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Two-Dimensional vs.Three-Dimensional Clustering
and Percolation in Fields of Overlapping Ellipsoids
Y.-B. Yi,a C.-W. Wang,a and A. M. Sastrya,b,* ,z

aDepartment of Mechanical Engineering andbDepartment of Biomedical Engineering, University of
Michigan, Ann Arbor, Michigan 48109-2125, USA

Maximum depth-to-particle-dimension ratios in which systems can be treated as two-dimensional~2D! rather than three-
dimensional~3D! systems in determining percolative properties have not been reported. This problem is of great technological
significance. 3D solutions for percolation in even low-density systems pose much more intensive computational problems than
their 2D analogs and also result in significantly different predictions for percolation onset. Moreover, many materials and sensing
applications require analysis of domains of finite thickness. Adequate loading of particles is required,e.g., in electrodes in
advanced batteries and fuel cells to ensure good conductivity. Adequate deployment of sensors into fields of finite thickness such
as oblate, neuronal cells is required,e.g., to detect specific ions. A systematic determination of the effect of these arrangements on
percolation properties is needed for both applications. Here, we provide comparisons of cluster sizes, densities, and percolation
points among monodisperse, 2D and 3D systems of overlapping ellipsoids by systematically increasing the depth of the 3D system
relative to particle dimensions. We investigate the effect of several boundary condition assumptions on the resulting particle
orientations, emphasizing the probability of formation of large clusters. A method of experimental determination of percolation
onset is also suggested, using the maximum change in cluster size.
© 2004 The Electrochemical Society.@DOI: 10.1149/1.1769272# All rights reserved.
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Producing conductive, thinly layered structures for use as ba
electrodes requires some estimation of the amount, shape, an
tribution of conductive additive,e.g., conductive carbons in Li-io
batteries.1,2 Determining the dimensionality of these systems
purposes of modeling percolative properties is critical, because
dimensional~2D! and three-dimensional~3D! percolation points de
pend upon both particle shape and system thickness. How
maximum depth-to-particle-dimension ratios in which systems
be treated as 2D rather than 3D systems for purposes of mo
percolation have not yet been reported quantitatively.

Accurate and efficient simulation of percolation in overlapp
fields is also important in the design of sensor systems,3-5 materia
properties in materials containing interpenetrating particles,6-9 and
even epidemiology.10-13 Some of these problems are inherently
as in epidemiology, wherein the overlapping ‘‘particles’’ repre
scalar fields of magnitudes of disease transmissibility around
single source. In almost all materials applications, and in se
design for detection of species or phenomena, domains are
fully 3D and represent physical space. For example, in nanos
tured gas sensors, the presence of a gas increases the conduc
the sensing material at the grain boundaries in 3D.14,15 Importantly,
percolation points in 2Dvs.3D model domains have been shown
be different, analytically,16-19 numerically,20-24 and experimentally,25

and thus determination of the appropriate dimensionality of a m
system is critical. Many materials applications of percolation m
eling require analysis of ‘‘thin’’ sections,e.g., layered electrodes
advanced batteries or fuel cells.26,27 Sensing applications for finit
oblate domains are also abundant,e.g., intracellular sensing.28-30

Thus, we hereafter use the terms ‘‘field’’ and ‘‘particle’’ interchan
ably, and note that our interests center on percolation in field
fully permeable particles, an unrealistic condition for high-den
material additives, but quite satisfactory for low-density arra
ments of additives and for all sensing applications.

Three general approaches have been historically used to
mine percolation onset in particle systems. One approach is to
lytically approximate percolation onset, via a power series ex
sion of mean cluster density. In a series of the authors’ recent p
on percolation phenomena,e.g., Ref. 31, approximate analytic
methods were developed to determine the percolation thresho
systems of ellipses and ellipsoids, building on classic work in
percolation of systems of spheres and circles.16,18,32 Mean cluste
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size, defined as the average number of particles in clusters in a
domain, was used in this work. Specifically, the mean cluster
was expressed in the form of a power series, allowing the dev
ment of a convergence criterion for percolation based upon pa
density, following Coniglio’s formulation.33,34Though the analytica
methods developed were accurate, they were also computati
intensive due to the required evaluation of integrals, especially
high-order connecting graphs were introduced.

