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INTRODUCTION

Composite materials can be generally defined as those
materials having two or more distinct material phases.
With the advent of advanced polymeric composite
materials, the term composite became somewhat synon-
ymous with engineered carbon-epoxy, Kevlar-epoxy or
ceramic- or metal-matrix composites, though this term
later came to refer to a broader set of materials; more
recently, the descriptor heterogeneous has been used to
characterize study of such materials. Porous materials
may also be considered composite materials, with one
phase composed of void or air spaces. Examples of
composites include the familiar carbon-epoxy airframe
skins, and glass/epoxy or glass/polyester structural
materials, e.g., helicopter rotor blades, or even furniture.
Sporting goods, e.g., golf clubs, tennis rackets, and skis
are also often often constructed of advanced composites.
Even wood, which contains r¢inforcing cellulose fibers,
bone, which may be considered a porous reinforcement, at
a smaller scale, extracellular matrices, reinforced by
structural proteins such as collagen, that are surrounded by
ground substance (Fig. 1) constitute composites. There is
a large body of literature available on both properties“_s]
and manufacturing!® of many types of engineered
composite materials, and much of this work has found,
and will continue to find application in improved
understanding of heterogeneous biomaterials and design
of biocompatible materials.l”! As an example, of the 20—
30% of the human body that is composed of proteins, up
to 50% is collagen;™ collagen’s precursors have been on
the planet nearly as long as multicellular life.) Undoubt-
edly, the need for improved micro and nanoscale models
for the behavior of such critically important fibrous
biomaterials will continue, and will support new insights
into biochemistry and evolutionary science.

HISTORICAL BACKGROUND

General modeling of the properties of heterogeneous
materials is of great importance to almost all engineering
and scientific disciplines, and can be traced to the mid-19th
century (Table 1), in work on properties of gases.[w'SS]
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Closed-form solutions for effective properties in gases led
to similar analyses for conductivity and stiffness in
composite solids. Determination of engineering properties,
from conductivity to stiffness, was classically accom-
plished via solution of Laplace’s equation, whose
linearizing field assumption allows simultaneous solution
of a number of important problems using the same partial
differential equations, rescaled using appropriate material
constants (Tables 2 and 3, following the description in
Ref. [54]). Other techniques that have been widely used to
determine, or bound, properties of heterogeneous materi-
als, include solutions of stress fields in representative
volume elements (RVEs), models of anisotropic sheets,
and models of continuum anisotropic phases. In this
article, we do not attempt to survey each of these areas
thoroughly; we aim, however, to give an overview of
approaches in modeling composite materials, with specific
results of classic models, and an eye toward the modeling
of biological materials. Thus, we omit discussion of
manufacture of composite materials (see, for example,
Refs. [6,55,56]). Instead, we emphasize analysis of elastic
and transport properties, both for their common roots in
the literature, and also their importance in study of
biomaterials. We begin with general formulations of
anisotropic elasticity, and discuss simplifications for
layered structures, which are abundant both in engineered
and biological materials. Bounds on elastic properties are
also discussed, since they allow estimation of material
response (important in analysis of damage and growth
modeling of bone, skin, and other tissues). And, a
discussion of the role of phase geometry and percolation,
relative to transport properties, is presented for its
usefulness in estimation of both mechanical response
and permeability of specific phases (e.g., structural
proteins) in biomaterials.

CONTINUUM AND MICROMECHANICS OF
COMPOSITE MATERIALS

Composite materials may be isotropic or anisotropic,
depending on the shapes, locations, and relative sizes of

the material phases. Many particulate, porous, or short-
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Fig. 1 Examples of composite materials, including (a) an anode of a Li-ion battery, containing carbon particles and polymeric
binder, (b) trabecular bone (courtesy Dr. Scott Hollister, University of Michigan), (c) wood of an elm tree, and (d) collagen fibrils
of the rat sciatic nerve perineurium, (e) carbon nanotube sheet, and (f) substrate of NiMH electrode. (View this art in color at

www.dekker.com.)

fiber systems, for example, exhibit isotropic stiffness and
conductivity; long-fiber and fabric-reinforced systems
generally exhibit some degree of anisotropy.

