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Waviness alters both geometric and mechanical properties of stochastic fibrous networks and
significantly affects overall mechanical response, but few results are available in the literature on the
subject. In this work, we explore the importance of the dimension of constituent fidi@res 2D

in determination of percolation thresholds, and other fundamental statistical properties of fibers
having geometric waviness, in adaptation of classical theories on random lattices to practical
applications, including analysis of nanotube ropes and collagen bundles. Although the so-called
“curl ratio” clearly affects the statistical properties, as evaluated by Kallmes and Corte a few
decades ago, we have found some results in this classic work to be inaccurate for systems containing
fibers of moderate waviness. Our main findings include the independence of the mean number of
crossings with regard to waviness, as well as the nonlinear dependence of probability of intersection
on waviness. Our investigation of percolation in wavy fiber networks reveals that the percolation
threshold is significantly increased, with increasing curl ratio. In addition, several nontrivial results
related to network properties of infinite straight lines are also described, some of which are believed
to have wide applications in practice. @004 American Institute of Physics.
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I. INTRODUCTION tistically predicted crossing density is an important first step
_ in materials analysis.

Kallmes and Corteconsidered the effects of moderate  systems of infinite, straight fibers were investigated,
curvature in fibers on the geometry and moduli of papergassically, by Goudsnfitwho derived several geometric
several decades ago, following work on the statistical geomf)roperties of such materials, including the number of poly-
etry of straight-fiber network&.* Since that time, the behav- "t g by lines, and the average number of sides per
?ors ,Of many similarly cqnstructed systgms have been Stuqgolygon. MileS* later studied these systems in more detail,
led, including “nanoarchitectured” materials, from structural deriving the mean perimeter, area, and statistical distribution

. ’6 .
proteins® to cgrboh nanotubés (Fig. 1). Common featurgs of number of sides of internal polygons. Richdfdeported
of such materials include the random arrangement of fibers

their high aspect ratiflength/diameter and their moderate S?TE furrt:zr i:atlsti:tal tﬁ;ﬁilas,t;]nclud:ng t:e miznﬂs]epzrantratur)]n
to high curvature. Or two random points e polygons, a e mea

It is important to distinguish between fiber crossing den_mom.ent' of !nertla of the polygons.. Later, Tantiederived
sity, a statistical quantity, and fiber bond density, Whichthe distribution of the numbers of sides o_f the pqugons. All
arises from the material properties and/or processing condP’ these approaches relied upon analytic solutions for the
tions for a material. However, significant fractions of fiber Probabilities calculated, for infinite systems. Direct simula-
crossings immediately form bonds in many systefes., t|on_s of flf‘!lte networks containing fibers Qf f|.n|te lengdire.,
polymer-coated paper fibersDensities and distribution of having finite “staple lengths” referred to in literature on pa-
bonds in random fibrous materials are critically related toP€ have shown that they can have significantly different
their mechanical properti€si! loads are more efficiently internal geometry than infinite fiber systems, particularly of
transferred through tensiofstatically determinate, or trian- low density?*°
gulated systemsor a combination of tension and bending ~ Quantitative description of random networks of wavy
(statically indeterminate systeinshan through frictionien-  lines were first provided by Kallméand Corte**who sys-
tangled systems Comparisons of material properties, e.g., tematically expressed structural averages and totals in terms
modulus, with theoretical properties of a perfectly bondedof the number and dimensions of the structural units. The
system can allow inference as to the percentage of crossindmtter quantities were termed “independent variables,” in-
which actually form bonds. Thus, determination of the stacluding the number of lines per unit area, and the mean
length and width of constituent fibers. The statistical aver-
dauthor to whom correspondence should be addressed; electronic maif9€S and totals were termed “dependent variables,” and in-
amsastry@umich.edu cluded the total number of fiber crossings, the mean segment
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(1) To develop a general methodology for characterizing
nonstraight, finite-width fibers, including kinked or curly fi-
bers.

