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ABSTRACT: A constitutive relation for an equivalent, ?._scmoaaccm fluid is developed
for the anisotropic viscous flow of an oriented assembly of discontinuous fibers m:mvnzama
in a viscous fluid. The anisotropic viscous compliance matrix can Un.nxvammna in terms
of three constants by assuming the equivalent fluid to be Sno_suqmwm_.v_o u._a the micro-
structure to have axial symmetry (transversely isotropic). By means of a ::Qo.:n.n:m:_.nm
analysis, the three terms of the constitutive relation are axtammon in terms of the viscosity
of the matrix fluid, the fiber aspect ratio, and the fiber volume fraction. A comparison of
the viscosity terms reveals that the elongational iv_ncv_:w in the fiber a:an:::. varies as the
square of the fiber aspect ratio and a complex function of the fiber <c_=§o. fraction. T.:-
ther, the ratio of the axial elongational viscosity to the transverse o._:sm.::c:& viscosity
and both axial and transverse shear viscosities was shown to be _o..u 10° for fiber aspect
ratio of 10?-10°, except at extreme values of the fiber volume fraction.

INTRODUCTION

ROWTH IN THE use of composite materials depends not only on their perfor-
nsmzno relative to conventional materials, but also on the capacity for eco-
nomically producing components in the :ﬁ::&. shapes. Zm::?n.c.a of one of
the two major groups of advanced fiber composites, the thermosetting-polymer
composites, has traditionally involved manual lay-up on.. prepregs and autoclave
cure. The other major group of advanced fiber composites consists of the ther-
moplastic matrix materials. Unlike their thermosetting counterparts, the ther-
moplastic composites mav be readily thermoformed under pressure at elevated
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temperature. These composites also possess the advantage that the same material
may be reformed and/or reconsolidated several times if required.

Several different methods can be employed to accomplish the forming of com-
plex geometries required. One technique that has attracted recent attention is that
of diaphragm forming [1]. With this technique, the composite preform sheet is
formed onto a tool surface and consolidated in a process chamber involving a se-
quence of applied pressure and elevated temperature. Diaphragm forming of con-
tinuous fiber composites has proven successful with several geometries, and
research has been conducted to determine optimum processing parameters [2].
However, the inextensibility of continuous fiber composites in the fiber direction
may limit formability. In complex geometries, the continuous fiber sheets may
display wrinkling, bridging, and distortion. Flow in these materials systems has
been discussed by Cogswell et al. [3-5] and Mallon et al. [6-8]. In order to en-
hance formability several alternative material forms have been developed. The
material form examined in the present paper consists of collimated, discon-
tinuous fibers suspended in a thermoplastic matrix to provide a sheet material
with extensibility in the fiber direction [9]. While the primary mechanism for
forming of a continuous fiber material is through the inplane shearing mode, the
extensional deformation mode for the discontinuous fiber system allows the mate-
rial to be clamped along its edges during forming. This is desirable for two
reasons: first, the discontinuous composite lends itself more easily to manufac-
ture by equipment and methods originally designed for metal sheet forming; and
second, because the discontinuous material is clamped and membrane tension is
present throughout forming, there should be less tendency for wrinkling and dis-
tortion in complex shapes.

It should be emphasized that the material systems described herein contain
long fibers. Typical fiber length can be 50-100 mm: this is 2-3 orders of magni-
tude greater than the fiber lengths typical for thermoplastic injection molding.
Even by the standards of the textile industry these would be regarded as long-
staple fibers. Since fiber diameter is typically 1072 mm, the fiber aspect ratio for
this material is of the order of 10°. During forming of the sheet material the defor-
mation occurs primarily as a result of viscous flow of the molten thermoplastic
matrix and rigid body displacement of the fibers. Prediction of the deformation
and its relationship to the forces developed requires a constitutive relation which
models the anisotropic and viscous behavior of the material.

Although there have been many studies of the flow of dilute suspensions of
fibers and particles in liquids, for example by Metzner {10} and recently Rogers
[11], the authors are not aware of a micromechanical analysis which treats a colli-
mated, discontinuous fiber assembly in a viscous matrix fluid of high fiber con-
centration and subjected to relatively small total strains. The present paper ana-
lyzes the initial flow of such a material wherein the fiber assembly is idealized by
a regular packing geometry as well as several other simplifying assumptions pre-
sented later.

Although the assumptions deliberately introduced into the present treatment
will cause some departure from reality, the analysis brings out the essential form
of the constitutive relation in a simple and clear way and shows the dependence
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of the anisotropic viscosity constants on system parameters, as well as giving
reasonable indication of the order of magnitude for each term. More exact pre-
dictions await more detailed theoretical analysis and experimental verification.
The next section of this paper is applicable to any transversely isotropic, incom-
pressible viscous system. It follows the well-known formulation of anisotropic
elasticity and the pioneering work of Gibson {12].

