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ABSTRACT: The deformation and failure of fused, porous networks are key
concerns in microscale power sources and open trusses for structural applications.
We have found that the behavior of the connection points in these open networks is
the most critical determinant of materials response. For many manufacturable
material geometries, both stiffness and strength are largely controlled by these
interparticle or interelement bonds, rather than by the response of the longer
aspect ratio sections. Classic work in sintered materials is of limited applicability
in this context, since formation of multiphase porous networks often involves
volume-conserving interconnects, or fused sections created by additional material,
rather than via (heated) compaction of particles or elements. Here we expand on
previous work in 2D network behavior (reviewed in [1]) by focusing on the geometry
and response of 3D interconnects between cylindrical elements. We present
computational results for deformation of 3D interconnects in a large class of
stochastic fibrous and particulate structures. Further, we suggest methodologies for
adapting tractable 2D simulations to account for the known 3D stress-enhancing
effects. We conclude with some comments on limiting strengths and toughnesses
in these materials, and suggest divisions for classifications of these porous network
bonds.

KEY WORDS: bonds, deformation, fiber, fused, joint, mechanics, nanotube,
network, random, sintered, welded.

INTRODUCTION

E
XAMPLES OF FUSED networks of fibers and/or particles can be found both in natural
and in manufactured porous materials. These include the electrodes used in NiMH
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(nickel-metal hydride) and Li-ion (lithium ion) batteries that contain porous metallic or
carbon substrates (Figure 1(a)), gas filters comprised of sintered metal fibers (Figure 1(b)),
and space trusses manufactured of cast or extruded metals (Figure 1(c) and (d)); porous
nanotube mat are among the newest engineered materials constructed in this way.
Applications for this general class of materials are numerous, and span many size scales.
Introduction of multiple functionalities in these porous materials often necessitates

use of multiple phases, resulting in composite materials wherein one or more phases
may have purely structural functions, and one or more may have, for example, electro-
chemical, actuation or sensing functions. Analysis of the underlying structure is a critical
first step in creating composites which satisfy all such design criteria, so here we focus
only on structural properties. We also note that these models are designed to be part of
a strategy in simplifying analysis of composite structures. Here, we perform detailed
analyses of the material joints, since we have found these to be of critical importance in
nontriangulated (statically indeterminate) porous structures; Figure 2 illustrates the
strategy.
The network generation approach used here was previously described by Sastry et al. [2].

Briefly, fibers are placed randomly (by centerpoint) within a unit cell for analysis; after
application of periodic boundary conditions to the cell and removal of unbonded ends in
the array, the cell is loaded electrostatically or mechanically. This general methodology

Figure 1. Examples of real fused materials. (a) Scanning electron micrograph of LiCoO2 cathode with 7 wt.%
fiber. (Image reproduced from [39] by permission of The Electrochemical Society, Inc.); (b) SEM image of
sintered nickel fibers of a filter assembly (Photo courtesy Pall Corporation, East Hills, New York.); with inset of
the core–facesheet bond. (Image adapted from [40] with permission.); (d) Triangular core panel of an alloy
honeycomb structure manufactured using cell extrusion (Photo courtesy Professor Joe Cochran, School of
Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia).
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for studying stochastic networks has been used to investigate electrical conduction
properties [3,4] and mechanical deformation and failure [5–8] of porous battery substrates.
Since the stochastic approach allows study of networks arising from a statistical
distribution of geometric variables, we have also studied the effect of mild alignment
in networks [4] as would arise from shear flow induced manufacturing processes
(e.g. papermaking). Earlier, numerical network models of porous, fibrous materials
had been used to obtain bounds on the mechanical properties (for example [9–11]) and in
the prediction of transport properties [12].
We are particularly interested in improved design of NiMH and Li-ion battery materials

[13,14]. The performance of porous battery materials is greatly influenced by the nature of
the particle interconnects [8]. We initially modeled these interconnects as rigid bonds
or torsion spring-bonded joints [6,8]. Later, we showed that the use of a torsion spring
joint model was equivalent to assumption of a ‘‘compliant zone’’ at the interconnect,
allowing analysis of networks in which struts or particles are connected with a
lower modulus (e.g. porous particulate or adhesive) second phase [6]. These
two-dimensional (2D) simulations showed that network behavior is relatively insensitive
to detail in modeling the response of constituent ‘‘struts,’’ or long cylindrical beams
in these networks (i.e. Timoshenko vs. Euler beam assumptions result in similar
predictions for network response, per [8]).
It is impractical at the present time to explicitly model the microarchitectured materials

of interest via fully three-dimensional (3D) finite element analysis. Our overall strategy is
to inform more tractable 2D network analysis parameters obtained for a broad range of
joint morphologies, using 3D analyses. Our main objectives in this paper were thus
threefold:

