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Abstract

Design of porous, ®brous structures is needed in a number of important technological applications. We focus on

material parameters relevant to conductive substrates in advanced battery systems, though similar microstructures arise

in many engineered and natural materials. The conductivities of stochastically-generated ®ber networks are examined,

with an emphasis on the variance in observed properties based on material variability, scale dependence of solution, and

the occurrence and strength of singularities encountered in solution of the high contrast cases. We show that rigorous

bounds on material behavior are too wide to be practically useful in these stochastic networks, and that material property

variance is reasonably predicted by use of our stochastic ®nite element-®ber network approach. We further show that the

boundary conditions employed in solution of LaplaceÕs equation in heterogeneous domains critically a�ects solution, and

suggest guidelines for solution for a general network based on sharpness of interior angles. Degree of contrast in material

phasesÕ properties are also discussed in how they a�ect the simplicity of the approach which can be taken in modeling real

networks. We further assess the scale-dependence of our calculations. Finally, we demonstrate that the stochastic ®nite

element/stochastic network solutions are robust, and are able to accurately predict both e�ective conductivity, and

variance in conductivity, in these materials. Ó 1999 Published by Elsevier Science Ltd. All rights reserved.

1. Introduction

Transport in real, heterogeneous microstruc-
tures depends strongly on the shape, orientation
and property contrast in the material phases. The
central goal of the current work is to tailor prop-
erties of ®brous materials through selection of
microstructure. The microstructures of interest can
be controlled only within some statistical bounds,
which we identify at the outset. These bounds are
dictated by cost-e�ectiveness in production of ®-
brous materials ± while some material parameters

can be controlled easily and inexpensively, others
(e.g., orientation) come at substantial cost penalty.

The class of materials under investigation en-
compasses the materials shown in Fig. 1. Brie¯y,
we specify that such materials are comprised of
®bers randomly arranged in 2D, with known as-
pect ratio, staple length (i.e., original ®ber length)
and orientation. Since we are interested in the ef-
fect of local microstructure on material properties
rather than developing very general bounds on
properties, we focus on material parameters rele-
vant to a particular technological application-
conductive substrates in advanced battery systems
(Fig. 1b). Reduced conductivity in these substrates
limits both cell capacity and cell lifetime. As such,
design of the microstructure of these materials is
critical to e�cient, high-capacity operation of
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modern electrochemical cells (e.g., Ferrando et al.,
1984; Tatarchuk, 1994).

Two general classes of interest have been stud-
ied both theoretically and experimentally by the
authors: high-contrast networks (Cheng et al.,
1999a, b; Wang et al., 1999; Sastry et al., 1998a, b)
in which all but one phase are considered to have
negligibly small conductivity; and medium to low
contrast networks (the present work). We have
developed a network generation technique which
involves placing stochastically-arranged ®bers in a
periodic unit cell (Fig. 2a±c). In many applications,
a ®brous network is immersed or encased in a
conductive material during application, which al-
ters the strategy for materials design. A two-fold
strategy motivates the present work:

1. Technological strategy. In Ni/MH batteries,
conductive substrates such as those shown in
Fig. 1b are ®lled with active material, and then
immersed in conductive electrolyte. Analysis
must allow comparison between moderate in-
crease in conductivity of other phases (active
material and/or electrolyte) and addition of
more conductive ®brous mass to attain desired
conductivity in the composite.

2. Solution strategy. In general, we wish to identify
the magnitude of contrast required for use of
simpler approaches (series±parallel resistor
models), rather than full ®nite element solution
of e�ective conductivity. We assume that simu-
lations are scale-dependent and also micro-
structure-dependent.
Some statistical work accounting for material

irregularities has been previously performed for
high-contrast networks. Kirkpatrick (1973) stud-
ied site and bond percolation using a resistor net-
work, and pointed out the importance of
percolation threshold. McLachlan (1988) intro-
duced a more general e�ective-media equation for
binary conductivity media. Ostoja-Starzewski et al.
(1994, 1996) developed network techniques to
simulate e�ective properties of generalized com-
posites. Nonetheless, it is very di�cult to calculate
the percolation threshold, critical in assessing
transport properties, for most realistic micro-
structures. The few published values of percolation

Fig. 2. Network generation technique, for 1D ®bers. (a) Fibers

are placed according to network statistics, in a unit cell; (b)

periodic boundary conditions are enforced, preserving volume

fraction speci®ed at the outset for the cell; and (c) non-con-

ductive ends are removed. The circled end demonstrated the

technique: ®ber ends are removed in this approach.

Fig. 1. Material microstructures of interest. (a) Randomly arranged (continuous strand mat) glass ®bers for use in reinforcement of

polymeric composites. (b) Randomly arranged nickel ®bers in a Ni/MH hydride positive plate substrate. (c) Randomly arranged

cellulose ®bers in newspaper.
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threshold are only for speci®cally arranged
spheres, circles and networks. Furthermore, rigid
theoretical bounds on transport behavior are often
too wide to be practically useful. The series and
parallel bounds are given by

Keff � k1k2

k1�1ÿ f � � fk2

�1�

and

Keff � fk1 � �1ÿ f �k2 �2�
respectively, where f is the volume fraction of the
phase with conductivity k1. These relations return
an upper bound of Keff � fk1 (parallel bound, with
k2 � 0) and a trivial lower bound (Keff � 0) when
the conductivity of one of the two phases is neg-
ligible. While these bounds are rigorous for
transport in high-contrast materials (Borcea and
Papanicolaou, 1997), they are generally be useful
in most practical materials selection applications.

Work by the present authors has focused on
developing a technique for realistic network gen-
eration (Cheng et al., 1999a, b; Sastry et al., 1998a,
b) and methodologies for simpli®ed simulation
approaches for network conductivities, as com-
pared with exact resistor network calculations
(Cheng et al., 1999b). In this paper we continue
this work, and assess the applicability of the re-
sistor network model to materials of moderate
contrast, and also discuss appropriate scales of
simulation. We are particularly interested in the
variance in conductivity, and how it varies under
physically realistic ranges of network parameters.
This is in contrast to related, classic work in mic-
romechanics, which typically has sought to either
bound properties (e.g., Hashin and Shtrikman,
1962) or to calculate deterministically a single ef-
fective transport coe�cient in a model micro-
structure (for an excellent review of prior classic
work in electrostatics, see Meredith and Tobias,
1962; or McLachlan et al., 1990).

We are particularly interested in the e�ect of
scale. The connectivities, and thus the calculated
conductivities of our networks are scale-depen-
dent, as are all such simulations in heterogeneous
domains, where the scales of the heterogeneities
and simulations are su�ciently close. We observe
that variance in observed conductivity depends

strongly, as one would expect, on ``window size'',
or size of the region simulated. Rather than at-
tempt to develop very broad scaling laws for all
possible microstructures in stochastic ®brous net-
works, we focus attention on a particular range of
parameters relevant to battery substrates. Some
results of validating experiments are also present-
ed. Future work will focus on further validation
with experiments, and applications of the simula-
tion techniques to other ranges of microstructural
shapes and sizes.