(2) To determine the probabilistic crossing densities in a
range of finite-length fiber networks, and the deterministic
crossing densities in infinite systems.

(3) To determine apparent fiber densities in these net-
works, accounting for overlap, in order to readily allow im-
age analysis of these systems for determination of volume
fraction in thick-fiber or high-density systems.

(4) To convey the importance of the dimensidd® vs
2D) of the fibers in determining percolation thresholds: in
particular, to determine the effects of finite thickness, curli-
ness, and density on percolation threshold in fibrous systems.

II. CHARACTERIZATION OF CURLY, FINITE-WIDTH
FIBER SYSTEMS

A. Mean curvature

Kallmes and Cortkintroduced the concept of a curl ratio
7, the ratio of fiber running length to end distances, to
describe the degree of curliness. This quantity, however, is
not sensitive to local variations in curvature. For example, a
closed circular ring fiber and a closed rectangle ring fiber
b both haver=«, but have vastly different appearance, and, as
( ) we will show, properties.
FIG. 1. (a) A scanning electron microscopy image of nanotube sheets show- The centerline of a two-dimension&D), curly fiber
ing the wavy fiber segmentgb) an atomic force microscopy image of can mathematically be described via two functions, namely,
epineurial collagen from a diabetic BioBreading rat sciatic nerve. y=1(s), x=9g(s), se[0\], wheref andg are functions of
the positions along the direction of running length. As a
substitute for curl ratio, we can calculate a “mean curvature”
k, defined as the mean value of curvature along the running
length, and total number of polygons formed. The analyticalength, per
solutions derived showed the number of fiber crossings to 1
strongly depend upon curl ratio, Kallmes’ and Corte’'s mea- k= —f xds

sure of curlines$. This rather counterintuitive finding for A
Poisson lines led to the present work, in which we establish 1
B B H _ yXX 2\ 1/
several apparent errors in this classic work, and also develop = Kf —23/2(1+yx) 2dx
some potentially useful relations for image analysis of fi- (1+y3)
brous architectures. Specifically, we investigate both analyti- 1
cally and numerically, in infinite and finite systems, respec- — _f Yxx dx 1)
tively, the dependence of crossing density on curliness, mean A 1+y)2(

area of intersection for finite-thickness fibers, and percola- . . o
. - L and a “mean curl radius’t, per the usual definition as the
tion onset. It is important to note that for two noncoincident,. .
. : . ! : : inverse of curvature, i.e.,
intersecting, straight fibers, the number of crossings is ex-
actly the probability of intersection, because therecanbeone _ 1 (1 1 (1+y)2()2
and only one crossing point. Multiple crossing points are fzxf ;dx= Xf —yxx dx. 2
possible, however, for two curly fibers, and thus the “number o _ _
of crossings” is no longer equivalent to “probability of in- Fibers comprising segments of circular arcs, sweeping angle
tersection.” a, have mean curvature
We also calculate mean fiber segment length and seg- o

ment length distributions, where a segment is defined as the «=s——.

. T ) . 2 sin(al2)
distance between two consecutive intersection points along a
fiber, for the networks studied. In image analysis, mean cov- In two applications of network modeling, namely,
erage and mean width of fibers are readily measured, and smllagens® and carbon nanotubé$ fibers present approxi-
we specifically examine the relationship of these two keymately as sinusoids. The running length and mean curvature
parameters to other network statistics. Thus, we set out thef sinusoidal fibers of negligible width, defined generally by
following four general objectives in the present paper. y=Asin(wx), xe[0,d], are determined from

()
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7l w
A= f V1+A2w? coS(wx)dx
0

1 (=
= —f J1+A202? co?(t)dt (4)
w Jo
and
1 (7le 1 (= Aw sint
:_f yxxz :_f# L (5)
NJo 1+y2 N Jo 1+A%w? cogt
respectively. The curl ratio for these fibers is simply
N1
T=—= —f V1+A?w? cos(t)dt. (6)
d T Jo

We can further derive an explicit relation between curl ratio
7 and angular frequency for a sinusoid, via evaluation of
the previous integral, yielding

_ 4
K= Xtan‘ YAw). (7)
B. Number of crossings

Kallmes and Cortk claimed that for curly fibers, the
total number of interfiber crossings is

(N¢N)?
e 7S 83
or,
2
X
NC:W_S’ (8b)

Yi, Berhan, and Sastry

%]|sin0|.