1. Develop a methodology for specifying bond architecture in fused cylindrical networks,
which spans a large, practical range of engineered structures,

2. Determine, through 3D finite element analysis, the locations and probable magni-
tudes of local loads arising in bonded cylinders of various orientation and inter-
penetration, and

3. Develop a simple model for the behavior of these joints, to refine more efficient 2D
network simulations.

Figure 2. Strategies for analysis of a composite joint (adapted from [1]), e.g. (a) two ‘‘beam’’ members joined
by a porous bond, as with carbon fibers in a Li-ion battery joined by binder material (adapted from); (b)
possible representation of the joint properties via a ‘‘compliant zone’’ near the joint with distinct properties.
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The general methodology is outlined in Figure 3. The likely range of morphologies
present is first determined by detailed image analysis. Then, 3D finite element analyses are
preformed for all relevant joint morphologies, creating a database of specific joint
responses. Simplified models are developed to empirically relate the maximum stress in
each joint to its geometry. This in turn can be readily implemented as a local strain- or
stress-based failure criterion in a 2D network simulation [e.g. 8].

PREVIOUS WORK AND MODELING OVERVIEW

Modeling Joint Architectures in Joined Structural Members

The materials of interest span a wide range of joined, porous materials, including sinter-
bonded mats and truss structures. Previous models for sintered joints generally have been
focused on representation of the axisymmetric joints between spherical particles. Our
materials’ joints are not axisymmetric, however, and join cylindrical, rather than spherical
particles.
Nonetheless, previous geometric assumptions in bonded materials provide some insight

into the modeling of ‘‘fillets’’ or connecting material, for the present cases. For example,
Kuczynski [15] presented an early solution for the geometry of a sphere sintered to a flat
plane, producing a circular interface with ‘necks’ of circular profile tangent to both sphere
and the plane. This basic geometry has formed the basis for many sintering models [16].
Angled flexural members have also been studied previously by finite element analysis

Figure 3. Schematic of steps involved in implementing 3D modification methods in 2D stochastic network
analysis.
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using a fillet-type joint, and it has been shown for rectangular-section solid, angled
members, that increasing the corner fillet radius results in a decrease in stress concentration
(e.g. [17]).
The joints of interest here do not readily fall into any of the classifications commonly

described [e.g. 18], since they are generally ‘‘imperfect’’ in the sense that the two cylindrical
parts joined do not completely intersect one another. Thus, we define a new parameter,
the degree-of-intersect (d.o.i.), as

d:o:i: ¼
d

T
, ð1Þ

where d is the diameter of the cylinders, and T is the width of the joint, as shown
in Figure 4. A positive, finite value of d.o.i. results for all possible interpenetrations,
with bounding values for cases where the fibers are tangential to one another (d.o.i.¼ 0.5,
or have intersecting axes (d.o.i.¼ 1.0).
In our model we use fillets of circular profile, and further assume that volume of the

cylinder material is conserved. Figure 5 is an example of the joint model used in our
analyses.

Modeling Stress Enhancement in Joined Structural Members

Stress concentrations necessarily arise at an intersection of two cylindrical members,
e.g. tubular joints of offshore platforms, nozzles in pressure vessels, and pipelines, as a
result of the geometric discontinuity between intersecting surfaces. Stress concentrations
arising in bonded, hollow cross-section members have been published in standard
references (e.g. [19,20]). However, neither solutions obtained via the theoretical shell