Finally, singularities inherent in potential ®elds
in heterogeneous media containing sharp bound-
aries present computational challenges, and can be
dealt with either by adaptive remeshing of do-
mains, or selective smoothing of microstructures.
This topic is also addressed in the present work.

2. Stochastic network generation and solution

techniques

Motivated by the moderate variability exhibited
by most of the ®brous materials of interest, we use
either normal distributions, uniform distributions
or single parameters in our network generation for
six network variables: ®ber volume fraction, ®ber
orientation distribution, ®ber length distribution,
®ber centerpoint (both in x and y directions) and
®ber aspect ratio. A number of single-parameter
distributions have been suggested for describing
orientation in ®brous materials (e.g., Mardia, 1972;
Schulgasser, 1985). Such single parameter distri-
bution functions can be useful for establishing
bounds on behavior. However, they often fail to
capture the distribution of microstructures in a real
material. Fig. 3a gives a histogram of sample data
on measured ®ber diameter (from image analysis)
in the battery substrates of interest with a ®tted
normal distribution; Fig. 3b gives a histogram of
®ber length data (from image analysis of sub-
strates) with a ®tted gamma distribution, given by

f �x� �
xaÿ1eÿ�x=b�

C�a�ba
x P 0; a > 0; b > 0;

0 x < 0

8><>: �3�

in general form. Fig. 3c shows a ®t of one-pa-
rameter wrapped Cauchy distribution to the
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normally distributed ®ber diameters of Fig. 3a,
with the distribution function given by

f �h� � 1ÿ q2

p�1� q2 ÿ 2qcos2h� �4�

in general form, where q is a measure of disper-
sion, and the mean value is cos2h. Better agree-
ment could of course be obtained for data more
closely clustered about the mean, or uniformly

Fig. 3. Real network data compared with various statistical distributions, including: (a) Histogram of data generated from image

analysis of nickel substrate material (National Standard AFS substrate material, 95% porosity). A normal distribution function is ®tted

to the data, with mean and variance of 17.420 and 3.645 lm, respectively. (b) Histogram of ®ber length data generated from image

analysis of nickel substrate material (National Standard Fibrex substrate material, 82% porosity). A ®t is shown using a Gamma

distribution with parameters a � 2:761; b � 49:848 �l � 137:634 lm and a � 82:830 lm), respectively. (c) Comparison of the

Wrapped Cauchy distribution (dashed line) �q � 0:5820� with the normal distribution of ®ber diameters in Fig. 3a.
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distributed (q � 0), but the distributions we en-
counter in substrate materials, at least, are poorly
®tted by these approaches.

Particle shape distributions are also bimodal in
many types of stochastic ®brous structures, with
long ®bers interspersed with particles (as is the
case in several types of battery substrates). Using
the basic algorithm we developed, described in the
¯ow chart of Fig. 4, all of these microstructures
can be numerically generated. In the results re-
ported here, uniform (random) distributions for
®ber orientation (0°±90°), and x- and y-location of
centerpoint were used. The e�ects of moderate
orientation (normal distributions, with speci®ed

mean and standard deviation in orientation for a
number of ®bers in a given simulation) are ad-
dressed elsewhere (Cheng et al., 1999b).

Two approaches are used to evaluate the con-
ductivity of the stochastic networks generated. The
®rst technique assumes only a single conductive
phase (i.e., high contrast composite), and involves
conversion of a randomly-laid 2D ®brous network
into an equivalent series±parallel resistor network
(as in Cheng et al., 1999b). The second technique
involves generation of a two-phase domain, with
high aspect-ratio ellipses representing ®bers in the
network, and non-zero conductivity in both phas-
es. The techniques are described below, in order.

Fig. 4. Flow chart of network generation for the two approaches.
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2.1. High contrast networks: methodology

For the high contrast case, ®bers are placed in
the unit cell according to the appropriate distri-
bution functions. This produces a point-bonded
network comprised of ®ber segments as shown in
Fig. 2. In this case, each ®ber segment is modeled
as a resistor, with resistance proportional to seg-
ment length, as

Ri � qfLi

Ai
� Li

Aikf

; �5�

where Ai is the cross-section area of ith ®ber, Li the
length of ith ®ber, qf the resistivity of ith ®ber and
kf is the conductivity of the ®ber material.

Thus, the stochastic arrays to analytically
tractable series±parallel resistor networks, as
shown in Fig. 5. Generation of such 2D networks
from 1D ®bers allows examination of connectiv-
ity of networks, in addition to calculation of
their e�ective conductivity (e.g., Sastry et al.,
1998a). But there are several signi®cant depar-
tures from real network geometries in this model,
including the facts that ``overlapping'' domains
are ignored in terms of how they a�ect volume
fraction and connectivity; contact resistivity is
ignored; and examination of properties in mate-
rials containing phases of relatively low contrast
is not possible.

2.2. Lower contrast networks: methodology

Determination of the full potential ®eld is re-
quired in order to obtain the e�ective conductivity
of a medium in which there is more than one-phase
of non-negligible conductivity. E�ective conduc-
tivity follows from potential ®eld solution as

Keff �
R

A J dAR
A E dA

; �6�

where J is the current density ®eld, E the electrical
intensity ®eld and A is the surface area of problem
domain.

Fields E and J are calculated numerically (in
this case using a commercial ®nite element pack-
age, Maxwell 2D) and surface integrations are
performed through the entire problem domain to
obtain Keff . Fig. 6 demonstrates the potential ®eld
information generated by the FE approach. The
boundary conditions shown allow periodic cells to
be generated, as well as allowing calculation of
e�ective conductivity as described above.

Fiber geometry employed. The real ®bers of in-
terest are essentially cylindrical rods (Fig. 7a). For
®nite element analysis of the irregular, heteroge-
neous domain of a network of such ®bers, how-
ever, we represent ®bers as 2D ellipses, rather than
rectangles (Fig. 7b) with thickness D, the ®ber di-
ameter. We take this approach for two reasons.

Fig. 5. Conversion of a stochastic ®brous network comprised of 1D ®bers into an equivalent series±parallel network, for exact cal-

culation of conductivity.

770 X. Cheng, A.M. Sastry / Mechanics of Materials 31 (1999) 765±786



First, we wish to smooth edges as much as possi-
ble. We cannot eliminate the ``ends'' of connected
®bers as in the high contrast case, since we seek
solution for the full potential ®eld; moreover, these
ends comprise a signi®cant proportion of the net-
work. By representing ®bers as ellipses, we elimi-
nate singularities due to the ends, though we still
must contend with singularities arising due to ®-
ber±®ber contacts. Second, we wish to preserve the
ability to smoothly handle domains containing
distributions of ®bers and particles, which we do
(see Fig. 7c) via representation of ®bers as high

aspect ratio ellipses (a=b� 1), and particles as
circles (a=b � 1).

