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Maximum depth-to-particle-dimension ratios in which systems can be treated as two-dimeri&@Dpahther than three-
dimensional(3D) systems in determining percolative properties have not been reported. This problem is of great technological
significance. 3D solutions for percolation in even low-density systems pose much more intensive computational problems than
their 2D analogs and also result in significantly different predictions for percolation onset. Moreover, many materials and sensing
applications require analysis of domains of finite thickness. Adequate loading of particles is requireth electrodes in
advanced batteries and fuel cells to ensure good conductivity. Adequate deployment of sensors into fields of finite thickness such
as oblate, neuronal cells is requiredg, to detect specific ions. A systematic determination of the effect of these arrangements on
percolation properties is needed for both applications. Here, we provide comparisons of cluster sizes, densities, and percolation
points among monodisperse, 2D and 3D systems of overlapping ellipsoids by systematically increasing the depth of the 3D system
relative to particle dimensions. We investigate the effect of several boundary condition assumptions on the resulting particle
orientations, emphasizing the probability of formation of large clusters. A method of experimental determination of percolation
onset is also suggested, using the maximum change in cluster size.
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Producing conductive, thinly layered structures for use as batterysize, defined as the average number of particles in clusters in a fixed
electrodes requires some estimation of the amount, shape, and didomain, was used in this work. Specifically, the mean cluster size
tribution of conductive additivee.g, conductive carbons in Li-ion  was expressed in the form of a power series, allowing the develop-
batteries:? Determining the dimensionality of these systems for ment of a convergence criterion for percolation based upon particle
purposes of modeling percolative properties is critical, because twodensity, following Coniglio’s formulatiof>34Though the analytical
dimensional2D) and three-dimension#&BD) percolation points de-  methods developed were accurate, they were also computationally
pend upon both particle shape and system thickness. Howeveintensive due to the required evaluation of integrals, especially when
maximum depth-to-particle-dimension ratios in which systems canhigh-order connecting graphs were introduced.
be treated as 2D rather than 3D systems for purposes of modeling A second approach is to conduct large-scale Monte Carlo simu-
percolation have not yet been reported quantitatively. lations (being careful to select domains large enough to avoid scale

Accurate and efficient simulation of percolation in overlapping dependencies in solutionfor particular geometries of particles and
fields is also important in the design of sensor systémmsjaterial  domains?*3° this approach is also commonly used to validate ana-
properties in materials containing interpenetrating partitfeand  Iytical approximations®3*A third approach is to use either approxi-
even epidemiology” '3 Some of these problems are inherently 2D, mations or direct simulations to develop semiempirical guidelines
as in epidemiology, wherein the overlapping “particles” represent for percolative propertiegbased, for example, on geometry, cluster
scalar fields of magnitudes of disease transmissibility around anystatistics, or domain size
single source. In almost all materials applications, and in sensor However, most percolation and aggregate models have been de-
design for detection of species or phenomena, domains are oftemeloped for infinite systems, either in unbounded systems, or in
fully 3D and represent physical space. For example, in nanostrucpseudoinfinite systems with periodic boundaries, though the impor-
tured gas sensors, the presence of a gas increases the conductivitytahce of boundary effects has been noted by a number of gfbdps.
the sensing material at the grain boundaries in*38.Importantly, ~ For example, Gabriellet al*° studied the effect of boundaries on
percolation points in 20¥s. 3D model domains have been shown to geometrical properties and found that the fractal dimension of the
be different, analytically®*° numerically?>?*and experimentall§? percolating cluster near the boundary was remarkably different from
and thus determination of the appropriate dimensionality of a modekhe bulk one. Thomséhinvestigated the critical correlation length
system is critical. Many materials applications of percolation mod- exponents and percolation thresholds in quasi-2D site percolation
eling require analysis of “thin” sections.g, layered electrodes in  systems, with finite interplane coupling. He found the percolation
advanced batteries or fuel cef®?’ Sensing applications for finite, threshold to vary continuously from 2D to 3D values with a power-
oblate domains are also abundaetg, intracellular sensin@®3®  law exponential relationship. Examples of work in specialized do-
Thus, we hereafter use the terms “field” and “particle” interchange- mains include that of Lorenz and Zftf,who studied percolation and
ably, and note that our interests center on percolation in fields ofclustering on spherical surfaces; Tsubakif&raho examined site
fully permeable particles, an unrealistic condition for high-density percolation in a rectangular system of aspect ratio greater than one;
material additives, but quite satisfactory for low-density arrange-and Provatast al,** who investigated 2D fiber networks generated
ments of additives and for all sensing applications. via a simulated flocculation process, resulting in localized particle

