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ABSTRACT: Conformation of fabrics to complex molds during composite processing in-
duces significant fabric deformation and local shear, which in turn alter the processability of
these preforms from their unsheared, flat configuration. The present work (Parts I and II) es-
tablishes that although composite mold processing can often be described generally by a per-
colation flow assumption (e.g., Darcy or Poiseuille flow), changes in microarchitecture of
fabric in shear result in markedly different flow fronts. We reiterate our earlier finding that
use of a transformed Darcy law (i.e., mathematical transformation of tensor of undeformed
permeability, to the sheared configuration) does not accurately predict permeability for
sheared fabrics. In essence, the effect of the change in microarchitecture of the fabric is not
captured by mathematical transformation of the tensorial permeability. We also point out the
deficiencies of semi-empirical approaches in determining sheared fabric permeability. We
then develop a 3D fabric model, which is used to quantify the effects of nesting and changes
in gap architecture with shear angle. We show that nesting produces gaps in molds in com-
monly-used permeability experiments which easily exceed single-layer fabric thicknesses
when more than a few layers are used, but that this condition is easily detectable in an experi-
ment (i.e., Poiseuille flow between topmost layer and mold top is easily detected). We also
show that shear angle (in our case, 8 = 0°, 15°, and 30°) produces little difference in nesting,
though it significantly alters fabric microstructure and the sizes and shapes of intralayer
gaps. In Part II of this paper, we use this fabric model to predict fabric permeability. Our
work suggests that departure from the more traditional approach of generation of a large
suite of data from permeation experiments to determine manufacturability of preforms, in fa-
vor of computational simulation of fabric geometries, is well-justified.
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INTRODUCTION

HE RAPID ADVANCEMENT of composite processing has required constant
Tre-evaluation of controls, transport, mechanical and rheological techniques for
modeling. Processing science has advanced from its aerospace roots involving
highly labor-intensive preparation of precisely aligned fibers to more modern in-
jection schemes involving complex reinforcement architectures for civil and me-
chanical structural applications. Semi-empiricism has given way to greater use of
computational prediction of flow fronts, temperatures and deformations during
processing.

Low-pressure penetration of fabric by viscous fluid is a key phenomenon in
many such processes, with the majority of fluid penetration modeling approaches
stemming from Darcy’s law. Use of this approach requires generation of rein-
forcement permeability, and previous work has resulted in a large number of stud-
ies on particular fabrics, and even some large databases of permeabilities. Pub-
lished permeabilities from different groups for similar process conditions,
however, show substantial disagreement. Calhoun et al. (1996), for example, doc-
umented experiments on the same 8-harness carbon fabric, Celion G105
(G30-500), by several research groups which yielded results with an order of mag-
nitude difference in permeability.

The disagreement in the literature on rather simple bench-scale experiments,
the failure of the empirical approach to produce good predictions of flow front lo-
cation in complex parts without extensive “correction” of permeabilities, and thus
the high intrinsic cost of the approach, motivate this study. Some simplification in
the modeling of viscous fluid penetration in reinforcement materials is required at
the present time because of the practical barriers in solving the full Navier-Stokes
equations in complex domains. These include both computation time and singu-
larities generated by boundaries. Moreover, many practical processes, including
resin transfer molding, employ sufficiently low pressures and resin viscosities that
approximation of the flow by a creeping flow assumption, wherein pressure gradi-
ent is linearly proportional to flow front velocity (e.g., Darcy’s law or Poiseuille
flow) is valid. The Darcy-type flow may be described (in 2D, accounting for mate-
rial anisotropy) as

j— _1 Kll KIZ:I
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where v is the average fluid velocity, [t the fluid viscosity, K the permeability of the
porous medium, and VP the pressure gradient.

Previously (Dungan et al., 1999), we investigated the use of the unsheared
permeabilities in a transformation described in Dungan (2000) to evaluate
whether the unsheared values alone could be used to generate permeabilities for
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sheared fabric, thereby avoiding the experimental determination of permeabilities
for a wide range of shear angles. Since plain-weave fabrics are commonly-used re-
inforcements for textile composites (e.g., Tan et al., 1997), we considered unbal-
anced plain woven Knytex 24-5x4, with material geometry shown in Figure 1 and
properties given in Table 1. Fabric properties were obtained from the manufac-
turer or calculated from the manufacturer’s data, except for the lock angle, which
was measured in our laboratory. The viscosities of the impregnating fluids given
in Table 1 were measured using a Ferranti-Shirley viscometer equipped with par-
allel disks. Reynolds numbers were less than 1.5 # 1072, The formulation given in
Tucker and Dessenberger (1994) was used to obtain Re as

pVx/E
1)

Re = @)

Figures 2(a) and 2(b) give schematics of the fabric geometry and experimental
setup (Dungan et al., 1999). The asymmetry of an unbalanced fabric allowed in-
vestigation of the relative importance of capillarity and gaps between tows. The
experimental study uncovered significant discrepancy in both actual values and
trends in permeability for sheared/unsheared configuration using a tensor trans-
formation of the permeabilities in the unsheared configuration, as shown in Fig-
ures 3(a) and 3(b), as well as Table 2. In these figures, we add to the analysis of
Dunganetal. (1999) a correction for volume fraction, via use of a Kozeny-Carman
approach (Smith et al., 1997), as
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Figure 1. Structure of Knytex 24-5x4.
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Table 1. Material properties for Knytex 24-5x4 and corn oil,
both clear and dyed.

