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The release of important intracellular ions has been widely modeled using two approaches, namely, (1)
Fickian diffusion, in which sometimes tensorial diffusion coefficients are used to fit observed temporally
varying concentrations of calcium, and (2) cellular automata, which produce a set of localized finite difference
equations that result in complex global behavior. Here, we take a different approach, employing some assumed,
a priori, distribution of ion-binding proteins in the cell, and some assumed biochemical capture and release
characteristics to explain ionic motion, and ultimately, distribution. We study several scenarios for ion distri-
bution, based on differences in binder action and distribution. The numbers and strengths of ion binders, spatial
variation in inositol 1,4,5-triphosphate concentration, together with the escalating distribution of ionic diffusion
speed, are found to be key factors leading to concavity in the Ca>* wave shape. We also offer an explanation
for geometrical effects on previously observed ion diffusion speeds in the cellular cortex of the Xenopus laevis
egg during fertilization, based on an angle-of-view correction.
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I. INTRODUCTION

)

Cascades, waves, “bursts,” “blips,” and “puffs” of ionic
calcium are associated with intracellular phenomena span-
ning fertilization, cell growth, muscle contraction, liver me-
tabolism, and gene transcription [1]. Extracellular fluxes of
ionic calcium are associated with wound healing and insulin
secretion, among other physiological functions [2]. But these
types of intra- and extracellular calcium transport has so far
defied unified characterization, precisely because of the mul-
tifarious roles of calcium in signaling, and the widely vary-
ing magnitudes of fluxes associated with each role (Table I)
[3-7].

Bootman et al. [8] and Callamaras et al. [9] were among
the first workers to characterize intracellular Ca>* signaling
phenomena as hierarchical events. By histamine-stimulated
generation of inositol triphosphate (IP;) in Hela cells, Boot-
man et al. [10] identified three levels of calcium signaling:
Ca’* blips” from single IP; receptors (IP;R), intermediate *
Ca’* puffs” emanating from clusters of IP;R, and global
Ca®* waves. As later enunciated by Blaustein and Golovina
[11], emerging structural information about endoplasmic
reticulum (ER) Ca®* store organization is required to decon-
volve the sources, behaviors, and significance of a variety of
local and global Ca®* signals in the nervous system. In par-
ticular, the endoplasmic reticulum (ER) Ca®* stores in neu-
rons consist of spatially distinct compartments that are indi-
vidually loaded and unloaded.

Transitions among levels of Ca®* release are putatively
accomplished by coordination among IP;, IP;R, and Ca®*
concentrations. Release of calcium stores from the endoplas-
mic reticulum is cooperatively activated by binding of inosi-
tol (1,4,5)-triphosphate and Ca®* on the inositol (1,4,5)-
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triphosphate receptor [12]. Bootman et al. [13] verified
experimentally the large number of Ca®* stores within a cell.
The binding of a calcium ion to the site exposed by IPs
ligation activates the IP;R channel, releasing calcium stores
from the ER [14]. Calcium discharge into the cytosol is self-
inhibited [15] by the binding of another Ca’* to a second site
in the IP;R binding core. Ca®* binding at this site putatively
induces another conformational change which closes the
channel, thus safeguarding against potentially explosive
feedback from spontaneous channel opening [12]. Although
the transduction mechanism for gate closure is not yet under-
stood, the presence of a second, inhibitory Ca?* binding site
on IP;R is supported by the bell-shaped dependence of IP;R
channel current on the free cytosolic Ca** concentration [14].
Propagation of the trigger-diffusion-trigger process by the
IP; and Ca** coagonists ultimately forms a self-limiting,
fertilization-induced Ca** “wave.” Capacitive entry of extra-
cellular calcium may be further instigated at this point by
complexation of an IP;R with a depleted lumenal store with
the triphosphate subunit of the Ca®* channel in the plasma
membrane [16].

In this paper, we present a stochastic model for the
IP;R-activated intracellular Ca?* transport. We focus on this
transport pathway in recognition of its established impor-
tance as the principal mechanism for initiation and propaga-
tion of intracellular Ca?>* waves and for influx of extracellu-
lar Ca?*. The spatial distribution of the channel-activating
coagonist IP5 thus is an important consideration in the devel-
opment of the model presented herein.