In selection of an equivalent 3D object with
elliptical cross-section to approximate a circular
cylinder (Fig. 7a, b), we can elect to match either
cross-sectional area in the 2D projection, or match
volumes of the objects in 3D. In the ®rst case (Fig.
7c) we would scale the width of the ellipse as D0

where D0 � 4D=p. This results in a 2D ellipse with
area ab � pD0L=4 � DL, which is equal to the area
of the projection of the circular cylinder. If we use
this approach, however, we develop errors in cal-
culations of the volume fraction assuming a
thickness of a single ®ber diameter, since the two
volume fractions are

f 0 � D
PN

i�1 Li

L2
u

�7�

for the equivalent elliptical geometry, and

f �
PN

i�1 pD2Li

4L2
uD

� pD
PN

i�1 Li

4L2
u

�8�

for the circular cylinder geometry, which are ap-
proximately 21.5% in disagreement with one an-
other.

The second approach, which we adopt here,
matches volume fractions of the objects in 3D,
as shown in Fig. 7d. Using this approach, we

Fig. 7. Fiber representations under di�erent assumptions of equivalent area versus volume. (a) Cross-section of ®ber rod of length Li,

diameter D. (b) Rectangle with equal cross-sectional area. (c) 2D ellipse with equal cross-sectional area to that projected by the

cylindrical ®ber in 2D. (d) Elliptical cylinder representation, having equal volume to the circular cylindrical ®ber.

Fig. 6. The potential ®eld generated in an array of stochasti-

cally-oriented ellipses (volume fraction� 7.854%; staple

length� 1.0; diameter� 0.1), with applied potential boundary

conditions on opposite faces, and ¯ux boundary conditions on

the remaining faces.
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approximate a cylindrical ®ber as an elliptical
cylinder, with cross-sectional geometry as shown.
In this case, the volumes match, as

f �
PN

i�1 pabLi

L2
uD

�
PN

i�1 p�D=2��Li=2�D
L2

uD

� pD
PN

i�1 Li

4L2
u

: �9�

Demarcation of problem domain. Even in het-
erogeneous domains of only moderate contrast,
contact of the more conductive material with an
edge where a potential boundary condition is ap-
plied can change the solution for the potential ®eld
dramatically if there is a fully connected conduc-
tive path to the adjacent boundary (percolation).
Experimentally, this would translate as placement
of an electrode on a ®ber rather than a pore, or in
less-conductive electrolyte, and obtaining a dra-
matically di�erent measurement of conductivity of
the composite.

In our approach, the problem domain was de-
®ned as the four edges of the cell (not, any longer,
a ``unit'' cell) tangential to the ellipses (Fig. 8a)
marking the maximum and minimum values x and
y directions respectively. Calculation of the loca-
tion of these edges proceeded as follows.

With a general de®nition of an ellipse in x±y
space as:

Ax2 � Bxy � Cy2 � Dx� Ey � F � 0; �10�
where:

A � 4m2 ÿ 4�xf2 ÿ xf1�2;
B � ÿ8�xf2 ÿ xf1��yf2 ÿ yf1�;
C � 4m2 ÿ 4�yf2 ÿ yf1�2;
D � ÿ4�xf2 ÿ xf1� x2

f1

ÿ � y2
f1 ÿ x2

f2 ÿ y2
f2 ÿ m2

�ÿ 8m2xf2;

E � ÿ4�yf2 ÿ yf1� x2
f1

ÿ � y2
f1 ÿ x2

f2 ÿ y2
f2 ÿ m2

�ÿ 8m2yf2;

F � 4m2x2
f2 � 4m2y2

f2 ÿ x2
f1

ÿ � y2
f1 ÿ x2

f2 ÿ y2
f2 ÿ m2

�2
;

m �
���������������������������������������������������
�x11 ÿ x12�2 � �y11 ÿ y12�2

q
:

Eq. (10) can be solved for x as

x � ÿDÿ By � ���������������������������������������������������������������������������������������
D2 � 2DBy � B2y2 ÿ 4AEy ÿ 4AF ÿ 4ACy2

p
2A

:

�11�
Setting

dx
dy
� 0 �12�

results in:

y � ÿ2AEC � DBC � ���������������������������������������������������������������������������������������������������
D2B2C2 � CB4F ÿ CB3DE � CB2AE2 ÿ 4AC2FB2
p

ÿCB2 � 4AC2

�13�
which corresponds to the y-values at the maximum
and minimum x coordinates. The same procedure
may be used to ®nd the minimum and maximum y.
Writing the de®nition of the ellipse in terms of x,
we have

y � ÿE ÿ Bx� ��������������������������������������������������������������������������������������
E2 � 2EBx� B2x2 ÿ 4CDxÿ 4CF ÿ 4ACx2
p

2C
�14�

and for dy/dx� 0, we obtain

x � ÿ2ACD� EBA� ��������������������������������������������������������������������������������������������������
E2B2A2 � AB4F ÿ AB3ED� CB2AD2 ÿ 4A2CFB2
p

ÿAB2 � 4CA2

�15�
which can then be solved to determine the x-values
at the maximum and minimum y coordinates.

When this procedure is carried out, the slight
shifting of the boundary of the cell sometimes
causes a loss of contact with one or more ellipses
which initially were in contact, but did not mark
the outlying bounds. In this case, small connective
elements are added to these ellipses, to preserve

Fig. 8. Geometric descriptors of a generalized ellipse in 2D, and

consequence of edge corrections in generated networks. (a)

Original con®guration. (b) Approach and geometry in ``cor-

rected'' edge, whereby small particles, of the same conductivity

as the other particles, are added to elliptical elements who are

displaced away from the boundary when boundary is set at

most outlying ellipse. (c) Plot of normalized conductivity in

edge-corrected geometries, for 10% volume fraction, demon-

strating the small e�ect on conductivity of the necessary shifts.
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their connection to the boundary as in the initial
network simulated (Fig. 8b).

There are three issues which must be addressed
in this problem. First, the size of the ``measuring
device'', as compared to the size of the micro-
structures, is critical. In an experiment (e.g., Sastry
et al, 1999b), a multi-probe measurement is typi-
cally used to assess conductivity of a thin plate. In
the simulations here, however, an edge was speci-
®ed for application of the potential boundary
condition rather than a series of points, so that this
®rst issue does not cause immediate problems. The
second issue is the geometry of contact of the
conductive object with the boundary line. Simu-
lations performed on particles for the present work
indicate that the e�ective conductivity of a ®eld
containing a conductive particle in a low-conduc-
tivity matrix is almost entirely insensitive to con-
tact with either the main ellipse at the edge, or an
ellipse connected by a single small particle, as
shown in Fig. 8c. The third issue is the truncation
of ellipses by the ``unit cell''. This is related to the
second issue; since we ®nd that point contact was
su�cient (so that there is no necessity to closely
model the length of contact), we simply extend the
surrounding boundaries of the cell to be tangent to
any edge-overlapping ellipse at a single point.

