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Abstract—This study analyzes fiber tensile and matrix shear stresses near the crack tip in a trans-
versely cracked, unidirectional, fiber-reinforced lamina under a remote tensile stress applied in the
fiber direction. The two-dimensional lamina consists of parallel, equally-spaced elastic fibers with
elastic matrix in-between, and contains a row of up to a few hundred contiguous fiber breaks aligned
transverse to the fiber direction forming a central transverse crack. Using the break-influence
superposition (BIS) technique, a recently developed method for analyzing a shear-lag model first
introduced by Hedgepeth, we calculate the tensile and shear stress concentrations in the fibers and
matrix, respectively. These are compared to tensile and shear stresses calculated using Linear Elastic
Fracture Mechanics (LEFM) and the complete elasticity solution both for the continuum limit of
a homogeneous, orthotropic elastic material with a transverse central crack loaded in Mode I. For
the shear-lag model a critical scaling parameter for examining the stress behavior away from the
crack tip along the fiber direction is \/E*/G*, where E* and G* are composite in-plane stiffness
constants along the fiber direction and in shear, respectively. In addition to these parameters, the
LEFM and complete elasticity solutions also involve the effective transverse stiffness and Poisson’s
ratio. For a sizable crack (consisting of 100 or more fiber breaks), the fiber tensile stresses ahead of
the crack tip along the crack plane calculated from the BIS approach achieve excellent agreement
with the LEFM solution down to the scale of one fiber diameter and even better agreement with
the complete solution both in the near crack tip field and far field, regardless of the composite
stiffness constants. The profiles of the fiber tensile and matrix shear stresses along the fiber direction
show generally good agreement, with the agreement improving as the composite stiffness transverse
to the fiber direction grows. Published by Elsevier Science Ltd.

1. INTRODUCTION

Brittle fiber-reinforced lamina using, say, graphite or carbon fibers are commonly used as
building blocks in advanced composites due to their high specific strength and stiffness and
the availability of matrix materials in a wide range of properties. For instance, one can
have a polymer matrix such as an epoxy with a stiffness two orders of magnitude lower
than that of the fibers, or a metal matrix such as aluminum with a stiffness of about the
same order of magnitude. Matrices can be quite brittle or they can be elastic-plastic with a
wide range of yield strengths. The interface strength between the fiber and matrix can also
vary, as can the residual friction after debonding. Though actual structures may consist of
several layers of unidirectional or multidirectional laminae, a fundamental issue is to first
understand the fracture behavior of a single lamina. This is the focus of the present work.
Under simple tension, failure in a composite lamina usually begins with random fiber
breaks that develop at flaws under increasing load. Consequently failure involves a complex
statistical progression of random fiber failures, local stress transfer from broken to surviving
fibers through shear in the matrix, and local matrix yielding and interfacial debonding
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around the fiber breaks, culminating in a crack-like structure more or less perpendicular to
the fiber direction (Chou, 1992). Indeed in the region one might call the “crack tip”, fibers
do not break precisely along one perpendicular plane even though this may be the location
of the highest stress concentration. New fiber breaks are most likely to occur at some small
random distance from this plane where the fiber is both overstressed and weak. Hence, the
length scale along the fiber over which it is overloaded is just as important as the magnitude
of the stress concentration. Furthermore, fibers pulling out behind the crack tip may modify
the stress concentration. Experimental observations on metal matrix composites reveal
these various non-planar crack growth features (Jones and Goree, 1983). Of course, local
details of the crack growth are likely to vary with the particular material system.

Predicting the fracture behavior of unidirectional fibrous composites has been tackled
in several ways including full elasticity solutions for idealized cases, various models that
build on classical shear-lag analysis, and finite element methods (Goda and Phoenix, 1994 ;
Goree and Gross, 1980 ; Hedgepeth and Van Dyke, 1969 ; Rossettos and Shishesaz, 1987 ;
Sastry and Phoenix, 1993), and Linear Elastic Fracture Mechanics (LEFM) as though the
material were a homogeneous continuum. In the case of LEFM, questions of validity
quickly arise. First, since the material is actually highly anisotropic and heterogeneous, it
is unclear how to interpret such singular stress field techniques in the face of inherent local
length scales such as the fiber diameter, fiber spacing, and the effective fiber load transfer
length near a break. This is especially true if the number of adjacent fiber breaks forming
a “crack” is quite small. Second, the matrix and fiber-matrix interface can be rather weak
in shear as compared, say, to a comparable shear strength in a homogeneous metal, so that
considerable yielding, debonding, and fiber pullout can occur near the crack tip. This
creates uncertainty in the length scale over which LEFM calculations might be useful.
Third, for an orthotropic continuum LEFM techniques are complicated and often require
considerable numerical computation. If the breaks are not nicely aligned, or there are
clusters of breaks whose stress fields are close enough to interact (as is often the case in
practice) LEFM formulations quickly become intractable. Finally LEFM techniques are
often cast in terms of energy of crack propagation, and it is not clear how to reconcile this
with a “strength view” of fracture progression involving local stress transfer and fiber
failure at high local fiber stresses. Nevertheless, when analyzing stresses around cracks
containing hundreds of contiguous fiber breaks, the composite may reasonably be idealized
as a homogeneous, anisotropic continuum with a crack tip damage zone.

At the same time, shear-lag theory as pioneered by Hedgepeth (1961) has enjoyed
considerable success. In this idealized model, the elastic fibers carry only simple tension
and the elastic matrix in-between the fibers deforms only in simple shear. This model has
seen many variations and applications largely for planar and regular geometric arrays of
fiber breaks (Goree and Gross, 1979; Hedgepeth and Van Dyke, 1967; Van Dyke and
Hedgepeth, 1969 ; Hikami and Chou, 1990; Fukuda and Chou, 1981 ; Fichter, 1969).
Chou (1992) gives an excellent and comprehensive summary of shear-lag analysis, which
highlights results from many studies and includes several references. We revisit some results
from these studies in later discussion. A major criticism of the shear-lag model is that it
does not model the full field equations of linear elasticity. Nevertheless, comparison with
detailed 3-D finite element calculations on a composite lamina of several fibers and with a
few breaks shows that the stresses determined are a good reflection of the true stresses at
least locally averaged down to a length scale of about one fiber diameter (Reedy, 1984).
Reedy concluded that when assuming fully elastic behavior, both the shear-lag model and
3-D finite element analysis, based on the full elasticity equations, predict nearly the same
stresses on the first intact fiber even for relatively stiff matrices and for fibers with a shear
modulus not much greater than that of the matrix. On the other hand, recent exact analysis
and accurate numerical calculations for one fiber break (modeled as a penny-shaped
crack) in a three-dimensional composite have suggested that the shear-lag model is locally
inaccurate (Nedele and Wisnom, 1994 ; Case and Reifsnider, 1995), a conclusion we later
question. A major stumbling block in the shear-lag model has been computational, but
recent dramatic improvements have occurred in the ability to handle large numbers of
breaks in complicated arrays (not just planar) through the development of the break
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influence superposition (BIS) technique (Sastry and Phoenix, 1993). The main advantage
of the shear-lag model is that it shows promise of modeling the essential physics of complex
random fiber break patiern development, including matrix plasticity, fiber/matrix debond-
ing, and fiber pullout during crack formation and propagation in a composite. Not only
can hundreds of arbitrarily located breaks be handled easily, but plasticity and debonding
around fiber breaks can also be treated efficiently (Sastry, 1994; Beyerlein et al., 1995).
Also, the shear-lag analysis uses an order of magnitude less degrees of freedom than similar
3-D finite element analysis. Therefore, compared to finite element analyses, the shear-lag
analysis can handle much larger composites with many more fiber breaks, since computation
time 1s determined by the size of the damage and not composite volume.

We now arrive at the key question: on the one hand we have a shear-lag model that
may overly idealize the equations of elasticity but allows us to calculate the important fiber
and matrix stresses around arrays of fiber breaks. On the other hand we have LEFM which
presumably would be useful for a transverse crack covering many hundreds of fiber breaks.
To what extent do the two models give similar results for crack geometries and length scales
where both would presumably apply to a composite sheet? This question is important as
one may worry that as the number of adjacent fiber breaks increases in an elastic setting,
shear-lag theory diverges from LEFM in predicting the fiber and matrix stresses. We will
show that the agreement, in fact, improves as the “crack length” grows thus clearing away
one potential obstacle to using shear-lag theory to model macroscale composite failure.