(10)
The probability of intersection of any two arbitrary segments
of lengths ¢ and 7 is then the integral of this area over
06<[0,7], i.e.,

1 (mén 2¢m
p(&n)= Wfo S |sing|do= e (11
A curly fiber can always be approximated by straight seg-
ments of infinitesimal size. Thus, the number of crossing
points intersection between two arbitrary fibers and \,
can be determined from a summation of the probabilities of
the intersections of all of their constituent straight segments,

per

Nc()\l!AZ):kZl q§=:1 P(ék,mq)

o < 2&mq
k=14=1 7S
2\ 1\,
- 7S

, (12
where¢ and » now represent the constituent line segments of
fibers\, and\,, respectively, anan,; andm, are the seg-
ment numbers on each of the two fibers. We readily deter-
mine the total number of crossings oy, Ai,ohy, 1O be
N N
i=fl§:j=fl,j=1
TS

Nf )\2

2122 =1

2

N
NN (BTGNS

Ne TS

, (13

where the factor of 1/2 corrects for the fact that intersections
where y represents the sum of the end-to-end distances faare implicitly counted twice, once on each fiber. For a large
all fibers,Sis the area of the domain in interest. This relationnumber of fibersN¢>2, we have
is derived by assuming that the probability of intersection for

N¢ 2 Ng
two curly fibers is identical to that for two straight fibers, )\_) >2 A2 (14)
with the same end-to-end distances. An immediate implica- = =
tion of this result is that the number of crossings in a fibrous
. . : . —and consequently,
system is strongly inversely proportional to the curl ratio
(i.e.,N.~1/7%). Furthermore, the solution is apparently only (E-Nfl?\i)z L2
valid within some range of, in light of unrealistic solutions NC%';—S =g (15

obtained for the limiting cases of straight or bent fibers, at
any density. We thus reexamine calculation of the number ofegardless of the length distribution, wherds the sum of
crossings as follows. the fiber running lengths. Note that this reduced solution
Statement: suppode; fibers of arbitrary shapes are de- takes the same form as that derived by Miésthough
posited randomly in an arbitrary two-dimensionidD) do-  Miles’ solution was derived in the context of straight lines.

main of areaS Assuming fibers have the lengths,,
Aoseoo AN the mathematical expectation of the crossing

number is then exactly
N N

(S AP =2 0]

7S '

9

Proof: Consider two arbitrary straight-line segments, of
lengths¢ and 7, where @ is the angle between the two seg-
ments. The probability that these two segments intersect i

the ratio of the area of a parallelogram formed by the two

vectors, and the total area of the domain, namely,

Downloaded 06 Aug 2004 to 128.119.70.31. Redistribution subject to AIP

Previously, it was shown that all dependent variables can
be calculated fronN,.'* For example, the mean segment
length is

N N
Ei:fl)\i_ WSEi:fl)\i
2Ne 21z A== A2

(16)

C

If the fibers have the same length thenN, can be simpli-
fied as

N2Ng(N;—1
N NN = D)

¢ 7S

S

(17)
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which are shown in Fig. 2. Indeed, analytical determination
of the number of fibers in a particular joint would require a

very tedious categorization of the connecting graphs. Thus,
we reserve discussion of these properties for Sec. IV, in
which we describe results of Monte Carlo simulations of

such systems.