Knytex 24-5x4 Plain-Weave Fabric

Fiber composition E-glass

Density of fiber material 2590 kg/m?® (0.0935 Ib/in3)

Linear density of tows 207 yd/Ib

Volume fraction of one layer of fabric 45.4%

Warp intratow volume fraction 78.6%

Weft intratow volume fraction 78.2%

Numbers of warp tows per inch 5

Numbers of weft tows per inch 4

Width of warp tows 5 mm

Width of weft tows 5mm

Thickness of one layer of fabric 0.7366 mm

Number of glass fibrils per warp tow 4020

Number of glass fibrils per weft tow 4020

Diameter of a fibril 17.2 um

Fabric lock angle 33 degrees
Clear Corn Oil

Density 893 kg/m3

Viscosity 0.040 kg/(m-s)
Dyed Corn Oil

Density 892 kg/m?

Viscosity 0.044 kg/(m-s)

o Ra-v)

4c Vf2 3

where c is the Kozeny constant (“dependent on the geometric form of the bed”)
and R is the fiber diameter. Since R and c are constant for a given fabric, the
permeabilities calculated using the tensor transformation described in Dungan
(2000) were corrected using the equation

N2 V. 3
Vi) J(l V;(8)) @

K(@®© corrected = | Kouncorre
( ) ected ( O,uncorrected (1 _ Vfo )3 (Vf(e))2

where subscript O refers to the unsheared state, and volume fraction varies accord-
ing to

Vi (0) = L (5)
f sin(90 — 0)
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Figure 2. Experimental approach: (a) Schematics of flow front shapes and orientations for bal-
anced fabric (left) and observed for unbalanced Knytex 24-5x4 (right). Typical flow front
shapes and orientations are shown for unsheared (top) and sheared (bottom) fabric, (b) flow
injection through mold bottom.
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Figure 3. Experimentally determined permeabilities and tensor-transformed permeabilities
obtained from unsheared configuration, for (a) unsaturated flow and (b) saturated flow. The er-
ror bars on the experimental data represent +g, i.e., a confidence of 68.26% for a normal distri-
bution.
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Table 2. Principal permeabilities for Knytex 24-5x4 obtained from
experiment (Dungan et al., 1999).

Unsaturated Flow

K1 Based on K> Based on
Transformed Transformed
Unsheared Unsheared
Shear Average K’s with V¢ Average K’s with V¢
Angle Experimental Correction Experimental Correction
(degrees) Ky (m?) (m?) K2 (m?) (m?)
0 6.32 % 10710 6.23 10710 5.45 % 10710 5.45 % 10710
15 4.76 = 10710 6.49 10710 3.36 % 10710 3.74 10710
30 6.24 = 10710 4.81 10710 3.61 10710 1.59 « 10710
Saturated Flow
K1 Based on K> Based on
Transformed Transformed
Unsheared Unsheared
Shear Average K’s with V¢ Average K’s with V¢
Angle Experimental Correction Experimental Correction
(degrees) Ky (m?) (m?) Kz (m?) (m?)
0 1.51%107° 1.51%107° 1.26 #1070 1.26 1070
15 1.04 = 1079 1.53 % 1079 7.17 10710 8.76 x 10710
30 1.26 1079 1.14 % 107° 6.38 x 10710 3.72 10710

Even with the volume fraction correction, use of unsheared permeability to model
the permeability in sheared configurations produces poor agreement.
Note that an expression of the form

Vf,maxvf (6)
VYV max sIn(90 — 6) + V; sin(B)

Vp(0) =

could be used to eliminate the nonphysical infinite result for volume fraction at 90
degrees (and producing the maximum volume fraction for a particular packing
scheme); however, differences between the two expressions are rather small for
angles less than a typical fabric lock angle.

Data from Dungan et al. (1999) were combined with additional experimental
data from the present study for 15 degrees of shear. Comparisons were further ex-
panded to include comparisons of permeability ratios and principal flow direc-
tions with a semi-empirical model (Lai and Young, 1997, 1999). Our notation is
givenin Figure 4. 0 is the fabric shear angle, 1 is the principal flow direction angle,
x and y are the fixed coordinate axes, a and b are the directions aligned with the
warp and weft, respectively. Shear is applied via rotation of the warp tows coun-
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Figure 4. Coordinate system for the present work.

ter-clockwise from their original position parallel to the x axis; weft tows are held
parallel to the y axis. Comparisons between our data (corrected for an angle trans-
formation error in Dungan et al., 1999) and the semi-empirical approach of Lai and
Young (1997) are shown as Figures 5 and 6, for principal flow angle and ratio of
principal permeabilities, respectively. There is a relatively weak correspondence
of the empirical curves to the data, with no single parameter fitting all three shear
angles tested. It is important to note that the technique investigated for use with our
data (Lai and Young, 1997, 1999) only allowed prediction of the ratio of principal
permeabilities and the flow front orientation angle; actual permeabilities in the
unsheared configuration are inputs to the empirical model.