Thus we consider an infinite, planar, composite lamina whose fibers and matrix are
linearly elastic. The lamina has a transverse central “crack” in the form of a long row of
aligned fiber breaks, and under a remote tensile load we calculate fiber and matrix stress
profiles at the scale of one to a few fiber diameters near the crack tip. In homogeneous
materials, this special case of a crack in a direction normal to both the loading direction
and one plane of elastic symmetry is a commonly considered problem. Before describing
our framework for comparison and reporting the results from the LEFM and the BIS
analysis, we begin with some theoretical background for the two approaches.

2. SHEAR-LAG ANALYSIS USING BIS

Consider a large, two-dimensional array (lamina) of parallel elastic fibers in an elastic
matrix with a central group of N contiguous fiber breaks transverse to the fiber direction.
The lamina is loaded in simple tension along the fiber direction (Fig. 1(a)). Hedgepeth
(1961) set up and analyzed a shear-lag model for this problem, and his most quoted results
are the stress concentrations on the fiber immediately adjacent to the last broken fiber. As
mentioned, Hedgepeth’s (1961) shear lag model assumes that the matrix transmits and
deforms only in shear between the fibers, but sustains no axial load. The fibers, however,
carry all the tensile load, and deform only in simple tension and compression. These
assumptions simplify the analysis considerably, since the differential equilibrium equations
become decoupled, and, therefore, the stresses found in any given fiber or matrix bay
depend only on the fiber axial coordinate x. Moreover, they also suggest that this model is
appropriate for a unidirectional fiber-matrix lamina in tension, in which the fiber extensional
stiffness greatly exceeds the matrix shear modulus; however, we will later consider cases
where these moduli are much closer in magnitude. Many authors have modified Hedgepeth’s
original shear-lag analysis by modifying the geometric arrangement of fiber breaks, by
accounting for matrix yielding, matrix cracking, or debonding of the fiber-matrix interface,
by allowing consideration of a matrix that can carry appreciable tensile load, and by
allowing for tensile stresses transverse to the fiber direction (Goree er al., 1989 ; Rossettos
and Olia, 1993; Sastry and Phoenix, 1993 ; Wolla and Goree, 1987 ; Ochiai et al., 1991).
However, these improvements also greatly increase the need for numerical computation for
all but a few special cases. On the other hand, Hikami and Chou (1990) revisited Hedge-
peth’s original elastic analysis and among other things calculated simple expressions for
the in-line (crack plane) stress concentrations in surviving fibers further ahead of the row
of N contiguous breaks. We refer later to these analytical results since they provide a means
of checking the accuracy of our numerical algorithm based on the BIS technique. Goree
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and Gross (1979, 1980) extended Hedgepeth’s two-dimensional model to include the effects
of various arrangements of fiber breaks as well as matrix yielding and splitting. Dharani et a/.
(1983) developed another extension of Hedgepeth’s model to account for both longitudinal
yielding and longitudinal fiber “‘damage” ahead of the crack. In this model, the damaged
fibers carry only a fraction of the load of an unbroken fiber reminiscent of fiber pullout or
nonplanar crack growth. Featured in these works are studies of the decay of the crack plane
normal stresses away from the last surviving fiber and its connection to LEFM, which are
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Fig. 1. Transverse center crack in three material systems : (a) fiber reinforced composite lamina, (b)
a material with tension lines (corresponding to fiber centerlines) and effective matrix regions of
width w*, and (c) an orthotropic continuum. (Continued opposite.)



Modeling fiber and matrix stresses 2547
o*

(c}) T

2¢

Y[2]

Ex Eyy ny Vyx

‘L X

o*
Fig. 1. Continued.

relevant to the present investigation. Lastly, the recently developed BIS technique (Sastry
and Phoenix, 1993) extends Hedgepeth’s shear-lag method to numerically determine the
stress concentrations everywhere in the fiber and matrix due to arbitrarily located fiber
breaks. While it has been developed to handle matrix yielding and debonding, we will use
here only the simpler elastic rendition.

The simple geometry we use in carrying out the BIS technique is described in Fig. 1(a).
This central transverse configuration of N aligned fiber breaks was selected to allow
comparison with corresponding Mode I results from LEFM for a crack of length 2¢ in an
infinite orthotropic, homogeneous plate in both plane stress and plane strain (see Fig. 1(c)).
(In the numerical calculations we will take N to be odd simply for symmetry, though the
results will apply for all N.) The BIS analysis still preserves all of the linearly elastic, shear-
lag assumptions. In this study, we wish only to calculate the stress concentrations in the
local fibers and matrix regions, or we assume that the matrix and fiber strengths are
sufficiently high, such that no consequential damage occurs.

To determine fiber and matrix loads and displacements near arbitrarily located fiber
breaks in a large unidirectional composite, it is convenient to discretize the composite in
the vicinity of these breaks. Unlike say a finite difference scheme, this elastic analysis is
exact, and discretization is used merely to establish spatial fiber and matrix points at which
to calculate stresses for plotting purposes. Figure 2 shows the two-dimensional lamina of
evenly spaced fiber and matrix elements arranged in a brick-like fashion. Each fiber and
matrix element is of equal length 28, where J is much less than the characteristic load
transfer length, precisely defined later as a certain length required for a broken fiber to
recover its applied load. As shown in Fig. 2, the center fiber is numbered n = 0, the fibers
to the right are numbered n = 1, 2, ... o0, and those to the left, n = —1, —2,... —o0. The
matrix bay to the right of fiber n is matrix bay n. Likewise, along the loading axis, the
respective fiber and matrix elements are numbered in the + x direction from (n, 0) to (»,
o) and in the —x direction, from (n, —1) to (1, —oc). Thus (n, m) refers to a specific fiber
element or matrix element. We let E be the Young’s modulus of the fibers, and G be the
effective shear modulus of the matrix. Also w is the effective fiber spacing, 4 is the fiber
width as well as the fiber and lamina thickness, and A is the cross-sectional area of a fiber.
(For the ideal case of fibers of square cross-section, 4 = h%.)
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Fig. 2. Two-dimensional discretized composite lamina with equal length and evenly spaced fiber
and matrix elements.

The shear-lag assumptions are incorporated when deriving the force equilibrium equa-
tions for fiber and matrix elements along the fiber axis, x. Let p,(x) and w,(x) be the force
and displacement, respectively, in fiber » at location x, and let p* be the load applied per
fiber at x = =+ c0. Since the matrix transmits only shear forces, the shear force per unit fiber
length is related to the differential displacements of the two adjacent fibers. The effective
shear stress 7, and the shear strain y, in matrix bay » are

Tn (X) = G[un+l (X) —un(X)]/W (la)
and :

(X)) = [ty 1 (X) =4, (X)) /W, (1b)

respectively. Thus, the shear force per unit length applied on the fiber by the matrix
is 7,(x)h. Equilibrium of forces in the x-direction results in the following equilibrium
conditions,

_ 40
Pu(x) = EA= (10)

and

A%, (X) _ = Ghthy 1 () = (X)) + Gh(u(X) — thy_ 1 ()

EA
dx? w

(1d)

For convenience, the above variables are normalized into non-dimensional parameters.
The normalized fiber loads P, fiber displacements U,, matrix shear stresses T,, matrix shear
strains I',, and axial coordinate & are

P, = p./p*, (2a)

Un

Uv,=——, (2b)

Pt [
EAGhH
1, |[wEAh
T, =;; / G (2¢)
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r,=U,.,—U, =}%,/wEAGh, d)

and

&= . (2e)
Edv
Gh

Note that since the matrix is deforming elastically, 7, = Gy,, and thus 7, and I', are
equivalent. Also the denominator of (2e) is the characteristic load transfer length referred
to earlier.

By introducing these non-dimensional parameters, the equilibrium eqns (1c) and (1d)
simplify to,

dv,
d—gfé) U ()= 2U,(&)+ Uy () = 0 )
_dU,(©)
T (3b)
and
P (o) =1, (3¢)
and on the broken fiber ends the loads are zero, i.e.
P,(0)=0 for—-(N—-1)2<n<(N-1)/2. (3d)

Consequently the form of the solution is independent of the elastic constants and fiber
volume fraction, which is V,= h/(h+w).

Analysis for break influence superposition

The BIS analysis in the shear-lag model allows one to solve for the fiber and matrix
stress profiles due to an arbitrary arrangement of fiber breaks in the lamina. In the present
work, the locations of the N initial fiber breaks are positioned at the centers of the N fiber
elements along the central transverse plane. Determination of the fiber and matrix stresses
and displacements everywhere in the lamina builds on a certain solution for a single, isolated
fiber break in the elastic lamina at the center of fiber element (0, 0) (see Fig. 3). The solution
for the N breaks involves the weighted superposition of N shifted, single break solutions,
resulting in a system of N scalar equations to solve for the corresponding weighting factors
K, to K, v (Sastry and Phoenix, 1993).