Three general approaches have been historically used to deteagglomeration. Several studies have also been published on specific
mine percolation onset in particle systems. One approach is to anéinite size effects and scaling approaches for 2D syst@mgs Ref.
lytically approximate percolation onset, via a power series expan-45-47), but the dimensional crossover in cluster properties and per-
sion of mean cluster density. In a series of the authors’ recent papersolation thresholds has not been determined for continuum systems,
on percolation phenomena.g, Ref. 31, approximate analytical to the authors’ knowledge.
methods were developed to determine the percolation threshold for With the improved computational capabilities attained over the
systems of ellipses and ellipsoids, building on classic work in thepast few years, it is now possible to simulate a domain nearly the
percolation of systems of spheres and cir¢fe$3?Mean cluster  size of the physical domain of interest in many applications, espe-

cially in sensing nanotechnologies for biological materielg, in-
tracellular sensing®?°Models of permeable fields of geometrically
* Electrochemical Society Active Member. complex shapes are critically important in such applications, be-
2 E-mail: amsastry@umich.edu cause many targeted nanoproliggluding molecule uses in free
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Tc

dyes have an inherent directionalify,i.e., they contain specific

endgroups which comprise the detector, which renders the shape of “h
the detection field nonspheroidal, but perhaps ellipsoidal. Thus, in  z

the present work, we compare our prior analytic approximations to |
percolation onset in 2D and 3D continua with Monte Carlo simula- X !
tions, designed to provide comparisons of 2a

1. cluster properties and percolation behavior between 2D andrigure 1. Schematic of the finite thickness model with extreme positions/
3D continuum systems containing equisized, overlapping ellipsoids2"entations of ellipsoidal particles shown.
by systematically increasing the depth of a 3D system of particles

and determining percolation points and cluster sizes and densities; . . . . o .
and gp P éffects of dimension, rather than particle size distribution, we imple-

2. the effects of varying boundary conditions in particle orienta- ment the condition stated by Viellard-Baron, for equisized particles.

; i o124 , :
tion within the systems, accounting for constraints imposed byV_Ve point out that Garboczat_ al: al_sq l“.'sed Baron’s overlap crite-
boundaries on the formation of large clusters. rion. However, they dealt with the infinite 3D problem, whereas we

We also suggest some important considerations in image analysig"’“’e worked in f_inite systems. The technique can easily be exte_nded
of porous materials using these results, including interpretation of{? the problem involving ellipsoids of variable sizes by replacing
cluster formation as either random or physically based and determi iellard-Baron’s overlap criteria with Perram’s contact function.
nation of the effect of processes such as pressing on cluster densities Monte Carlo Simulations
by comparison with random cluster formations expected in finite

systems. We simulated domains comprised of spatially uncorrelated, eq-

uisized ellipsoids in a 3DL{ X L X D) continuum. For simplicity,
Detection of Particle Overlap the centers of the ellipsoids were distributed by a Poisson process. In
The detection of particle overlap comprises a very computation- €@l material, particle density near a surface may be somewhat
ally intensive step in both analytical approximations and Monte Nigher than in the centee,g, for packing or stamping postprocesses
Carlo simulations of percolation onset in systems of permeable, el{0r Shaping of porous materials, though this was neglected here for
lipsoidal particles. In principle, one can solve the governing equa-SiMPlicity. And, although particle geometry and size frequently vary
tions of ellipsoidal surfaces and determine whether real solutiond” €&l materials, prior studies have shown that a mild variation in
exist. But the computational effort in doing so is high; therefore, Particle size does not change the clustering properties
some workers have developed indirect, but computationally efficiensubstantially”” In all simulations, periodic boundary conditions

criteria. were applied to the edges of they plane, to minimize boundary
To describe these criteria, the concept of a “contact function” €ffects. No periodicity was imposed in tiedirection. )
must be introduced. Suppose the contact funcfofor a single Particle orientation angles were randomly distributed, with ex-

ellipsoid A, specified by the location, of its center, and the angle treme inclinations determined for a particular, semi-infinite domain