A second approach is to conduct large-scale Monte Carlo s
lations~being careful to select domains large enough to avoid
dependencies in solutions! for particular geometries of particles a
domains;24,35 this approach is also commonly used to validate
lytical approximations.19,31A third approach is to use either appro
mations or direct simulations to develop semiempirical guide
for percolative properties~based, for example, on geometry, clu
statistics, or domain size!.

However, most percolation and aggregate models have bee
veloped for infinite systems, either in unbounded systems,
pseudoinfinite systems with periodic boundaries, though the im
tance of boundary effects has been noted by a number of group36-39

For example, Gabrielliet al.40 studied the effect of boundaries
geometrical properties and found that the fractal dimension o
percolating cluster near the boundary was remarkably different
the bulk one. Thomsen41 investigated the critical correlation leng
exponents and percolation thresholds in quasi-2D site perco
systems, with finite interplane coupling. He found the percola
threshold to vary continuously from 2D to 3D values with a pow
law exponential relationship. Examples of work in specialized
mains include that of Lorenz and Ziff,42 who studied percolation an
clustering on spherical surfaces; Tsubakihara,43 who examined sit
percolation in a rectangular system of aspect ratio greater than
and Provataset al.,44 who investigated 2D fiber networks genera
via a simulated flocculation process, resulting in localized pa
agglomeration. Several studies have also been published on s
finite size effects and scaling approaches for 2D systems~e.g., Ref.
45-47!, but the dimensional crossover in cluster properties and
colation thresholds has not been determined for continuum sys
to the authors’ knowledge.

With the improved computational capabilities attained over
past few years, it is now possible to simulate a domain nearl
size of the physical domain of interest in many applications, e
cially in sensing nanotechnologies for biological materials,e.g., in-
tracellular sensing.48,29 Models of permeable fields of geometrica
complex shapes are critically important in such applications
cause many targeted nanoprobes~including molecule uses in fre
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dyes! have an inherent directionality,49 i.e., they contain specifi
endgroups which comprise the detector, which renders the sha
the detection field nonspheroidal, but perhaps ellipsoidal. Thu
the present work, we compare our prior analytic approximation
percolation onset in 2D and 3D continua with Monte Carlo sim
tions, designed to provide comparisons of

1. cluster properties and percolation behavior between 2D
3D continuum systems containing equisized, overlapping ellips
by systematically increasing the depth of a 3D system of par
and determining percolation points and cluster sizes and den
and

2. the effects of varying boundary conditions in particle orie
tion within the systems, accounting for constraints imposed
boundaries on the formation of large clusters.

We also suggest some important considerations in image an
of porous materials using these results, including interpretatio
cluster formation as either random or physically based and det
nation of the effect of processes such as pressing on cluster de
by comparison with random cluster formations expected in fi
systems.

Detection of Particle Overlap

The detection of particle overlap comprises a very computa
ally intensive step in both analytical approximations and M
Carlo simulations of percolation onset in systems of permeabl
lipsoidal particles. In principle, one can solve the governing e
tions of ellipsoidal surfaces and determine whether real solu
exist. But the computational effort in doing so is high; theref
some workers have developed indirect, but computationally effi
criteria.

To describe these criteria, the concept of a ‘‘contact funct
must be introduced. Suppose the contact functionF for a single
ellipsoid A, specified by the locationr A of its center, and the ang
VA , which expresses its orientation in space, can be writte
FA(r 2 r A ,VA). We then haveF , 1, for r insideA; F 5 1 for r
located on the surface ofA; andF . 1 for r outsideA. A nonunique
but obvious choice forF is

FA~r 2 r A , VA! 5 ~r 2 r A!TA21~r 2 r A! @1#

where T indicates the transpose, and

A~VA! 5 (
i 51

3

Ri~VA!Ri
T~VA! @2#

whereR are the vectors comprising the semiaxes.
For two ellipsoids of arbitrary shape and size, Perram

Wertheim50 proved rigorously that the functionG(r , l ), defined as

G~r , l! 5 lFA~r ! 1 ~1 2 l!FB~r ! @3#

has a minimum

Gmin 5 l~1 2 l!r AB
T @lB 1 ~1 2 l!A#21r AB @4#

They further showed that

H 5 max~Gmin! @5#

is the contact function for two ellipsoids; namely, forH , 1,
the two ellipsoids overlap, forH 5 1 they are tangent, and f
H . 1 they are separate. We note that this contact function is
plicit, and thus its evaluation requires numerical iteration. For e
soids of uniform size, Viellard-Baron51 derived a more efficien
explicit expression for overlap detection. A necessary and suffi
condition was stated for two ellipsoids to have no real poin
common, or to be exteriorly tangential, using a contact func
involving several variables for the geometry and relative spatia
cations of the ellipsoids. Because we are presently interested
f