ANISOTROPIC VISCOSITY

Surprisingly, prior to the paper by Gibson [12], there appears to have been no
publication of the relations applicable to the anisotropic viscosity of oriented lig-
uid systems. In addition to the analogy with anisotropic elasticity and the simpli-
fications from symmetry, the other important factor is the assumption of incom-
pressibility, which will aimost always be a valid approximation for a fluid system.
We propose to publish a fuller account of the subject elsewhere.

For the present purpose, the special case of transverse isotropy, already pre-
sented by Gibson, is all that is needed. The formulation, which we developed for
application to the present problem is identical with Gibson's, but he used 3 for the
fiber orientation direction whereas we used 1, and in the viscosity expressions
given below, Gibson’s N = 9,4, Ay = 722, 1 = 712.

For the transversely isotropic, incompressible fluid, the viscous compliance
matrix can be expressed in terms of three constants, 3,,, 82, and Bqe:
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Unless the hydrostatic pressure is subtracted from each normal stress term, the
viscous compliance matrix cannot be inverted. This is due to the assumption of
incompressibility of the medium wherein hydrostatic pressure results in no defor-
mation.

The anisotropic viscosities, n,; may be expressed in terms of 3,; and correspond
to the forms given by Gibson [12]:

axial elongational viscosity n,, = 83!
axial shear viscosity n,; = 85

. L (2a)
transverse elongational viscosity 7, = 83}

transverse shear viscosity 7;; = (482 — 1) = (@nh — 7!

A Constitutive Relation for the Viscous Flow of an Oriented Fiber Assembly 1207

Note that the expression for 7, in terms of 4,, and 72: means that any two of
M, M2, M23, together with x,,, can be selected as the three independent param-
eters.

It is also possible to derive from Equation (1) three strain rate ratios, which are
the analogues of Poisson’s ratios. These are the ratios of appropriate terms in the
matrix:

i
Il

v/: IAIQ:\NV\Q:

IAI.Q:\NV\QZ

0.5
A

Q:\NQS = :S\M:: ANUV

Ay = —(Bu — 282)/28:, = 1 — B:1/2B22 = 1 — N22/211

MICROMECHANICS ANALYSIS

The primary objective of the micromechanics analysis is to develop relation-
ships between the primary anisotropic viscosities, 7 and the properties of the
oriented fiber assembly and matrix fluid. Consider an aligned fiber assembly
wherein long discontinuous and rigid fibers are arranged in a regular cross-
sectional geometry (hexagonal or square array) and suspended in a Newtonian
fluid. At the interface between the fibers and matrix fluid, a no slip condition is
assumed. The geometry of the fiber assembly is shown in Figure 1. In addition,

there are several primary assumptions in the proposed model which may be de-
scribed as follows:

® The discontinuous fibers are straight and collimated with ends touching so that
their direction coincides with the “I" direction as shown in Figure 1.

* In the transverse plane (2-3) the fibers are arranged in a hexagonal or square
array consistent with a given fiber volume fraction, f.

® It is assumed that neighboring fibers can be treated as if they are arranged, so
that fiber ends in one row are next to fiber centers in adjacent rows. This ge-

Figure 1. Oriented fiber assembly.
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ometry is possible for a square array, but not for a hexagonal array, where the
assumption must be regarded as a simplifying approximation.

® The kinematic assumption in the model specifies that a velocity field of linear
variation be imposed upon the fiber assembly.

FIBER ARRAY GEOMETRIC RELATIONS

Consider the geometric arrangements of fibers shown in Figure 2. For fibers of
diameter, D and arranged in a fixed pattern where the spacing between fibers, S,
then the fiber volume fraction, f is given as: .

_ L (D) ;
=5l 3
2V3
B* = 's.l (hexagonal array)
4
B? = - (square array)

ELONGATIONAL VISCOSITY

If a linear variation in velocity in the direction of the fibers is imposed upon the
oriented fiber assembly, the relative velocity of adjacent fibers may be deter-
mined by assuming that the fibers travel at the velocity of their centroids (Figure
3). Hence, the relative velocity of two adjacent fibers of length, L is given as:

At = L2 €]

where ¢, is the extensional strain rate of the fiber assemblage. Therefore the ap-
parent shear strain rate in the fluid contained between the nearest points of two
adjacent fibers is given as

¥ = &LI[AS — D)] 5)

The induced shearing strain rate, v generates a shearing stress, 7 on the fiber
surfaces equal to the product of the fluid shear viscosity, 5 and the strain rate,
7. At a cross section through the fiber midpoints, as shown in Figure 4, one-
half the fibers will carry the total load, and so the fiber tensile stress at the mid-
point will be 20/f, where ¢ is the average stress on the system. The force equilib-
rium, indicated in Figure 4, implies that the tensile force at the fiber midpoint
must equal the total surface shear force over a length L/2. This leads to the
equation:

(D/L) 6)

T =

~lQ
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Figure 2. Fiber array geometries.
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Figure 3. Relative fiber velocity.
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Figure 4. Fiber force balance.