A. Modeling of calcium motion: Previous work

In many Ca’>* wave phenomena, e.g., fertilization [17],
Ca?* is thought to diffuse relatively slowly, across relatively
large intracellular spaces, and thus follow the formalisms of
diffusion theory. Analytical and numerical formulations have
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TABLE 1. A chronological list of some reported experimental findings, related to calcium release events.
Amplitude Diameter Peak duration
Authors Year Cell type Phenomenon (nM) (pm) (s) Method
Deguchi and Osanai 1994 Oocytes of marine bivalves Ca’* wave N/A 100 20 Sperm induced
Horne and Meyer 1997 RBL (rat basophilic Ca>* blips 50+10 <2 <0.033 1P, induced
leukemia) cell

Bootman et al. 1997 HeLa cell Ca”* blips <40 N/A N/A Histamine stimulated
Bootman et al. 1997 HeLa cell Ca”* puffs >50 25~5 3~10 Histamine stimulated
Callamaras et al. 1998 Xenopus oocytes Ca”* puffs N/A 3.0 0.2~0.5 1P, induced
Fontanilla and Nuccitelli 1998 Xenopus oocytes Ca’* wave 700 1200 <30 Sperm induced
McDougall et al. 2000 Sea urchin eggs Ca” wave N/A 80 20 Sperm induced
Tovey et al. 2001 HeLa cell Ca” puffs  127+143  3.7+0.6 <10 Histamine stimulated
Tovey et al. 2001 16HBE14o0 cell Ca” puffs  178+108 3.2+0.8 <20 ATP stimulated
Tovey et al. 2001 SH-SYSY cell Ca puffs  123+105 3.0+0.6 5~10 Carbachol stimulated
Marchant et al. 2001 Xenopus oocytes Ca* puffs N/A 2.5 18~100 1P, induced

been developed for diffusion problems in both homogeneous
and heterogeneous domains [18], and software packages are
presently available to solve the diffusion equation within bio-
logical cells [19,20]. There is an attendant body of literature
on the well-posedness of field solutions in the presence of
jumps or discontinuities in concentrations of an ionic species
over a membrane [21]. It is important to note that the Brown-
ian motion assumed to produce diffusive mass transfer does
not result in a particle velocity. By definition, the diffusion
coefficient is
52

b= 27 m
where ¢ is the distance that the particle travels in the char-
acteristic time period 7. Thus, the actual particle speed re-
sults in a displacement proportional to the square root of
time in ordinary diffusion. Nevertheless, a “diffusion speed”
can still be defined as the distance between two adjacent
points in the direction of wave propagation, divided by the
time taken by the wave front of a certain amplitude to
traverse that distance. This definition of diffusion speed is
used throughout the current paper.

A comprehensive review of various mathematical models
for both intra- and intercellular Ca?* diffusion was conducted
recently [22]. Most of the models surveyed assumed
reaction-diffusion processes for dispersion of Ca®*, and as-
sumed initial, spatial distributions of Ca?* stores, either as
continuum distribution functions, or as discrete, stochasti-
cally distributed release sites [23,24]. However, these models
typically ignore the structural features of the cell, including
ER distribution and organelle location. Bar et al. [25], for
example, developed a set of probabilities for the opening and
closing of calcium channels, which were assumed dependent
upon calcium concentration. Falcke et al. [26], using a lattice
of stochastic channel clusters, demonstrated a clear transition
from isolated release events to steadily propagating waves,
with increasing IP; concentration. Gil et al. [27] used a ran-
dom walk model to simulate discrete three-dimensional (3D)
diffusion, and kinetic reactions of ions and buffers. However,

none of these models assumed both a full-size three-
dimensional cell boundary and realistic parameters pertain-
ing to the ion and protein binder concentrations. In the study
by Gil et al. [27], for example, the numerical model was
restricted to a conical subdomain of the whole cell.

Several successful models have been developed to model
motion of global calcium waves. Of particular interest in the
present work are the coupled experiments and simulations of
Wagner et al. [28], who used Xenopus laevis eggs to validate
their continuum diffusion model. They established that inho-
mogeneous calcium release near the plasma membrane is
required to explain the temporal and spatial dependencies of
the shape and speed of Ca** waves.