;

s

-
s

e

effects of dimension, rather than particle size distribution, we im
ment the condition stated by Viellard-Baron, for equisized parti
We point out that Garbocziet al.24 also used Baron’s overlap cri
rion. However, they dealt with the infinite 3D problem, whereas
have worked in finite systems. The technique can easily be ext
to the problem involving ellipsoids of variable sizes by repla
Viellard-Baron’s overlap criteria with Perram’s contact function

Monte Carlo Simulations

We simulated domains comprised of spatially uncorrelated
uisized ellipsoids in a 3D (L 3 L 3 D) continuum. For simplicity
the centers of the ellipsoids were distributed by a Poisson proce
a real material, particle density near a surface may be som
higher than in the center,e.g., for packing or stamping postproces
for shaping of porous materials, though this was neglected he
simplicity. And, although particle geometry and size frequently
in real materials, prior studies have shown that a mild variatio
particle size does not change the clustering prope
substantially.52 In all simulations, periodic boundary conditio
were applied to the edges of thex-y plane, to minimize bounda
effects. No periodicity was imposed in thez direction.

Particle orientation angles were randomly distributed, with
treme inclinations determined for a particular, semi-infinite dom
as follows. By introduction of a frame of reference whereinx andy
represented the infinite dimensions, andz represented the finite d
mension, particles were assumed to be oriented with a uniform
tribution function @0,2p# in the x-y plane ~and we note that th
distribution function may also be written for@0,p# if symmetry
about either thex or y axis is considered!. The difference of the tw
extreme locations on the ellipsoidal surface in thez directionDz, is
the maximum possible difference of the extreme locations on
ellipsoidal surface at the given locationz of the particle centerpoin
as shown in Fig. 1. It can be expressed as

Dz 5 2Ab2 sin2 u 1 a2 cos2 u @6#

The distribution function of the elevation angle of the major axi
particle over thez direction can be derived from this expression

Q 5 cos21SA~Dz/2!2 2 b2

a2 2 b2 D ~1 2 2Q* ! @7#

whereQ* is a random number distributed in@0,1#. Thus, we have
for the half-height

Dz/2 5 min$a, z, c 2 z% @8#

We note that one limiting case of elevation orientation angle d
bution is simply uniform particle alignment with respect to thex-y
plane. We denote this case the ‘‘parallel model’’ and analyze it
cifically because it has some importance in the manufacture o
tain materials,e.g., laminated materials, wherein alignment is
duced. This constraint on particle orientation results in an ov
reduction of interparticle connections and therefore a higher p
lation threshold relative to the random case.

Percolation Threshold Detection

Percolation onset for 2D and 3D continua was studied by
tematically increasing thez dimension~thickness! of model domain

Figure 1. Schematic of the finite thickness model with extreme posit
orientations of ellipsoidal particles shown.
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and recording the percolation threshold at which a cluster con
ing the twox-z boundary faces is detected, wherez is the dimensio
having finite thickness. Percolation volume fractionsvs. aspect ra
tios are shown for four types of domains in Fig. 2:~i! a 2D arrange
ment, wherein ellipses were generated in a 2D domain~from results
reported in Ref. 19!; ( i i ) a ‘‘single-layer’’ arrangement of ellipse
wherein a normalized thickness oft/b 5 1 was used,t is the half-
layer thickness; (i i i ) a ‘‘finite thickness’’ model, wherein thez di-
mension was specified relative to the particle size; and (iv) a 3D
~infinite! model~from results reported in Ref. 53!. We note that th
single-layer domain, comprised of a single layer of particles
major axes parallel to thex-y plane, is merely a degenerate cas
the finite-layer domain. Interparticle overlap in this case is d
mined by the elliptical geometry of the midplane (x-y) cross sec
tion. Comparison of the volume of the ellipsoid (3/4)pab2 and the
areapab of the ellipse allows derivation of a relationship for
critical volume fractionf c of the single-layer model in terms of t
critical area fractionf a in the 2D problem, as

f c 5 1 2 ~1 2 f a!
2/3 @9#

using the following relation for particle densityr, and area or vo
ume of a single particles

f 5 1 2 e2rs @10#

The results in Fig. 2 for the 2D and 3D infinite models were
tained by averaging the results of 1000 simulations, each cons
of at least 5000 particles. Results for the single-layer model

Figure 2. Comparison of percolation thresholds in 2D, 3D, and single-l
model simulations.