Broadly, analysis of composite materials can be
divided into two categories. Work that incorporates
anisotropy into material models without detailed modeling
of each phase is termed continuum mechanics, and can be
used to predict effective properties of a heterogeneous
material (see Ref. [57] for example). Work that directly
models the shapes, locations, and relative sizes of model
phases in a material is termed micromechanics, and more
recently, nanomechanics, though the latter properly
includes atomistic or molecular dynamics modeling and

often is applied only to very small volumes due to its
inherent computational intensiveness. Micromechanics is
generally used to determine the details of stress, current,
or other distributions (Table 2) within a heterogeneous
material, along with effective properties (e.g., Refs.
[1,58]). The units of the common parameters used in the
deriviation of effective properties and their governing
equations are listed in Table 3 and Table 4. Though
theories for failure of material have been developed using
continuum mechanics,”>®” understanding of specific
failure mechanisms often requires analysis of the load
sharing among the constituent materials, especially for
brittle reinforcements. Statistical approaches have been
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Table 1 Contributions to heterogeneous mechanics, including work in disperse gases
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Disperse gases Dielectrics Disperse media
1850 O.F. Mossotti 1955 W.F. Brown Jr. 1972 W.B. Russel and A. Acrivos
1879 R. Clausius 1956 J.D. Eshelby 1973 W.B. Russel :
1880 L.V. Lorenz 1956 E.H. Kerner 1975 K.S. Mendelson
1880 H.A. Lorentz 1957 J.D. Eshelby 1978 W.T. Doyle
1891 J.C. Maxwell 1958 E. Kroner 1978 R.C. McPhedran and
D.R. McKenzie
1892 J.W. Rayleigh 1958 C. van der Pol 1978 R. Landauer
1906 A. Einstein 1960 R.E. Meredith and C.W. Tobias 1979 W.T. Perrins, McPhedran, and McKenzie
1912 0. Wiener 1962 Z. Hashin 1979 R.M. Christensen and K.H. Lo
1924 H. Fricke 1962 Z. Hashin and S. Shtrikman 1988 D.S. McLachlan
1924 K. Lichtenecker 1964 J.B. Keller 1990 K.D. Bao, J. Axell, and G. Grimvall
1925 I.Z. Runge 1964 Z. Hashin and B.W. Rosen 1990 J.M. Gudes and N. Kikuchi
1933 J.N. Goodier 1964 R. Hill 1991 G.Q. Gu and Z.R. Liu
1935 D.A.G. Bruggeman 1965 R. Hill 1993 G.Q. Gu
1947 J.M. Dewey 1965 B. Budiansky 1993 R.M. Christensen
1952 R. Landauer 1966 Z. Hashin 1995 S.Y. Lu
1954 A.V. Hershey

Gases are in italics, conductivity of solids are in normal type, and mechanics of solids are in bold. (Adapted from Ref. [54].)

shown to be useful in developing scaling rules for failure
(e.g., Refs. [61-65]). The subject of failure of heteroge-
neous materials is quite broad and spans modeling of

Table 2 Effective medium theories and solution using Laplace’s equation

ductile failure, fracture, fatigue, and creep, to name a few
key phenomena. Here, we introduce modeling of consti-
tutive properties of elastic, heterogeneous materials, from

Linear problem of
interest for a
two-phase material

Quantity

represented by ¢

Quantity represented
by E

Local differential
equation satisfied in

Thermal conduction

Electrical conduction

Electrical insulation

Permeation of a porous
medium consisting

of a fixed array of
small rigid particles
with an incompressible
Newtonian fluid

Elasticity of a
medium containing
elastic inclusions
embedded in

an elastic matrix

Heat flux

Temperature gradient

Electric current

Electric displacement

Force on particles in
unit volume of mixture
(=pressure gradient
calculated from
pressure drop between
distant parallel planes)

Stress

Electric field intensity

Electric field intensity

Flux of fluid volume
relative to particles

Strain

Electrical conductivity

Dielectric constant

Permeability
(Darcy constant
divided by u)

Transport each phase
coefficient K (in steady state)
Thermal conductivity q; = KjE; = K;U;
V-g=0
Vp = uVZi
Vi =0
where #=velocity;
p=pressure;

Lame constants
(or rigidity and
bulk moduli)

u=viscosity

G = 2uE + AEl
V.g=0

U, A=local

Lame constants

(Adapted from Ref. [54].)
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Table3 Common units for conversion of parameters in Table 2

q U E K
Thermal J/m? K (temperature) K/m J/m-K
conduction
Electrical Amp/m? \%4 Vim S/m
conduction
Electrical Cc/m? 1% Vim  fim
insulation
Porous m/s m 1 m/s
medium
Elasticity F/m? m 1 F/m?

the continuum to microscale, and comment on applica-
tions for both constitutive and failure modeling.