Numerical solution in the presence of singulari-
ties. In solution of LaplaceÕs equation in hetero-
geneous domains with sharp phase boundaries,
several sources of singularities are encountered,
including corners in the solution domain, abrupt
changes in boundary data and singularities arising
at material interfaces (Oh and Babuska, 1992,
1995; Babuska and Oh, 1990; Babuska et al.,
1996). Adaptive ®nite element methods can be
used in order to provide accurate solutions for
problems with numerical singularities. The accu-
racy of h-version, the standard ®nite element
method, is achieved by re®ning the mesh while the
degree p of the elements is ®xed and at low level,
usually p � 1; 2; 3. The p-version entails increasing
the degree of shape function p, while ®xing mesh
size. An h±p version employs some combination of
these two. Oh and Babuska (1992, 1995) intro-
duced the MAM (method of auxiliary mapping) to
deal with domain and interface singularities.
Nevertheless, the h-version remains the most

popular approach due to widely-available and
user-friendly commercial packages which o�er it-
erative mesh re®nement. However, for su�ciently
strong singularities, this approach is unable to
provide acceptable results.

In generation of physically representative sto-
chastic ®ber structures, it is nearly impossible to
avoid generation of interior polygons with sharp
corners formed by randomly distributed ®bers. We
report both the strength of the singularities typi-
cally encountered in these problems, and later,
comment on the likelihood of their occurrence.
Since our numerical approach was to employ a
commercial code (Maxwell 2D) which used trian-
gular elements, we restricted our strategy to such
mesh re®nement.

We can construct an exact (if not always ex-
plicit) solution for LaplaceÕs equation via the
general technique outlined in Appendix A, for a
heterogeneous ®eld containing discrete singulari-
ties. The solution of LaplaceÕs equation for a single
corner point in two-phase domain is used in all of
the derivations that follow; it is derived in Ap-
pendix B.

The intensity of each singularity is determined
by the smallest positive real number of the struc-
tural eigenvalues, k. The magnitude of these ei-
genvalues guide selection of strategy in numerical
solution. Oh and Babuska (1992) determined these
eigenvalues for the speci®c microstructure shown
in Fig. 9a, with boundary conditions as shown.
The complexity of the generated networks in our
study motivated us to investigate singularities in
other model domains as well, shown as Fig. 9b and
c. Fig. 9b represents the e�ect of clusters of ®bers
or particles which do not span the solution do-
main, but which contain sharp corners. Fig. 9c.
represents the e�ect of ®bers or particles inter-
secting a boundary, so that the same boundary
condition applies to both sides (unlike Fig. 9a in
which the intersection of the phases simulta-
neously marks an intersection of boundary con-
ditions and phases).

We also investigated the e�ect of di�erences in
boundary conditions on the severity of singulari-
ties. Oh and Babuska (1992) investigated the e�ect
of ¯ux boundary conditions on their model mi-
crostructure (shown graphically in Fig. 10a) as
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oU=oy � 0 on C2 [ C3;

oU=ox � 1 on C1;
�16�

U � 0 on C4: �17�
We investigate potential boundary conditions

(shown graphically in Fig. 10b), as

oU=oy � 0 on C2 [ C3; �18�

U � 1 on C1;
ÿ1 on C4:

�
�19�

The boundary conditions of Fig. 10b, and Eqs.
(18) and (19) allow generation of periodic do-
mains, with calculation of e�ective properties
proceeding from calculations such as Eq. (6).

Because of the linearity of the problems of in-
terest (Figs. 9 and 10), we can construct solutions

to each via superposition, as described in Appen-
dix A. We ®rst examine the singularity due to a
corner in a two-phase domain, which is derived as
Appendix B, and whose domain is sketched here
also as Fig. 11a. The solution for the exponent k

Fig. 10. Boundary conditions on model domains investigated,

including (a) ¯ux, and (b) potential boundary conditions, to

allow for periodic arrangement.

Fig. 11. (a) Schematic of a characteristic unit problem in

analysis of two-phase domains, and (b) values of the associated

exponents (structural eigenvalues) arising in solution for the

potential ®eld U for various levels of material contrast.

Fig. 9. Three domains investigated, to determine the magnitude of the singularities present in solution of LaplaceÕs equation. (a) Model

domain used by Oh and Babuska (1995) to investigate adaptive techniques in ®nite elements. (b) Model domain used to assess the e�ect

of singularities produced by conductive particles in contact with an edge, but with only one boundary condition. (c) Model domain

used to assess the singularities produced by interior clusters of particles.
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associated with the potential ®eld about the sin-
gular point P1, given by solution of

k2k1 sin�2k1a� sin�2k1p�
ÿ 2k2k1 cos2�k1a� cos�2k1p�

� 1

2
k2

2 sin�2k1a� sin�2k1p� � 2k2k1

ÿ k2
2 cos�2k1p� � k2

2 cos2�k1a� cos�2k1p�

� 1

2
k2

1 sin�2k1a� sin�2k1p� ÿ k2
1 cos�2k1p�

� k2
1 cos�2k1p� cos2�k1a� � 0 �20�

does not depend on boundary conditions. Rather,
it is a function of geometry and phase contrast
only. Fig. 11b shows the dependence of the expo-
nent (strength of the singularity) with phase con-
trast, for various interior angles a. Because this
solution is not dependent upon exterior boundary
conditions, the values of these singularities des-
cribe those encountered at P1 in Fig. 9a±c, and at
P6 and P7 in Fig. 9c.

We can similarly construct the solution about
the remaining key points. We note that points P2

and P3 are re¯ection points, so we carry out a
similar technique as in Appendix B, in developing
a solution for the exponent k3 associated with the
potential ®eld about the singular point P3 only. In
this case, the solution is dependent upon exterior
boundary conditions (i.e., such as those in Fig. 10a
versus Fig. 10b). We ®rst develop a relation for the
exponent k3 with boundary conditions as in Fig.
10a, with a general domain representing these
boundary conditions shown as Fig. 12a. Fig. 12b
gives the values of this exponent for a range of
phase contrasts, for several interior angles /, ob-
tained by solution of

k2 sin�/k3=2�cos2�2k3p�
ÿ k2 sin�/k3=2�cos2�2pk3 ÿ /k3=2�

� 1

2
k1 cos�/k3=2� sin�4pk3 ÿ /k3�

� 1

2
k1 cos�/k3=2� sin�4pk3� � 0 �21�

which yields the explicit relation,

k3 � 2
arctan� ��������k1k2

p
=k2�

/
: �22�

For the corresponding point using the boundary
conditions of Fig. 10b, we solve the generalized
problem of Fig. 13a, solving

k2 sin�ck3=2�cos�2pk3 ÿ ck3=2�
ÿ k1 cos�ck3=2� sin�2pk3�
ÿ k1 cos�ck3=2� sin�2pk3 ÿ ck3=2�
ÿ k2 sin�ck3=2�cos�2pk3� � 0 �23�

to obtain

k3 � 2
arctan� ���������������������

2k1k2 � k2
1

p
=k2�

c
�24�

which is plotted over similar parameters in Fig.
13b.