Figure 4. Definition of the degree-of-intersect (d.o.i.).
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theory approach (e.g. [21–24]) nor experimentally derived, geometry-specific stress
concentration factors (e.g. [25,26]) are applicable to the general problem of imperfectly
bonded cylinders of solid cross-section.
Here, we develop a model for two intersecting beams of circular cross section using

solid elements. Stress singularities produced by sharp corners can be handled by
introduction of smooth fillets to eliminate geometric singularities, or by use of specially
formulated elements (e.g. quarter-point elements, per [27,28]). Finite element analysis
of intersecting cylindrical shells often involves the use of specially formulated elements
[e.g. 18,29]. These analyses can be used to predict crack growth at the intersection of the
members, and generally do not include smoothing fillets. However, published images of
both man-made sintered metal networks and naturally occurring biological networks show
that the intersection of any two fibers produces a fillet of finite radius at the point of
contact (for example Figure 1(b)). Thus, the inclusion of a fillet at the joint in the finite
element analysis not only addresses the numerical problem, but also more accurately
represents the actual material, and the use of special elements to handle stress singularities
is not required.
In this paper we use a shear factor to describe the effect of varying d.o.i, based on

simulations of joints of a range of geometries. We chose the use of a shear factor over a
stress concentration factor because calculation of the latter would require a choice of
location to measure nominal stress.
The concept of using shear factors to develop expressions for the response of beams,

particularly those of complex or nonhomogeneous geometries, has been widely used. In

Figure 5. Sections through two cylinders intersecting at �¼ 90� and d.o.i.¼0.65 with fillet included (fillet and
cylinders shown in white and grey respectively in section views). Sections with and without the fillet show that
the sharp corners (and hence the stress singularities) are eliminated through the introduction of the fillet.
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analysis of linear elastic, isotropic, thick beams, for example, transverse shear effects are
significant and use of the Timoshenko beam theory is recommended; a shear correction
factor has been used to account for the variation in shear stress through the cross-section
of the beam. This shear factor depends on the beam geometry, material, loading, and
boundary conditions [30]. Commonly used shear factors for various cross-sectional
geometries have been tabulated in some texts (e.g. [31,32]), and the topic is the subject of
continued research (e.g. [33,34]).
The increased use of composites in the 1970s and 1980s [35] generated much interest

in the analysis of laminated beams. For laminated beams and plates in bending, coupling
of shear and bending occurs, and shear deformation is significant, and has been analyzed
via a layerwise application of the Timoshenko beam theory [30,36]. For static analyses,
the required shear factors have been determined from linear elastic theory [e.g., 37,38].
Here, we develop a shear factor to relate the maximum stress in the 3D simulations to

maximum stresses in the 2D cases. In this way, we provide a simple technique for
estimating the stress enhancement in complex joints. We first describe our geometric
model and compare stresses in our 3D finite element simulations with 2D results generated
by our previous approaches for multibeam assemblies. Then we characterize the
relationship between the stresses via the fitted shear factor.

A THREE-DIMENSIONAL MODEL FOR GEOMETRY OF

INTERCONNECTS BETWEEN CYLINDRICAL MEMBERS

For any pair of cylinders intersecting with angle, �, and d.o.i., we assume that the
projection of a section cut through the joint along the axis of either cylinder, is a circular
arc of radius R, tangent to both cylinders, as shown in Figure 6(a). These tangent lines are
labeled 1–4 in Figure 6(b). The lines connecting the end points of these lines lie on the
surfaces of the cylinders (lines 5–12 of Figure 6(b)), and form circular arcs of radius R0

when projected onto a plane through the axis of that cylinder as shown in Figure 6(a).
We define aspect ratio as

aspect ratio ¼
L

d
, ð2Þ

where L is the sum of the lengths of the two beams in the assembly.
The twelve lines created are then splined to form four surfaces. The lines defining

each surface are shown in Figure 6(c) and (d). Figure 7(a) shows HyperMesh� meshes
of surfaces (labeled Surfaces 1–4). The original cylindrical surfaces are trimmed with
lines 5–8 and 9–12 respectively, and the portions of the original surfaces enclosed by
these lines are removed. The remaining surfaces are meshed in Figure 7(b). The ends of
the cylinders are splined and meshed (Figure 7(c)). These combined surfaces enclose a
single continuous volume. 2D meshes of these surfaces are shown in Figure 7(d); they
are used to create a mesh of 3D elements to fill the volume. For each simulation, the
volume of the 3D elements was calculated in HyperMesh� and this volume compared
to that required for volume conservation. The modeling process was repeated with
different values of R so as to choose the fillet radius that conserved volume. Several
examples of joints analyzed are shown in Figures 8 and 9.
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Two-dimensional elements on surfaces 7 and 8 (Figure 7(c)) were dragged distances of
L1� 2.5d and L2� 2.5d respectively, and 3D elements were created along this length. The
entire model was then rotated so that the final orientation was as shown in Figure 10. For
all the models created, the joint region was modeled to include a portion of each cylinder
that measured five times the cylinder diameter.