The mean segment length (measured equivalently as
either the mean centerpoint-to-centerpoint length, or the
mean length of the sides of the internal polygoissnvariant
to fiber width, as pointed out earlier by Milé€ombination

of Egs.(16) and (21) gives an explicit relation for this pa-
FIG. 2. A cluster formed by the overlapping junctions between three thickrgmeter namely.

fibers.
JR—ka 23
Cz—'
whereNs is the total number of fibers. 2log(1—H)
If we normalize the parameters, i.e., we choose the fiber N ' .
length to be 1 and the domain area also to be 1, we obtainE. Probability of intersection
N¢(N;—1) For systems containing fibers of very high curvature, the
T (18 crossing events are not independent of one another. Other-
_ wise, locations of crossing points in a fibrous system are
and the mean segment length is then Poissonian, with the segment length distribution
- f(1)=pexp(—pl), (24)
I 2N —1)" (19

wherep is the density of crossing points, or the reciprocal of
C. Effect of finite fiber width mean sggment Iepgth,l;Ll The probabll!ty that an arbltrary
fiber is isolated, is exactly the probability that no intersec-
The preceding derivations were based on the assumptioions occur on that fiber, namely,
that the fiber widths are negligible. We can develop similar
results, however, for systems of fibers of finite widths, from Pisg™exXp(— p\). (29
first principles. Assuming that any Poissonian system hagqr two arbitrary fibers of lengths, and\,, the probability
coverageH in domainS deposition of a small object of area s intersection is
dC will result in a small increment of coveragkH. It fol-
lows thatdH=(1—H)dC/S. Integration of this relation im- PANDY
: P(Ni,N\p)= ,
mediately leads to S

(26)

H=1-exp(—C/9), (200 assuming the fibers intersect at a single point. This solution

whereC is the total area of the individual objects. This gen-iS not valid in circumstances where fibers can intersect at
eral expression gives the mean coverégearea fractionof multiple points. Fpr exgmple, fqr two identical, circular fi-
any homogeneous Poissonian systérit.follows for a sys-  bers, the probability of intersection is

tem of curly fibers that 472 A\,

p( Ny )\iwi) PMiN))=—5— =5 27
H=1—exp — >, —~ |- (21)

=1 which is exactly half of that derived in E¢26).

Kallmes and Cortederived an expression for the mean

D. Image analysis and network statistics: Mean common area between two fibers as
coverage and mean width

aa
In image analysis of porous fibrous materials, e.g., car-  §,=—=Ww?2. (28)

bon nanotube sheetsnean coverage of the fiber phase and 2

mean fiber width are readily obtained. These two parametershis result was based on Mack's earlier derivatioof the
can be used to determine the number of crossings and othgrobability of intersection between two arbitrary, two-
statistical properties of the network. Specifically, from Egs.dimensional, convex domains of areds, &,, and perim-

(17) and(20), we find that etersU, andU,, respectively. The solution,
Slog?(1—H) 81+ 8+ U Uy /(27
Ne=— 7 (22 IR e (29
W S

where w represents the mean fiber width. Equati@®) is invalid for curly fibers, because they are not convex. For
clearly does not account for possible overlap between finitexample, for two circular fibers having circumferential
areas of interconnections among crossing fibers, examples tdhgths\ ; and\,, the probability of intersection is equal to
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— m/é\m

(a) (b)

FIG. 3. An illustration of fiber shape transition from curl ratie 1 to 7=o0.