Table I. Critical volume fraction f c as function of normalized layer th
axis…, based on approximate formulaf c 5 C1 1 „C2 1 C3z 1 C4z2

…

e C1 C2 C3

1 0.2908 1.0899 20.5941
2 0.2550 0.8727 20.3767
3 0.2047 0.8958 20.4726
5 0.1397 0.8139 20.4623
10 0.0779 0.6299 20.4062
100 0.0076 0.1195 20.0935

a R is the correlation factor for each curve.
b Values of f for the limiting configurations 2D (z 5 1) and 3D (z 5 `
c
-

based on the corresponding 2D model and obtained via Eq. 9. V
for other geometries can be readily interpolated from these co
tational results.

These results and approximate relations clearly demonstra
importance of dimensionality in real domains in the predictio
percolation onset, particularly for higher aspect ratio particles.
the intrinsic variability of percolation onset in finite-thickness s
tems is high: even for the sphere problem, the percolation thre
rises from 29 to 52.3%, with a ratio of domain edge length
1:1.80. For higher aspect ratios, the relative variability can be
higher. For example, for particles ofe 5 10, the percolation thres
old is between;6.8 and;21.2%, with an edge ratio of 1:3.1
Thus, clearly, the 2D or 3D models are only applicable when
thickness is either very small or extremely large, respectively,
tive to particle dimension.

In Fig. 3, critical volume fractionsf c are reported for th
finite-thickness domains, as a function of layer thicknesst; results
for 1 < e < 100 are shown. For convenient reference, we
included our own compilation of critical volume fractions using
approximate formula which shows excellent agreement with ou
merical results19,53 in Table I; each fitted curve gave a correlat
factor with numerical results>0.99. In Fig. 3, cell thicknesses a
normalized by the half-length of particle minor axisb, so that the
points on the left of each curve represent single-layer configura
and solutions asymptotically approach those for the infinite
model as t → `. As with the infinite domains, the percolati
threshold drops rapidly with an increase in the particle aspect rae.

Figure 3. Critical volume fractionf c for the finite thickness model as
function of the normalized layer thicknesst/b. Approximately 10,00
particles were generated in each case for determination of perco
thresholds.

ssz 5 tÕb „t is half-layer thickness;b is half-length of particle minor

C4 Ra f c (z 5 1)b f c (z 5 `)b

.1458 0.9997 0.531 0.290

.1290 0.9999 0.488 0.252

.1715 0.9999 0.418 0.203

.1776 0.9992 0.333 0.137

.1493 0.9997 0.212 0.0724

.0326 0.9905 0.028 0.0052
ickne
eÀz.

0
0
0
0
0
0

).
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For example, the critical volume fraction ofe 5 1 is more than 5
times that ofe 5 100 at large thickness.

Further, the percolation threshold dropped quickly, initia
with increasing thickness, but reached a plateau for all a
ratios studied, whent exceeds 10. Roughly speaking, in the rang
e 5 1-100, our results show that the infinite model can be use
accurately approximate the percolation threshold for domain t
nesses;5 times greater than particle thickness 2b. Otherwise, a
finite-thickness model must be used to incorporate the effects
boundary, for accurate prediction of percolation onset. This r
has important implications for modeling of many engineered ‘‘
films’’ or other layered materials~e.g., Ref. 54 and 55!, in which the
layer thickness is frequently more than an order of magnitude l
than the particle thickness: an infinite 3D model is more suitabl
these materials than a 2D model.

Figure 4 shows a comparison of critical volume fraction for
parallel and random models as a function of layer thickness.
percolation threshold for the parallel model is significantly hig

Figure 4. Comparison of the critical volume fractions for the para
and random models,vs. normalized layer thicknesst/b. Approximately
10,000 particles were generated in each case for determination of perc
thresholds.