For the problem of a single isolated break, a unit compressive force of magnitude —1
is applied to each end of the break but zero tensile force is applied at £ = + oo (see Fig. 3).
The problem is normalized as described by (2), and we apply the subscript b to distinguish
the single break problem from the general problem. Thus the equations to be solved are
(3a) and (3b) under the mixed boundary conditions,

Lyg(07) = —1, Lyo(07) = —1 (4a)
Vya(0) =0, forn>1 andn< —1, (4b)
and
dv,.(+
—b’"d(g;.o)=0, for —o0 <n < . (4c)

Using discrete Fourier transforms, the above equations yield
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Fig. 3. Single, isolated fiber break at the center of fiber element (0, 0) in the discretized, elastic

lamina.
Vin®) = sen@) | costut) e 260 (sa)
0
Ly, (&) = — % Jn cos(nf) sin(6/2) e~ 21sn®2) 4 (5b)
0
and
I, (&) = sgn(é) % r {cos[(n+1)0] —cos(nf)} e~ 212 dg (5¢)

where sgn (£)is +11f & = 0and —1if £ < 0. Since these solutions are translation invariant,
the solution for an arbitrarily located break at (n, &) is obtained simply by shifting » and
£in (5) by —n, and —¢; respectively. (Here we have rescaled the longitudinal dimension
from m to £.) In this way, these shifted solutions are used to determine load transmission
factors which in turn can be used to calculate the effects of fiber breaks on the displacements
and loads of all the other fibers in the lamina whether broken or not.

The next step is to consider an N-break, auxiliary problem consisting of an infinite
lamina containing our N aligned breaks but where each break is loaded on its ends by a
compressive force of magnitude — 1, and no load is applied at ¢ = 4 0. For this we need
load transmission factors from one break to another in the lamina. From the solution to
the single break problem, the transmission factor A; is defined as the proportion of load
transmitted to the position of fiber break j due to a unit load at fiber break i. Specifically,
using (5b) we define

Aji = — Lb,njfn,-(éj - él)

1" e
= EJ cos [(1;—n,)B] sin(6/2) e~ 24~ 4sn®2) dg. (6)
0
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Thus A, can also be viewed as a proportionality factor, since the proportion of the load on
fiber break j transmitted from load — P; at fiber break i is —A;P,. The load transmission
factors, A;’s, depend only on the relative distance between respective breaks. Thus, for the
N-break problem, the proper weights for each break are determined such that an overall
compressive load —1 exists on each fiber break. This requires solution of a system of N

equations for the weighting factors K, |, . .., K, y given in matrix form as
_Pl Al] o e AIN Kb,l
D=y : e (N
_PN ANI e ANN Kb,N
Thus for the N-break, auxiliary problem, the fiber and matrix loads and displacements at

arbitrary position (n, &) are the weighted sums of the influences of the N breaks in the
laminate. These quantities are given respectively as

LXS) = Koi Ly, (§—E)+ + Ky v Ly (E—EN), (8a)

Vi) = K1 Vinn E—C) 4+ + Ko n Vi, (E—=En), (8b)

L&) =Ky Thnn,(€=E)+ -+ Ky nLpn (€= En), (8¢)
and

T.(O) = T(. (8d)

Finally, to calculate the desired exact solution for the lamina loaded at ¢ = + oo by a tensile
force per fiber of unity, a tensile load of unity is superimposed onto the solutions. Thus the
dimensionless matrix shear strain I, and stress 7, remain the same, but the fiber loads P,
and displacements U, become

P.(&) =Ly +1 (9a)
and

U8 =V +<. (9b)

To implement the above solution, it is necessary to calculate the integrals in (5a)—(5¢) and
(6). This was done numerically using a fourth-order Runge-Kutta routine for all points (#,
¢) of interest on the discrete grid in the vicinity of the crack.

For the problem of a single break at (0, 0) under unit compressive load on its ends
and no load at infinity, a closed form solution was obtained by Hedgepeth (1961) for the
fiber loads along the plane perpendicular to the fibers. He obtained

1
b,n = . 10
L = s (10)

To check the accuracy of our numerical routine, the percentage differences between L, ,(0)
predicted by (10) and by numerical integration in (5b) were calculated for n < 600. The
relative errors were rather low. For #» = 100, 300 and 600, the percentage errors were
5.17x 107*%, 0.7453% and 3.6259% respectively. (Note that by n = 600, L, ,.(0) is only
6.94x1077)

Analytically determined stress concentrations

Later, we compare results from the BIS analysis with some analytical results from the
shear-lag model. Hedgepeth (1961) calculated the stress concentration factor K for the
fiber directly adjacent to a row of N breaks. His widely quoted result is
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Al2ji+1

N

_ 22N+1[(N+ 1)|]2

(2N+2)! ab

Hikami and Chou (1990) extended this result by considering the stress concentration on
the fibers ahead of the last broken fiber along the crack plane. They obtained stress
concentration factor

(25)(25+2)(2s+4) .. .(2s+2N—2)
2s—1)(2s+1)(25+3)...2s+2N—1)’
_ (N+25—1)2Y (s + NP (25— 2)!
 (N+9)[(s— DI 2s+2N)!

Ky, =N+25—1)

(12)

which is consistent with Hedgepeth’s result since K, = Ky. On the other hand, Fichter
(1969) considered the normalized shear stress concentration Sy in the matrix bay between
the last broken fiber and the first intact fiber along the crack plane. That is, he considered
| T,(0)| for i =(N—1)/2. He obtained

N[ZN)Y
Using Stirling’s approximation (Ross, 1993)
N~ /2NaN¥e " (14)

for large N, it is a straightforward task to determine asymptotic expressions for these stress
concentrations for larger N. We get

Ky ~(/7/2)/N+1 (15)

which proves to be very accurate as the error is about 4% for N = 2 and is below 1% by
N = 10. Dharani et al. (1983) obtained a similar expression, with N in place of N+1 in
(15). For the shear concentration factor, Sy, we get

Sy ~(/7/2)/N (16)

which similarly proves to be very accurate. Also using Stirling’s approximation (11) for
both large N and large s, but s « N, gives the approximation

vN+1
KNxN

~

2./s—1
Ky

. /n(s—1)

Equation (17) corresponds to the LEFM solution for a center crack of length 2¢ in an
infinite plate. If we take N+ 1 = 2¢ and s—1 = r, the radial distance from the crack tip,
then Ky, = \/¢/2r. We later compare these formulae (11), (13), and (12) with their cor-
responding approximations (15), (16), and (17). In addition, (12) and (17) are compared
to predictions from the exact solution for the normal stresses along the crack plane (Fig.

1(c)).

)
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3. LEFM ANALYSIS IN MODE I

We consider the Mode I LEFM solution for an infinite, two-dimensional, orthotropic
composite containing a crack of length 2¢ that is oriented perpendicular to a plane of elastic
symmetry and the loading direction (see Fig. 1(c)). In Cartesian coordinates the crack
extends through the medium in the z direction and from —c¢ to +¢ in the y direction, and
thus is perpendicular to the x direction, the direction of loading. A remote stress o* is
applied at x = + oo, and the stress results will apply for both plane stress and plane strain
(though the displacements for the two cases would differ). In the case of Mode I cracks,
the LEFM solution for an orthotropic material uses four elastic material constants, G,
Vs E,,, and E,, (where x corresponds to the fiber direction in later comparisons). Its
development involves using the Westergaard approach (Sih, 1981), which consists of a single
stress function U, satisfying the fourth-order homogeneous partial differential equation,

otU 04U otU

by, —+2by +bgg)——+b,,— =0 18
11 ax (2b,, 66)ax2 ayz 22 6y4 (18)

where
bll = 1/E'll = 1/E‘xx (193)
byy = 1/Ey; = I/Eyy (19b)
bes = 1/G12 = 1/G,, (19¢)

and

by = —vy/Eyp = — Yyl Eyy. (19d)

The characteristic equation of interest can be written as

b22S4+(2b2]‘+’b66)Sz+b“ = 0 (20)
where
b22 Ell
=22 21 2la
b~ En (@12)
and
2b b
¢2 =( 21 +De6) (21b)
bll
so that
eS*+¢*S*+1 = 0. (22)

Typically we have 2b,, « bg¢ especially for polymer matrix composites so

¢~/ Eu/Gyy- 23)

Normally ¢ will be considerably greater than unity but for mathematical reasons we will
also be interested in the special case where ¢ is small or when the composite transverse
stiffness is very large.