Q4 , which expresses its orientation in space, can be written ads follows. By |nt_roc_:iqct|or_1 ofa_frame of reference whene_lan_ndy_
FA(F — ra,Q,). We then havé < 1, forr insideA; F = 1 forr represented the infinite dimensions, ancepresented the finite di-
A AREA) ’ y -

located on the surface @ andF > 1 for r outsideA. A nonunique mension, partl_cles were _assumed to be oriented with a uniform dis-
but obvious choice foF is tribution functlon.[O,Zw] in the x-y plane (and we note that the
distribution function may also be written fdiO,m] if symmetry

Fa(r —Ta, Q) = (r — r)TAYr —1p) [1] about either thex or y axis is considergd The difference of the two
extreme locations on the ellipsoidal surface in #rdirectionAz, is
where T indicates the transpose, and the maximum possible difference of the extreme locations on the

ellipsoidal surface at the given locatiarof the particle centerpoint;
as shown in Fig. 1. It can be expressed as

3

A(Qn) = 2 R(QWRT(Q0) [2]
i=1 Az = 2\b%sirP 0 + a’co 6 [6]
whereR are the vectors comprising the semiaxes. The distribution function of the elevation angle of the major axis of

For two ellipsoids of arbitrary shape and size, Perram andparticle over thez direction can be derived from this expression, as
Wertheint® proved rigorously that the functio&(r, 1), defined as

2 _ K2
G(r, \) = AFA() + (1= MFg(D) [3] o- cosl( \/%)u ~200) (7]
o

has a minimum
where®* is a random number distributed [0,1]. Thus, we have,

Gmin = M1 = N)rag[AB + (1 — N)A] Mg [4] for the half-height
They further showed that Az/l2 = min{a, z, ¢ — z} (8]
H = max Gyn) (5] We note that one limiting case of elevation orientation angle distri-
_ _ o bution is simply uniform particle alignment with respect to the
is the contact function for two ellipsoids; namely, féf < 1, plane. We denote this case the “parallel model” and analyze it spe-

the two ellipsoids overlap, foH = 1 they are tangent, and for cifically because it has some importance in the manufacture of cer-
H > 1 they are separate. We note that this contact function is im-tain materials,e.g, laminated materials, wherein alignment is in-
plicit, and thus its evaluation requires numerical iteration. For ellip- duced. This constraint on particle orientation results in an overall
soids of uniform size, Viellard-BarGh derived a more efficient, reduction of interparticle connections and therefore a higher perco-
explicit expression for overlap detection. A necessary and sufficientation threshold relative to the random case.

condition was stated for two ellipsoids to have no real point in
common, or to be exteriorly tangential, using a contact function
involving several variables for the geometry and relative spatial lo-  Percolation onset for 2D and 3D continua was studied by sys-
cations of the ellipsoids. Because we are presently interested in theematically increasing thedimension(thicknes$ of model domains

Percolation Threshold Detection
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Figure 2. Comparison of percolation thresholds in 2D, 3D, and single-layer Figure 3. Critical volume fractionf for the finite thickness model as a
model simulations. function of the normalized layer thickned$b. Approximately 10,000
particles were generated in each case for determination of percolation
thresholds.

and recording the percolation threshold at which a cluster connect-

ing the twox-z boundary faces is detected, wherie the dimension

having finite thickness. Percolation volume fractiorss aspect ra- ) ] )

tios are shown for four types of domains in Fig.(B:a 2D arrange-  based on the corresponding 2D model and obtained via Eq. 9. Values
ment, wherein ellipses were generated in a 2D dorffaam results fOI'_ other geometries can be readily interpolated from these compu-
reported in Ref. 18 (ii) a “single-layer” arrangement of ellipses, tational results. _ _

wherein a normalized thickness tb = 1 was usedt is the half- ~__ These results and approximate relations clearly demonstrate the
layer thickness;i{i) a “finite thickness” model, wherein the di- Importance of dlmen5|_0nallty In re_al domains in the pre_dlctlon of
mension was specified relative to the particle size; and @ 3D percolation onset, particularly for higher aspect ratio particles. And,

S : the intrinsic variability of percolation onset in finite-thickness sys-
(|_nf|n|te) model(fro_m results_reported n Ref. 5i3We note that the_ tems is high: even for the sphere problem, the percolation threshold
single-layer domain, comprised of a single layer of particles with