CONTINUUM, ANISOTROPIC STIFFNESS

The number of stiffnesses required to fully characterize a
material’s response depends upon the degree of its
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anisotropy. Counterintuitively, tensorial stiffnesses are
denoted C;, and tensorial compliances are denoted Sjj.
An elastic constitutive relation (using the notation of
Fig. 2) can be expressed as either

o = Cyjutu (1)
or
&j = Siju0n (2)

respectively, where &, is the infinitesimal strain tensor and
o is the stress tensor. We note that 2-D sections of the
internal structure of a composite material depend on the
plane examined, but models using 3-D ellipsoidal or
cylindrical inclusions can be used to represent a wide
range of reinforcement shapes (Fig. 3), from particles
(2-D circles or ellipses, or 3-D spheres or ellipsoids) to
fibers (1-D lines, 2-D ellipses or circles, or 3-D cylinders
or ellipsoids).

The number of nonzero components of the stiffness
tensor and the relationships among its components can be
determined using material symmetry and equilibrium
considerations. As a first cut, the 81 coefficients in the

Table 4 Common governing equations for modeling physical phenomena

Equation Formula

Phenomena

Solution

Wave V2V - %_\t’ 1. Wave

Diffusion —— = xV%V 1.

Heat conduction 1.

1. Analytical solution by
various transformations,
e.g. Bécklund transformation,
Green’s function,
integral transform,
Lax Pair, separation of
variables
2. Numerical solution, e.g. finite
element method
Analytical solution by
separation of variables,
Laplace transform,
Fourier transform,
Green’s function

2. Mass diffusion 2. Numerical solution, e.g. finite

2 _
Poisson V'V = —dnp 1.

Electrostatics with 1.
constant source or sink

element method
Analytical solution by separation
of variables,

2. Thermal field with 2. Numerical solution,

constant source or sink

2y —
Laplace VV.=0

N =

Thermal conduction 1.
Electrostatics

e.g. finite

element method
Analytical solution
by separation

of variables.

3. Incompressible fluid flow 2. Numerical solution, e.g. finite

>

Membrane mechanics
5. Elasticity

element method
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Fig. 2 Coordinate axes and components for the stress and strain tensors in 3D.

Cyju tensor can be seen immediately to have only 36 the degree of anisotropy (Fig. 4). Materials containing
independent coefficients due to the symmetry of o;; and square-packed fibers (Fig. 4a) are termed orthotropic,
&, aS since they contain at least two mutually orthogonal planes

of symmetry; in this case, the number of elastic co-

efficients is reduced to 9, as
Gjj = 0ji and ey = &x >

We can then write the con'?“titutive rule in matrix form (o] C;y Cip Ci3 O 0 07T
gii;’wlie::' [66,67] for notation and general methods that - Ci, Cp Cyp O 0 0 &
o3| |Ci3 C3 C3 0 0 O &3 )

01 Cin Ciz Ci3 Cu Cis5 Cig][&a o 0 0 0 Cu 0 0 b

) Cy Cp Cpn Cu Cs Cx||&a as 00 0 0 Gs O &

o3| |G Cxp Ci3 Cu Cis Cie| |83 3 lags] L O 0 0 0 0 Ce| L&

04 Cyn Cap Casz Cas Css Cas | | &4

os Csi Cs» Cs3 Csu Css Css | | s ) o )

o6 Csi Ceo Ces Ces Cos Cesl Les Materials containing aligned, hexagonally packed fibers

or randomly arranged fibers (Figs. 4b and 4c) are termed
transversely isotropic, since the elastic properties are
where Cj; are the elastic stiffness coefficients, and invariant with respect to an arbitrary rotation about an axis
parallel to the fibers’ axis; in this case, the number of
01 = 011,02 = 0,03 = 033,04 = 023;05 independent stiffness coefficients is reduced to 5, as

= 013;06 = 012

€1 = E11;62 = &2j€ = €33;84 = 2813;€5 o1 ] Cy Cp C3 0 0 0 1Te
4)
= 2e13;86 = 2¢12 02 Cp Cu C3 0 O 0 &
o3 Cs Cs C3 0 0 0 &
The requirement of symmetry in C; further reduces the ol 0 0 0 Cu O 0 ¢
number of independent coefficients to 21. ! 0 0 0 0 Cu 0
Further, nontrivial reductions of the stiffness tensor g5 Cn — Cip &
(i.e., for a number of independent coefficients greater - L 0 0 0 0 0 2 1 Lé6 ]
| 06

than 2) can be obtained for aligned fibrous materials,
wherein the transverse arrangement of fibers determines
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Fig. 3 Cross-sections of (a) particulate and (b) fibrous composite materials.