The only remaining points whose associated
singularities must be found are points P4 and P5 in
Fig. 9b (recalling that points P6 and P7 in Fig. 9c

Fig. 12. (a) Schematic of a constituent solution for a model

domain: solution for the structural eigenvalue in the potential

®eld around singular point P3 (see Fig. 9a, with boundary

conditions as in Fig. 10a), and (b) values of the associated ex-

ponents for various values /, over a range of volume fractions.
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have associated singularities identical to point P1,
being independent of exterior boundary conditions
as shown in Appendix B). Results for these points
(given as P4 only due to symmetry) are contained
in Figs. 14 and 15, for the generalized boundary
conditions of Fig. 10a and b, respectively. These
results depend on the value of the potential at the
edge (x� 0 and n� 0 in Figs. 14a and 15a, re-
spectively). But, we can simply solve for the ex-
ponent associated with the singular point solution
using general potential boundary condition U� v,
then substitute v� 0 and v�ÿ1, respectively, for
the two remaining cases. We obtain

k2 sin�pk4=2�cos�3pk4=2� sin2�fk4 � pk4=2�

ÿ 1

2
k2 sin�pk4=2� sin�3pk4=2� sin�2fk4 � pk4�

ÿ k2 cos�pk4=2� sin�3pk4=2�cos2�fk4 � pk4=2�

ÿ k2v sin�3pk4=2�cos2�fk4 � pk4=2�
� 1

2
k2 cos�3pk4=2�cos�pk4=2� sin�2fk4 � pk4�

� 1

2
k2vcos�3pk4=2� sin�2fk4 � pk4�

ÿ k1 cos�pk4=2� sin�3pk4=2� sin2�fk4 � pk4=2�
� 1

2
k1 sin�pk4=2� sin�3pk4=2� sin�2fk4 � pk4�

� k1v sin�pk4=2�
ÿ k1v sin�3pk4=2� sin2�fk4 � pk4=2�
ÿ 1

2
k1 cos�3pk4=2�cos�pk4=2� sin�2fk4 � pk4�

� k1 cos�3pk4=2� sin�pk4=2�cos2�fk4 � pk4=2�
ÿ 1

2
k1vcos�3pk4=2� sin�2fk4 � pk4� � 0; �25�

where the dummy angle f � x, for v � 0 (Fig.
14a, b) and f � n, for v � ÿ1 (Fig. 15a and b).

Fig. 14. (a) Schematic of a constituent solution for a model

domain: solution for the structural eigenvalue in the potential

®eld around singular point P3 (see Fig. 9a, with boundary

conditions as in Fig. 10a), and (b) values of the associated ex-

ponents for various values x, over a range of volume fractions.

Fig. 13. (a) Schematic of a constituent solution for a model

domain: solution for the structural eigenvalue in the potential

®eld around singular point P4 (see Fig. 9b, with boundary

conditions as in Fig. 10a), and (b) values of the associated ex-

ponents for various values c, over a range of volume fractions.
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With these singularities in hand, we can develop
a strategy for solution of our own problem. Fur-
thermore, we can comment on the strategy as it
might compare with solution in domains with al-
ternative boundary conditions or strengths of
singularities.

3. Results and discussion

Using the two simulation approaches devel-
oped, along with derivations of solutions in gen-
eralized domains, we address four key issues: (1)
the use of resistor network versus full-®eld solu-
tion, (2) scale e�ects in solution domains, (3)
ability of network approaches to model experi-
mentally-obtained conductivities and variances in

conductivities, and (4) the development of nu-
merical singularities in stochastic network analy-
sis, and practical simulation ranges using the
techniques described here. These issues are dis-
cussed in order. In all plots, data classi®ed by
contrast (Kfiber/Kmatrix) indicate a solution via a FE
(®eld) solution, per Section 2.2; if no contrast is
given, data result from resistor network calcula-
tion, per Section 2.1.

3.1. 1D resistor networks versus elliptical inclusions

To reiterate, simulations using both high and
medium contrast approaches are performed with
two requirements in mind. The ®rst requirement is
to determine the degree of contrast which neces-
sitates use of the more computationally intensive,
low-contrast approach. The second requirement is
to determine the bene®t of moderate increase in
``matrix'' or electrolytic or active material in bat-
tery substrate, from a technological standpoint.

Degree of contrast and use of simpli®ed ap-
proaches. Fig. 16 shows the dependence of nor-
malized e�ective conductivity on volume fraction
for several cases of contrast, spanning three orders
of magnitude in the FE simulations �Kfiber=Kmatrix

� 10! Kfiber=Kmatrix � 1000�, against the result
for the resistor network simulations �Kfiber=Kmatrix

!1�. Five simulations were performed for each
of the averaged data shown. Beyond contrasts of
around Kfiber=Kmatrix � 1000, there is little di�er-
ence ([1%) in results from the resistor network
and FE simulations. Even in the range of
Kfiber=Kmatrix � 100, although the di�erences in
calculated conductivities are moderately high as a
percentage, there is little practical di�erence in
view of the high variability in the generated mic-
rostructures, particularly at volume fractions less
than 30%.

The greatest increase in conductivity (from the
FE simulations) occurs between Kfiber=Kmatrix � 10
and Kfiber=Kmatrix � 50. This has signi®cance for
design of materials: although a 30-fold increase is
possible at 30% volume fraction, by use of a ma-
terial with a moderately conductive matrix phase
�Kfiber=Kmatrix � 50� versus a porous network
�Kfiber=Kmatrix !1�, order of magnitude gains are

Fig. 15. (a) Schematic of a constituent solution for a model

domain: solution for the structural eigenvalue in the potential

®eld around singular point P4 (see Fig. 9b, with boundary

conditions as in Fig. 10b), and (b) values of the associated ex-

ponents for various values n, over a range of volume fractions.
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not achieved until the conductivities themselves
are of the same magnitude.

Comparison with rigorous bounds, and predicted
variance. It is important to note that the simula-
tions of Fig. 16 predict conductivities well below
the prediction of the upper bound. Indeed, several
micromechanics theories may be reduced for the
case of zero conductivity in one-phase to develop
deterministic predictions for the relation between
e�ective conductivity and volume fraction of a
single conductive phase; most fall relatively close
to the upper bound (Cheng et al., 1999b). Com-
parison of Figs. 16 and 17 demonstrates this point;
it can be seen that the more realistic stochastic
simulations predict conductivities consistent with
the upper bound for the high-contrast case (the
parallel model, Eq. (2)) only when the conductivity
of the two phases is of the same magnitude
�Kfiber=Kmatrix � 10�. Thus, the stochastic con-
struction of the materials plays a signi®cant role in
their e�ective properties, as it represents an ex-
tremely signi®cant departure from idealized de-
scriptions of microstructure. The e�ects of particle
shape and other geometric descriptors are discus-
sed below in greater detail.