Combining Equations (3), (5) and (6) yields the expression for the elongational
viscosity, 11,

=Y __lw,muﬁm_ (L/Dy ™

Batchelor [13] treated the dilute or semidilute suspension case earlier and
developed the following relation for elongational viscosity:

4f (L/D)*
= A A 8
8: 5 u + u—n—Aﬂ\.\.v A v
The author assumed the solution valid for the condition
L»S»D 9

and hence fiber volume fractions of 1 percent or less. Figure 5 shows a compari-
son of the present theory to that of Batchelor, where reasonable agreement is
shown for the range 0 < f < 0.2 if 3y is added to Equation (7). However, the
Batchelor theory predicts a finite viscosity for the maximum fiber packing frac-
tion, while the present theory is unbonded for f = 1/B* = F.

Goddard [14] extended the Batchelor theory to non-Newtonian fluids and inves-
tigated the influence of shear thinning (power-law fluids) upon the fluid stress
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field. More recently Acrivos and Shagfeh [15] developed a relationship similar to
the Batchelor formula employing quite distinct physical arguments. However,
these new results were also restricted to the semidilute range of fiber volume
fraction.

AXIAL SHEAR VISCOSITY

To determine the axial shear viscosity, 7,,, a velocity field corresponding to
pure shear deformation in the 1-2 plane must be imposed upon the fiber assem-
blage, ,2. From the relative motion of the fibers it is possible to determine the
shearing strain rate in the matrix fluid, v as follows:

Y = yulS/AS - D) + 1] (10)

The imposed shearing stress may be assumed to be equal to that in the matrix
fluid. Hence the apparent axial shear viscosity for the fiber assemblage and
matrix fluid may be given by:

M2 = [S/(S = D) + 1] aan

Combining Equations (3), (10) and (11) yields the influence of fiber volume frac-
tion on the axial shear viscosity.

_n[2-Bvf
d:IN_lw/\W (12)

TRANSVERSE SHEAR AND ELONGATIONAL VISCOSITIES

The transverse shear viscosity for a parallel fiber assembly suspended in a vis-
cous matrix fluid has been studied by Cogswell [16} and Balasubramanyam et al.
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Figure 5. Present theory and Batchelor theory.
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[17]. The following relationship has been proposed:

s = nfl — f/F]? (13)

where F is the maximum possible volume fraction and is equal to B-2. For the
two cross-sectional geometries examined in the present work, namely hexagonal
and square arrays the values of F are 7/2+/3 and #/4, respectively.

It should be noted that the transverse shear viscosity is related to the two elon-
gational viscosities in the present model.

M3 = (/2 — 1) (14)
For 12.2/7:, < Relation (14) reduces to
M = 4ms = &[1 — B¥]? (15)

It is convenient to display the terms of the anisotropic viscosity matrix in Table
1 to show the influence of the fiber aspect ratio, volume fraction, and cross-
sectional geometry upon each term.

STRAIN RATIOS

For the long fiber system, in which 5,, > 7,,, the strain ratios, m_<g in Equa-
tions (2b), reduce to:

A2 =05
Vru— = O
ynu = —

Table 1. Anisotropic viscosity terms.

Viscous
Viscosity Compliance . General Form
t| BVf

L) (Bm) 2787 {L/Dy?

} 112 - Bt
naly (Besn)™! Y
n22/n (B22m)? a1 - B)2
Term Hexagonal Square
B (2V3/ix)2 2/IVx
F x/2V3 /4
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Figure 6. Elongational viscosity versus fiber volume fraction.

DISCUSSION

The influence of normalized fiber volume fraction, f/F, upon the composite
axial elongational viscosity %,,, normalized by 7(L/D)*, is shown in Figure 6.
The elongational viscosity is seen to increase rapidly with fiber volume fraction
towards infinity as f/F approaches 1. The range in normalized volume fraction
where the developed analysis should be deemed to accurately represent the com-
posite physics should be restricted to 0.25 < f/F < 0.83. The linear approxima-
tion for fluid shear strain rate in Equation (5) is appropriate in the range 1.1 <
$/D = 20. It is interesting to note that in this region the apparent viscosity of
the oriented fiber assembly/matrix fluid composite is not greater than 5 times the
viscosity of the matrix fluid for a hypothetical fiber aspect ratio of unity.