Here, we focus on development and validation of a more robust technique for
determining the effect of local architecture on fluid front penetration, including
prediction of values of principal permeabilities (without resort to initial experi-
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Figure 5. Comparison of experimentally determined principal flow directions with semi-em-
pirical approach of Lai and Young (1997), for (a) unsaturated and (b) saturated conditions, in

notation of the present work.
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Figure 6. Comparison of ratio of experimentally determined permeabilities with semi-empiri-
cal approach of Lai and Young (1997), for (a) unsaturated and (b) saturated conditions.
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ments) and flow front orientations. Three main hypotheses motivate the present
study:

1. Low-pressure, viscous fluid penetration of fabrics is linear (i.e., can be de-
scribed by a constitutive equation linearly relating pressure gradient and veloc-
ity, such as Darcy’s Law or Poiseuille flow).

2. Fluid penetration in these cases is predominantly determined by gap architec-
ture, so that capillarity and other surface effects do not significantly affect flow
in practical processes.

3. Gap architecture changes significantly in the presence of fabric shear, resulting
in calculable critical gap dimensions, which can be used to directly determine
fabric permeability without resort to experimentation on the fabric.

The first two of these hypotheses are supported by work described in Part II of this
work (Senoguz et al., 2001), wherein detailed numerical simulations are per-
formed to establish flow behavior, using experimental geometries and material
properties (Dungan et al., 1999). To validate the third hypothesis, a detailed, 3D
fabric model is developed to characterize differences in fabric geometry due to
shear and nesting of layers.

DEVELOPMENT OF A 3D FABRIC MODEL
Previous Work

Various shapes of tow cross-sections in fabrics have been assumed, as shown
schematically in Figure 7, with relevant parameters for some of these models
shown in Figure 8. A brief synopsis of major approaches follows:

1. Rectangular cross-sections (Binétruy et al., 1998), shown in Figure 7(a), where
spaces between fibers inside tows were designated “micropores,” and open re-
gions between tows were designated “macropores.”

2. Elliptical cross-sections (Phelan and Wise, 1996), shown in Figure 7(b).

3. Circular cross-sections (Peirce, 1937), where the yarn was assumed to be
straight except where wrapped around the crossing thread. Descriptive parame-
ters [Figures 7(c) and 8(a)] included yarn length, /, crimp height, A, thread spac-
ing, p, and sum of diameters of two yarns, D, related as:

p =(1—-DB)cosO + Dsin0O 7
h =(1-D0)sin6 + D(1 — cos0) ()
hl + h2 = D (9)

4. Sections comprised of intersecting circular arcs (Dasgupta and Agarwal, 1992).
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Parameters [Figures 7(d) and 8(b)] included the radius of the arc defining the
cross-section p, arc length s, and radius of yarn undulation /, related as

2 +a?
p= oy (10
s = lcos™! [L;OSI))} (11)
2 2
[ = (c+d)” +(a+0.5b) (12)

2a + 0.5b)

5. Unitcell geometry defined as the interior region bounded by 4 sinusoidal curves
(McBride and Chen, 1997). Parameters included yarn thickness £, length
of unit-cell base or distance between interlacing points S, width of the
yarn (normalized by sine of the yarn angle) w, and the half-period of y3(x), re-
lated as:

h
yi(x) = E[cos% + 1] 0<x<S) (13)
(x) = ﬁ[cosﬂ - 1] 0<x<5) (14)
Y R
ya(x) = —hcos[%} (0 <x< %) (15)
V4(x) = —hcos{%s_ﬁ))] (S —% <x< SJ (16)

Because of the good agreement shown by McBride and Chen (1997) between
fabric response and modeling, the basic tow cross-sectional representation shown
in Figure 7(e) was adopted here, with some extension, as shown in Figures 7(f) and
8(c).

Definition of a Fabric Representative Cell

The model by McBride and Chen (1997) was first generalized to allow analysis
of unbalanced fabrics. Also, despite the complete description of an individual 2D
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Figure 7. Possible tow representations. Axes are shown in (a). Representations include (a)
Binétry et al. (1998), (b) Phelan and Wise (1996), (c) Peirce (1937), (d) Dasgupta and Agarwal
(1992), (e) McBride and Chen (1997) and (f) present approach.

/-\
d 1/2=— 7\
D TN 2
< P =

Figure 8. Geometric parameters for three models: (a) Peirce (1937), (b) Dasgupta and
Agarwal (1992), and (c) our model, where functions defined in the aand b directions are shown
onthe left and right, respectively. Other edges are translations and/or rotations of the functions
shown.
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Figure 8 (continued). Geometric parameters for three models: (a) Peirce (1937), (b)
Dasgupta and Agarwal (1992), and (c) our model, where functions defined in the aand b direc-
tions are shown on the left and right, respectively. Other edges are translations and/or rotations
of the functions shown.
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transverse fabric section, an assumption for tow geometry was required in order to
make the model fully three-dimensional.