The characteristic eqns (20) or (22) have two usually complex roots S, and S, of
interest (as well as their complex conjugates). For the commonly discussed inner crack tip
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stress fields or the K-field with the l/ﬁ singularity, the resulting crack tip stress field
equations in terms of polar coordinates, r, the radial distance for the crack tip, and 6, the
angle from the crack plane to the point of interest in the x-y plane, are (Sih, 1981)

o, = S Re{( : )[ 5 - 5 ]} (24a)
2nr AT \/cosf)+stin9 Jcosf+S, sinf

S
A [ Rt S R
2nr S =5 J0059+stin0 \/COSH+S,sin9

and

1 1
t = —_Re {( 515 >[ _ J} (24¢)
2nr $1=52/\/cos0+S,sinf /cosO+S,sind

In these equations, K, is the Mode I stress intensity factor and is identical to that for the
isotropic case, and thus, is

K, = o*/nc. (25)

Note that the tensile stress o, ahead of the crack tip along the y-axis (6 = 0) also is identical
to those from the isotropic solution (27). Also, the crack tip stress field equations for an
orthotropic material typically have the same l/\ﬂ singularity as those for an isotropic
material. However, the distribution for stresses in the vicinity of the crack tip is more
complex and depends on the material’s elastic constants.

We also have interest in the complete stress field solution which contains information
about both the near crack tip and far field stresses. Later, we compare results from the
complete elasticity solution given by Selvarathinam (1995), which was derived from the
complex variable approach outlined in Lekhnitskii (1963), to those from the shear lag
analysis and the LEFM stress field eqns (24). The purpose is to assess in further detail the
true character of any disagreement between the shear lag results and the LEFM results.
We note one simple result, which is that the exact solution for the tensile stress, o,, along
the crack plane (y-axis) for a central crack of length 2¢ in Mode I is

I L} (26)

N

where r = y—c. This stress is also independent of the elastic constants and is the same for
both the isotropic problem and orthotropic problem as described. For r/c « 1 we note the
usual 1/\/r approximation to this result, which is

NN
V20—’

_ K L r>0 27

where K, given by (25), is the usual stress intensity factor.

Finally we mention some results for the limiting case where ¢ — 0, that is when the
transverse stiffness F,, (along the crack plane) becomes large relative to the longitudinal
stiffness E,,. In this case one might expect the lateral displacements to reduce to zero and
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the solution to have much in common with the shear-lag solution. Asymptotic analysis of
the roots S, and S, of (22) shows they are imaginary and that

1 I3
S %15{1-5&} (283.)
and
) £
S, xi——=<1——3. 28b
1\/;{ 2¢4} %)

Note that as e = 0, S, approaches the constant i/¢ = i/\/ E,,/G., where the denominator
is a key scaling parameter for the shear-lag case, but S, approaches ooi. Through straight-
forward asymptotic analysis one can show that for the X, field

K, 2 ,
T \/Z_W <(cos2 Qioqz(yf sin2 6’)”'4){1 +\/§/¢ +0(\/;)} @

and
T, = — \/’%r %((Coszej;(yi)mz G +error(s,¢,9)> (29b)
where
tany = ¢~ 'tan®, (29¢)
and where
error(e, §,0) = O('*/\/§) for@>6,,~ . /e/$ (29d)
but
error(e, ¢, 8) = O(1) (29¢)

for small 6, , ~ \/;/d) near the origin, which tends to zero as ¢ tends to zero. Note that for
0 =0,1, =0, but for 0 ~ 0, ,, there is a sharp fluctuation in the sign of 7,,. In other words,
when x > 0, 7,, > 0 and rises and falls over a range of approximately 0 < 0 < 6,4, and
1,, < 0 for 0, 4 < 0 < /2. Therefore as \/;/qﬁ tends to zero, the range of 6 near the crack
plane where ., oscillates diminishes, but does not vanish.

On the other hand, it turns out that

K
0, = ——{1//e+0(1)} atf=0 (29¢)
/ 2nr
that is, along the crack plane and
K ,
g, = {1/("*/2¢**)+0(1)} atd=m/2 andr>0 (29g)

N

and hence ¢, grows unbounded as ¢ — 0. Later, we will see that ¢, looks like a spike as ¢ —
0, and also we compare (29f) and (29g) with the o, stress field equation (24b) to show that
these formulas indeed capture the behavior of g, as ¢ — 0.

Finally we note that some of the above errors are connected to the value of the
parameter ¢ = E, /E,,, and in (29a) and (29d) the error is proportion to \/Jc/)z. But from
(23)

Jel6* = G/ /EE,. (29h)

Typically, G,, is much less than E,, for a polymer matrix composite relative to a metal
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matrix composite, and therefore, by (30), the error should be less for the polymer matrix
composite. For both cases this error dies out as E,, is increased i.e. as ¢ — 0.

4. FRAMEWORK OF COMPARISON OF SHEAR-LAG AND LEFM RESULTS

A major objective of this study was to determine the regions and conditions for
good agreement between the shear-lag and the LEFM solutions for a center-cracked
homogeneous, orthotropic composite. Both approaches are two-dimensional analyses,
where the fracture mechanics stress formulation assumes plane stress or plane strain (the
stresses are the same for both but the displacements differ), but the shear-lag model
specifically assumes neither (though the fiber and matrix moduli can be interpreted and
adjusted perhaps to accommodate one or the other). In order to study Mode I crack
behavior, an initial crack is modeled in the shear-lag case as a row of N contiguous fiber
breaks and in the case of LEFM as a crack of length 2¢. For the LEFM inner crack tip
stress solution for a continuum to reasonably match the shear-lag solution for a discrete
lamina, one might anticipate that the crack length should be large compared to the crack
tip zone being studied, where the latter is at least the scale of one fiber diameter. In the
lamina, we considered cases of N ranging from about 20 to 301 contiguous fiber breaks in
the transverse central “crack”. Although the analysis and numerical routines can handle
N > 300, the upper limit of N = 301 was sufficient for making a comprehensive and valid
comparison between the two solutions for a minimal amount of computation time.

In addition to the inner crack tip field, another interest was in how the fiber and matrix
stresses actually compare farther from the crack tip in both models (where LEFM 1 /\/;
behavior alone would be inaccurate). For the shear-lag analysis, this may apply to exam-
ining the stresses outside of a potential plastically yielded or debonded region, but in the
LEFM analysis, the 1 /\/; approximation ceases to be valid at large distances from the
crack. Therefore, we also consider numerical results for the full elastic field in the homo-
geneous problem.

Comparing these two different modeling approaches, LEFM and shear-lag, requires
defining an equivalent crack length and relating the elastic constants between a composite
lamina with discrete fibers of diameter 4 and matrix regions of width w and those of an
orthotropic, homogeneous continuum. Figure 1 exhibits three ways to view the material
system: (a) a lamina containing equally spaced fibers and matrix regions, (b) a material
with tension lines and shear stress regions of width w*, and (c) an orthotropic continuum.
The shear-lag model assumes all the unbroken fibers remain laterally rigid and straight, but
in reality, the fibers ahead of the crack tip bend and rotate somewhat due to varying local
transverse normal stresses. In the present work, results from the shear-lag stress analysis
are examined with respect to Fig. 1(b). In Fig. 1(b), a fiber (and any axial tension carrying
ability of the matrix) has been mathematically collapsed to a tension line with an effective
stiffness £A4, and the matrix has been widened (though given a higher stiffness G(h+w)/w
to compensate) with spacing (w+ A) in place of w. The mathematical analysis using Fig.
1(b) is identical to that using Fig. 1(a).

In comparing the two solutions we study the behavior of the three main crack tip
stresses: (1) the normal stress, o,, decaying along the crack plane (y-axis) ahead of the
crack tip, (2) the shear stress, 1,,, in the matrix bays vs the fiber axial distance x, and (3)
the fiber stress, o, vs fiber axial distance, x. We also calculate the transverse stress g, in
order to see its magnitude near the crack tip and to determine the extent to which these
stresses can actually be supported in an actual composite without local debonding.

Crack length

For the discrete lamina, the crack length is modeled as an effective width of broken
fiber and matrix bays. Specifically, for a given number of N fiber breaks, the equivalent
crack length 2¢ consists of (N — 1) effective spacings of width (24 w), plus two end portions,
each the fraction 1 —® of (4 + w), which extend into the matrix bays between the last broken
fiber and first intact fiber on both sides of the crack, as shown in Fig. 1(b). That is, writing
¢ in place of ¢,
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2ey = [(N=1)+2(1 - D®)](h+w). (30)

Thus @ is a small adjustment, being the fraction of the width (A+ w) between the centerline
of the first surviving fiber back to the crack tip. ® will be determined empirically by
matching the decay of ¢, along the crack plane ahead of the crack for the LEFM and shear-
lag BIS solutions.