- liel 1o the-v pl . v ad i ¢ rises from 29 to 52.3%, with a ratio of domain edge lengths of
major axes paraflel to y plang, IS merely a degenerate case ol 4.9 gg For higher aspect ratios, the relative variability can be even
th_e finite-layer d_orr_laln. Interparticle overl_ap in this case is deter‘higher. For example, for particles ef= 10, the percolation thresh-
mined by the elliptical geometry of the midplane-f) CroSS SEC- o1d is between~6.8 and~21.2%, with an edge ratio of 1:3.11.
tion. Comparison of the volume of the ellipsoid (3#9b" and the 71,5 clearly, the 2D or 3D models are only applicable when the
areamab of the ellipse allows derivation of a relationship for the thjckness is either very small or extremely large, respectively, rela-
critical volume fractionf . of the single-layer model in terms of the tive to particle dimension.

critical area fractiorf, in the 2D problem, as In Fig. 3, critical volume fractionsf. are reported for the
3 finite-thickness domains, as a function of layer thickngs®sults
fe=1-(1-1d (9] for 1 < e < 100 are shown. For convenient reference, we have

included our own compilation of critical volume fractions using an
using the following relation for particle densify and area or vol-  approximate formula which shows excellent agreement with our nu-
ume of a single particle merical result® > in Table I; each fitted curve gave a correlation

factor with numerical results=0.99. In Fig. 3, cell thicknesses are

f=1-¢e" [10] normalized by the half-length of particle minor a‘is so that the

points on the left of each curve represent single-layer configurations,
The results in Fig. 2 for the 2D and 3D infinite models were ob- and solutions asymptotically approach those for the infinite 3D
tained by averaging the results of 1000 simulations, each consistingnodel ast — . As with the infinite domains, the percolation
of at least 5000 particles. Results for the single-layer model werethreshold drops rapidly with an increase in the particle aspecteatio

Table I. Critical volume fraction f_as function of normalized layer thicknessz = t/b (t is half-layer thickness;b is half-length of particle minor
axis), based on approximate formulaf, = C; + (C, + C3z + C,z9)e ™2

€ Cy C, Cs C,4 R fo(z=1)° fo(z= )"
1 0.2908 1.0899 —0.5941 0.1458 0.9997 0.531 0.290
2 0.2550 0.8727 —0.3767 0.1290 0.9999 0.488 0.252
3 0.2047 0.8958 —0.4726 0.1715 0.9999 0.418 0.203
5 0.1397 0.8139 —0.4623 0.1776 0.9992 0.333 0.137
10 0.0779 0.6299 —0.4062 0.1493 0.9997 0.212 0.0724
100 0.0076 0.1195 —0.0935 0.0326 0.9905 0.028 0.0052

2R is the correlation factor for each curve.
® values off for the limiting configurations 2DZ = 1) and 3D ¢ = »).
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Figure 4. Comparison of the critical volume fractions for the parallel 0.14
and random modelsys. normalized layer thickness/b. Approximately
10,000 particles were generated in each case for determination of percolation 0.12}
thresholds. )
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e
For example, the critical volume fraction ef= 1 is more than 50 = 008t
times that ofe = 100 at large thickness. g
Further, the percolation threshold dropped quickly, initially, %2 0.06k
with increasing thickness, but reached a plateau for all aspect £ ™
ratios studied, whehexceeds 10. Roughly speaking, in the range of 2 0.0al
e = 1-100, our results show that the infinite model can be used to )
accurately approximate the percolation threshold for domain thick- 0.02
nesses~5 times greater than particle thicknesb. 20therwise, a :
finite-thickness model must be used to incorporate the effects of the

boundary, for accurate prediction of percolation onset. This result 0
has important implications for modeling of many engineered “thin

films” or other layered materialge.g., Ref. 54 and 55in which the

layer thickness is frequently more than an order of magnitude larger (b)

than the particle thickness: an infinite 3D model is more suitable for
these materials than a 2D model.

volume fraction

Figure 6. Cluster densitiesr( = 2,3,5,8) from simulationgsolid lineg vs.