The model of McBride and Chen (1997) called for extrusion of the defined fab-
ric cross-section along a sine curve, out-of-plane, to create a full tow. However,
this description is only feasible in the case of a symmetric cross-section. For the
general case, the cross-section is antisymmetric, since the shapes of a tow
cross-section at both ends of a symmetric representative cell are reflections of each
other with respect to the x-y plane, as shown in Figure 9(a).

In order to make the model fully three-dimensional, we defined the cross-sec-
tion in the middle of the symmetric representative cell as symmetric. We also de-
fined an additional sine curve to connect the sharp corners of the half-tows at both
ends of the representative cell and in the middle of the symmetric representative
cell. We denote a piece of fabric containing exactly two half-tows of both the warp
and the weft as the “symmetric representative cell.” A fully “representative” cell
may be constructed by combining two or more pieces that span a full tow in both
the warp and the weft. Such cells, while containing enough geometric information
to fully define the fabric in terms of location of gaps and tows, are not denoted
“symmetric.”

Figure 9(b) shows a representative cell of thickness 2/ with its dimensions
in the x-y plane. Cross-sections at the midpoints of the representative cell were
defined through enforcement of symmetry; tows were created with spline surfaces
between curves. A fully 3D representation (as opposed to a series of cross-sections
at particular points, e.g., crossover points) resulted from appropriate reflections
and translations of a single cell. In the expressions that follow, the subscript O de-
notes a value in the unsheared configuration, and 90°-6 represents the angle be-
tween the warp and the weft. Coordinates a and b denote the directions parallel to
the warp and weft, respectively, as shown in Figure 9(c).

The upper boundary of the cross-section of half of a weft tow is given by

_h ™ wa ()
Vou(x) = 2COS[(S ) IJ 0<x< 5 (17)

a

at the edges of the symmetric representative cell and

_h( [ m wy(0)
YV (X) = 2(005(%(6)) + IJ 0<x< 5 (18)

at the midplane of the symmetric representative cell.
The lower boundary of the cross-section of half of a weft tow is given by
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m) 0<x<W“Tw) (19)

V3q(x) = —hcos [ 5.©)

at the edges of the symmetric representative cell and

moooy I ) Wwa(0)
Yy (x) = Z(COS(Wa(e)) 1] 0<x< 5 (20)

at the midplane of the symmetric representative cell. The geometric function w,(0)
is given by

— Wa0
(Sln(90 — e))(sa ~w40)/Ba0

w,(8) (21)

(@)

Figure 9. Fabric microstructure, with (a) axisymmetry of tows shown here for weft tows, (b) top
view of sheared fabric showing a representative cell, and (c) top view of a piece of fabric in
unsheared (left) and sheared (right) configurations, showing a and b, the directions aligned
with the warp and weft, respectively.
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Figure 9 (continued). Fabric microstructure, with (a) axisymmetry of tows shown here for weft
tows, (b) top view of sheared fabric showing a representative cell, and (c) top view of a piece of
fabric in unsheared (left) and sheared (right) configurations, showing a and b, the directions
aligned with the warp and wetft, respectively.



1266 F. D. DUNGAN, M. T. SENOGUZ, A. M. SASTRY AND D. A. FAILLACI

and the function B, is defined as

w, (0
BL(0) = i 22)
2cos™!| sin? wa(9)
48,
The upper boundary of the cross-section of half of a warp tow is given by
h Ty wy(8)
=—|cos| —|-1 O<y<—= 23
y2p(y) 2{ (Sb) J y > (23)
at the edges of the symmetric representative cell and
h Ty w;,(0)
: = —| cos -1 O<y<——= 24
Yo () 2( (wb(G)J ) y ) (24)

at the midplane of the symmetric representative cell; the function w;,(0) is defined
as

_ Wpo
" (®) = (sin(90 — ©))(S>=50)/Bro )

The lower boundary of the cross-section of half of a warp tow is given by

Y () = —hcos(B”(ye)] 0<y< (26)
b

at the edges of the symmetric representative cell and

m _ _ﬁ o w;(0)
YY) = 2(008(%(9)) 1] O<y< 5 (27)

at the midplane of the symmetric representative cell.
B, is a geometric parameter defined as

nwy, (0)

2cos™! (sin2 (—TCW” © D
48,

Between the prescribed half tow cross-sections, the shape of the tows is defined by

By (6) = (28)
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sinusoidal curves that connect the corners of the half tow cross-sections.
For the warp direction, the sinusoidal tow boundary function is

_h w(0) ) T
Yea(X) = Z(COS( 25, ) 1JCOS(Su)

—ﬁ COSM -1 0<x<S, (29)
2 AYS
for the sharp corners and
h X
Via(X) = E(cos(s—) + IJ O<x<S, (30)

for the other corners.
For the weft direction, the analogous function is

_h . (0) ) Ty
Yer (¥) = 2(cos[ 25, ) ljcos(sh)

h 0
_E(cos(mzvgi ))— 1) 0<y<S, 31)

for the sharp corners and

h
Yo () = E(COS(?) + 1] 0<y<S, (32)

b

for the other corners.