We also wish to address the need for accurate
prediction of variance in results. This aim di�er-
entiates this approach from classic work in e�ec-
tive properties in composite media, which typically
seeks to deterministically predict average proper-
ties. Technologically, it is very important to be
able to predict variability in reported conductivi-
ties for substrate material, since such measure-

ments are an often-performed ``proof test'' of
material suitability for use in batteries (Sastry et
al., 1998b). Thus, it is very important to be able to
distinguish high variability which arises simply
because of the way that the material parameters
are selected (i.e., the distributions of the micro-
structures in the material), and variability which
arises due to defects or other problems in manu-
facturing of the material. Furthermore, one might
wish to alter somewhat the material parameters
selected, in order to reduce the expected material
variability.

Fig. 17 shows good agreement in prediction of
variance in properties using the two generation
approaches described in Section 2, with a high-
contrast case chosen �Kfiber=Kmatrix � 1000� for
purposes of reasonable comparison. This indicates
that although the model microstructures are cer-
tainly di�erent (ellipses versus 1D ®bers, with the
latter being periodic), they o�er similar predictions
of both average properties and variance and
properties for the same initial network parameters.
Both predictions also lie well below the upper
bound, even in light of the signi®cant variances,
which is discussed later in greater detail.

In¯uence of geometric parameters. Figs. 18±20
show the results of simulations on microstructures

Fig. 17. Comparison among traditional bounds and simula-

tions (shown �1r) for two simulation types (®ve simulations for

each condition) ± normalized e�ective conductivity ratio (Keff /

Kfiber) versus volume fractions, for Kfiber/Kmatrix� 1000. FibersÕ
orientation are uniformly distributed.

Fig. 16. Averaged values of simulations (®ve simulations for

each condition) ± normalized e�ective conductivity ratio (Keff /

Kfiber) versus volume fractions, for various material contrasts,

for a uniform ®ber orientation distribution.
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containing several types of conductive ®ber
shapes. These results can assist development of
some practical guidelines in selection of battery
materials, and are performed in realistic regimes
for substrate materials.

Fig. 18 shows averaged simulations' predictions
of normalized e�ective conductivity for two ``®-
ber'' types: the ®rst has an aspect ratio (L/D) of
100, with a single-valued staple length (in simula-
tion terms, the original length of a ®ber ``placed''
in a model domain) for all ®bers of 1; the second
has aspect ratio and staple length of 50 and 1,
respectively. Since the staple lengths in both cases
are unity (i.e., the simulation window size is
identical to the input ®ber length) the diameter of
these two particle types are unequal ± 0.01 and
0.02, respectively. At lower volume fractions (2±
10%), we observe a signi®cant advantage in use of
high aspect-ratio ®bers. Indeed, the greatest ad-
vantage is achieved in volume fractions between
�6±9%. These values are of technological interest,
as discussed later.

Thus, this comparison of particle types quanti-
®es the e�ect of connectivity in this class of ®brous
networks. With no additional conductive mass, a
doubling of staple length and halving of diameter
in ®bers used can produce a 50-fold improvement
in conductivity (5% volume fraction). This ad-
vantage is evident even at low volume fractions,
despite the signi®cant volumes of ``trimmed'' (non-
conductive ends not spanning at least two bonds)
material. Connectivity (i.e., bond density) is sig-
ni®cantly improved for the higher aspect ratio
particles, even though each of the comparisons has
the same number of particles and volume fraction.

E�ective conductivity and variance in conduc-
tivity are both relatively insensitive to alteration of
staple length in terms of the selected unit cell size,
in the regime relevant to substrate materials
�L=Lu � 1:0 versus L=Lu � 1:5; discussed in greater
detail by Cheng et al., 1999b). This can be veri®ed
by comparison of Figs. 18 and 19, for average
values. The variances in simulated e�ective con-
ductivities, however, are strongly in¯uenced by ®-
ber shape. Not only can signi®cant improvements
in conductivity be achieved with modest changes
in ®ber geometry, but variances can be much bet-
ter controlled. Fig. 19a and b illustrate this e�ect:

the lower aspect ratio materials often fail to pro-
duce networks which span the simulated domain
(note the zero-valued lower 1r-bound for volume
fractions below 60% in Fig. 19a), even at high
volume fractions. For practical purposes, this im-
plies that (1) particles must be continuously rede-
posited onto the network being produced in order
to manufacture continuous sheets of material
comprised of low-aspect ratio particles, and (2)
even when an iterative scheme is used to assure
production of a continuous sheet of material, high
variability is likely when testing at a scale within
an order of magnitude or so of the staple length.
By contrast, use of long ®bers (Fig. 19b) can be
expected to produce materials of much higher
conductivity, with small variances even at very
small testing scales.

3.2. Scale e�ects in solution domains

In simulations of heterogeneous domains, two
issues pertaining to scale must be addressed. The
®rst is determination of the size of the simulation
``window'' (model domain) relative to some char-
acteristic particle or part of the microstructure.
The second is determination of number of data
(i.e., simulations) required to get stable, repro-
ducible results at a particular scale. In simulations,
the cost involved (as well as whether convergent
solutions are even attainable) is also an issue. For
these reasons, we wish to identify the smallest
scales in simulations at which meaningful solutions

Fig. 18. E�ect of aspect ratio on average conductivity in re-

sistor networks. FibersÕ orientations are uniformly distributed

(20 simulations for each condition).
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can be obtained (and, conversely, the largest scales
that can be practically examined), and corre-
sponding regimes of experimental scales to vali-
date the simulations. Fig. 20 illustrates two related
questions in selection of scale.

We must select a ``window size'' (Fig. 20a) for a
simulation. We can scale this as the ®ber diameter,
®ber staple length, or iteratively, as some other
parameter (e.g., segment length, etc.). Experimen-
tally, this is equivalent to selection of the distance
between probes placed on a sheet of material to
determine its conductivity.

Selection of the window size has important
rami®cations in use of the network reduction ap-

proach (with the resistor network analysis in cases
of high contrast). As shown in Fig. 20b, selection
of a small window size assures that the generated
®bers (whose centerpoints lie in the unit cell) will
be truncated when periodicity is enforced, pro-
ducing smaller segments in the unit cell (though
preserving the orientation distribution selected for
all segments). This in turn a�ects connectivity in
the unit cell. The central question is whether this
network generation approach for producing peri-
odic unit cells adequately captures the behavior
over a reasonably wide range of sizes. Importantly,
when the window size is reduced (preserving the
same staple length) the ratio between staple length
and window size (L/Lu) increases.

