach. Furthermore, we have the persistent
problem of a levelling of peak center fiber strain with
ever-increasing embedded length.

Use of the three-zone model eliminates these
difficulties. With this model, there are clear
demarcations among relationships of peak center fiber
strain to embedded length for a given fiber/matrix
pair. Clearly, the fiber failure strain must be included
as an additional limit in a strength simulation in the
case of high embedded lengths. Unlike the result for
the critical energy model, this analysis shows a
monotonically increasing failure strain at higher
embedded lengths. Parameters that determine the
type of pull-out process are obtainable from
experiments on constituents alone and combined in a
microcomposite test such as that performed by Qiu
and Schwartz® or Gulino et al.® Importantly, Gulino’s
verification of the three-zone model in an effectively

two-dimensional specimen is further supported by
Qiu’s three-dimensional experiments.

5 CONCLUSIONS

Two interfacial fracture models adapted here for the
experimental geometry were examined, and modified
to account for the azimuthally varying shear stresses in
the cross-section. It was shown that neither of the first
two models fits the experimental data. Furthermore,
there are several analytical problems with the use of
these fracture models in a simulation of composite
strength. Use of the fracture models derived here
provided significantly different functional forms for
prediction of peak center fiber strain, and failed to fit
the experimental data for the SFPOM experiment.

A three-zone model of matrix constitutive behavior
was also examined for use with the experimental
geometry. The relationship between peak center fiber
strain and embedded length for a short embedded
length was fairly consistent with the analytical results.
The model also lends itself to strength modeling in
that the limits of high fiber volume fraction and high
embedded length give reasonable solutions for
developed strains in the matrix.

6 FURTHER WORK

The effects of unique geometry of the SFPOM
experiment should be studied further both experimen-
tally and analytically. The three-zone model should be
modified to account for the conical geometry in the
actual specimens, and the fabrication technique of
specimens might be modified to produce a more
cylindrical geometry, perhaps by using two knots to
secure bundles instead of one.
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