Figure 6. Steps involved in the creation of the volume-preserving fillet: (a) Cross-sections through a typical

Figure 7. Generation of the 2D mesh from which the 3D finite element mesh for the volume-preserving joint is
created.
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An aspect ratio of 100 was used for all of our analyses, with relative lengths chosen such
that 1�L1/L2� 10. Thus, even for the limiting case of L1/L2¼ 10, the shorter beam
segment has an aspect ratio L2/d¼ 9.09, reasonably allowing use of Euler beam theory for
the full range of values of L1/L2. This range also enables us to conveniently plot results on
a log scale such that 0� log (L1/L2)� 1.

Figure 9. Finite element model of joint with d.o.i.¼0.85 and (a) �¼45�; (b) � ¼ 60�; (c) � ¼90�; and
(d) � ¼ 120�.

Figure 8. Finite element model of joint with �¼90� and (a) d.o.i.¼ 0.52; (b) d.o.i.¼0.55; (c) d.o.i.¼ 0.65;
and (d) d.o.i.¼0.85.
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3D FINITE ELEMENT ANALYSIS OF THE DEFORMATION

OF JOINED MEMBERS

3D Finite Element Simulations of Joint Deformation

For each model shown in Figure 10, end A was fixed and all nodes on end C were
displaced (X ). These displacements were always taken as unity, i.e. X¼ d. The sum of the
nodal reaction forces in the x-direction at end C, Q, was determined, along with the
magnitude and location of the maximum von Mises stress in the joint region. The results
for ‘‘structural modulus’’ were obtained, per

Eeffective ¼
QL3

AX
, ð3Þ

where X is the applied displacement in the x-direction at end C, A is the cross-sectional
area of the members, and Q is the total reaction force at C in the x-direction. To
verify our implementation, effective moduli were compared with those obtained
for deformation of an equivalent 2D assembly (Figure 10), rigidly connected at B. M,
P, and Q are the resulting moment, vertical and horizontal forces at end C when that
end is given a displacement X in the x-direction. As required for equilibrium, the
results for Effective obtained were essentially identical for 2D and 3D analyses, regardless
of d.o.i.
Figure 11 shows the stress distribution obtained at the joint for �¼ 90�, L1¼L2, and

four different d.o.i. For all the angles and d.o.i. considered, the maximum stress at the
joint was found to be higher than the value predicted by the equivalent 2D models, with

Figure 10. Example of the finite element model used, with a detail of the joint region.
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the maximum joint stresses inversely related to d.o.i. For example, for intersection angle
� ¼ 90� and L1/L2¼ 1, the ratios of maximum joint stress in the 3D versus 2D simulations
were 3.2, 1.7, and 1.3 for d.o.i. values 0.52, 0.55, and 0.65 respectively. Also, for � � 90�,
maximum 3D joint stresses increased, relative to their 2D counterparts, with decreasing

Figure 11. von Mises Stress contours (normalized with E) at joint for �¼ 90�, "¼0.014, L1/L2¼1 and
(a) d.o.i.¼ 0.52; (b) d.o.i.¼ 0.55; (c) d.o.i.¼0.65; and (d) d.o.i.¼0.85.

Figure 12. Maximum normalized stress at a distance Le from end C for � ¼90�.
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intersection angle, for all combinations of d.o.i. and length ratio examined. For example,
for d.o.i.¼ 0.65 and L1/L2¼ 1, the maximum joint stresses in the 3D simulations were
found to be 3.9, 2.3, and 1.7 times the joint stress of the corresponding 2D simulations for
intersection angles of 45, 60 and 90�, respectively.

A Shear Factor Approach for Interpretation and Application of

Finite Element Simulations

In order to model the maximum local stress in the 3D joint by performing the simple
2D analysis, we use a shear factor, S to modify results for maximum stresses. In a 2D
model, shear stresses at the joint are assumed to be negligible (Euler beam assumption),
and thus the maximum stress at joint B is given by the greater of

�2D ¼
FAB

A
�
MBr

I
, or

�2D ¼
FBC

A
�
MBr

I

ð4Þ

where FAB and FBC are the axial forces in members AB and BC,MB is the bending moment
at B, r is the radius and I is the second moment of area of each member. For comparison
with the 2D analyses, we determined the resulting 3D stresses in the form of a von Mises
stress, following the familiar expression