(@) (b)

. . . FIG. 4. Schematic showing the notation used in derivation of percolation
N./2, with N, given by Eq.(12), since there are exactly twWo properties for infinite fibers.

crossing points for each intersection. As a result
Ne  AAs
P = rs %0
whereas EQq(29) gives
0+0+(2N)(2No)/(27)  2Nq\,
L S T Tas

The inconsistency between the solutions of E@f) and

Comparing this property to that obtained for the systems of a
circular fiber “rings,” the percolation density would be
equivalent to that of fully overlapping disks, i.e.,

(31 pemr2=67.634% (35

based on Quintanilla’s recent measurenf@rthis leads to

(31) illustrates the dependence of probability of intersection =, (27r)2~8.499. (36)
on fiber waviness. Specific comparisons are detailed in
Sec. IV. Therefore,y, is clearly a function of curl ratia, i.e.,

Ye— ¢(7). (37

F. Percolation threshold

Percolation is a collective event arising from intersec-|||, CHARACTERIZATION OF STRAIGHT, INFINITE
tions among individual members in a network. Since fiberFIBER SYSTEMS
waviness affects intersection probability, it also affects the
network percolation threshold. From earlier work on straight ~ Consider a fibrous network constructed by homogeneous
fibers}svlg we know that, for fibers of |ength and critical depOSition of infinite Straight lines of densim that iS, the
density Pc (number Of ﬁbers per unit aragat perco|ati0n, tOta| Iength Of Iine SegmentS ﬁSper Unit area. If a Simulation

pA2~5.59+0.05 is an invariant. window of finite size is used to measure the statistical prop-
For a network formed by curly fibers of uniform shape, erties of the network, scaling effects will be inevitably in-

we can show that, given by volved. The percolation problem of such a finite zone is non-
o trivial, since the network in question does not always
Y=pA (32 percolate. Nevertheless, if we define the term “percolation”

is also invariant with respect to different length scales, a@s the condition in which a single line, and not a cluster of
percolation onset. The parametgrcan therefore be used line segments, crosses opposite sides of a domain, it is pos-
conveniently as a standard measurement of “percolatiosible to derive some fundamental solutions from the statisti-
threshold.” We support this with a brief explanation. Consid-cal theory, without resorting to estimation from Monte Carlo
ering an arbitrary fibrous network, which percolatespat ~ Simulation.
we can enlarge any subdgmain grbitrarily, without. alteringy percolation probability
the fibers’ shapes and relative positions, or percolation status.
Supposing we increase each edge dimension by fattoe., The first problem is to determine the probability that no
the domain area is magnified Iog?, fibers’ running length lines span the boundaries of a given domain. Consider the
becomesnh and fiber density is reduced tg./m?2. Hence, intersection of a line and a square domain. Clearly, there is a
y=pc/m?* (m\)2=p A2 On the other hand, if constituent band region in which the line at a fixed angle spans opposite
fibers form closed domains, an alternative quantity, “reducecsides of the domain, as shown in Figa The widthg of the
density” 7=p.A, may be used to serve as a measurement dpand region is
percolation threshold, whererepresents the area formed by
a closed fiber ring.

We consider a specific case of the effect of curl rattm  where 6<[0,7] represents the inclination angle of the line,
v. Suppose a straight fiber is bent about its mid point asinda is the length of a side of the square. If a single line is
shown in Fig. 3. For an end-to-end distance of zero, theleposited into a large domain of ar8athe probability of
system properties match those of a system having straigliinding an arbitrary square region percolated by the line is
fibers of lengthA/2. Thus, at the percolation point we have

g=al|cosé|—|sing||, (39

gl all||cose|—|sing||
pc(N/2)?~5.59. (33 P=35= S : (39

Per the previous definition, we have

where 6e[0,7/4]. If there are multiple random lines with
Ye=pA?=5.59x 4=22.36. (34  lengthl; (i=1,2,...), as shown in Fig.(8), we have
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_ 4 4 . For a circular domain of diametex;, the probability of find-
> aljllcosé|—|sin6||=—aL | [cos6—sin6|de ing no lines crossing the domain is simply
™ 0
B 4(\2-1) exp(—ap). (49
B T aL, (40 B. Mean length of line segments

whereL represents the total length of the line segments. The ~SUPPosing an infinite line at inclination anglecrosses
union area of all the line segments is then given by anaxa square domain, the mean length of the line segments

truncated by the four sides of the square can be written as
p( 4\2-1) L

> S

a (41)