Composites composed of layers of fibrous sheets, or
laminae, are termed laminates or laminated composites.
Analysis of the elastic properties of a stack of such layers
(Fig. 5) requires modeling of both the in-plane properties
of each layer and an assumed for an out-of-plane
displacement function for the stack. Classically, this is
accomplished using the well known laminate theory, in
which an elastic stiffness matrix, the ABBD matrix, is
assembled for the stack. A standard notation is shown in
Fig. 5; the laminate code is enclosed in brackets, with
sequential plies designated by the in-plane orientation of
their fibers. Subscripts s and ¢ are used to denote sym-

(a) ~ (b) ()

Fig. 4 Several classical transverse arrangements assumed for
aligned-fiber composites, including (a) square packing, (b) hex-
agonal close-packing and (c) random packing.
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X7 45°
- 00°
90°
45°
45°
00
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Fig. 5 Notation for laminated composites, with in-plane orien-
tation of fibers in each layer designated in degrees. The example
shown is a symmetric, quasi-isotropic laminate, [0/£45/90];.
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metric or total, respectively. Symmetry in the orientations
of the layers about the midplane prevents bend-twist
coupling in the laminate, discussed later. Also, many
laminates are designed to have in-plane properties that are
independent of rotation (quasi-isotropy), as in the example
of Fig. 5.

Plane stress is assumed in each layer. Normal stress
resultants in the x direction, N,, in the y direction, N,, and
in shear, N,,, are defined as

H/2
N, = / 0,dz

~H2 )
H/2
N, = / oydz
~H/2
H/2
Ny = / Oxydz
—H/2

and moment resultants, M,, M,, and M,,, are defined as

H/2
M, = / 0,2dz

H/2
H/2

M, = / oyzdz
—H/2
H/2

M, = / Ty2dz 8)
—H/2

The plane stress assumption (o3, 7,3, and 7,3=0) results in
the 2-D reduction of Eq. 3 to

o1 On Qn O &
6| = |Qn O» O & )
T12 0 0 Qe | [ 712
where
C2
= Cpy — =212
On s,
C13C3
Op = Cpp —
12 12 o
C3s
= Cp — -2
O» o
Oss = Qe (10)

We note that for the 2-D case, these relations apply to both
transversely isotropic or orthotropic laminae. Transfor-
mation of stiffnesses (Eq. 9) to a global coordinate system
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is required for each layer, where the transformed stiff-
nesses are denoted Q;;, as in

Ox ?11 ?12 gls &x
gy | = gu _Q_zz gzs &y (11)
Tay O Q26 Q66| LVw

and are obtained from the Qy; by

01 = Oncos* + 2(Q12 + 2066) sin® 6 cos? 0
+ O»n sin*
01, = (Qu + O — 4Qes) sin® O cos”
+ Qua(sin* 6 + cos® 6)
Ois = (01 — Q12 — 2Q¢s)sinfcos’ 0
+ (Q12 — Qn — 2Q¢s)cosOsin® 6
0 = Qusin*0 + 2(Q1n + 20ss) sin® 0 cos” 0
+ szcos40
Os = (Qn — O — 2Qes)sin’ Ocos b
+ (Q12 — Qn + 2Qes) sinfcos® 0
Oss = (Qu + O — 2012 — 2Qe) sin* O cos’ 0
+ Qgs(sin* § + cos* 0)
(12)

Use of the Kirchhoff-Love hypothesis, that plane
transverse sections remain plane during loading, results in

ow,

U = u, — 2 Ox

J— 6w0.

V=V, — 2 ay
w=w, (13)

for the displacement (u, v, w) of a point at (x, y, z), given
midplane displacements (u,, Vo, W,). The strains can then
be calculated via

Ou  Ou, Pw, v Pw,
gx = = — — Z—— frd gx —_ Z

ox Ox Ox?