�vm ¼
1ffiffiffi
2

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x � �y
� �2

þ �x � �y
� �2

þ �x � �y
� �2

þ6 �2xy þ �2yz þ �2zx

� �
:

r
ð5Þ

The maximum (von Mises) stress at a cross section some distance away from the joint
for the 3D simulations was found to converge to the 2D solution, as seen in Figure 12.
At the joint, however, the stresses were much greater than those in an equivalent
2D model. The large deviation of the maximum von Mises stress at the joint from
that of an equivalent 2D model suggests that shear stresses are dominant at the joint for the
3D model. As expected, this effect becomes more pronounced with decreasing d.o.i.
For d.o.i.<1, where the axes of the members do not intersect, the shear stress at the

joint is due to the offset of the axes of the fused members. We assume that this resulting
shear stress at the joint is unidirectional (and thus constitutes one component of shear
stress), and is proportional to the bending moment at the joint. We further assume that
this stress and the normal stresses in each of the members of the assembly are the only
stresses present at the joint, and rewrite the von Mises stress (Equation (5)) as

�vm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2x þ 3�2xy,

q
ð6Þ

introducing a shear factor, S, such that �xy¼SMB. The maximum normal stress at the
joint in the 3D model is the same as that of the 2D model (�2D in Equation (4)).
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Substituting for �x and �xy in Equation (6), and normalizing all terms in the equation we
can express the maximum normalized von Mises stress at the joint in three dimensions as

�0
3D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�02
2D þ 3 S0M0

B

� �2q
ð7Þ

where �0
3D ¼ �3DL3=ðEXÞ, �0

2D ¼ �2DL3=ðEXÞ, M 0
B¼MBL3/(Xr

3E ), and S 0 ¼Sr3.

Figure 13. Maximum normalized stress at joint for: FEA results and 2D results modified with normalized shear
factor S0 for (a) �¼45�; (b) �¼60�; (c) � ¼90�; (d) �¼120�.
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For each of our finite element simulations, MB and the maximum normalized 2D and
3D joint stresses, �0

2D and �0
3D, were substituted into Equation (7). The equation was

then solved for S0. For each case of intersection angle and d.o.i., an average of the six
unique S0 values obtained from the six different length ratios considered was calculated.
These averaged values of S0 were then substituted in Equation (7), and �0

3D plotted with
the 3D finite element results as shown in Figure 13.
Figure 13 shows that the finite element results for the combinations of d.o.i. and �

considered are well fit with the expression for �0
3D of Equation (7), given a suitable choice

of shear factor, S0.

Figure 13. Continued.
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A COMPLIANT ZONE MODEL FOR INTERCONNECT PROPERTIES

In prior work [5], we modeled the joint response of 2D networks with torsion springs
(e.g. the one shown in Figure 14(a)) in determining mechanical properties of battery
substrates. We also [6] proposed use of a compliant zone model to handle cases in which
enhanced or reduced local joint stresses arose from use of another material (bonding)
phase. In this section, we further investigate use of the model through comparisons of
effective modulus of torsion spring and equivalent compliant zone models using finite
element analysis.

Validation of the Compliant Zone Model: Finite Element Analysis

In [6] we considered a structure comprised of two multiphase beams similar to the one
shown in Figure 15, and compared this to an equivalent torsion spring model (as shown
in Figure 14(b)); we previously examined the specific case L1¼L2. By prescribing a virtual
displacement at end C of each assembly and equating the resulting forces in the horizontal,
vertical and angular directions at C for both models, we presented a solution for the
moduli of the two phases of the given modulus compliant zone model and spring constant
of the equivalent torsion spring model.
Here we derive a more general form of the compliant zone model, allowing unequal

beam segment lengths AB and BC and a compliant zone of length lc in each beam segment
(Figure 15). The beams have uniform cross-sectional area, A, and compliant zone modulus
Ec, with the remainder of the beam having modulus E. The equivalent torsion spring
model is shown in Figure 14(b). For both models, end A was fixed.
The potential energy of the torsion spring assembly is given by

U ¼

Z L1

0

F2
AB

2EA
þ
M2

AB

2EI
d�1 þ

Z L2

0

F2
BC

2EA
þ
M2

BC

2EI
d�2 þ

MABðL1Þ
2

2K
, ð8Þ

Figure 14. 2D compliant zone model with detail of joint model used for 3D FE analysis of compliant zone
model.
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where �1 is a local coordinate along member AB, with origin at A, and �2 is a local
coordinate along BC with origin at C. The potential energy of the compliant zone model
may be expressed as