1
Azai[(lﬂane)+(1—tan0)]sec¢9/(1+tan0)
The probability of finding that the square is percolated by at

least one line is equivalent to the ratio of the union area and _ a _ (50)
the domain area, namely, cosf+sing’
Sunion 4(\2-1) where 0e[0,7/4]. Therefore, the mean length of the trun-
S =1- P(— — . @ (42)  cated lines at all angles is
When the size of the square is sufficiently small, iap, _ 4 (4 a _a _
<1, this probability becomes after Taylor series expansion A 7)o COSOH+ sineda \/Eln(\/i+ 1)~0.6232.
p~0.527p. (43 (5)

Applying Eg.(15) yields the relation between the number of

Likewise, the probability of finding that all of the lines per- intersections and the total number of fibers,

colate the square domain is

(0.6232N¢)?
4(\2-1 Ne=————~0.1236\%. 52

l—exp{(#—l)apj. (44) ¢ ma? f 52

Thus, the number of crossings is solely a function of the

Trivially, the probability of finding no line segments residin . . ,
MY P ity ottinding ! g aing number of fibers, for straight fibers.

inside the square is
4 wl4 4
exp{ —ap— \/ff cosada) =exp< ——ap
m 0 w IV. SIMULATIONS: CURLY AND STRAIGHT FIBER
SYSTEMS

This general method also applies to other domain
shapes. For example, the probability of finding that no lines  We verified several of our solutions for finite fibers using
are contained inside an equilateral triangular domain of sid@lonte Carlo simulations. First, we investigated use of our
lengtha is analytical solution for the number of crossings in systems of

curly fibers, with specific emphasis on determination of veri-
6 6 3ap i g ) N
ex _ap_f cosfde | =exg — — . (46) fication of the independence of the number of crossings on

a Jo a
In more general, for am-side equilateral polygon of side

fiber shape.
Next, we investigated the effect of finite width on mean
lengtha, whenn is an even integer, the probability of finding
no lines across the polygon would be

. (45

coverage and mean width numerically, since these param-
eters are critically important in image analysis of fibrous sys-
tems. Finally, we performed simulations of probability of
1 2n (n—2)m/2 intersection, as a precursor to determination of percolation
exp( —ap sin(#/n) (n—2)7rf cosod 9) threshold in various curly, kinked, and straight-fiber systems.

0
A. Number of crossings

2n T
=ex;{ _ap(n——Z)wCOSﬁ> (47) To verify our solution, Eq(9), we studied curly fibers of
sinusoidal shape of the form= A sin(wx). To fiber lengths
and whenn is an odd integer, the probability becomes controllable, periodic boundaries were applied to the net-
works. Meanwhile, all parameters, includingA, andw, are
cos assumed fixed. In all simulation8,=0.05 and unit running
exp| —ap 2n  2n J(”‘Z)”’z cosdde lengths for fibers were usedrig. 5. Simulations were re-
- (n=2)7 Jo peated for different number of fibers; results are shown in
S'”ﬁ Fig. 6. We can see that excellent agreement is achieved be-

tween the numerical results and the theoretical solution using
Eq. (9). Clearly, the number of fiber crossings is invariant to

B 2n T ™ 48
=OXP —ap Ty COS Cosy 48 fier shape.

n—2) n 2n
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1
Q08
a
N
(@ (b) Sos
FIG. 5. Random networks of 100 fibers of unit running length and ampli- -§
tude A=0.05 for(a) =10 and(b) »=20. =
£ 04
S
zZ
B. Finite fiber widths: Image analysis and network 0.2
statistics
Our previous analytic solution for the number of cross- 0y : s . : : . >
ings in a fibrous system, E9), is valid only for very thin fiber width <10°

fibers. Because of the tedious nature of an analytic calcula-
tion of the number of crossings in a finite-width network, we FIG. 7. Number of fiber crossings as a function of number of fibers. Over-
conducted Monte Carlo simulations to develop empirical re_lapping junctions are considered t_o comprise single_ cros_sings. Result_s are
. . normalized by the number of crossings, without consideration of fiber thick-
lations for a range of such systems. The joint formed by twQq, .o
crossing fibers of widtlw, and inclinationse and 8, com-
prises a rhombus, of side length
w=— w _ (53) our Monte Carle results are compared to an analytic result
sin(a—pB) reported earlier by Cort¥, namely,