The edges were copied, reflected, and rotated as needed to create a complete
representative cell, an example of which is shown in Figure 10. Tow surfaces were
generated using non-uniform rational B-splines (using HYPERMESH v2.1 and
v3.1) connecting appropriate sets of surface edges.

Generation of Fabric Cross-Sections

An algorithm was developed to automatically generate 2D cross-sectional de-
scriptions of the exact fabric microstructure (tows versus gaps) at any transverse
section to the plane of the fabric, at any angle to warp or weft tows. The automated
approach begins with entry of section parameters into input files to HYPERMESH
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Figure 10. Fabric model: one representative cell, with (a) edges created as sine curves, (b)
warp surfaces only, (c) weft surfaces only, (d) all surfaces.
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Figure 11. Main steps required in application of the fabric model.
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as shown in the flowchart of Figure 11. Details of each step are given in Dungan
(2000). Each representative cell is defined by a reference point through which the
cross-section has to pass and a plane defined by angle , CCW from the x axis (Fig-
ure 12). The reference point is converted to an equivalent reference point on the x
axis, called x;,,,,,, which is defined as the intersection of the x axis with the defining
plane, except if the defining plane is parallel to the x axis, in which case the refer-
ence point x;,,, is taken as the y coordinate of the reference point.

Fabric layer thicknesses were taken to be constant, with value 2A. The length
L., of all cross-sections taken in the direction of the warp was S, and that of all
cross-sections taken in the direction of the weft was S,. An example is shown in
Figure 13, where the cross-section angle y is 0 and all cross-sections have length
Lyecr = Sa-

“COMPLETING” CROSS-SECTIONS

We defined a complete cross-section as a cross-section with sufficient length to
span the entire width of either both warp half-tows or both weft half-tows, which-
ever was shorter. For any combination of shear and cross-section angles, there is a
range of X, within which cross-sections are complete, as shown in Figure 14.
The range-limited case occurs when the desired cross-section spans opposite cor-
ners of the representative cell (in a top view). In this case, the cross-section goes

reference plane
weft

reference point

X

inter

Figure 12. Top view of a sheared representative cell with definition of a desired cross-section
shown.



1270 F. D. DUNGAN, M. T. SENOGUZ, A. M. SASTRY AND D. A. FAILLACI

Figure 13. Cross-sections obtained from the 3-D model. In this example, the representative
cell is unsheared and the 5 cross-sections (DD, EE, FF, GG, and HH) are equidistant. The 5
cross-sections are complete since they are taken along the warp (y = 0).

weft

'sect

warp

)

»
>

A B D X

Figure 14. Cross-sections at an arbitrary angle . Cross-sections in ranges A and B are com-
plete; cross-sections in ranges C and D are incomplete and can be combined to obtain com-
plete cross-sections. The length of complete and completed cross-sections is Lsect.
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through the entire width of both warp half-tows and both weft half-tows, and the
range of X, within which cross-sections are complete degenerates to a point. All
complete cross-sections for a given combination of 0 and y have the same length,
Ly,.;» as givenin Table 3. On both sides of the range of complete cross-sections is a
range of incomplete cross-sections whose lengths range from L,,., (not included)
to zero.

Figure 15 shows the parameters involved in the completion process.
Cross-section 1 in Figure 15 is clearly incomplete; it can also be seen that complete
cross-sections for that particular shear angle and cross-section angle include two
warp half-tows. Note that any line segment along 7 that includes two full weft
half-tows necessarily includes more than two warp half-tows in the example.
Cross-section 2 completes cross-section 1; however, cross-section 2 is in a differ-
ent representative cell (shown in a lighter shade). To minimize calculation, only a
single representative cell was used for any combination of shear and fabric angles.
A neighboring representative cell sharing an edge with the original can be ob-
tained by reflecting the original cell with respect to the x axis, the y axis, and the z
axis. Thus, in Figure 15, cross-sections 2 and 4 are the same, and cross-section 3
can be obtained from cross-section 4 by a 180 degree rotation about the z axis.
Cross-section 1 is completed using cross-section 3 or 4 with appropriate reflec-
tions and translations (and rotation, in the case of cross-section 3).

The same completion technique can be applied to any other incomplete cross-
section in the representative cell. The complete and completed cross-sections for a
given shear angle 6 and cross-section angle ¢ have the same overall dimensions,
with length L, ;, calculated using the formulae contained in Table 3. Examples of
complete and completed cross-sections are given in Figure 16.

Angles o, and o, are defined as the angles between the x axis and the major and
minor diagonals of the representative cell, respectively, as shown in Figure 17.
They are given by

Table 3. Four cases examined for completion of cross-sections by
reflection, rotation, and translation of unit geometry.