B. Fertilization-induced Ca?* waves in Xenopus eggs

The spherical Xenopus laevis oocyte is a well-studied
model cell for study of fertilization-induced calcium waves
[17] due in part to its relatively large size (>1 mm [29]). At
the sperm entry site on the egg surface, a Ca’>* wave initiates
and propagates across the egg until reaching the antipode,
i.e., the surface location opposite to the sperm entry point.
Callamaras er al. [9] investigated the activation of elemen-
tary calcium release events and their coordination to generate
Ca?* waves in Xenopus oocytes, by controlling the concen-
tration of IP; through photorelease of IP; from a caged pre-
cursor. They found that the initiation of calcium liberation
depended upon IP; concentration, but the subsequent regen-
erative increase in Ca®* flux depended upon local calcium
feedback, and was largely independent of IP; concentration.
Fontanilla and Nuccitelli[17] carried out perhaps the most
exhaustive study of this phenomenon, by imaging the
fertilization-induced calcium wave in a 1.2 mm Xenopus oo-
cyte via confocal microscopy. The ratiometric fluorescent
dyes were used to correct for the differential attenuation ar-
tifact of the fluorescence signal resulting from the spherical
shape of the egg. They found that (1) the wave traverses the
entire egg, converges uniformly on the antipode, and remains
concave through its entire motion; (2) the wave velocity
through the center is slower than that in the cortex; (3) the
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cortical wave velocity is minimum at center and maximum at
the beginning and end.

Wagner et al. [28] attempted to rationalize these results
using a diffusion model implemented in a combined finite
element—finite difference model, i.e., a formulation of the
finite element method was applied in the 2D circular domain,
using linear basis functions and triangular elements. They
suggested that the inhomogeneous distribution of IP; along
the cortex produced varying speeds of calcium ions, resulting
in a concave wave. Further, in Bugrim and Wagner’s recent
work [30,31], it was revealed that the fertilization-induced
Ca* wave is always accompanied by a wave of IP; produc-
tion, and that IP;, rather than Ca?*, is more likely to be
responsible for triggering the Ca** wave in Xenopus eggs.
Further, in several published models [28,32], the termination
of ion release from stores has been controlled by increase in
IP; concentration. Bootman and Lipp [33], for example, as-
sumed the cytosolic Ca®>* concentration to relate to IP5 re-
ceptor activation, following a bell-shaped curve.

By contrast, we herein develop a direct, stochastic simu-
lation methodology for Ca®* motion, which reflects the dis-
creteness of release events, and can include a variety of com-
plex mechanisms of Ca’* release and uptake in spherical
Xenopus eggs. Indeed, our relatively recent ability to directly
image intracellular structures and release sites [34,35] moti-
vates us to consider models that allow direct incorporation of
detailed information about membrane structures, rather than
provide a backfit of observed diffusion waves using a small
number of coefficients. Our objectives in the present paper
are thus fourfold. We wish to

(1) reconstruct the 3D diffusion model for a Xenopus egg,
and reconsider the findings of previous workers [17,28] us-
ing a model corrected for viewing angle of the experiment;

(2) demonstrate the limitations of a diffusion model as
applied to the sperm-induced calcium wave shape in a Xeno-
pus egg, and to demarcate the limited types of wave shapes
attainable via alteration of local diffusion coefficients only;

(3) demonstrate the ability of a stochastic model to cap-
ture the sperm-induced calcium wave shape in a Xenopus
egg, assuming varying concentrations of calcium stores near
the membrane; and

(4) provide a minimum set of simulable parameters, ob-
tainable from biochemical experiments, to inform similar
models for generalized intracellular ion transport.

Binders in these direct simulations are assumed to re-
spond to “triggers” for calcium release. Calcium ions cap-
tured on the most readily exchangeable low-affinity actin
binding sites could be represented using an effective capture
radius derived from the orientation-averaged potential. Re-
cently, for example, we have calculated the binding energy
exerted by the actin molecule on a free calcium ion when the
high- and medium-affinity calcium binding sites on actin are
already occupied by calcium ions [36]. Actin has one tightly
binding site of nanomolar affinity for calcium [37], four ad-
ditional medium-affinity calcium sites with equilibrium con-
stants in the 0.1 mM range [38], and five weakly binding
sites with calcium affinities on the order of 10 mM [39].
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FIG. 1. An axisymmetric continuum diffusion model. The pulse
duration is 0.01 s; total simulation time is 1 s.

II. METHODS

A. Numerical implementation of a simple, 3D diffusion model
with an angle-of-view correction for interpretation of
experiments

Fick’s equation can be derived via a random walk model,
or using a control volume analysis on mass flow induced by
a spatial gradient in concentration, and can be written

DV ~(Vu)=%, (2)

where u is the concentration of Ca%*, D is a diffusion coef-
ficient, and ¢ is time. In an infinite, three-dimensional, homo-
geneous space, Ca®* concentration due to a short pulse would
be a three-dimensional Gaussian distribution function of
CaZ* concentration u with respect to the distance r. Thus, in
a homogeneous domain without boundary constraints, the
wave front maintains a convex, spherical shape. However, in
a homogeneous circular or spherical domain, this wave is
inherently concave. This can be demonstrated by assuming a
point pulse source of calcium within a spherical geometry,
and no influx at the boundary. If the initial concentrated
source is applied on r=R, #=m/2 at t=0, the resulting pro-
file of concentration distribution u(r, 6,1), is independent of
¢, and thus Eq. (2) can be simplified as