Elastic material constants

As discussed earlier, the LEFM solutions for the crack-tip stress fields depend on the
orthotropic material’s elastic constants G,,, v,,, E,,, and E,,. On the other hand, in the
shear-lag analysis, solutions are in terms of non-dimensional quantities: the normalized
loads P,, the shear stresses 7,, and the fiber axial distance £. Calculating the physical
quantities p/p*, 1, and x from P,, T,, and &, requires values for the fiber and matrix
parameters, E, G, A, w, and /4 in (2). To make contact with the LEFM solution, we must
determine “‘effective” values for the elastic constants, namely G¥,v¥, E¥, and E¥. For
this purpose we assume isotropic fibers and matrix with respective elastic constants Ej,
Gy = E//[2(1+vy)] and v;, and E,, G, = E,/[2(1+V,)] and v,,, and use the simple rule-of-
mixtures formulas in terms of fiber volume fraction ¥, These are

E¥ = EV,+E,(1-V)) (3la)
1/GY, = VG, +(1— V)]G, (31b)
VE}, = VAE+(1-V)/E, (3lc)
and
Viv = (ES/IEX)OVi+v,,(1= V). (31d)

Actually, we can extend the shear-lag model to write the governing equations in terms
of the above constants. In this extension we are assuming that any tensile load carried in
the matrix is lumped in with the fiber and any shear deformation in the fiber is lumped in
with the matrix (see Fig. 1(b)). Then we have V,= h/(h+w), and the effective shear
modulus G¥, Young’s modulus, E¥, cross-sectional area A* = h(h+w), and effective
matrix spacing, w* = h+w replace G, E, A4, and w, respectively, in (1) and (2). Also note
that o and o* correspond to p/4* and p*/A*, respectively. These replacements effectively
“smear” (or homogenize) the geometric and elastic material properties of the matrix and
fibers, but also lump them into appropriate slots in the shear-lag model.

One might anticipate that when E¥, is very large, the agreement between the LEFM
model and the shear-lag model will improve. In the orthotropic continuum of the LEFM
model, we note that transverse deformation is affected by E¥,. Intuitively, an infinitely stiff
transverse stiffness restricts both the unbroken and broken fibers to displace only in the
fiber direction as assumed in the shear-lag analysis. Mathematically, when E}, is large or ¢
is small, the fourth order equilibrium equation (18) collapses to a second order equation
dependent only on E¥ and G, and therefore, the solution has a similar form to that of
the shear-lag analysis (3). In this respect the rule of mixtures can considerably underestimate
EY, when there are actually local constraints, such as other lamina layers, preventing local
matrix contraction in the z direction.

In examining the extent to which agreement in the fiber tensile stresses and matrix
shear stresses depends on the material system, two types of unidirectional composites were
considered : a graphite or carbon fiber/polymer-matrix composite and a ceramic fiber/metal-
matrix composite. Consistent with the shear-lag model assumptions, the fiber stiffness is
significantly higher than the matrix stiffness in both types of composites, namely 100: 1 for
the polymer-matrix composite and 3:1 for the metal-matrix composite. The resulting
effective elastic constants calculated from (31) and geometric properties used for these two
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Table 1. Stiffness constants for the two composites
considered in example calculations

Metal matrix Polymer matrix
E* 266.7 GPa 50 GPa
G¥ 76.93 GPa 2 GPa
E¥, 200 GPa 4 GPa
Vi 0.225 0.024
v, 0.50 0.50

types of unidirectional composites are listed in Table 1. (In later discussion all elastic
constants will be in units of GPa.)

Next we draw a connection between the results for stress concentration factors in the
shear-lag model and LEFM. To develop a correspondence we recall that in the case of the
LEFM model, we plot results in terms of y/c and o/c*. In the shear-lag model, the y
direction is again normalized to y/c, where

ex = [(N=1)+2(1 —@)]w*/2 =~ Nw*/2 (32)
according to (30), and thus 2¢ ~ Nw*. Next we define
r, =[O+ (s—1)}w*. (33)
Then the earlier result (27) from LEFM with r, in place of r can be written
o ¢ JN+1
(KN‘.?)('ONJ. = _* = 2_ = (34)
g roo2/s—1

which agrees with the result (17) from shear-lag theory.

Finally we determine a scaling to compare the shear-lag and LEFM solutions along
the fiber direction (x-axis). For the shear-lag model, in the longitudinal direction we must
convert from ¢ to x. Using (2¢) and the above relations we find

E*
x = Ewk [ (35)
G*

Thus both the shear-lag model and the LEFM model point to the importance of a parameter

E%.(GY, (36)
In the shear-lag model this is clear from (35) so that
x = Ew*¢’, 37)

whereas in the LEFM model the parameter ¢” was actually ¢ given by (21b). For many
fiber reinforced composites and especially the two types considered in the present work, the
approximation (23), ¢ ~ \/E} /G¥, is typically extremely close to the true ¢. Thus we

propose the use of the coordinate

&, = x/(end’)
~ 2¢/N (38)

for the shear-lag case and &, = x/(c¢’) for the LEFM case when plotting the results in the
axial x direction. Thus we have determined scales to plot the results p,/p* and ,/p*, which
correspond to ¢,/¢* and 7, /0¥, respectively, using the Cartesian coordinates y/cy and x/cy.
For the two types of composites in Table 1, ¢popmer = 5 = Perr = 1.86. As a last point, a,
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and 1,, in the LEFM model correspond to p,/(w*h) = p,/A* and 1, respectively, in the
shear-lag model. Now we will consider the extent to which the normalized shear-lag stress
profiles match the LEFM profiles.

5. RESULTS AND DISCUSSION

This section presents typical results for the crack plane tensile stresses and the crack-
tip stresses along the fiber direction &, for a lamina containing a central crack of various
lengths as predicted by the shear-lag, LEFM, and complete elasticity solutions.

Tensile stresses along the crack plane

As mentioned, comparing the LEFM with the shear-lag stress distributions requires
defining an equivalent crack length (30) given the number of fiber breaks N and an unknown
parameter @. An appropriate value for @, the portion of the intact matrix bay on either
end of the crack, is determined based on the crack plane tensile stresses, o, for § = 0 and
varying r. We selected @ such that in the vicinity of the crack tip, the two solutions agreed
down to the scale of about one fiber spacing w* for longer crack lengths. In this case, the
tensile stresses along the crack plane calculated from the orthotropic LEFM solution are
independent of the material’s elastic properties and therefore, are the same as those cal-
culated in the isotropic case. As a result, the best fit ® value is completely independent of
the material’s elastic properties and N, when N is large (i.e. N > 100). Using log-log
coordinates, Fig. 4 compares the crack tip tensile stress concentrations o/c* and p/p*
calculated from the exact solution (26), LEFM 1 /\/; solution (27), and the shear-lag
approach, respectively, for N = 301 and different values of ®. The horizontal coordinate is
r, for the shear-lag solution and r = y — ¢ for both the exact and the LEFM 1 /\ﬂ solutions,
and the vertical coordinate is the corresponding stress concentrations divided by \/E Note
that for the shear-lag model, the plot begins at r, = ®w*, the location of the center of the
first surviving fiber ahead of the crack. Since this radial distance is less than one fiber
diameter, smaller values of r have no real meaning in either model. In the shear-lag model,
the matrix material does not sustain a tensile load, and in the LEFM model, these stresses
are high due to the l/ﬁ singularity. Furthermore, at such a length scale of less than a fiber
diameter, the unidirectional composite cannot be modeled as an orthotropic continuum.
Clearly, from Fig. 4, ® = 1/3 yields good agreement for crack lengths ¢ = ¢y down to about

0.5
N =301 o $=0.2352
~ .~ $=02857
— —¢=03333 [BEST]
— - ¢=0.5000

: o
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Fig. 4. Normal tensile stresses along the crack plane predicted from (26), (27), and the shear-lag
analysis for N = 301 and different @ in (30).
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Fig. 5. Normal tensile stresses along the crack plane predicted from (26), (27), and the shear-lag
analysis for @ = 1/3 and different ¥, number of fiber breaks.