The four vertices are

Ne=3(1+e NMW)NZN?/ 7S, (55)
*+cosa=* cosp
X—Xo:WW Our simulations were performed in a unit cell, using 200
+sina+sing (54)  fibers of unit length. Fiber widths were varied to determine
y_yozww the effect of width orN. . Clear differences are seen between

simulations performed here and the prior analytical
wherex, andy, represent th& andy positions of the cross- solution™*

ing point of the two center linegor, fiber axes Once the

four vertices of each joint rhombus are located, the connec-

fcivity betyveen joints can be examin_e(_j by determining thec Probability of intersection

intersection status between each individual boundary line of

each rhomboidal joint. The total number of clusters de- 10 illustrate the dependence of intersection probability
creases with increasing fiber width, since joints inevitablyon fiber waviness for a specific shape of fiber, a series of
merge, forming fewer, larger clusters. This intuitive resultSimulations were performed using two sinusoidal fibers of
was verified by simulation results shown in Fig. 7, whereinhalf period. A unit size simulation window and two fibers of
unit length were used in these simulations. Ten thousand
simulations were performed in each case and the results were
averaged. In the results presented in Fig. 8, the intersection
probability was normalized against the result7ato, and
interpreted as a function of the curl ratip using Eq.(6).

| Because the two fibers act as straight fibers of lenythad

N2 in the two extreme situations of zero and infinite curl

=== Eq.{9)

71 % simulation, w=20
Q simuiation, v=40

..... Eq.(8), w=20
v EQ8), w=40

T
X
Z
& 9 1 ratios, respectively, we have
£ :
<] 2
s 3 ! Pin(7=0)=—3 (56)
£ and
3
[ =4 1 |
( ) 2(M2)2  \? 57
. . . inf(T=0)= ————= ——.
% 100 200 300 400 500 Pint 7S 27S

number of fibers, N, Thus, the normalized probability monotonically decreases

FIG. 6. Simulations, and present and prior analytical resuilts for the numbeWVith curl ratio, asymptotically approaching a value of 0.25 as
of fiber crossings vs number of fibers, for systems of varying fiber waviness7— 0.
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D. Percolation threshold: curly, kinked, and straight A; rectangle

fiber systems

Dependene of percolation threshold on curl ratio was
investigated for 2D, curly fibers having three distinct shapes
as shown in Fig. @): (1) sinusoid,(2) triangle, and3) rect-
angle. These representative geometries could provide insight
as to the effect of the type of waviness on percolation prop-
erties in general. For each of the three types, we constructed
a square simulation window and deposited fibers randomly
onto this domain. Monte Carlo simulations were performed
to determine the at which the geometric percolation across
a pair of opposite boundaries arose. Each fiber was divided
into 20, straight-line segments so that the interfiber connec- 1
tivity would be detected via checking the connectivity be-
tween line segment pairs. Fifty simulations were performed (b)
at each density and the results were averaged. Periodic
boundaries were applied. Fiber number was held to 3000FG. 10. (a) Percolation thresholg, as a function of curl ratio, wherg, is
5000 in each simulation so that the fiber length was less thagkpressed asi;A2, andX is fiber length.(b) Percolation thresholg? as a
1/10 of the window size in order to minimize the scaling function of curl ratio, wherey} is expressed al;c? instead ofN;\?, and
effect. For each shape, we held fiber length constant for vari is the end-to-end distance.
ous curl ratios, as shown in Fig(l9. The results are pre-
sented in Figs. 1@) and 1@b). These results were also tabu-
lated in Table 1 using linear interpolation at evenly spaced/. DISCUSSION/CONCLUSIONS
values ofu(=1/7). Simulation errors were estimated to ap-
proximatelyAp==*0.08.