_@_Bv,,_azwo_so_ﬁzwo

=% a8y ‘ae v Yoar

_Ou v Ou  Ov ) D

Ty =3 T T By | ox | Coxdy
:yo_zzgzﬁ (14)
w Oxdy
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spring element

i

Kelvin-Voigt element

Maxwell element

(b)

ellipsoidal inclusion

(c)

Fig. 6 Possible levels of detail in micromechanical models, from (a) simple rule of mixtures in series and parallel for stiffness
modeling, (b) the element in (a) can be represent for spring, Kelvin-Voigt (spring-dashpot in parallel) element, or Maxwell (spring-

dashpot in series) element, to (c) derivation of the stress fields around elliptical particles.

Assuming small rotations, displacements u# and v in

Eq. 13, the strains, can expressed as

terms of the ABBD matrix as

80
Ny An A A *
2 0
Ny Ag1 Ay Aesd | 0
. v Ov, *w, © 4 o Yoy
Y T e T v a2 &5 T v
o % Ox Bin B Bis] | K&
— % + _a_v - 9, 9, ] % + | B2 By B K (17)
Ty = o  O0x Oy Ox Zaxc’)y Y
Bis Bx B K?
) . (15) 16 B Bes Xy
= Yy T 2,
and Eq. 11 can be rewritten as M, B;1 Bz Bis p
_ My | = |Bn Bn Bx||¢&
Ox Ou Qn Q| [ & + 2l %,
oy | = |01 O0n Ox|| & T2 (16) My Bis B Bes
J— J— j— o
Ty Oic Ox O] LT 2y Dn D D] [ %
+ |D2 Dy Dix || K5 (18)
Finally, a global stiffness matrix for both in-plane dis- ,
Dis Dzs Des | K3,

placements and out-of-plane moments can be expressed in
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where
H/2 N

Ay = Q;dz ~ Oz — 7 -

N ;?;:1 s = )

H2 N

B; = Q;zdz ~ Z 0@ — % -1)
—H/2 k=1
H/2 1 M

Dy = |, 0demzd Calee =) (19
- k=1

The matrices represent extensional stiffness (A), bending
(D), and bend-twist coupling (B). If each layer of laminate
is thin, the terms A;;, By, and D;; can be approximated from
the sums shown in Eq. 19, and we can write the laminate
constitutive law as

Ny Ay Ap A Bu Bi B &
Ny Ap An Ax B Bn By || &
Ny | _ |As Ax Aes Bis Bz Bes | |
M,| |Bu Bi B Du Dn Di Ky
M, Bia Bx By D Dn Dix||%
M,y Bis By Bes Dis D Des Koy

(20)

We note that the dimensions of these parameters are scaled
per unit length of the laminate, i.e., N; and A; are
expressed in force per unit length, M; and Bj;, in force, and
Dy as force x length. As usual, & is dimensionless; cur-
vature x is dimensioned as inverse length.

These relations have been widely implemented in
free and commercially available codes, and are a corner-
stone of laminate design. However, though laminate
theory can satisfactorily model the behavior of the com-
posite at the lamina or laminate scale, the details of
load sharing among the constituent materials and many
aspects of failure require more detailed modeling of
the phases.

MICROMECHANICS OF ORDERED AND
DISORDERED COMPOSITES

Micromechanical approaches take specific account of each
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simple strength-of-materials series'®  and parallel[69]
models, to early 2-D elastic field solutions for stresses
around elliptical particles (e.g., Ref. [70]). All of these
stemmed, along with much other work in the field, from
the classical work of Eshelby.””) To model polymeric
systems having viscoelastic behavior, elements in each
model can be replaced with Voigt-Kelvin (parallel
spring-dashpot) or Maxwell (series spring-dashpot)
elements, as illustrated in Fig. 6b. In present applica-
tions, modeling of the details of even elastic load
transfer in constituent phases (with engineering fibers of
0(10-100 pm)) in a simulation of structural properties
(of components of O(>1 cm)) is still somewhat beyond
computational capability, though detailed finite element
analyses of load transfer have found great utility in
informing less-detailed models of structural response and
failure (e.g., Ref. [67]). Here, we emphasize the classical
work in analytical elasticity (Fig. 7), employing simpli-
fying assumptions for the shapes of the phases in composite
media in order to directly perform energy and mechanics of
materials analyses to derive field solutions for stresses,
strains, and stiffnesses.