N = 21 where adjustments become necessary. Figure S shows similar plots of the same fiber
o/c* and p/p* calculated from the LEFM 1 /\/;, exact, and shear-lag solutions vs r and r,
for N ranging from 21 to 301 and for ® = 1/3. Figure 5 shows the outstanding agreement
between the shear-lag solution and the exact solution, even in the far field region (s > 20),
where LEFM 1 /\/; 1s not valid. Near the crack tip, the stress distributions for all three
solutions vary as l/\ﬂ. For instance, for N = 301, the two solutions reasonably agree for
s < 8, after which the shear-lag curve follows the exact solution over the entire range of r
shown. Furthermore, as the number of breaks increases above N > 101, the range of r
where there is little or no difference between the results of the three solutions lengthens and
becomes less sensitive to the value of ®. On the other hand, for shorter crack lengths,
N < 21, agreement between the predictions from the shear-lag and both the LEFM and
exact solutions becomes poorer and the best fit value for ® starts to depend on N. These
results suggest that the LEFM solution really fails to work properly in this domain since
the scale of discrete fibers and matrix is too coarse.

In Table 2, we compare the K, (11) and Sy (13) formulae with their corresponding
approximations (15) and (16). The tabulated results show excellent agreement ; for Ky, the
error is 4% for N = 2 and decreases to below 1% for N > 10. Similar trends are observed
for Sy, but the error is slightly higher than that of K, (less than 0.1%). Table 3 compares
results from the formula (13) for K, the stress concentration on the sth intact fiber ahead
of N fiber breaks, with the exact solution (26), and the corresponding approximation (17).
Overall, the agreement between K and the exact solution is outstanding for N > 5. Also,
from Table 3, the approximation to Ky, which assumes N is sufficiently large and
1 « 5 « N, deviates between 1 and 5% from (13) for s/N < 0.1 when N > 20 and for
0.05 < s/N < 0.0833 when N > 50. In fact, the differences between K, and its cor-
responding approximation (17) are similar to those between the exact solution and the
LEFM 1 /\/; approximation. The reason is that the primary assumption of s/N « 1 in (17)
is analogous to the r/c « 1 validity criterion for the LEFM l/ﬁ approximation (27).

Tensile stresses along the fiber direction

Next, we compare the stress fields for a crack of length 2¢, with N = 301 and for
various choices of r, where s = 1, 2, 5, and 20. Results are given for the shear-lag solution,
the complete elasticity solution, and the 1 /\ﬂ LEFM solution. Using (38), the x coordinate
is normalized to &, = x/(cy’) & 2¢/N and &, = x/(c¢’). Figures 6 and 7 plot the tensile
stress concentrations along the fiber direction for the two composites, the polymer-matrix,
fiber composite and the metal-matrix, fiber composite, respectively, with properties listed
in Table 1. In the shear-lag model, the stress concentration reaches a peak significantly
above unity at £, = 0 (i.e. the crack plane) and gradually decays as the fiber recovers its
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Table 2. Exact and approximate values for fiber (Ky) and
matrix (Sy) load concentrations next to N breaks

N Ky, eqn (11) Ky, eqn (15) % error
1 1.333 1.253 6.00
2 1.600 1.535 4.06
3 1.829 1.773 3.07
4 2.032 1.981 246
5 2.217 2.171 2.06

10 2973 2.939 1.13

30 4.954 4.934 0.40

50 6.344 6.329 0.24

80 7.988 7.976 0.15

N Sy, eqn (13) Sy, eqn (16) % error
1 0.735 0.886 12.84
2 1.178 1.253 6.39
3. 1.473 1.535 4.24
4 1.718 1.773 3.17
5 1.933 1.982 2.53

10 2.768 2.803 1.26

30 4.834 4.854 0.42

50 6.251 6.267 0.25

80 7914 7.927 0.16

Table 3. Exact and approximate values for fiber load concentrations on
the sth fiber away from N contiguous breaks

Exact Ky, Ky, % error
K eqn (26) eqn (12) eqn (17) (12) and (17)

N=1
2 1.061 1.066 0.707 33.7
3 1.026 1.029 0.500 51.4
4 1.014 1.016 0.408 59.8
5 1.009 1.010 0.354 0.65
N=5
2 1.342 1.364 1.225 10.2
3 1.182 1.193 0.866 274
4 1.116 1.123 0.707 37.1
5 1.082 1.086 0.612 43.6
N=10
2 1.648 1.680 1.658 1.3
3 1.380 1.396 1.173 16.0
4 1.259 1.267 0.957 24.6
5 1.192 1.199 0.829 30.8
N=30
2 2.539 2.595 2.784 7.3
3 2.004 2.033 1.969 3.2
4 1.746 1.764 1.607 8.9
5 1.591 1.603 1.392 13.2
N =150
2 3.193 3.265 3.571 9.9
3 2.481 2517 2.525 0.3
4 2.131 2.153 2.062 43
5 1.917 1.932 1.785 7.6
N=280
2 3.977 4.068 4.500 10.6
3 3.061 3.105 3.182 2.5
4 2.605 2.633 2.598 1.3
5 2.323 2.343 2.250 4.0

load of p* at x = 4 c0. On the first intact fiber, s = 1, the two solutions achieve excellent
agreement for both the polymer and the metal matrix composite. For subsequent fibers,
the maximum stress for both the LEFM 1 /\ﬁ approximation and the complete solution
does not occur along the crack plane, but at a small distance on both sides of the crack
plane. As we point out in the next section which compares shear stress results, a rapid
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Fig. 6. Fiber tensile stress concentrations along (a) the axis of the 1st and 2nd fibers, and (b) along
the axis of the 5th and 20th fibers in a polymer-matrix composite predicted from the shear-lag
analysis, LEFM, and the complete solution.

double oscillation in the 1,, profile near the crack plane (¢, = 0) causes a slight “dip” in
the load profile of the adjacent fiber. Since the range of 8 over which this ““offset maximum”
occurs is fixed by material constants, this phenomenon occurs over a more substantial fiber
length on fibers further away from the crack tip. This perhaps provides another explanation
as to why cracks in anisotropic materials with statistical flaws would tend to grow
nonplanar. In the next section, we also show that the 7, oscillation does not appear in the
matrix bay containing the crack tip (rn = 1), which explains why this “dip” in g, does not
occur in first surviving fiber (Figs 6(a) and 7(a)).

Figure 8 shows the same results on a log-log scale to better observe the l/ﬁ behavior
for a polymer matrix composite. As seen previously, for r, the agreement is excellent but
the agreement weakens as r, increases in s, where the stresses in the both the complete and
LEFM cases tend to “‘rise” slightly when traveling away from the crack plane before
decaying. Therefore, the decay behavior of the two solutions is similar, but the LEFM is
delayed in || relative to the shear-lag case. Note that for s = 20 or r /¢y = 0.128, the shear-
lag results lie between those from the LEFM 1 /\/; and the complete elasticity solutions,
and therefore, the discrepancy is no worse than the discrepancy between the complete and
LEFM 1/,/F solutions.

Figure 9 compares the fiber stress concentrations at point » approximately r/cy = 0.05
away from the crack tip for N = 51 and N = 301. Using a modified ® for N = 51 and
® = 1/3 for N = 301, the two solutions produce nearly the same profiles. Also note that
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Fig. 8. Log-log plot of fiber tensile stress concentrations along the axis of the Ist, 5th, and 20th
fibers in a polymer matrix composite predicted from the shear-lag analysis, LEFM, and the complete
solution.
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Fig. 9. Fiber tensile stress concentrations at r/cy = 0.05 in a polymer matrix composite for N = 301
and N = 51 predicted from the shear-lag analysis and LEFM.

the two LEFM curves converge and the two shear-lag curves converge at a slight distance
away from the crack tip.

Earlier analysis leading to (29a) indicated that the relative discrepancy in o, is given
by the value of \/;/¢2 r G,/ EE,, . Since, typically, E,, « G,, in a polymer-matrix
composite, the error should be less for the polymer-matrix composite than the metal-matrix
composite and should die out in both cases as E,, is increased. Figure 10 shows a normalized
plot of the stress concentrations in fiber s = 5 ahead of N = 301 breaks using various values
of E,, (=4, 100, and 10°) or \/Jdﬂ ~ G, /\/EE,, (= 0.1414,0.028, and 2.8 x 10~°) for
the polymer matrix composite. This point corresponds to r/c = 0.0288 ahead of the crack
along the crack plane and thus, r/c > 0.0288 when traveling along the fiber. In this particular
case, we find that reducing the error to a negligible amount requires ¢ = E,,/E,, < 5x 107%
As E,, is increased, the maximum fiber stress in the LEFM 1/\/; calculation occurs at the
crack plane, but at a slightly lower value than that of the shear-lag model. This difference
is explained in Fig. 5, which shows the faster decay rate characteristic of the 1/\/; approxi-
mation. Figure 5 also points to the fact that the maximum fiber stress is extremely close to
that predicted from the exact solution (26). Figure 11 shows excellent agreement between
the two solutions when E,, = 10® in the LEFM solution for fiber s = 1 up to fiber s = 10.
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Fig. 10. Fiber tensile stress concentrations along the axis of the 5th fiber ahead of N = 301 fiber
breaks predicted from LEFM for various values of E,, and the shear-lag analysis.
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Fig. 11. Fiber tensile stress concentrations along the axis of the 1st, 2nd, 4th, and 10th fibers ahead
of N = 301 fiber breaks in a polymer-matrix composite predicted from LEFM with E,, = 10° and
the shear-lag analysis.