Figure 5. Cluster densityvs. volume fraction for ellipsoids of aspe
ratio 10, t/b 5 5. Approximately 10,000 particles were involved in e
realization.
t

than for the random model, once the thickness exceeds a few
the particle thickness. This is undoubtedly due to the reductio
overall likelihood of interparticle connections in thez direction for
the parallel model. Any constraint applied to the orientation
locations of particles generally reduces interparticle connec
and increases the percolation threshold. This effect is more
nounced for thin layers, though in the limiting case of thickn
reduction to a single layer, the solutions coincide, as seen b
rapid convergence of the two solutions aroundt/b 5 2 in Fig. 4.

Cluster Property Determination

The generation of statistical distributions of large clusters
proven computationally and analytically daunting: for exam
there are 528 possible ways to form a cluster of only
particles,19,53 making it practically impossible to assemble statis
for the systems of 10,000-100,000 particles, using older com
processors. More effort has been spent in generating data on
cluster statistics, wherein isolated clusters containing a fixed,
number of particles were sought using connecting graphs, na
schematics reflecting the pairwise connectivity between particle

n

Figure 6. Cluster densities (n 5 2,3,5,8) from simulations~solid lines! vs.
Roach’s approximations~Eq. 11, dashed lines!, for ~top! spheres (f c

5 0.29) and~bottom! ellipsoids of aspect ratio 10 (f c 5 0.072). Fully 3D
models~unit window dimensions with;10,000 particles in each case! were
used in the simulations.
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side each cluster.17,18 This method does not require full knowled
of the connectivity of the structure and is thus extremely efficien
examination of clusters of four or fewer particles.

As a useful approximation, Roach56 suggested that at low vo
ume fraction for particles of any shape, the cluster densitynk could
be estimated from

nk '
n1~1 2 n1!k21

k
@11#

Ogston and Winzor57 provided an analytical expression for the
cluded volume of an ellipsoid, which can be used to derive the
solution ofn1 for ellipsoids, as follows

n1 5 expH 2
4

3
pab2rS 2 1 H 3

2
1

3

4

~2e2 2 1!

e4 2 e2
ln~2e2 2 1!J

3 H A2e2 2 1

e
1

e3 sin21S e2 2 1

e2 D
e2 2 1

J D J @12#

For spheres,i.e., e 5 1, n1 becomes

n1 5 expS 2
32

3
pr 3r D @13#

Table II. Percentage of ellipsoidal particles belonging to clusters o

f

e 5 1

0.5% 1.0% 2.0% 5.0% 10% 20%

k 5 1 0.973 0.945 0.893 0.741 0.529 0.25
k 5 2 0.027 0.051 0.092 0.195 0.262 0.20
k 5 3 * 0.004 0.012 0.046 0.119 0.152
k 5 4 * * 0.002 0.014 0.052 0.117
k 5 5 * * 0.001 0.003 0.022 0.079
k 5 6 * * * * 0.010 0.063
k 5 7 * * * * 0.003 0.035
k 5 8 * * * * 0.001 0.037
k 5 9 * * * * * 0.017
k 5 10 * * * * * 0.016
k 5 20 * * * * * *

Asterisks~* ! are used for percentages less than 0.1%~i.e., fractions sm
Results are averaged from 10 realizations, each involving approxim

Table III. Percentage of ellipsoidal particles belonging to clusters o

f

e 5 1

0.5% 1.0% 2.0% 5.0% 10% 20%

k 5 1 0.959 0.922 0.851 0.665 0.431 0.18
k 5 2 0.038 0.070 0.122 0.218 0.232 0.12
k 5 3 0.003 0.008 0.023 0.074 0.132 0.08
k 5 4 * * 0.003 0.028 0.077 0.075
k 5 5 * * * 0.009 0.047 0.064
k 5 6 * * * 0.003 0.030 0.047
k 5 7 * * * 0.001 0.018 0.045
k 5 8 * * * 0.001 0.012 0.032
k 5 9 * * * * 0.006 0.033
k 5 10 * * * * 0.004 0.025
k 5 20 * * * * * 0.011

Asterisks~* ! are used for percentages less than 0.1%~i.e., fractions s
approximately 10,000 particles.
To analyze large clusters, we developed an alternative simu
approach. Briefly, we first assumed that each particle formed
tinct cluster. Clusters with at least one pair-connection were id
fied by checking interparticle connectivity, and subseque
merged. This process was repeated (n 2 1)(n 2 2)/2 times, forn
particles. Using this approach, the interconnectivity of each an
ery pair of particles was examined and catalogued, and thu
complete network structure was obtained. By tallying the numb
clusters withk particles, and averaging the results over a numb
realizations, we obtained mean densities of clusters, for h
values ofk (k . 4) than reported previously.