Though many fibers are anisotropic, especially with
regard to thermal expansion (e.g., many carbon fibers
have a slightly negative axial coefficient of thermal
expansion and a positive transverse CTE), the classical
micromechanics models view each phase as isotropic.
Thus, we complete the reduction of the stiffness tensor
described earlier for single, isotropic phases to (see below)
for which there are only two independent components of
Cj;. Engineering constants, such as Young’s modulus E,
shear modulus u, and bulk modulus K can be readily
obtained from these tensorial stiffnesses. For example, if
we specify

g = & = & = & (22)
and
01 = 0y = 03 = 0 (23)

we can find from the definition of bulk modulus K,

phase in modeling. Classical approaches (Fig. 6a) span o = 3Ke (24)
[0 ] [C11 Cr2 Ci2 0 0 0 1Te]
02 Cn Cu Cn 0 0 0 2]
03 _ Cnh Cpp Cn 0 0 0 €3 Q1)
04 0 0 0 (C11 - Clz) 0 0 €4
Os 0 0 0 0 (Ci — Ci2) 0 &s
Laﬁ_ 0 0 0 0 0 (Cii — Cu2) | Lés
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@spheﬁl ®) matrix | equivalent

homogeneous
medium

inclusion phase

C)

Fig. 7 Micromechanical models of ordered composite materials, including representative volume elements for the effective medium
theories of (a) Maxwell’s model (see Ref. [14]), (b) Rayleigh’s rectangular array (see Ref. [15]), (c) Hashin’s composite sphere model
(see Ref. [31]) and (d) Christiansen and Lo’s three phases model (see Ref. [46]). '

that

1
K = E(Cu + 2C12) (25)
The shear moduli are defined as

1
U= Hp = P31 = Hp3 = E(CU — C]z) (26)

and Young’s modulus and Poisson’s ratio can be
then determined by bulk modulus K and shear modulus
U as

9K

E=-—"_ 27
3K + u @)
and
3K — 2u
_ 28
Y T 206K + p) 9

Both somewhat realistic and purely theoretical constructs
have been used to derive effective properties (both
conductive and mechanical) using micromechanical
analyses, and both classes of RVEs have contributed to

literature on the bounding of effective properties. In
the first category, wherein fibers or particles are some-
what literally represented in 2-D as circles or ellip-
soids (see Fig. 3), the derivations of Maxwell!*! and
Rayleigh!"®! were among the first to allow calculation
of effective conductive properties based on relative
fraction of materials packed in a regular fashion. Later,
Bruggeman analyzed both a ‘‘symmetric effective medi-
um’’ and an ‘‘asymmetrical effective medium’ by
assuming a wide distribution for the sizes of inclusions.*?!
In 1962, Hashin introduced a composite sphere model
(Fig. 7c) using Eshelby’s energy approach (Fig. 6b)
to develop a closed-form solution for effective stiffness
of a continuous matrix phase infused with a variable-
diameter sphere.®!! The ratio of radii a/b for the phases
was taken as a constant, proportional to the volumetric
ratio of each composite sphere and independent of their
absolute size.

Schemes involving theoretical material constructs have
also allowed for solution of the field equations to estimate
effective properties; these so-called self-consistent do-
mains are analyzed by matching average stress and strain
in the inclusion phases and the uniform stress and strain in
the surrounding, infinite, isotropic medium. The first self-
consistent formulations were developed by Hershey!”"

and Kroner'”? in modeling polycrystalline media (Fig. 7d).
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Fig.8 2D models of transverse stress distributions in an elastic, carbon-epoxy, fiber-reinforced composites. For the simulations shown,
E;=231GPa, E,,=3.4 GPa, \g: 0.28, v,,=0.36 and\/f =0.1; both simulations are subjected to a biaxial tension of 1%, resulting in far

field von Mises stresses of 2

MPa. In the regular array (a), the highest stress is 51MPa at both matrix and fiber phases, whereas in

the disordered array (b), the highest stresses are 87 MPa in matrix phase and 80 MPa in fiber phases between the closely-spaced
fibers. Material constants for AS4C Hexel® Carbon fibers were obtained from Ref. [77,78]. Material constants for Hercules 3501-6

epoxy were obtained from Ref. [6,79].