Similarly, when plotting the results on log-log coordinates (Fig. 12), excellent agreement is
observed in the decay behavior of the two solutions.

Equation (30) indicates that the error is much smaller when E,, » G,,. Therefore, as
we expected, similar trends are observed for a metal-matrix composite, but for much smaller
values of ¢, since ¢* = E,,/G,, is typically smaller in a metal-matrix composite. In a metal-
matrix composite, typically E,, ~(2 or 3)G,, so \/E/q‘)2 r /G, /(RE,) =1 /(\/iqﬁ), so the
value of ¢ = E,/E,, must be about 2 to 8 times smaller than for the polymer matrix
composite. To achieve the same agreement, we find that ¢ = 5 x 10~7 for the polymer matrix
and ¢ = 2.67 x 107 for the metal matrix composite.

Shear stresses along the fiber direction

We now compare the matrix stress 7,, predictions from the shear-lag and both the
LEFM model and complete elasticity solution for a crack of length 2cy with N = 301 and
for various choices of , where s = 1, 2, and 5. Given r, the 7,, calculation is for the matrix
bay s—1 which is just to the left of fiber s ahead of the last broken fiber. In the shear-lag
analysis, 7,, exists only in the matrix region and within a given matrix bay », and remains
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Fig. 12. Log-log plot of the fiber tensile stress concentrations along the axis of the 1st, 3rd, 5th, and
10th fibers ahead of N = 301 fiber breaks in a polymer-matrix composite predicted from LEFM
with E,, = 10° and the shear-lag analysis.
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constant with respect to y. Therefore, t,, calculated within matrix bay » only varies with
the fiber axial distance, x. Therefore, it is valid to compare the shear-lag shear stress profile,
1,, Vs &, In matrix bay » with that of the LEFM results at all distances r ahead of the crack
tip within matrix bay ». Results are given for the shear-lag solution, the complete elasticity
solution, and the LEFM 1/\/; solution, and as in the tensile loads, the x coordinate is
normalized to ¢, = x/(cy@’) = 2¢/N for the shear-lag results and ¢, = x/(c¢’) for the
LEFM 1 /\/; and complete elasticity solution results. Figures 13 and 14 plot the shear stress
concentrations (shear stress 1,, divided by far field tensile stress ¢* or p*/(w*h)) along the
fiber direction for the polymer matrix composite and the metal-matrix composite, respec-
tively, with properties as listed in Table 1. In all cases, the matrix bay surrounding the crack
tip experiences the highest shear stresses small distances &, away from the crack plane.
Within this matrix bay, the agreement between the two solutions is very good when the
shear-lag shear stresses are evaluated far from the crack tip. However, the agreement
weakens as r, increases in s. In subsequent matrix bays, the LEFM r,, undergoes a rapid
sign change near the crack plane or tends to oscillate sharply for one cycle when traveling
away from the crack plane before decaying. According to (29¢), this phenomenon is
expected and diminishes (but fails to die out completely) as ¢ — 0. In agreement with (24¢)
and (29%), when traveling away from the crack, the rapid shear reversal decreases in
magnitude as l/ﬁ but occurs over a larger fiber length, since the 8 range over which the
oscillation occurs is fixed by material constants. Therefore, agreement in the shear stresses
in the far field region does not improve. Considering that in the far field region, the LEFM
1/\/; solution ceases to be valid and the shear stresses are insignificant (z,, < 0.1) relative
to those created in the crack tip region, disagreement is expected. In the two dimensional
lamina, this single oscillation, where the peak shear stress rapidly changes from positive to
negative, would occur over several fiber diameters. Note, however, that the peak shear
stress of the oscillation is much less than the maximum shear stress in the first matrix bay.
Figures 13 and 14 also show that the maximum shear stress in the shear-lag 7., is slightly
higher and closer to the crack plane than that for LEFM ,,. In subsequent bays the decay
for LEFM is similar but delayed in |&| relative to the shear-lag case. Note that the dis-
crepancy is larger than in the case of g,. Aside from the near crack plane oscillation,
reasonable agreement between the shear stress profile of the two solutions and for the
polymer and metal matrix composites can be achieved within 10 matrix regions or within
the crack tip region. In addition, both analyses show the same axisymmetric profile,
reduction in the maximum shear stress, and shift away from the crack plane of the location
of the maximum shear stress.

Earlier analysis before (29h) suggests that the relative discrepancy in t,, is generally
given by the value of the parameter \/E/d) x /G, /E,,. Again, this discrepancy would be
less for the polymer-matrix composite than the metal-matrix composite and should die out
in both cases as E,, is increased. However, in the case where 6 is near the origin, (i.e.
6 < 0,,), where 1,, rapidly fluctuates, the range over which 1,, changes sign decreases, but
fails to die out as ¢ — 0. This is suggested by 529b) and (29¢). Figure 15 shows a normalized
plot for the same set of values for E,, and \/G,,/E,, for the polymer-matrix composite for
N =301 and for matrix bay 4 or for r/c = 0.0288 when ¢, = 0. Clearly, as E,, increases,
the shear oscillations do not appear in the crack tip region, and are in fact delayed until »
reaches matrix bay n > 10. This effect was observed previously and is related to the
elimination of the “dip” in the LEFM tensile stress profile of fibers s = 2, 3, .... However,
the LEFM 1., and the shear-lag t,, achieve good agreement as a result of an increased
transverse stiffness £, . For a metal-matrix composite, similar behavior occurs, but for
values of about ¢ = E,/E,, which must be about 2-8 times smaller.

Figures 16 and 17 compare the shear stresses at a point corresponding to the far right
edge of matrix bay s—1 evaluated at a distance r, = [s— 1 +®]w* (see eqn (33)) from the
crack tip predicted from LEFM with E,, = 10° and from the shear-lag analysis. Clearly,
the LEFM 1,, peak stress is about half that of the shear lag 7,,. We expect that the LEFM
shear stress would be lower since it is evaluated at the far right edge of a matrix bay, which
in the continuum version carries tension thereby leading to a reduced shear stress at the
right edge. This suggests that we could improve shear stress agreement simply by choosing
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Fig. 13. Shear stress concentrations vs ¢, (a) in the matrix region to the left of the first intact fiber,
bay 0, (b) in bay 1 and (c) in bay 4, in a polymer-matrix composite predicted from the shear-lag
analysis, LEFM, and the complete solution.

a point closer to the crack tip but in the corresponding matrix bay. For instance, recal-
culating using ®/9 in place of @ in r, of eqn (33) would provide the three-fold increase in
the peak shear stress required for agreement in Figs 13(a) and (16). We, however, elect to
remain consistent with previous shear stress calculations, but agreement improves rapidly
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Fig. 14. Shear stress concentrations vs £, (a) in the matrix region to the left of the first intact fiber,
bay 0, (b) in bay 1, and (c) in bay 4, in a metal-matrix composite predicted from the shear-lag
analysis, LEFM, and the complete solution.

by bay 4 (Fig. 17(b)). Figure 18 shows the same results for bays 0, 2 and 4 on a log-log
scale natural to observing 1 /\/; behavior. Again, although the shear stresses from the
LEFM solution are shifted downwards because of the chosen location of calculation, the
two solutions have similar longitudinal decay behavior.
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Fig. 15. Shear stress concentrations vs £, in bay 4 in a polymer-matrix composite predicted from
LEFM using various values of E,, and the shear-lag analysis.