Half-Tows Full Length of
Case Cross-Sections Completed
Designation Range of x Go Through Cross-Section
1 0<y <oy warp Sa €080
cosy
2 o4 < < 90° weft S5 SIN(90° + 6)
sin(x — 0)
3 90° < 3 < 0z weft _85SIn(90° - 6)
sin(180° — y + 6)
4 o2 <y <180 warp S4 €06

cos(180° — x)
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section cross-  section
3 section 2
1
Cross-
section

v »
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.
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———

=
—

warp

\\\\\\\\ ‘
\

»
>

|

X

<

Tx X

inter1

intert inter1

Figure 15. Cross-section completing process (two representative cells shown). Cross-sec-
tion 2 is taken from the neighboring representative cell. The shaded area corresponds to the
range of complete cross-sections for this particular configuration.

inter1

cross-section AA (complete)

cross-sections BB and CC l__:{z‘@

(= completed cross-section)
Figure 16. Examples of cross-section (one representative cell shown): AA, a complete
cross-section, and BB and CC, which combine to form a completed cross-section. The

shaded area corresponds to the range of complete cross-sections for this particular configura-
tion.
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(@)

() (d)

Figure 17. Critical angles shown on a piece of Knytex 24-5x4 fabric in (a) and (b) and on a
representive cell in (c) and (d). The unsheared configuration is shown on the left and a sheared
configuration on the right.

oy = tan”! S, +S,sin6 33)
S, cosO
oy = 180 — tan~! | 3= Sa5in® (34)
S, cosO

Note that the shear angle ranges from 0° (unsheared fabric) to the lock angle,
which is about 33 degrees for Knytex 24-5x4.

VERIFICATION OF COMPLETE CHARACTERIZATION

Using these approaches, it was shown that any cross-section that cuts through
any piece of plain-weave fabric at any angle % can be fully reconstituted using
complete and completed cross-sections taken from a single representative cell of
that fabric at that angle . Figure 18 shows the four possible cases described in Ta-
ble 3 for a fabric sheared by an arbitrary angle 6, with an arbitrary section through
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\ case 2

case 3

| aseo

case 4

80201,

< X

| inter

\ 4
x

Figure 18. Top view of a piece of sheared plain-weave fabric made of 25 representative cells
showing the 4 case designations (based on the combination of ® and y as shown in Table 3)
and a sample section showing 5 sub-domains: sub-domains Il, Ill, and IV, which are complete
cross-section, and sub-domains | and V, which are completed cross-sections.

the entire piece of fabric taken at an arbitrary cross-section angle , through an ar-
bitrary reference point (x,y). In order to ensure that a minimum but sufficient
length has been identified, all complete and completed cross-sections must span
two full weft half-tows if the combination of 6 and % corresponds to case 1 or 4
and two full warp half-tows if it corresponds to case 2 or 3. For cases 1 and
4, cross-sections are divided into sub-domains whose limits are representative
cell boundaries aligned with the weft. For cases 2 and 3, cross-sections are di-
vided into sub-domains whose limits are representative cell boundaries aligned
with the warp. The angle % shown in Figure 18 is an example of case 2, where a
complete or completed cross-section spans two warp half-tows. The sample
cross-section shown in Figure 18 has 5 sub-domains: sub-domains II, III, and IV
are complete cross-sections, while sub-domains I and V are completed
cross-sections since they involve pieces from two different representative cells.
For every sub-domain along an arbitrary cross-section, there is a corresponding
complete or completed cross-section that can be generated using only one repre-
sentative cell.

As away of validating the characterization of the model for the real fabric stud-
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¢ 50 | /'ji —— Vf calculated analytically,
: based on McBride and
= 40 Chen (1997), modified for
9 unbalanced fabric
< 3
'% 20 —e— Vf obtained with our 3D
g fabric model, using
"é 10 V((intratow)=78%
3
2 o —+— measured V,,
0 15 30

0, shear angle [degrees]

Figure 19. Volume fraction in a representative cell.

ied, the volume fraction of the fabric was measured in the laboratory, calcu-
lated analytically using the approach of McBride and Chen (1997), and ob-
tained with our 3D fabric model. The results, presented in Figure 19, show
good agreement between the experimental data and 3D model presented here,
but some discrepancy in the modified McBride and Chen (1997) approach. The
modification was performed to adapt the original work to an unbalanced material,
but the consequence of the problematic symmetry assumption was not corrected
here. The result shows some significant divergence at the high shear angle
(~2-3%), motivating the use of a fully 3D model, particularly in areas of high
shear.