U ¼

Z L1�‘c

0

F2
AB

2EA
þ
M2

AB

2EI
d�1 þ

Z L1

L1�‘c

F2
AB

2EcA
þ
M2

AB

2EcI
d�1 þ

Z L2�‘c

0

F2
BC

2EA
þ
M2

BC

2EI
d�2

þ

Z L2

L2�‘c

F2
BC

2EcA
þ
M2

BC

2EcI
d�2:

ð9Þ

For both models, we define the horizontal, vertical and angular displacements at C as X,
Y, and �, respectively. The displacements at end C for the compliant zone model are
given by

@U

@Q
¼ X

@U

@P
¼ Y

@U

@M
¼ �

ð10Þ

Figure 15. (a) Reduced 2D random network: 2D network with original volume fraction 29%, reduced for load
bearing in y-direction (reduced volume fraction �26%). Torsion springs are used in 2D network analyses as a
means of modeling physically imperfect bonds in real materials; (b) Two-beam assembly with torsion spring at
joint.
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For the torsion spring model, these displacements are

@U

@Qc
¼ X

@U

@Pc
¼ Y

@U

@Mc
¼ �

ð11Þ

We set Y¼ 0 and�¼ 0 for both systems, and solve Equations (10) and (11) simultaneously
for unknown forces and moments Q, P, M, Qc, Pc, and Mc. We thus find, for a given
assembly, a torsion spring constant for an equivalent torsion spring model such that

Q ¼ Qc

P ¼ Pc

M ¼ Mc

ð12Þ

We verified that the model agreed with our finite element implementation, by modeling
an assembly containing beams of circular cross-section of diameter d. Based on our
analyses using the volume-conserving fillet model, the structural modulus of the assembly
was assumed to be unaffected by d.o.i. and joint geometry. We therefore used a simpler
joint model wherein the axes of the two cylindrical sections were assumed to intersect as
shown in Figure 15. The joint region was assigned a Young’s modulus, Ec, and the
remainder of the model was given a Young’s modulus of E. For all analyses, an aspect
ratio of 100 is used.

Application of the Compliant Zone Model

Equating the expressions for Q and Qc, we obtain an expression for K, per the definition
for normalized K as

Keq ¼
KL

EI
, ð13Þ

such that K¼ f (lc, L1, L2, E, Ec).
A graphical representation of the normalized K function is shown in Figure 16 for Ec/E

ratios of 0.01, 0.5, and 0.1, respectively. Figure 16 illustrates that for any given ratio
of Ec/E, and a sufficiently large compliant zone length, the assembly becomes a mechanism
at larger values of L1/L2, resulting in negative K values. Thus, the validity of the model
is dependent on the ratio of the moduli, and the length of the compliant zone in relation
to the lengths of the beams in the assembly.
In Figure 17(a) and (b), plots of finite element results for Effective/E with Ec/E¼ 0.01 for

the two values of lc/L given in Figure 16(a) are shown. The value of K obtained for L1¼L2

(KL/EI¼ 0.72) is demonstrated to provide a good fit of the finite element data for lc/
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Figure 16. Normalized torsion spring constant (KL/EI) versus log(L1/L2) results with (a) Ec/E¼0.01;
(b) Ec/E¼ 0.5; and (c) Ec/E¼0.1.
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L¼ 0.0075 over the full range of values of L1/L2 considered (Figure 17(a)). For the case of
L1¼L2, the Keq can be written as

Keq ¼ �

16 sinð
Þ2Al2c E2
c L� lcð Þ

2
þl 2cE

2 þ EcE 2Llc � 2l 2c � L2
� �	 


� L4E2
cA sinð
Þ2

þ24I cosð
Þ2 4l 2cE 2E � 3Ecð Þ þ L2E2
c þ 4Eclc Eclc � EcLþ LEð Þ

	 

lc E � Ecð Þ sinð
Þ2A 4l 3c E � Ecð Þ þ Ec 8Ll 2c � 5L2lc þ L3

� �	 

þ 48IlcE cosð
Þ2

	 
 :
ð14Þ

Figure 17(b) shows that for the case of lc/L¼ 0.025, the finite element results are well
described by torsion spring model results with KL/EI¼ 0.32 (the value of Keq from
Equation (2) with lc/L¼ 0.025, and Ec/E¼ 0.01) for L1/L2� 0.6, but not for larger values.
This result is consistent with the results presented in Figure 16(a), which show negative
values for K for L1/L2>0.6.
Figure 17(a) and (b) also confirm that the finite element results for the effective modulus