We thus numerically determined, for lower volume fraction
ellipsoids, both cluster densities~Fig. 5!, and mean cluster sizes
the z direction~Fig. 7!. As shown in Fig. 5~for ellipsoids of aspec
ratio 10,t/b 5 5), for low volume fractions, clusters comprised
isolated particles dominate, and mean cluster sizes are the
close to unity. At higher volume fractions, isolated particles bec
rarer, consistent with our previous computational results for bot
and 3D networks.19,53 Roach’s approximations are plotted alo
with numerical results for several values on Fig. 6, showing ge
ally good agreement for volume fractions less than half of the
colation threshold, but significant divergence from actual value
yond the critical volume fraction. Table II reports the fractions
cluster sizes present, for 2D systems, and Table III reports the
3D systems. Interestingly, even at volume fractions as low as 2

under different volume fraction f for 2D configurations.

e 5 10

30% 0.5% 1.0% 2.0% 5.0% 10% 20% 3

0.119 0.928 0.853 0.739 0.442 0.199 0.035
0.109 0.069 0.124 0.186 0.240 0.136 0.017
0.096 0.003 0.017 0.060 0.129 0.108 0.013
.085 * 0.006 0.012 0.079 0.091 0.011 0.0
.071 * * 0.003 0.041 0.072 0.013 *
059 * * * 0.033 0.061 0.009 *
061 * * * 0.010 0.046 0.009 *
041 * * * 0.011 0.037 0.009 *
48 * * * 0.007 0.029 0.008 *
36 * * * 0.003 0.032 0.008 *
16 * * * * 0.006 0.012 *

than 0.001!. The 2D volume fraction is related to area fraction via Eq. 9
10,000 particles.

under different volume fraction f for 3D configurations.

e 5 10

30% 0.5% 1.0% 2.0% 5.0% 10% 20% 3

0.061 0.871 0.800 0.615 0.279 0.074 0.007
0.042 0.113 0.147 0.208 0.135 0.025 0.001*
0.031 0.016 0.038 0.079 0.090 0.014* *
.025 * 0.006 0.041 0.069 0.009 * *
.016 * 0.003 0.023 0.049 0.008 * *
.013 * 0.003 0.011 0.036 0.003 * *
.016 * * 0.005 0.029 0.003 * *
.015 * * 0.002 0.027 0.001 * *
009 * * 0.005 0.020 0.001 * *
010 * * 0.003 0.027 * * *
08 * * 0.010 0.001 * *

r than 0.001!. Results are averaged from 10 realizations, each involvin
f sizek

9
3

0
0

0.
0.
0.
0.0
0.0
0.0

aller
f sizek

0
5
3

0
0
0
0
0
0.
0.
0.0

malle
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Figure 7. Mean cluster sizesvs. zlocation ~i.e., normalized position in th
thickness, where 0 and 1 are the lower and middle surfaces, respectiv! in
systems of~top! spheres and~bottom! ellipsoids (e 5 10) for various vol-
ume fractions att/b 5 5. 10,000 particles were used in each simulation
Figure 8. Normalized mean cluster sizesvs. volume fraction in systems
~top! spheres and~bottom! ellipsoids (e 5 10), at the boundary. Ten tho
onal
Figure 9. Images showing the Li-ion anode particles of SL-20 natural graphite under pressure 300 kg/cm2. The image on the left shows the cross-secti
plane; the one on the right shows the horizontal plane.
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nonnegligible proportion of large clusters (k > 10) arises for sys
tems of ellipsoids (e 5 10); this has important implications for im
age analysis, discussed later.

Distributions of mean cluster sizevs. locations along thez direc-
tion are shown in Fig. 7, for spheres~top! and ellipsoids (e 5 10,
bottom!. One thousand realizations were generated and analyz
each volume fraction; averaged results are reported. The num
particles in each realization varied from 5000 to 10,000, depen
on the volume fraction used. Also, because of the half-plane
metry, position is normalized by the half-thickness of the la
model, such that ‘‘0’’ represents the lower surface of the dom
and ‘‘1’’ represents the midplane. The mean cluster size is no
ized by the value at the midplane.