Later, Budansky extended their work in order to deter-
mine bounds on shear and bulk moduli of multiphase
materials.*”) Hashin and Shtrikman used a variational
method to minimize potential energy in a model domain
and provide rigorous bounds on effective magnetic perme-
ability, shear, and bulk moduli of multiphase materi-
als.?*7>! Christensen and Lo later devised a three-
phase self-consistent approach to calculate effective shear
moduli of materials containing spherical and cylindrical
inclusions.™ !

Importantly, many classical results for effective con-
ductivity and effective bulk modulus coincide for both
physical and self-consistent RVEs. Effective elastic
properties can be found for these arrangements via
minimization of potential energy, or minimization or
work principles, expressing stored elastic energy as either

1 6 6
Uec = 5 Z Z 8,'C,'j8j (29)
i=1j=1

or

|

1 6 6
Us = 5 Y Y 0i(Sy/mim;)o; (30)
i=1j=1

These two expressions result in different magnitudes for
the total stored elastic energy in heterogeneous domains
due to simplifying assumptions regarding stress and strain
fields. Together, they allow calculation of bounds on
properties of anisotropic fields of fibrous (Table 5) and
particulate (Table 6) materials, with assumed geometry
and volume fraction of phases (summarized in compact
form, for example, by McCullough,””®! following work by
Hashin and Shtrikman!’#7>). These estimates are useful
for design for stiffness, in both fibrous and particulate
materials, and can be readily used to model a wide range
of materials, and compare well with elastic finite element
simulations in prediction of stiffnesses®”! we note that
these models assume transverse isotropy in the composite,
with isotropic fiber and matrix.

Though effective properties can be estimated and
bounded using these simplified elastic estimates, how-
ever, the importance of disorder in material geometry
at the scale at which the material is used must fre-
quently be considered. Such disorder can create in-
ternal nonuniformities in material response, and thus
variability among devices or structures created from
the material. Also, variability in location of reinforce-
ment phases can result in higher stress concentrations
in the material, producing earlier-than-expected failure
(Fig. 877-7°1,




(d)

Fig. 9 Micromechanical models of disordered composite ma-
terials, including disordered 1D fibrous inclusions, with (a) ran-
domly-laid, and (b) reduced, and periodic geometry, and 2D,
fibrous or particulate inclusions, with (c) randomly-laid and
(b) reduced, and periodic geometry.

Indeed, real, disordered, or stochastic materials exhibit
a range of values in material response, and attempts have
been made for various geometries (e.g., randomly laid
fibers or particles, as in Fig. 9) to bound these properties.
Work of this type models disorder in a material
specifically, rather than through use of an energy
approach, as described in the previous section, to simply
bound properties of an ordered, representative arrange-
ment. In early work, Bergman devised an analytical
method to determine bounds for dielectric conductivity™”
Lurie and Cherkaev'®!! and Milton and Kohn™® presented
bounds for macroscopically aniotropic media by extend-
ing the work of Hashin and Shtrikman.*>"*¥ Gibiansky
and Torquato used a ‘‘translation method’’ to determine
the rigorous bounds for the relation between conductivity
and elastic moduli of two-dimensional, globally isotropic
composite materials.’®®! Later, Torquato and coworkers
used a discrete network and homogenization theory to
determine the effective mechanical and transport proper-
ties of cellular solids.’®* Studying fibrous materials, Lu,
Carlsson, and Andersson used a micromechanical approach
to obtain rigorous bounds on elastic properties.[85_87]
And Ostoja-Starzewski et al. developed network tech-
niques to simulate effective properties of generalized
composites by changing the spring constants of individual
springs within the network to model multiphase material
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properties.’®® Sastry and coworkers studied the stochastic
fibrous networks to determine both conductivity and
variance in conductivity in battery materials.®**°) This
work was later extended to model fiber type bonding
conditions, and failure mechanisms in greater detail®*!
and was also extended to include the effects of fiber wav-
iness on material mechanical properties[92_94] to model
variance in electrical conductivity of porous networks
with elliptical particles.””

PHASE CONTINUITY AND PERCOLATION IN
DISORDERED COMPOSITES

All of these efforts further underscored the importance of
variance in properties in real materials. Indeed, a key
requirement in producing dramatic changes in material
transport properties (e.g., thermal and electrical conduc-
tion) is percolation of the additive phase. We can define
percolation as the formation of at least one, continuous,
domain-spanning path of the percolating phase in the
material. Dramatic improvements in computing speeds
from the 1980s to the present have allowed direct,
stochastic simulation of transport in disordered arrays.