for single-phase beams (lc¼ 0), are consistent with the 2D rigid bond (K!1) results. This
suggests that, even though stress singularities would necessarily arise in the joint region
along the sharp line of intersection of the two cylindrical surfaces, the maximum forces
and stresses away from the joint are unaffected by the joint geometry, and are consistent
with the 2D solution.
Figure 18 are plots of effective modulus results versus log(L1/L2) with the more

physically realistic Ec/E ratios of 0.1 and 0.5 for lc/L values of 0.025 and 0.05 respectively.
Figure 18(a) demonstrates the good correlation between the FEA results and the Effective

Figure 16. Continued.
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results with the torsion spring constant taken as the value obtained with lc/L¼ 0.025 and
L1¼L2 for each of the values of Ec/E plotted. In Figure 18(b), the FEA results for lc/
L¼ 0.05 and Ec/E¼ 0.5 are well fit with the results for Keq with L1¼L2, lc/L¼ 0.05, and
Ec/E¼ 0.5), but the FEA results for Ec/E¼ 0.1 are only fit with the corresponding results
for Keq with L1¼L2, lc/L¼ 0.05, and Ec/E¼ 0.1) for L1/L2<0.75. This is expected, since
in this case, for L1/L2>0.75, K is negative (Figure 16(c)).

Figure 17. Normalized effective modulus (� ¼90�) for torsion spring model with normalized spring constant
KL/EI, and 3D compliant zone model with Ec/E¼0.01 for (a) lc/L¼0.0075 and (b) lc/L¼0.025.
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Figure 18. Normalized effective modulus (� ¼90�) for torsion spring model with normalized spring constant
KL/EI, and 3D compliant zone model with Ec/E¼0.1 and Ec/E¼0.5 for (a) lc/L¼ 0.025 and (b) lc/L¼0.05.
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These analyses confirm the equivalence of the compliant zone model and the torsion
spring model, and hence its usefulness in determining bulk properties such as effective
modulus.

DISCUSSION

The performance of fused, porous networks is determined largely by the performance
of the interfiber and interparticle bonds in the material. By modeling these joints and
devising parameters for interpretation of equivalent two-beam simulations, we are able
to study the effect of ‘d.o.i.’ on maximum stresses at the joint. The use of a two-beam
assembly allows us to compare our finite element results with the solution of the simple
equivalent 2D beam problem.
The models here reflect guidance from image analysis of actual materials, though

our representations are undoubtedly idealized. However, modeling the joint in this
way serves as a consistent means of creating models of different intersection angles and
d.o.i., in order to provide some guidance in manufacturing porous materials. As the plots
of Figure 13 show, Equation (7) appears to provide a reasonable approximation for the
maximum joint stresses in such a 3D assembly, for any combination of intersection angle
and d.o.i. As evidenced from calculated S0 values, the shear stress component of the
maximum joint stress (and thus the maximum total stress) is inversely related to d.o.i. For
example, in Figure 13(c) for �¼ 90�, a decrease in d.o.i. from 0.85 to 0.52 leads to a 254%
increase in maximum stress at the joint when L1/L2¼ 1. For � � 90�, this effect was
enhanced for smaller intersection angles. For example, for the case of d.o.i.¼ 0.65, the
normalized shear factors for intersection angles of 45, 60, and 90� were found to be 2.72,
1.40, and 0.68, respectively. Note that for �¼ 120� the corresponding value of S0 is 1.06,
showing that the inverse relationship of shear factor to intersection angle does not extend
to obtuse angles. The largest deviations of stress values from the 2D solutions were
observed at �¼ 45� (the smallest angle in our analyses), with even ‘large’ values of degree
of intersect having high shear factors. For example, for d.o.i.¼ 0.85, S0 was found to be
2.22. When L1/L2¼ 7, this translates to a maximum joint stress that is 2.75 times the
maximum joint stress of the equivalent 2D assembly. Comparably, for � ¼ 90� and
d.o.i.¼ 0.85, S0 ¼ 0.62 and for L1/L2¼ 7, the maximum joint stress is only 30% higher than
the 2D value.
We note that Equation (7) is independent of the lengths of the members of the assembly.