Since we are comparing results from linear elastic models, we expect unrealistically
high predictions for the tensile and shear stress concentrations at the crack tip. From the
extremely high shear stress concentrations found in Figs 13(a) and 14(a) for both composite
types, it is reasonable to assume that interfacial debonding and plastic matrix yielding
will most likely occur and consequently reduce the inner crack tip stress concentrations.
Therefore, the corresponding tensile loads in the nearby fibers predicted from these linear
elastic models are much higher than those which actually exist. For instance, from Figs
13(a) and 14(a), the maximum shear stress concentration in the matrix region surrounding
the crack are 8.27 and 3.08 for the metal and polymer composite, respectively. If we assume
typical values for the shear yield stress 7,, 7, = 50 MPa for the polymer matrix and 7, = 200
MPa for the metal matrix, then the corresponding applied tensile loads to initiate yielding
at the crack tip are p*/(w*h) = 16.23 MPa and p*/(w*h) = 24.18 MPa, respectively. Then
from Figs 6(a) and 7(a), we find that the corresponding maximum tensile loads in the first
intact fiber are 1213 MPa for the polymer matrix and 1806 MPa for the metal matrix. These
values are much lower than the fiber strength for this length scale which is more like 5-10
GPa or higher. This means that edge stresses a* large enough to break fibers at the crack
tip will cause massive matrix yielding and debonding.
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Fig. 16. Shear stress concentrations vs £, in bay 0 in a polymer-matrix composite predicted from
LEFM with E,, = 10* and the shear-lag analysis.
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Fig. 17. Shear stress concentrations vs &, in bay 1 and in bay 4, in a polymer-matrix composite
predicted from LEFM with E,, = 10° and the shear-lag analysis.
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Fig. 18. Log-log plot of the shear stress concentrations vs &, in bay 0, bay 2, and bay 4 in a polymer-
matrix composite predicted from LEFM with E,, = 10° and the shear-lag analysis.
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Transverse tensile stresses

Next we compare the transverse tensile stresses, g, for a crack of length 2¢ = 2¢y with
N = 301 and for the first intact fiber, r, where s = 1. Results are given for the 1 /\ﬂ LEFM
solution only, since the shear-lag model does not generate these stresses, and therefore, the
x coordinate is normalized to &, = x/(c¢’). Figure 19 plots the transverse tensile stress
concentrations perpendicular to the fiber direction for the polymer matrix composite. In
Fig. 19, E,, is varied from 4 to 1 x 10° or ¢ = E,,/E,, is varied from 12.5to 5 x 107*. Clearly,
these stresses resemble a narrow spike at &, = 0 which increases with E,,. Equations (29f)
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Fig. 19. Transverse tensile stress concentrations along the first fiber in a polymer-matrix composite
predicted from LEFM using various values of E,.
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Table 4: Behavior of transverse tensile stress o, in polymer matrix setting
as E,, and distance ahead of the ““crack” is increased

Transverse stresses, o,/c*

(E,) potymer 4.0 100 1x10° I x 108
Casel. s=1 rjcy=10.0022

eqn (29f) 4.252 21.260 672.30 2.13x 10
=0

eqn (24b) 4.253 21.262 672.31 2.13 x 104
0=0

Case2. s=1 rjcy=100022

eqn (29g) 0.3674 0.9679 6.1734 35.5652
8 =mn/2

eqn (24b) 0.1225 0.3222 2.0572 11.8548
0~ nj2

Case3. s=3 ricy=00155

eqn (29g) 0.1911 0.4273 2.4032 13.5142
0 =mn/2

eqn (24b) 0.1202 0.3192 2.0538 11.8512
0~ n/2

Cased. s=06 rfcy=0.123

eqn (29g) 0.0918 0.2419 1.5434 8.8915
0 =mn/2

eqn (24b) 0.1188 0.3168 2.0505 11.8478
0~ n/2

and (29g) suggest how these stresses should increase with ¢ and ¢. Table 4 compares the
asymptotic approximations (29f) and (29g) with the o,,/d* stress field eqn (24b) for 6 = 0
and 0 = 7/2, respectively, and for N = 301. In this table, E,, is varied from 4 to 10°* with
E,, and G,, fixed at 50 and 2, respectively, and for s = 1, 3, and 6 or for 0.002 < r/c < 0.03
ahead of the crack traveling along the fiber. As shown in Table 4, the predictions of (29f)
and (29g) work well. A main point is that these stresses are generally much larger than the
matrix can sustain elastically.

6. CONCLUSIONS

In this study, we have restricted our attention to a unidirectional composite lamina
containing a few hundred fiber breaks aligned on the y-axis and under uniform tension.
For this case, the stress calculations from the LEFM and BIS technique do achieve good
agreement in the crack-tip region where LEFM is valid. Also, this study shows that
agreement improves as E,,/E,, — 0 or when the transverse stiffness greatly exceeds the
longitudinal stiffness of the composite. Agreement between this shear-lag theory based
analysis and LEFM for a center crack composite lamina, not only increases confidence in
the shear-lag model and reinforces its validity, but it also emphasizes some advantages of
the shear-lag model. The BIS analysis has the advantage of evaluating the key stress
distributions everywhere in an inhomogeneous, unidirectional fiber composite given any
number (from one to several thousand) and any configuration of fiber breaks. This shear-
lag approach can analyze a discretized composite lamina on a microstructural level or at
the length scale necessary to find the fiber loads and displacements due to only a few breaks.
Recall that a unidirectional composite is inhomogeneous primarily due to the variability in
fiber strength and therefore, agreement between the shear-lag model and the LEFM solution
for a crack containing only a few fiber breaks is not expected. On the other hand, unlike
the shear-lag model as developed so far, LEFM also provides crack-tip stress solutions for
Mode II and III cracks and under other combinations of loading.

In evaluating the fracture behavior of a fibrous composite, it is important that the
analysis accurately predict the location, as well as the magnitude, of the maximum stress
concentration. Since fiber strength varies along the fiber length, weaker fiber elements lying
near the crack plane where the fiber is overstressed are most likely to break next. As an
elastically deforming matrix can efficiently transmit load away from fiber breaks, the
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overstressed region is approximately only a few fiber diameters. Thus, considering the
likelihood of fiber failure anywhere in the overstressed region, fiber breaks may progress
from fiber to fiber in a non-planar fashion until the composite reaches fracture instability.
Experimental observations show that subsequent fiber breaks do indeed occur in the vicinity
of the crack tip but not exactly in line with the crack (Awerbuch and Hahn, 1977 ; Jones
and Goree, 1983). Clearly, if crack extension is non-planar then stress concentrations
surrounding the fiber breaks are not as severe as those calculated assuming planar extension.
Furthermore the energy required for crack propagation will be increased. The BIS technique
can evaluate stresses surrounding any configuration of breaks and therefore, account for
non-planar crack extension.

In many cases, the matrix in fibrous composites may exhibit plastic behavior leading
possibly to a more ductile type fracture in the composite. In these composites, matrix
yielding and debonding of the fiber-matrix interface occurs in regions around fiber breaks
altering the matrix’s load transmission capabilities. As a result, the stress distributions in
the matrix and fibers are altered and less severe (Beyerlein er al., 1995). In any case, it
would be unrealistic to assume that the material behaves elastically in the region surrounding
the crack tip. The two solutions compared in this study assume infinitely linear elastic
behavior and, therefore, do not account for the inelastic behavior of the matrix. As a result,
the crack-tip stress fields from both analyses contain unrealistically large values of fiber
stress and matrix shear stress. Thus, these analyses would overestimate notch sensitivity or
conservatively predict fracture strengths and so perhaps neither approach is valid for ductile
matrix composites. However one suspects that when crack tip plasticity is introduced into
the orthotropic LEFM theory and the results compared to shear-lag theory with an elastic-
plastic matrix, so that large stresses are mitigated, the two theories will agree even better.

Considering this aspect further, recent exact analysis and accurate numerical cal-
culations for one fiber break (modeled as a penny-shaped crack) in a three-dimensional
composite have suggested that the shear-lag model gives unrealistic results for nearby fiber
loads (Nedele and Wisnom, 1994; Case and Reifsnider, 1995). The difficulty with these
linear elastic crack analyses, however, is that the matrix at the fiber break (or crack tip
singularity) is predicted to have both axial tensile and shear stresses much higher than it
can sustain in reality. In other words, if the unloaded fiber tensile stresses are not transmitted
through shear to the adjacent fibers, they must be supported by the matrix at unrealistic
magnitudes.

Models which account for plastic behavior before fracture and for non-planar crack
extension better represent the fracture behavior of unidirectional fibrous composites. This
is one reason why LEFM is inappropriate for predicting fracture in fiber reinforced metal-
matrix composites and in any case, adding in plasticity for an orthotropic material is
computationally a formidable task. On the other hand, the shear-lag model is a structurally
based, simplified model which can potentially account for these various forms of damage.
Previous work in extending the shear-lag model to account for plastic yielding achieves
good agreement with experimental observations (Goree et al., 1989). Also, other shear-lag
based Monte-Carlo simulations and analytical models that incorporate matrix yielding
and/or debonding find that the plastic yield zones are much larger than that of the theoretical
plastic zone which surrounds the crack tip and relaxes the l/ﬁ stress singularity (Goree
and Gross, 1979 ; Goree et al., 1989 ; Rossettos and Olia, 1993 ; Tirosh, 1973).
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