*
o4
o

04 0.6 0.8

A. Number of crossings in straight- and curly-fiber
systems

Clearly, Eq.(8), an expression for number of crossings
in systems of curly fibers derived by Kallmes and Cdris,
in error, as shown both by our own analytic solution of Eq.
(9), and comparison of both solutions with Monte Carlo
simulations shown in Fig. 6. In fact, E(B) is an acceptable

\'4

A 1 3 estimate only wherr is very close to 1. The immediate im-
plication of our new solution is that the number of crossings
is independent of fiber waviness.

(@) (b) We additionally found that the number of crossings is

FIG. 9. Fiber shapes investigated for percolation simulations, inclu@dng SOIer a function of the number of fibers in infinite fiber

three distinct types of curves, afid) sinusoidal curves having various curl
ratios.
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TABLE |. Comparison of percolation thresholds among three differentjeads to increase in fiber density required for percolation.
shapes of fibers. This observation logically follows our findings that increases
1Ur v, (sinusoidal ¥, (triangle ¥, (rectangle in curl ratio redyces probability of intersection W|th!n arbi-

trary pairs of fibers. For example, for sinusoidal fibers of

1.00 5.63 5.63 5.63 slight waviness %=0.9, y. is found to be 5.97, an increase
0.95 5.78 5.89 5.87 . . ; :

0.90 597 6.16 6.13 of 6% over that for straight fibers; if #0.7, v, is 7.06,

0.85 6.20 6.44 6.42 with an increase of 25% compared to that of straight fibers. If
0.80 6.46 6.75 6.73 1/7=0.5, y. is 8.56, an increase of 52%.

0.75 6.76 7.08 7.04 (2) Percolation threshold is a monotonic function of curl
8'(732 ;'gg ;'gi ;gg ratio, with values between 5.63 and 22.51, for each of the
0.60 773 8.26 785 th_ree shapes_ of fik_Jer_s investigated. _This is_ again qons_istent
055 8.12 8.73 8.12 with our previous finding that probability of intersection is a
0.50 8.56 9.26 8.43 monotonic function of curl ratio.

0.45 9.08 9.83 8.80 (3) Percolation threshold does not differ much for vari-
g'gg 13'22 112'23 g'g‘é ous shapes of fibers having identical curl ratio. For example,
0.30 11.18 12.02 10.36 sinusoidal fiber systems studied had percolation thresholds
0.25 12.08 12.95 11.06 very close to those of the other two shapes studied, with
0.20 13.12 14.04 11.92 variations of less than 10% for all valuesofTherefore, use
0.15 14.40 15.35 13.06 of a sinusoidal model appears reasonable in many practical
0.10 16.08 16.97 14.74 lications wherein the percolation threshold is sought

0.05 18.47 19.04 17.39 applicat P : gnt.
0.00 2251 2251 2251 In summary, we found that the number of intersections

in a Poissonian fibrous network is independent of fiber wavi-
ness. However, waviness in the fiber shape raises geometric
percolation thresholds. In a network comprised of infinite
properties of fibers from the result of image analyses, andraight fibers, the number of crossings depends only on the
thus enables the proper selection of modeling parameteigumber of fibers. Intersection probability between individual
thereafter. fibers, as well as the clustering of junctions in thick-fiber
In finite-width fiber systems, we observed significant systems, were also studied in detail. Future work will include
discrepancies among our simulation results and Cofte’s application of these findings to image analysis of curly-fiber

prior analytical formula. This prior result, Eg5), is appli-  systems, including collagens.
cable only for systems having volume fractions below 10%.

B. Probability of intersection, and percolation
thresholds
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