APPLICATION OF FABRIC MODEL TO MOLD CONDITIONS
Mold Considerations: Stacking and Nesting

Generally, layering of fabrics is poorly controlled and has been identified by
other workers as a source of uncertainty in permeation experiments. For example,
Jortner (1992) reported that the uncontrolled stacking of plain-weave laminates is
“usually oblique” (i.e., neither perfectly nested nor non-nested), but “scattered
zones of collimated stacking are also seen.” He reported matrix-rich areas contain-
ing a larger number of microcracks in regions with “collimated stacking” than in
regions with oblique stacking. Yurgartis et al. (1993) reported results on layer
nesting distribution based on image analysis. They defined “angle match” as a
measure of nesting. Their work, however, was independent of yarn cross-sectional
shape. Several authors mentioned nesting as a possible factor, but did not explic-
itly measure nesting for inclusion in calculations (e.g., Falzon et al., 1996).
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Two extreme conditions of nesting are shown in Figure 20, wherein layers are
stacked such that tows are aligned [Figure 20(a)], and such that interlayer gaps are
minimized [Figure 20(b)]. Sections transverse to the fabric plane are shown in Fig-
ure 21. Cases of no nesting [Figures 21(a) and (c)] and perfect nesting [Figures
21(b) and (d)] are shown. Sections in Figures 21(a) and (b) are transverse to the di-
rection in which tow edges abut. Sections in Figures 21(c) and (d) are transverse to
the direction in which the tows are spaced, as in the weft direction of the Knytex
24-5x4 fabric shown in Figure 1.

Determination of Thickness Reduction (TR), and Effect on
Fabric Permeability

The “nesting” of two or more layers of fabric reduces interlayer gaps and in-
creases the gap between the topmost layer and the mold top. TR, the thickness re-
duction of the stack, is shown schematically in Figure 22. Maximum nesting and
thickness reduction occur when layers are offset by half a representative cell along
both the warp and the weft. In order to determine the maximum possible thickness
reduction for Knytex 24-5x4, a three-dimensional model of two fabric layers over
an area of one representative cell was constructed with our fabric model. The sec-
ond layer was made up of one quarter of four different representative cells. Figure
23(a) shows four different ways in which two layers can be stacked. For each of the
four configurations, cross-sections through the middle of the full representative
cell were taken at cross-section angles varying between 0 and 180 degrees at incre-
ments of a few degrees, thus “sweeping” the whole range, as shown in Figure

(@) (b)

Figure 20. Top view schematic of two layers of fabric: (a) layers stacked without “nesting,” (b)
“perfectly nested” layers.
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(@) (b)

~aE— I
== - e
(©) (d)
Figure 21. Two configurations investigated for layer nesting: fabric with tow edges which
touch (a and b) and fabric with tow edges which are separated (c and d). The extremes of

nesting are shown for each case, including layers with no nesting (a and c) and layers which
are “perfectly nested” (b and d).

A

twith nesting

- v

PS

10 nesting = twith nesting = thickness reduction (TR)

Figure 22. Cross-sectional schematic of two layers of fabric: (a) layers stacked without “nest-
ing” and (b) “perfectly nested” layers.
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4 warp EE
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layer 2
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layer 2

layer 1

layer 2
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ANy -

(@)

weft
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>
>

(b)

Figure 23. Determination of possible thickness reduction, shown here for fabric sheared by
an angle 0. Part (a) shows the 4 possible ways representative cells from two layers offset by
Sa/2 in the a direction and Sp/2 in the b direction can be stacked: top face of layer 1 against top
face of layer 2, top face of layer 1 against bottom face of layer 2, bottom face of layer 1 against
top face of layer 2, and bottom face of layer 1 against bottom face of layer 2. (For the 3D model,
only the quarter of interest of each of the 4 representative cells shown for layer 2 was modeled.)
The “sweeping” technique by which the maximum possible thickness reduction for a given
shear angle was found is shown in (b). For each of the 4 cases shown in (a), x was varied over
its entire range of 0° to 180° (a section at y + 180 is the same as the one at ).
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23(b). For every cross-section, the maximum amount by which the distance be-
tween the two layers could decrease was determined. An example is shown in Fig-
ure 24, where (a) through (d) show the 4 configurations and (e) the configuration
offering maximum TR [in this case, configuration (c)], after z translation by TR.
Results are shown in Figure 25.

Out of all the possible thickness reductions that were obtained for the different
cases, the lowest one was the limiting case and was therefore the maximum possi-
ble thickness reduction. This procedure was repeated for the three shear angles
considered in this study. The same maximum thickness reduction value of 0.213
mm was obtained for 6 = 0, 15, and 30 degrees.

For most of our experiments, 4 layers were placed in a 3.175-mm-thick
mold. Since the nominal thickness of a fabric layer is 0.737 mm, the thickness
of the 4-layer stack was between 2.31 mm (maximum TR) and 2.95 mm (no nest-
ing). To determine whether significant Poiseuille-type flow was likely occur-
ring between the bottom of the mold top and the upper surface of the top fabric
layer, flow experiments with 7 and 8 unsheared fabric layers in a 6.35-mm-thick
mold were performed as part of the present study (see Figure 26). The experi-
ments using 8 layers yielded very similar permeabilities to those obtained
with 4 unsheared layers in the 3.175-mm-thick mold (as shown in Table 4).
When 7 layers were present, Poiseuille flow between the bottom of the mold top
and the upper surface of the top fabric layer was obvious, and the flow was one or-

(e)

Figure 24. Cross-sections through 2 layers of fabric. Views (a) through (d) represent
cross-sections corresponding to the 4 stacking cases for a particular example (6 = 0°, x, =
170°, Xinter = 0.646). Fabric section (e) shows nested layers with thickness reduction for case