Figure 4 shows a comparison of critical volume fraction for the Roach's approximationsEq. 11, dashed lings for (top) spheres {;

parallel and random models as a function of layer thickness. The;oglezlg()uﬁirt]%?r?é?v? d?ﬂgﬁg;gﬁsojv;‘;f’fgtorggo ;géle:s ?hogjgh E;ISIK;;E
percolation threshold for the parallel model is significantly higher .1 the simulations 0P

10
than for the random model, once the thickness exceeds a few times
107k the particle thickness. This is undoubtedly due to the reduction in
overall likelihood of interparticle connections in tlzedirection for
. the parallel model. Any constraint applied to the orientations or
S 07 7 locations of particles generally reduces interparticle connectivity
%‘ and increases the percolation threshold. This effect is more pro-
R nounced for thin layers, though in the limiting case of thickness
bt 1078 ] reduction to a single layer, the solutions coincide, as seen by the
% rapid convergence of the two solutions aroufd = 2 in Fig. 4.
3 1w -
o
Cluster Property Determination
107} 7 The generation of statistical distributions of large clusters has
proven computationally and analytically daunting: for example,
10 there are 528 possible ways to form a cluster of only five

0 DOz 004 D08 008 01 042 Diz ois particlest®>3 making it practically impossible to assemble statistics

for the systems of 10,000-100,000 particles, using older computer
processors. More effort has been spent in generating data on small-
Figure 5. Cluster densityvs. volume fraction for ellipsoids of aspect Cluster statistics, wherein isolated clusters containing a fixed, small

ratio 10,t/b = 5. Approximately 10,000 particles were involved in each number of particles were sought using connecting graphs, namely,
realization. schematics reflecting the pairwise connectivity between particles in-

volume fraction
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Table 1. Percentage of ellipsoidal particles belonging to clusters of sizk under different volume fraction f for 2D configurations.

e=1 e =10
f 0.5% 1.0% 2.0% 5.0% 10% 20% 30% 0.5% 1.0% 2.0% 5.0% 10% 20% 30%
k=1 0.973 0.945 0.893 0.741 0.529 0.259 0.119 0.928 0.853 0.739 0.442 0.199 0.035 0.006
k=2 0.027 0.051 0.092 0.195 0.262 0.203 0.109 0.069 0.124 0.186 0.240 0.136 0.017 0.002
k=3 * 0.004 0.012 0.046 0.119 0.152 0.096 0.003 0.017 0.060 0.129 0.108 0.013 0.001
k=4 * * 0.002 0.014 0.052 0.117 0.085 * 0.006 0.012 0.079 0.091 0.011 0.001
k=5 * * 0.001 0.003 0.022 0.079 0.071 * * 0.003 0.041 0.072 0.013 *
k=6 * * * * 0.010 0.063 0.059 * * * 0.033 0.061 0.009 *
k=7 * * * * 0.003 0.035 0.061 * * * 0.010 0.046 0.009 *
k=18 * * * * 0.001 0.037 0.041 * * * 0.011 0.037 0.009 *
k=29 * * * * * 0.017 0.048 * * * 0.007 0.029 0.008 *
k = 10 * * * * * 0.016 0.036 * * * 0.003 0.032 0.008 *
k =20 * * * * * * 0.016 * * * * 0.006 0.012 *

Asterisks(*) are used for percentages less than 0(L&6 fractions smaller than 0.001The 2D volume fraction is related to area fraction via Eq. 9.
Results are averaged from 10 realizations, each involving approximately 10,000 particles.

side each clustér '8 This method does not require full knowledge

To analyze large clusters, we developed an alternative simulation

of the connectivity of the structure and is thus extremely efficient for approach. Briefly, we first assumed that each particle formed a dis-

examination of clusters of four or fewer particles.
As a useful approximation, Roathsuggested that at

low vol-

ume fraction for particles of any shape, the cluster demsitgould

be estimated from
ny(1 — npk?

ny K

[11]

tinct cluster. Clusters with at least one pair-connection were identi-
fied by checking interparticle connectivity, and subsequently
merged. This process was repeated- 1)(n — 2)/2 times, forn
particles. Using this approach, the interconnectivity of each and ev-
ery pair of particles was examined and catalogued, and thus the
complete network structure was obtained. By tallying the number of
clusters withk particles, and averaging the results over a number of

Ogston and Winzd¥ provided an analytical expression for the ex- realizations, we obtained mean densities of clusters, for higher
cluded volume of an ellipsoid, which can be used to derive the exact/ajues ofk (k > 4) than reported previously.

solution ofn; for ellipsoids, as follows

B 4 b2l o 3(262—1)I 0e? _ 1
ny = exp §1Ta [ + E-I-Zﬂn(e )
e — 1)
e3sint
2¢2 — 1 ( €2 17
- a [12]
For spheresi.e,, e = 1, n; becomes
32 .