Key features of such models include physically realistic
simulation domains and use of many statistically equiv-
alent realizations, i.e., domains in which the statistical
parameters describing particles, sizes, etc. are the same for
all, but the locations, sizes, etc. are different in each. As a
result, the minimum amount of a phase required to
produce dramatic improvements in composite properties
can be determined, along with discrete and averaged
predictions of material properties. Percolation concepts
have been used not only in design of materials for
mechanical®®®! properties, but also in filtration'®®~10!
and conductive™® %! properties.

Classic work by Kirkpatrick, who studied site and
bond percolation using a resistor network, pointed out the
importance of the percolation threshold, or threshold

(@)

Fig. 10 Percolating and non-percolating arrays of circles, with
volume fractions (a) 32.7%, (b) 51.2%, and (c) 64.0%.
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Fig. 11 Two-dimensional percolating and nonpercolating ar-
rays of ellipses of aspect ratio 6 and volume fractions (a) 17.9%,
(b) 31.6%, and (c) 50.7%. Three-dimensional percolating and
nonpercolating arrays of ellipsoids are also shown, of aspect
ratio 10, and volume fraction (d) 6%, and (e) 20%.

volume fraction above which a percolating phase
would form at least one single, domain-spanning path
(Fig. 10).11% In 1988, McLachlan introduced a more
general effective-media equation for binary conductivity
media.*’] The fact that higher aspect ratio phases
percolate at lower volume or area fractions than lower
aspect ratio phases has been well documented. In early
work, Kirkpatrick’s simulations showed that the perco-
lation threshold p,, i.e., the density or volume fraction of
the fiber phases at percolation onset, exhibited a power
law dependence upon bond fraction v.[1%41 pike and

-
N

-

9

o
)

-+£=20(fiber)
«£€=100(fiber)
*-€=-4 (ellipse)
--£=10 (ellipse)
~+£€=20 (ellipse)
—£€=100 (ellipse)

percolation probability
o o
R (-]

©
)

0 e
0 0.2 04 0.6 0.8 1
volume fraction

Fig. 12 Probability of percolation in 2D arrays, for various
particle-fiber geometrics. (Adapted from Ref. [106].)
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Fig. 13 Simulation results for percolation probability versus
particle size, for arrays of overlapping ellipsoids of revolution.
In this figure, ‘a’ represents the semi-axis length, and the aspect
ratio of the ellipsoids is 10. (Adapted from Ref. [107].)

Seager also examined conduction and percolation phe-
nomena in stick networks (among others), using 2-D and
3-D Monte Carlo simulations.!*)

Recently, analytical approximations of the percola-
tion points have been developed for both 2-D and 3-D
arrays of generalized ellipses and ellipsoids of uniform
shape and size,['%'%1 which verified and extended
earlier results on simulation of simpler 2-D networks of
1-D fiber percolation,[97’98] 3-D networks of 2-D ellip-
soids, and other analytical approaches for determination
of percolation of circular arrays;!'®114 combined
results’®"1%! are shown in Fig. 11. These illustrate that
the percolation point in realistic materials is probabilistic
(i.e., only a statistical estimation of percolation point can
be made, for any given volume fraction of particles), and
also that 2-D fiber models in models are quite satisfactory
for determining percolation properties for aspect ratios
greater than 100, as shown in Fig. 12. Similarly, Fig. 13
shows that percolation probability of ellipsoid models in
3-D model is also strongly dependent upon of aspect ratio.

APPLICATION OF COMPOSITE THEORIES
TO BIOMATERIALS

Modeling of the shapes and effects of various phases in
materials is tremendously important in understanding the
combined mechanical and physiological role of biomate-
rials. Natural materials exhibit a high degree of varia-
bility, and use of statistical theories touched upon in
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this chapter can be helpful in anticipating differences
in clinical results of both in-vitro and in-vivo tissue
response. Generalized domains, particularly fields of
ellipses and ellipsoidal particles, can be used to describe
a wide variety of materials and bound a number of im-
portant effective engineering properties. Percolative
properties have important implications for understanding
the role of particulates (either voids or material phases)
and fibers, both adaptation and selection, in biomaterials
(Fig. 12).

Thus, in conclusion, the modeling of heterogeneous
domains performed by the composites community has
broad application in modeling biomaterials. Elasticity
provides an initial estimate of properties, and percolation
theories provide a method of determining the connectivity
of phases, and thus their importance in transport.
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