Figure 7 clearly shows thez direction bias in cluster distribution
for finite, 3D domains. Clusters are smallest near boundaries
increase monotonically to reach a maximum at the midplane. H
ever, this bias is pronounced at ‘‘intermediate’’~in terms of perco
lation! volume fractions only. At low volume fractions relative
percolation onset, the lack of particle interaction results in dist
uncorrelated particles, and few clusters overall. At the other
treme, for volume fractions well above the percolation thresh
particles are highly correlated, and large clusters arise. Thus,
cluster size becomes invariant with respect to spatial location, d
strong interparticle connections.

Obviously, mean cluster size in a finite particulate system i
ways bounded; mean cluster size in an infinite system is al
unbounded. In finite systems, for volume fractions of an interm
ate value relative to percolation onset~e.g., 7% or so for spheres an
30% or so for ellipsoids, per Fig. 7!, the boundary imposes a s
nificant constraint on cluster formation. The mean cluster siz
creases exponentially at the midplane as the system’s volume
tion approaches its percolation point. Thus, we find that the var
in mean cluster sizes, through thez direction, is maximum at th
percolation point.

This trend can be even more clearly seen in Fig. 8, in w
normalized mean cluster sizes at the boundary are reported
function of volume fractions for spheres~Fig. 8, top! and ellipsoids
~Fig. 8, bottom!. For example, normalized cluster size is a minim
at the percolation point off 5 0.07 in Fig. 8~bottom!. Interestingly
the normalized minimum cluster size is around 0.4 for system
both spheres and ellipsoids. Similar values were also observe
other aspect ratios, and we state that normalized minimum clus
apparently invariant with respect to particle aspect ratio, for l
thicknesses relative to particle size.

The findings reported here have some significance in the i
analysis of porous and infused materials. For example, a com
question for infused materials is whether particles are spatiall
correlated,i.e., whether particle locations are truly random. Agglo
eration can be desirable or undesirable for a given application;

Table IV. Experimental determined conductivity and percolation th
thresholds were determined via linear extrapolation of conductivity

Graphite
type

Applied
pressure
~kg/cm2!

Matl.
thickness

~mm!

Volume
fraction

~%!
Particle

length ~mm

SL-20 0 0.154 40.64 23.2
100 0.104 67.35 24.2
200 0.090 82.69 22.6
300 0.084 90.07 22.4

GDR-6 0 0.125 44.81 31.4
100 0.10 57.65 30.8
200 0.078 67.73 31.3
300 0.08 80.73 31.2

GDR-14 0 0.116 40.46 29.4
100 0.096 59.80 28.4
200 0.092 66.44 27.0
300 0.087 68.75 25.0
r
f

n

-

a

r

,

observations of clusters of particles lead immediately to the co
sion that there is a particular physics involved.58-62 However, ou
results indicate that even at volume fractions, nonnegligible n
bers of large clusters arise for random systems of particles.
Tables II and III could be used to compare cluster statistics
random and real materials, to determine whether or not obs
clustering is consistent with random arrangement.

This is perhaps even more significant for what we have te
‘‘finite layers,’’ i.e., domains having thicknesses of approxima
five times the particle thickness 2b. Our results show that for vo
ume fractions below the percolation threshold, significant varia
arise for mean cluster sizes, and boundary effects produce d
arrangements of particles near the midplane. In materials wh
compression is used to densify thin layers,63,64differentiation of the
possibly inhomogeneous deformation of these materials from s
tical effects in finite layers is important in understanding the pe
lative consequences of postprocessing.

Experimental Verification

For verification of our simulations and approximate analytic
lutions, we compared measured conductivities64,65 of three differen
natural graphite Li-ion anode materials comprised of purified na
graphite from Superior Graphite~SL-20, as shown in Fig. 9!, and

Figure 10. Experimental determination of percolation point via linear
trapolation of conductivity against volume fraction. The mean values of
ductivity were used in extrapolation, although the standard deviations
experimental results are also shown in the plot.

ld for SL-20, GDR-6, and GDR-14 graphite. Estimated percolation
ured at pressure 0 and 100 kgÕcm2.

Particle
diam
~mm!

Aspect
ratio e t/b

Conductivity
~V21 cm21!