Figs. 21 and 22 address these points. In each
®gure, normalized resistivity, rather than conduc-
tivity, is plotted, and each ordinate is plotted using

Fig. 20. Schematics showing the e�ect of scale (20 simulations

for each condition), including (a) selection of characteristic

domain, and (b) consequence in enforcing periodicity (selection

of staple length for simulation).

Fig. 19. E�ective conductivity (including variance in conduc-

tivity shown as �1r error bars), versus volume fraction of

conductor, for two aspect ratios. FibersÕ orientations are uni-

formly distributed (20 simulations for each condition).
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a logarithmic scale, so that all of the data can be
displayed. In each plot, three materials are simu-
lated, to investigate two e�ects (shown schemati-
cally in Fig. 21a):
1. The e�ect of increasing the window size (scale

e�ect) on two networks with geometrically sim-
ilar ®bers. This can be assessed by comparison
of the cases fL=D � 100; L=Lu � 1g and
fL=D � 100; L=Lu � 0:1g.

2. The e�ect of increasing staple length of ®bers of
the same diameter. This can be assessed by
comparison of the cases fL=D � 10; L=Lu �
0:1g and fL=D � 100; L=Lu � 1g. In both cases,
D� 0.01 for the unit cell.

Scale e�ect (``window size'') and staple e�ect are
investigated here simultaneously to allow com-
parison of material geometry with scale of simu-
lation.

Fig. 21 demonstrates that there is little scale
e�ect on mean properties (see comment 1 above).
While we generally expect to see convergence at
the mean for all scales in e�ective properties for a
su�cient number of data, we also expect to see
di�erences in variances at each scale. We observe
in these materials (for ®ve simulations at each
condition), that there was signi®cant ``noise'' in
coe�cient of variation in the simulated data at
low volume fractions, but that the coe�cients of

Fig. 21. (a) Schematic of model domains, for (b) normalized e�ective resistivity ratio (logarithmic) for several combinations of aspect

ratio and window size (staple length), versus volume fraction of conductor (20 simulations for each condition).
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variation converged for the two size scales at
moderate material volume fraction (�30%).

The very strong e�ect of staple length in con-
duction can also be seen in Fig. 21 (see comment 2
above), with networks comprised of low aspect
ratio ®bers having resistivities several orders of
magnitude higher than those networks comprised
of ®bers with high aspect ratio. This con®rms the
earlier result described by Fig. 19, for a di�erently
scaled domains, but with variation in staple length
by the same amount (´10).

3.3. Experimental validation

Experiments were performed to determine the
resistivity (which can be inverted, for conductivity)
of various battery substrate materials. Table 1

gives the material parameters for each of the four
materials, whose volume fractions ranges from 3%
to 18%. Simulations were performed using the re-
sistor network approach. Conductivities were very
well predicted by the simulations, and simulations'
variances were, perhaps somewhat surprisingly,
higher than those measured experimentally,
though in reasonable agreement (Fig. 23). In this
case, particle mass was modeled as ®ber mass,
since particles were of similar diameter.

3.4. Numerical singularities and practical simulation
ranges

Component solutions are given for the singular
points of interest in stochastic ®brous networks,
in Section 2. These singular points were identi®ed
from three model domains, pictured in Fig. 9.

Table 1

Material properties of Ni/MH battery substrates tested

Material

type

Thickness Content Fiber D Fiber staple

length

Vol.% nickel

Fibrex

(001±008)

0:0300 (0.075 cm) 97% pure nickel, 3% contami-

nant; 50/50 blend ®ber/powder

�30 lm 0.25±0.50

(�0.64±1.3 cm)

�18%

Fibrex

(001±028)

0:0800 (0.20 cm) 97% pure nickel, 3% contami-

nant; 50/50 blend ®ber/powder

�30 lm 0.25±0.50

(�0.64±1.3 cm)

�7%

AFS

(001±009)

0:6500 (0.165 cm) 99% pure nickel; 50/50 blend

®ber/powder

�20 lm 0.5±0.750

(�1.3±1.9 cm)

�3%

AFS

(001±029)

0:0600 (0.15 cm) 99% pure nickel; 50/50 blend

®ber/powder

�20 lm 0.5±0.750

(�1.3±1.9 cm)

�5%

Fig. 22. Average coe�cients of variation �l=r� for the simu-

lation data of Fig. 21 (20 simulations for each condition). Plots

are shown for the two cases used for assessment of the e�ect

of scale e�ect (fL=D � 100; L=Lu � 1g and fL=D � 100;

L=Lu � 0:1g).

Fig. 23. Comparison of experimental normalized conductivity

ratios versus simulation (®ve simulations, each condition), using

the resistor network approach, versus volume fraction of con-

ductor.
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Numerical solution of LaplaceÕs equation was
carried out for the two sets of boundary condi-
tions described graphically in Fig. 10 (with those
in Fig. 10a suggested as a test of convergence by
Oh and Babuska (1995), and the periodic boun-
dary conditions in of Fig. 10b are used in the
present work for solution for e�ective conduc-
tivity as in Eq. (6)). All computations were per-
formed using a Sun Ultra I workstation with a
140 MHz processor, using a commercial ®nite
element code (Maxwell 2D), with triangular ele-
ments.

Fig. 24 gives the dimensions for the simulation
domains. Table 2 gives the number of elements

required for solution (if convergence is achievable)
for all domains, angles and boundary conditions.
Two criteria were used to measure convergence for
these simulations. First, energy error was exam-
ined. In this test, the satisfaction of the governing
equation (LaplaceÕs equation) is evaluated in each
phase, for each adaptive step. Second, iteration
error was examined, comparing the percent energy
change between the last two adaptive solutions.
Only when both errors fall below a target error
value 0.1%, does the adaptive solution process
stop. In a number of cases, triangular element
meshes failed to produce convergent results (de-
noted ``N'' in Table 2).

Fig. 24. Three speci®c domains investigated (dimensions as shown), to determine the magnitude of the singularities present in solution

of LaplaceÕs equation, (a±c) modeled on Fig. 9a±c respectively. Results on convergence when studied with boundary conditions of Fig.

10a and b are given in Table 1.