()
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Figure 25. Possible thickness reduction vs. section angle, shown for the four possible stack-
ing cases of Figure 23, for the following shearangles: (a) 6 = 0°, (b) 6 = 15°,and (c) 6 = 30°.
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Figure 26. Schematic of fabric in mold, using experimental dimensions, for (a) 4 layers in
83.175-mm thick mold, ply shift = 0, (b) 4 layers in 3.175-mm thick mold, ply shift = S/2, (c) 8 lay-
ers in 6.35-mm thick mold, ply shift = 0, (d) 7 layers in 6.35-mm thick mold, ply shift =S/2.
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Table 4. Experimental permeabilities for 7-layer and
4-layer cases, obtained in the present study on
Knytex 24-5x4.

unsat)  4.64 x 10° m?
unsat)  4.29 x 109 m?
unsat)  6.32 x 10710 m?
unsat)  5.45 x 1079 m?
unsat)  4.98 x 10719 m?
unsat)  4.34 x 1070 m?

Kj for 7 layers in 0.635-mm-thick mold
Ko for 7 layers in 0.635-mm-thick mold
Kj for 4 layers in 0.318-mm-thick mold
Kbz for 4 layers in 0.318-mm-thick mold
Kj for 8 layers in 0.635-mm-thick mold
Kb for 8 layers in 0.635-mm-thick mold

—~ e~~~ o~ o~

der of magnitude faster than for the case of 4 unsheared layers in the
3.175-mm-thick mold.

DISCUSSION/FUTURE WORK

A fully three-dimensional model for plain-weave fabric was presented. The
model can be used for balanced and unbalanced fabric with closed-packing and/or
open-packing. We showed that a fully 3D model required greater description than
an earlier model by McBride and Chen (1997). Further, an algorithm was devel-
oped to describe cross-sections through one or several representative cells at any
point and angle. Thus, we were able to examine the microarchitecture of the fabric
at different shear angles. Each cross-section shows what the flow actually encoun-
ters at that particular point when travelling in a direction normal to the
cross-section. Gaps between tows and the effect of nesting on their geometry were
of particular interest. Thus, the model developed allows direct simulation of flow
in fabric gaps.

The strong effect of nesting was quantified using the newly developed 3D
model. With layers of 0.737 mm thickness, the gap between the topmost layer and
the mold top increased nearly fourfold (0.229 mm to 0.868 mm) for the 4-layer ex-
periments reported here and in our previous work (Dungan et al., 1999). Gap di-
mension increased over fivefold (0.457 mm to 2.47 mm) for the 8-layer experi-
ments reported here. Thus, the effect of nesting is clear: the gap flow within the
fabric stack, dominant for low-Re flows, is significantly enhanced when materials
are not nested, while gaps much greater than layer thicknesses can easily be cre-
ated between the top of the fabric stack and the mold if many layers are used. These
results are used to bound predictions on permeabilities in Part II of this work
(Senoguz et al., 2001).

By performing more experiments on permeability for the present study, vary-
ing the thickness of the mold cavity and the number of layers in the experiment, we
were able to investigate the possible influence of Poiseuille flow on our earlier re-
sults. Our conclusions from these observations were that Poiseuille flow occurring
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between the bottom of the mold top and the upper surface of the top fabric layer
was not significant in our experiments, since gaps arising in the case of maxi-
mum nesting, as shown in Figure 26(b), would be comparable in height to those
created by using 7, rather than 8, layers in the 6.35-mm-thick mold. Similarly, we
concluded that maximum nesting between all layers did not occur in our experi-
ments.

The same maximum thickness reduction value of 0.213 mm was obtained for
0 =0, 15, and 30 degrees. Thus, there appears to be no geometric reason for differ-
ences in nesting due to shear. There may, however, be practical reasons that shear
induces greater nesting, such as greater interlayer sliding in the presence of shear,
which is inhibited when the layers become nested. Our own permeability data, for
both saturated and unsaturated cases, shows that permeability first decreases and
then increases with increasing shear; nesting may be a contributing effect.

In Part II of this work, our fabric model is used to determine permeabilities
based on the geometry of gap between tows. Future work on the fabric model in-
cludes modifying the model for different types of fabric (other weaves, braided
fabrics, knitted fabrics).

NOMENCLATURE

¢ Kozeny constant
2h  thickness of a fabric layer
K permeability
K, larger principal permeability
K, smaller principal permeability
L,..; length of a complete or completed cross-section
VP pressure gradient
PS ply shift
R fiber radius
S length of a fabric representative unit cell
TR thickness reduction
v average fluid velocity
Vy volume fraction
w yarn width
Xinter reference point on the x-axis
oy critical angles (i = 1,2)
B half period of sinusoid describing yarn cross-section
M principal flow angle
0 shear angle
90-6 angle between warp and weft
W fluid viscosity
X cross-section angle
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Subscripts

0 value in the unsheared configuration
a value in the warp direction
b value in the weft direction
e refers to sharp corners of a cross-section
m refers to the midplane of a representative cell

calc calculated value

exp experimental value

sat saturated value
unsat unsaturated value

Abbreviations

r.c. representative cell
err  error
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