Ny = exp —3mrp [13]

We thus numerically determined, for lower volume fractions of
ellipsoids, both cluster densiti€Eig. 5, and mean cluster sizes in
the z direction (Fig. 7). As shown in Fig. for ellipsoids of aspect
ratio 10,t/b = 5), for low volume fractions, clusters comprised of
isolated particles dominate, and mean cluster sizes are therefore
close to unity. At higher volume fractions, isolated particles become
rarer, consistent with our previous computational results for both 2D
and 3D networks$®®® Roach’s approximations are plotted along
with numerical results for several values on Fig. 6, showing gener-
ally good agreement for volume fractions less than half of the per-
colation threshold, but significant divergence from actual values be-
yond the critical volume fraction. Table Il reports the fractions of
cluster sizes present, for 2D systems, and Table Il reports them for
3D systems. Interestingly, even at volume fractions as low as 2%, a

Table Ill. Percentage of ellipsoidal particles belonging to clusters of siz& under different volume fraction f for 3D configurations.

e=1 e =10

f 0.5% 1.0% 2.0% 5.0% 10% 20% 30% 0.5% 1.0% 2.0% 5.0% 10% 20% 30%
k=1 0.959 0.922 0.851 0.665 0.431 0.180 0.061 0.871 0.800 0.615 0.279 0.074 0.007 0.001
k=2 0.038 0.070 0.122 0.218 0.232 0.125 0.042 0.113 0.147 0.208 0.135 0.025 0.00%

k=3 0.003 0.008 0.023 0.074 0.132 0.083 0.031 0.016 0.038 0.079 0.090 0.014 *

k=4 * * 0.003 0.028 0.077 0.075 0.025 * 0.006 0.041 0.069 0.009 * *

k=5 * * * 0.009 0.047 0.064 0.016 * 0.003 0.023 0.049 0.008 * *

k=6 * * * 0.003 0.030 0.047 0.013 * 0.003 0.011 0.036 0.003 * *

k=7 * * * 0.001 0.018 0.045 0.016 * * 0.005 0.029 0.003 * *

k=18 * * * 0.001 0.012 0.032 0.015 * * 0.002 0.027 0.001 * *

k=29 * * * * 0.006 0.033 0.009 * * 0.005 0.020 0.001 * *

k = 10 * * * * 0.004 0.025 0.010 * * 0.003 0.027 * * *

k = 20 * * * * * 0.011 0.008 * * 0.010 0.001 * *

Asterisks(*) are used for percentages less than 0(1#, fractions smaller than 0.001Results are averaged from 10 realizations, each involving
approximately 10,000 particles.
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Figure 8. Normalized mean cluster sizes. volume fraction in systems of
(top) spheres andbottom) ellipsoids € = 10), at the boundary. Ten thou-
sand particles were used in each simulatigh; = 5.

(b)

Figure 7. Mean cluster sizess. zlocation (i.e., normalized position in the
thickness, where 0 and 1 are the lower and middle surfaces, respectively
systems of(top) spheres andbotton) ellipsoids € = 10) for various vol-
ume fractions at/b = 5. 10,000 particles were used in each simulation.

Figure 9. Images showing the Li-ion anode particles of SL-20 natural graphite under pressure 308. Rgienmage on the left shows the cross-sectional
plane; the one on the right shows the horizontal plane.
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Table IV. Experimental determined conductivity and percolation threshold for SL-20, GDR-6, and GDR-14 graphite. Estimated percolation
thresholds were determined via linear extrapolation of conductivity measured at pressure 0 and 100 kagm?.

Estimated
Applied Matl. Volume Particle critical
Graphite pressure thickness fraction Particle diam Aspect Conductivity volume
type (kg/en?) (mm) (%) length (um) (wm) ratio e t/b Q@ tem™ fraction (%)
SL-20 0 0.154 40.64 23.23 16.64 141 9.25 0.66 31.6
100 0.104 67.35 24.25 16.96 1.44 6.13 2.62
200 0.090 82.69 22.63 16.70 1.38 5.39 5.32
300 0.084 90.07 22.43 16.07 1.40 5.23 5.24
GDR-6 0 0.125 44.81 31.47 21.83 1.46 5.73 3.79 24.4
100 0.10 57.65 30.82 22.20 1.40 4.50 6.17
200 0.078 67.73 31.35 23.26 1.36 3.35 15.6
300 0.08 80.73 31.22 22.84 1.38 3.50 14.9
GDR-14 0 0.116 40.46 29.46 20.82 1.43 5.57 25.3 25.7
100 0.096 59.80 28.46 20.72 1.38 4.63 58.5
200 0.092 66.44 27.04 19.69 1.39 4.67 28.6
300 0.087 68.75 25.00 17.46 1.46 4.98 35.6