Thus segment length determination through image analysis may not be required for fitting
appropriate shear factors, though intersection angle and fillet radius are clearly required.
The plots of Figure 13 also show that for small d.o.i., the shear factor increases
significantly with even small decreases in d.o.i. For example, for �¼ 90�, the shear factor
more than doubles with a decrease in d.o.i. from 0.55 to 0.52. Accuracy in correlating fillet
radius with d.o.i is therefore of particular importance at these small d.o.i.

CONCLUSIONS/FUTURE WORK

Modification of joint properties in analysis of a 2D solution to capture complex 3D
stresses appears promising, in both efficiency and accuracy of analysis. Each of the
simple two-beam finite element analyses presented here required approximately an hour of
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computational time. Fully 3D analysis of entire networks would thus be impractical,
whereas an entire 2D network could probably be analyzed in seconds, using a modified
joint property.
The joint models presented here, namely the volume-conserving joint and the compliant

zone model, have been shown to capture the local and structural properties, respectively,
of porous fibrous network elements. The results of our simulations with the volume-
conserving fillet show that the maximum local stress at the intersection of two fibers is
highly dependent on the d.o.i. of the joint, with small d.o.i. yielding high local stresses
which can be several times that of an equivalent 2D model. A fully 3D real network
material will necessarily contain many such joints, and therefore the potential for many
regions of high local stresses. Based on our findings, one way of improving the structural
performance of fused fibrous networks would be to increase the d.o.i. of the joints.
In this work we illustrated the volume-conserving model using one aspect ratio

and one loading magnitude. Changing either of these factors will result in different
shear factors. Before this model can be implemented as outlined in Figure 3, more
3D simulations involving different load conditions, aspect ratios, as well as intersection
angles and d.o.i.s must be performed, with special attention paid to smaller d.o.i.
Future work will thus focus on examining the joints between a variety of network

elements. By first developing a suitable geometric model for the joints and then
investigating the stress concentrations and stress distributions at these interconnects, we
hope to gain insight into the role of joint performance in a wider class of materials.

FUTURE APPLICATIONS

Nanotube sheets or papers, comprised of entangled nanotube bundles, are among the
newest examples of fused porous networks. Junctions between nanotubes (e.g. [41]) have
been studied in some detail. And advancements in manufacturing processes for connecting
nanotubes, including soldering [42] and welding [43], are continually being reported.
Indeed, nanotude junctions are key to the use of nanotubes in nanostructures and
nanoscale electronic devices.
We are currently investigating the nature of the bonds nanotube sheets (specifically

those comprised of nanotubes manufactured by the HiPCo process [44]), and the
applicability of our earlier work in modeling stochastic networks, together with the results
presented in this paper to this new material.
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LIST OF SYMBOLS

A¼ cross-sectional area of beam segments.
d¼ diameter of beam segments.
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E¼Young’s Modulus of beam segments.
Ec¼Young’s Modulus of material in compliant zone.

Effective¼ effective modulus of two-beam assembly.
FAB¼ axial force in segment AB.
FBC¼ axial force in segment BC.

I¼ second moment of area of each beam.
K¼ torsion spring constant in torsion spring model.

Keq¼ normalized torsion spring constant.
L1¼ length of segment AB of two-beam assembly.
L2¼ length of segment BC of two-beam assembly.
L3¼ horizontal distance AC of two-beam assembly.
L¼L1þL2.
lc¼ length of compliant zone.
Le¼ element length.
M¼ resultant moment at end C.

MC¼ resultant moment at end C for the compliant zone model.
MAB¼ bending moment in segment AB.
MBC¼ bending moment in segment BC.
MB¼ bending moment at B.
P¼ resultant force in y-direction at end C.

PC¼ resultant force in y-direction at end C for the compliant zone model.
Q¼ resultant force in x-direction at end C.

QC¼ resultant force in x-direction at end C for the compliant zone model.
r¼ radius of fiber segments.
S¼ shear factor.
S0 ¼ normalized shear factor.
T¼width of joint.
X¼ applied displacement in x-direction at end C.
Y¼ applied displacement in y-direction at end C.

¼ angle beam AB makes with horizontal.
�¼ angle beam BC makes with horizontal.
� ¼ intersection angle between beam segments AB and BC.
�¼ applied bending moment at end C.

�2D¼maximum stress at joint B as obtained from 2D beam theory.
�3D¼maximum stress at joint B of 3D model.
�1¼ local coordinate along beam AB.
�2¼ local coordinate along beam BC.
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