Table 2

Comparison of convergence in solution of LaplaceÕs equation for microstructures shown in Fig. 9, with boundary conditions shown in

Fig. 10. N indicates no convergence. 5% mesh re®nement per pass was used in all simulations, with triangular elements

Boundary condition Unit geometry

Fig. 24a Fig. 24b Fig. 24c

Fig. 10a gb� p/6 ± N gc� p/6 ± N

ga� p/3 ± N gb� p/4 ± N gc� p/4 ± N

ga� p/2 ± N gb� p/3 ± N gc� p/3 ± N

ga� 2p/3 ± N gb� p/2 ± N gc� p/2 ± N

ga� 3p/4 ± N gb� 2p/3 ± N gc� 2p/3 ± N

ga� 5p/6 ± N gb� 3p/4 ± N gc� 3p/4 ± N

gb� 5p/6 ± N gc� 5p/6 ± N

Fig. 10b gb� p/6 ± 14 gc� p/6 ± 102

ga� p/3 ± N gb� p/4 ± 155 gc� p/4 ± 75

ga� p/2 ± N gb� p/3 ± 151 gc� p/3 ± 86

ga� 2p/3 ± N gb� p/2 ± 191 gc� p/2 ± 119

ga� 3p/4 ± N gb� 2p/3 ± 168 gc� 2p/3 ± 116

ga� 5p/6 ± N gb� 3p/4 ± 214 gc� 3p/4 ± 152

gb� 5p/6 ± 199 gc� 5p/6 ± 180
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Comparison of Table 2, and Figs. 10 and 24
demonstrate that, as expected, the solution do-
main of Fig. 24a and the boundary conditions of
Fig. 10a present signi®cant numerical challenges
for simple elements. Figs. 12 and 13 demonstrate
the severity of the P3 singularity of Fig. 9a (and
Fig. 24a). This singularity, the strongest calculated
for the ®ve cases examined, is su�ciently strong,
however, to prevent convergence in both boundary
condition applications.

The singularities arising in the other domains of
interest (Fig. 24b, c) for our boundary conditions
(Fig. 10b) were not su�ciently strong to prevent
solution despite use of simple elements with mesh
re®nement only.

4. Conclusions and future work

Simulations have suggested that in a range of
physically realistic parameters for materials used
in battery substrates, the e�ects of scale are small.
For these materials, practical stochastic ®nite el-
ement solutions are fully capable of predicting
both e�ective conductivity and variance in con-
ductivity.

Results suggest that higher staple lengths are
key in developing superior materials. Because of
the relatively high threshold for improvement of
conductivity with increase in a second phaseÕs
conductivity, strategies including improving ma-
trix conductivity do not seem promising. Al-
though scale e�ects in simulations are a concern
for materials in which practical experiments
cannot be carried out on volumes within a few
orders of magnitude of a characteristic scale in
the material, scale e�ects do not appear to hinder
solution in the cases examined here. Further-
more, although variance can be reasonably ex-
pected to increase dramatically with scale, the
large simulations performed here did not en-
counter signi®cant di�culty, since the simulation
scale and material scale are within �2 orders of
magnitude.

The resistor network approach appears to be an
accurate tool for analysis of multiphase ®ber
structures with relatively high contrasts. The sto-
chastic ®nite element approach appears to perform

well for the high contrast cases examined, giving
robust and consistent support to statistical ®nd-
ings in the resistor network approach. Numerical
di�culties commonly encountered with such
models were examined here in some detail, but
despite some reasonably strong singularities, we
show that the combination of the model domain
and boundary conditions in this application allows
solution with a simple approach (mesh re®nement
using simple elements). The greatest numerical
challenges appear to arise at interfaces between
¯ux and potential boundary conditions. Future
work will attempt to use smoothing approaches to
relax these singularities enough to allow investi-
gation of denser and larger structures.

Future work will also address the e�ects of
moderate alignment, and greater (realistic) vari-
ability in ®ber characteristics (diameter, staple
length). For larger simulations performed in the
course of this study, some convergence issues have
arisen: future work will attempt to explain these
di�culties (i.e., identify further internal micro-
structures which cause them) and suggest strate-
gies for solution.
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Appendix A. Solution of LaplaceÕs equation in a
heterogeneous two dimensional domain containing

M singularities

LaplaceÕs equation in two dimensional domain
may be written

DU � 0 �A:1�
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or, in expanded form in Cartesian or polar coor-
dinates, respectively,

o2U
o2x
� o2U

o2y
� 0 �A:2�

and

o2U
o2r
� 1

r
oU
or
� 1

r2

o2U
o2h
� 0: �A:3�

In a domain containing M singularities, we can
write an exact solution of the latter problem in
terms of �r; h� may be written

Uex �
XM

q�1

X1
j�1

kjqrkjq
q fjq�hq�: �A:4�

Substitution into the governing equation yields

o2Uq

o2rq
� 1

rq

oUq

orq
� 1

r2
q

o2Uq

o2hq
� 0; �A:5�

where the individual terms are given by

o2Uq

o2rq
�
X1
j�1

kjq�kjq ÿ 1�kjqrkjqÿ2
q fjq�hq�; �A:6�

1

r2
q

o2Uq

o2hq
�
X1
j�1

kjqrkjqÿ2
q f 00jq�hq�; �A:7�

1

rq

oUq

orq
�
X1
j�1

kjqkjqrkjqÿ2
q fjq�hq�: �A:8�

Combination of terms yieldsX1
j�1

kjqrkjqÿ2
q k2

jqfjq�hq�
h

� f 00jq�hq�
i
� 0 �A:9�

and therefore

k2
jqfjq�hq� � f 00jq�hq� � 0: �A:10�

Finally solving for terms f, we ®nd

fjq�hq� � ajq cos�kjqhq� � bjq sin�kjqhq� �A:11�
which allows ®nal expression of U as

Uq �
X1
j�1

kjqrkjq
q ajq cos�kjqhq�
� � bjq sin�kjqhq�

�
:

�A:12�

Appendix B. Solution of LaplaceÕs equation in a

two-phase domain containing a corner singularity

The intensity of singularity of P1 (Fig. 11a) is
determined as follows. Interface boundary condi-
tions are applied at a circle of arbitrary radius
around point P1. We require equal potential for
h � 0 and h � 2p as

cos�k10� � B sin�k10�
� C cos�k12p� � D sin�k12p�: �B:1�

We also have at the other interface h � a,

cos�k1a� � B sin�k1a�
� C cos�k1a� � D sin�k1a�: �B:2�

We further require equal ¯ux along the interface at
h � 0 and h � 2p, as

k1k1� ÿ sin�k10� � B cos�k10��
� k2k1� ÿ C sin�k12p� � Dcos�k12p�� �B:3�

and along the other interface along h � a, we have

k1k1� ÿ sin�k1a� � B cos�k1a��
� k2k1� ÿ C sin�k1a� � Dcos�k1a��: �B:4�

Solving these four equations simultaneously, we
obtain k1. We can write the general solution for the
exponent as

k2k1 sin�2k1a� sin�2k1p�
ÿ 2k2k1 cos2�k1a�cos�2k1p�

� 1

2
k2

2 sin�2k1a� sin�2k1p� � 2k2k1

ÿ k2
2 cos�2k1p� � k2

2 cos2�k1a�cos�2k1p�

� 1

2
k2

1 sin�2k1a� sin�2k1p� ÿ k2
1 cos�2k1p�

� k2
1 cos�2k1p�cos2�k1a� � 0: �B:5�

Thus, the intensity of the singularity at point P1 is
purely determined by the material contrast and
geometry, and therefore the boundary conditions
applied (e.g., ¯ux versus potential) are not a
factor.
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