nonnegligible proportion of large clusterk & 10) arises for sys-  observations of clusters of particles lead immedizately to the conclu-
tems of ellipsoids ¢ = 10); this has important implications for im-  sion that there is a particular physics invol&$? However, our

age analysis, discussed later. results indicate that even at volume fractions, nonnegligible num-
Distributions of mean cluster siaes.locations along the direc- bers of large clusters arise for random systems of particles. Thus,
tion are shown in Fig. 7, for spheré¢®p) and ellipsoids ¢ = 10, Tables Il and Il could be used to compare cluster statistics for

bottom). One thousand realizations were generated and analyzed fdidhdom and real materials, to determine whether or not observed
each volume fraction; averaged results are reported. The number @ustering is consistent with random arrangement.
particles in each realization varied from 5000 to 10,000, depending  This is perhaps even more significant for what we have termed
on the volume fraction used. Also, because of the half-plane sym-finite layers,” i.e, domains having thicknesses of approximately
metry, position is normalized by the half-thickness of the layer five times the particle thicknessb2 Our results show that for vol-
model, such that “0” represents the lower surface of the domain,ume fractions below the percolation threshold, significant variances
and “1” represents the midplane. The mean cluster size is normal-arise for mean cluster sizes, and boundary effects produce denser
ized by the value at the midplane. arrangements of particles near the midplane. In materials wherein
Figure 7 clearly shows thedirection bias in cluster distributions compression is used to densify thin lay&tS differentiation of the
for finite, 3D domains. Clusters are smallest near boundaries angossibly inhomogeneous deformation of these materials from statis-
increase monotonically to reach a maximum at the midplane. How-tical effects in finite layers is important in understanding the perco-
ever, this bias is pronounced at “intermediai@i terms of perco-  lative consequences of postprocessing.
lation) volume fractions only. At low volume fractions relative to
percolation onset, the lack of particle interaction results in distinct,
uncorrelated particles, and few clusters overall. At the other ex- For verification of our simulations and approximate analytic so-
treme, for volume fractions well above the percolation threshold,lutions, we compared measured conductiviltés of three different
particles are highly correlated, and large clusters arise. Thus, meanatural graphite Li-ion anode materials comprised of purified natural
cluster size becomes invariant with respect to spatial location, due tgraphite from Superior GraphitSL-20, as shown in Fig.)9 and
strong interparticle connections.
Obviously, mean cluster size in a finite particulate system is al-

Experimental Verification

ways bounded; mean cluster size in an infinite system is always  1gq x v v .

unbounded. In finite systems, for volume fractions of an intermedi-

ate value relative to percolation ongetg, 7% or so for spheres and 80 ]

30% or so for ellipsoids, per Fig.),7the boundary imposes a sig- ol 1

nificant constraint on cluster formation. The mean cluster size in- __

creases exponentially at the midplane as the system’s volume frac-"‘E 70} .

tion approaches its percolation point. Thus, we find that the variance @ GDR-14

in mean cluster sizes, through tkzedirection, is maximum at the & 80f T

percolation point. Z 5ol |
This trend can be even more clearly seen in Fig. 8, in which 2

normalized mean cluster sizes at the boundary are reported as zg 4ot ]

function of volume fractions for spheréBig. 8, top and ellipsoids B

(Fig. 8, bottom. For example, normalized cluster size is a minimum 8 3ot 1

at the percolation point df = 0.07 in Fig. 8(bottom. Interestingly, 20l exvapolaied , GDR-6 |

the normalized minimum cluster size is around 0.4 for systems of parcolation points ¢

both spheres and ellipsoids. Similar values were also observed for 10} \ P SL-20

other aspect ratios, and we state that normalized minimum cluster is W, o

apparently invariant with respect to particle aspect ratio, for large 00 02 == 0.4 06 08 y

thicknesses relative to particle size.