When the influence of fiber aspect ratio (L/D) upon elongational viscosity is
isolated, the results are shown in Figure 7. Here an aspect ratio of 10? corre-
sponds to an increase in viscosity of 10* and so on. Clearly the fiber aspect ratio
is the dominant term in Equation (7). Hence, the ratio of the apparent elonga-
tional viscosity of the oriented fiber assembly to the viscosity of the matrix fluid
should be expected to be 10* to 10° for aspect ratios of 10* to 10° and for normal-
ized volume fractions of 0.25 to 0.83.

Figure 8 shows the influence of normalized fiber volume fraction upon the ax-
ial shear viscosity. These results reveal that the axial shear viscosity, which is in-
dependent of L/D, is only one order of magnitude greater than that of the matrix
viscosity for a normalized volume fraction of 0.83, In Figure 9 the dependence of
the transverse elongational viscosity, also independent of L/D, upon normalized
fiber volume fraction is shown. Here the maximum ratio of apparent viscosity to
that of the matrix fluid viscosity exceeds 100.

It is also instructive to examine the degree of anisotropy in the apparent viscos-
ities for the oriented fiber assembly suspended in a viscous fluid matrix. Com-
paring the results shown in Figures 6-9, it is clear that the dependence of the elon-
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Figure 10. Anisotropy ratio, »,,/n,,.

gational viscosity, 9,, in the fiber direction upon the square of the fiber aspect
ratio, while all other viscosities show no such dependence, indicates that the ani-
sotropy ratio of the material, 5,,/7,, is in the range of 10° for L/D = 1667 and
S/F = 06 as shown in Figure 10. Finally, the ratio of the axial shear and trans-
verse elongational viscosities ranges between 3/10 and 1/10 for the normalized
fiber volume fractions of 0.25-0.83 as shown in Figure 11.

For large values of L/D, certainly above 100, M1 > 122. This means that the
transverse shear viscosity, 7.5, will be equal to one quarter of the transverse elon-
gational viscosity, ,,. In elongational flow, the transverse contraction needed to
maintain constant volume will be equally divided between the two transverse di-
rections, with the strain rate ratio equal to 0.5. But, in transverse elongational
flow, there will be zero axial elongation, and the incompressibility is maintained
by the strain rate ratio \;, being unity.
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Figure 11. Anisotropy ratio, 712/M55-
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CONCLUSIONS

The constitutive relationship for an ordered assembly of discontinuous fibers in
a viscous fluid has been developed in terms of a viscous compliance matrix with
three independent parameters. The effective viscosities were shown to be functions
of the fiber aspect ratio, the fiber volume fraction and the matrix fluid shear i%.o.
sity. The relationships developed were based upon assumed homogeneous velocity
fields, collimated fiber assemblies with cross-sectional geometries of both square
and hexagonal arrays. The elongational viscosity was found to vary as the square
of the fiber aspect ratio, while the other terms of the viscosity matrix were not
related to fiber geometry. All terms of the viscosity matrix showed a complex q.n_»-
tionship to fiber volume fraction. Finally, the ratio between terms on. the aniso-
tropic viscosities for typical contemporary fiber systems volume fraction 0.3-06
and fiber aspect ratios of 10° was shown to range from 107" to 10°.

Of course the developed relationships do not provide true quantitative predic-
tions of the anisotropic viscosities for the collimated fiber assembly in a polymeric
fluid. This is true for three primary reasons. First, the simplifying assumptions
regarding the uniform velocity fields and the arrangement of fibers in the assembly
may not be satisfied. Second, the simple viscous fluid model does not allow moq.a_o
anticipated viscoelastic and/or nonlinear behavior of these material systems. Third,
there were several simplifying mathematical approximations involved in the devel-
opment dealing primarily with the effective shearing strain rate of the fluid. How-
ever, the models developed may well serve as a guide in establishing the influence
of the fiber assembly geometric parameters, as well as the fluid _%cvo:mnm upon
anisotropic viscosities of the assembly. Finally, the models allow for determination
of the relative magnitudes of the anisotropic viscosity terms.

NOMENCLATURE
Units

Symbol Term (FLT)

B Constant -

D Fiber diameter L

F Maximum fiber volume fraction -

f Fiber volume fraction -

L Fiber length L

S Fiber spacing L

By Viscous compliance matrix LYFT

"y Viscosity terms FT/L?

n Fluid shear viscosity FT/L?

g; Normal stress component F/L?

é Normal strain rate component VT

¥ Fluid shear strain rate /T

Y12 Fiber assembly shear strain rate VT

T Fluid shear stress Fr

Ay Strain rate ratios —_
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