Estimated
critical
volume

fraction ~%!

16.64 1.41 9.25 0.66 31.6
16.96 1.44 6.13 2.62
16.70 1.38 5.39 5.32
16.07 1.40 5.23 5.24
21.83 1.46 5.73 3.79 24.4
22.20 1.40 4.50 6.17
23.26 1.36 3.35 15.6
22.84 1.38 3.50 14.9
20.82 1.43 5.57 25.3 25.7
20.72 1.38 4.63 58.5
19.69 1.39 4.67 28.6
17.46 1.46 4.98 35.6
resho
meas

!

3
5
3
3
7
2
5
2
6
6
4
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natural graphite from Mitsui Mining, with 6~GDR-6! and 14~GDR-
14! weight percentage coatings of amorphous carbons, respec
Three different anode densities~volume fractions! of each materia
were thus obtained for each of the three materials. Imaging o
materials was performed as described previously.64 In previous
work, we had compared our conductivity results to only 2D mo
of conduction, from direct simulations of particle systems, u
image analysis data as input.64

Our experimental results, along with estimated critical volu
fractions, are tabulated in Table IV. The effective conductivity
determined from recorded current and voltage, and the perco
threshold was estimated via linear extrapolation of conduct
against volume fraction. Specifically, we evaluated the mean v
of conductivity at different volume fractions and connected the
data points at the smallest volume fractions. We then extende
line to cross the horizontal axis. The volume fraction at which
conductivity is extrapolated to be zero was identified as percol
onset, as shown in Fig. 10. The measured ratio of particle diam
to layer thickness is used as an input parameter in the later si
tion. Because thicknesses were altered by application of pre
the diameter-to-thickness ratios were averaged as needed.

Conclusions

We studied transitions in cluster properties and percolation p
in finite and infinite networks, comprised of equisized, fully p
etrable ellipses and ellipsoids. In doing so, we developed num
results for specific properties and also approximate relations
wide range of both finite and infinite systems which may pr
useful in the design of materials or sensor systems. For the s
case wherein the major axes of particles are parallel to thex-y
plane, we showed that percolation thresholds were signific
higher; this may prove important in systems containing prefere
orientation of particles. Additionally, boundary conditions affec
clustering formation and the cluster properties were investigat
terms of their effect on nonuniformity in particle clustering in thz
direction.

Excellent agreement between measured percolation thres
~Table IV! and interpolated simulation results~Table V! were found
using the approximate formulas; errors less than 5% were foun
terms of volume fraction. To accurately locate the critical volu
fraction, data are needed at smaller volume fraction intervals
higher order curve fitting techniques may be merited. A signifi
drawback of our approach was the extrapolation of the percol
point at volume fractions significantly away from the percola
points~see Fig. 10!. Improved accuracy of any extrapolation wo
be expected with additional measurements.

Percolation thresholds in the systems studied are much clo
those of 3D, rather than 2D systems. The average diamet
thickness ratio is 6.5 for SL-20 graphite, 4.27 for GDR-6, and
for GDR-14, all of which are close to 5.0, the apparently unive
transition point of percolation from two to three dimensions, len
further support to our approach. A somewhat surprisingly
threshold was found for thicknesses of systems wherein a fi
thickness model, or even a 3D model must be usedvs.a 2D model
of aroundt/b 5 5. This threshold is important for both estimat
of percolation point, and cluster properties.

The effect of boundaries on particle clustering was also im
tant. We observed that mean cluster size is minimized at bound
in thez direction, reaching a maximum at the midplane. The bo

Table V. Estimated percolation threshold for the same materials in
The required parameters were obtained from Table IV.

Graphite
type

Average
e

Average
t/b C1 C2

SL-20 1.408 6.50 0.2762 1.00
GDR-6 1.400 4.27 0.2765 1.00
GDR-14 1.415 4.96 0.2759 0.9
.

r
-
,

l

l

s

o
-

s

ary effect disappears for both low- and high-volume fractions
tive to the percolation volume fraction. We also pointed out
cluster statistics should properly be used for interpretation of im
of real materials, specifically in drawing conclusions about rand
ness in packing, and determination of the effects of processin
cluster distribution for low volume fractions relative to the perc
tion fraction.

In future work, we aim to apply these statistical models to
designs of materials, and of sensor systems, in finite domains
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