The findings reported here have some significance in the image
analysis of porous and infused materials. For example, a COMMORig e 10. Experimental determination of percolation point via linear ex-
question for infused materials is whether particles are spatially Un+rapolation of conductivity against volume fraction. The mean values of con-
correlatedj.e., whether particle locations are truly random. Agglom- ductivity were used in extrapolation, although the standard deviations of the
eration can be desirable or undesirable for a given application; oftenexperimental results are also shown in the plot.

volume fraction
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Table V. Estimated percolation threshold for the same materials in Table 1V, using linear interpolation of the simulation data listed in Table I.
The required parameters were obtained from Table IV.

Graphite Average Average

type € t/b C; C, Cs C, fe (%) fop (%) fap (%)
SL-20 1.408 6.50 0.2762 1.0013 —0.5054 0.1389 28.2 51.4 27.5
GDR-6 1.400 4.27 0.2765 1.0030 —0.5071 0.1391 29.6 51.4 27.5
GDR-14 1.415 4.96 0.2759 0.9998 —0.5039 0.1388 28.9 51.3 27.4

natural graphite from Mitsui Mining, with 6GDR-6) and 14(GDR- ary effect disappears for both low- and high-volume fractions rela-
14) weight percentage coatings of amorphous carbons, respectivelyive to the percolation volume fraction. We also pointed out that
Three different anode densitiégolume fractiony of each material  cluster statistics should properly be used for interpretation of images
were thus obtained for each of the three materials. Imaging of allof real materials, specifically in drawing conclusions about random-
materials was performed as described previoffslin previous ness in packing, and determination of the effects of processing on
work, we had compared our conductivity results to only 2D models cluster distribution for low volume fractions relative to the percola-

of conduction, from direct simulations of particle systems, using tion fraction.

image analysis data as ingiit.

In future work, we aim to apply these statistical models to both

Our experimental results, along with estimated critical volume designs of materials, and of sensor systems, in finite domains.

fractions, are tabulated in Table IV. The effective conductivity was
determined from recorded current and voltage, and the percolation
threshold was estimated via linear extrapolation of conductivity

against volume fraction. Specifically, we evaluated the mean values
of conductivity at different volume fractions and connected the two
data points at the smallest volume fractions. We then extended th
line to cross the horizontal axis. The volume fraction at which the
conductivity is extrapolated to be zero was identified as percolationt
onset, as shown in Fig. 10. The measured ratio of particle diametef
to layer thickness is used as an input parameter in the later simulad
tion. Because thicknesses were altered by application of pressure,
the diameter-to-thickness ratios were averaged as needed.

Conclusions

We studied transitions in cluster properties and percolation points 1.
in finite and infinite networks, comprised of equisized, fully pen- 2
etrable ellipses and ellipsoids. In doing so, we developed numerical
results for specific properties and also approximate relations for a
wide range of both finite and infinite systems which may prove 4.
useful in the design of materials or sensor systems. For the speciaP-
case wherein the major axes of particles are parallel toxtye
plane, we showed that percolation thresholds were significantly
higher; this may prove important in systems containing preferential 8.
orientation of particles. Additionally, boundary conditions affecting
clustering formation and the cluster properties were investigated iny
terms of their effect on nonuniformity in particle clustering in the
direction. 11.

Excellent agreement between measured percolation threshold’lsg-
(Table 1V) and interpolated simulation resultgable V) were found 1,
using the approximate formulas; errors less than 5% were found, in
terms of volume fraction. To accurately locate the critical volume 15.
fraction, data are needed at smaller volume fraction intervals, an
higher order curve fitting techniques may be merited. A significant;g’
drawback of our approach was the extrapolation of the percolationg.
point at volume fractions significantly away from the percolation 20.
points(see Fig. 10 Improved accuracy of any extrapolation would g;
be expected with additional measurements. 23

Percolation thresholds in the systems studied are much closer tea,
those of 3D, rather than 2D systems. The average diameter-to-
thickness ratio is 6.5 for SL-20 graphite, 4.27 for GDR-6, and 4.96 35-

7.

for GDR-14, all of which are close to 5.0, the apparently universal 5,
transition point of percolation from two to three dimensions, lending
further support to our approach. A somewhat surprisingly low 28.
threshold was found for thicknesses of systems wherein a fini'[e-29
thickness model, or even a 3D model must be used 2D model, ’
of aroundt/b = 5. This threshold is important for both estimation
of percolation point, and cluster properties. 30.
The effect of boundaries on particle clustering was also impor-3
tant. We observed that mean cluster size is minimized at boundaries
in the z direction, reaching a maximum at the midplane. The bound-32.
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