(Fa, 200 1 72 o0

du
—= + + + —
ar raor rrob P a0

ot ®)

Analytic solutions of the above equation via Legendre poly-
nomials are available for some simplified problems, with ho-
mogeneous boundary conditions. An explicit, analytic solu-
tion for the current problem is not readily available, if at all,
in the present problem due to the inhomogeneity of the
boundary conditions. Thus, we proceed with numerical solu-
tion of Eq. (3). We assume no flux at the boundaries, i.e., no
intercellular Ca®* can enter the cell through the membrane,
per

Vu= 0|r=R' (4)

Shown in Fig. 1 is the axisymmetric, continuum finite ele-
ment model used to determine the three-dimensional Ca**

021913-3



Y1 et al.

distribution in spherical Xenopus eggs undergoing fertiliza-
tion. The numerical solution is shown in Fig. 2, with condi-
tions described above.

Confocal microscopy allows three-dimensional visualiza-
tion of wave-front progression by assembly of two-
dimensional image slices [40]. However, misalignment of the
slices with respect to the direction of wave propagation bi-
ases calculation of the wave-front velocity. The proper plane
to measure wave speed is the plane anchored by the sperm
entry site and defined by the angle of inclination of the sperm
relative to the egg, i.e., the place OAGEF in Fig. 3, assuming
that the wave propagation is by definition normal to the egg
membrane. The diffusion speed measured in the plane of the
confocal microscope OBDCH is based on the arclength BH.
If we assume constant angular diffusion speed w in plane

fertilization site

FIG. 3. Effect of view angle on the observed ion diffusion
speed.
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FIG. 2. Simulation result for
an  axisymmetric  continuum
model, showing the wave-front
shape change from convex to
concave.

OACEF, the length of arc AF is @R, in which R is the radius
of the sphere; ¢ is the angle. The length of arc BH can be
obtained as

Ccos QD)’ (5)

E:R cos_'(
Ccos a

where « is the angle between the observation plane and the
plane on which the diffusion actually takes place. The ob-
served angular velocity of diffusion " can be obtained via

_1<cos <p)
— d| cos

. d(BHIR) CcOS &

w = = =

dt dt - Veos? a — cos? (p.
(6)

Subsequent interpretation of experimental data will employ
this correction.

 sin @

B. Direct simulation of dynamic ion exchange among binders

We denote the free ion concentration as p;, the binder
concentration as p,, and the free ion speed as v. We further
denote the maximum number of ions that a binder can con-
tain as m, and the binder effective radius as a. The number of
ions stored inside binders has a mean density mp,/2. Con-
servation of ions requires

— + p;=mpy, (7)
2
which immediately yields a relation between ion and binder
concentrations, as

i m
;izg. (8)
b

Clearly, there is a discrepancy between our understanding
of the exchange as a dynamic process, and our characteriza-
tion of a binding strength as an affinity, or molarity. But a
relation can be derived between the equilibrium dissociation
constant K; and the statistical parameters used in this study,
as follows.
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FIG. 4. Schematic of the sto-
chastic simulation model for Ca**
motion in Xenopus eggs: (a) ion
binders can store and release ions;

each binder can
contain a maximum
number of storage

sites for ions

When a free ion enters
the interaction zone of a
binder, the binder will

elease all the ions insid

e }, P
+ VQ'\

released ions trigger
more binders to
release ions

The equilibrium dissociation constant K, is, by definition,

[A1x[B]

4= [aB] )

where [A] is the concentration of the free ions, Ca’*, and [B]
is the binding site concentration for our present problem.

For the purpose of correlating the parameters obtained
from a dynamic exchange simulation with the parameter K,
used to represent the equilibrium constant, we consider the
dynamic equilibrium between the ions and binders and ob-
tain [A]=p;, [Bl=pp/(m+1); [AB]=pym/(m+1). Substitut-
ing these relations into the definition of K;, we have imme-
diately

m=—. (10)

In the present model, the mean time elapsed between indi-
vidual ion releases and captures is denoted the “binding
time” 7. T is a function of binder concentration p,, binder
effective radius a, and free ion speed v, per

T=

(11)

ppav’

Therefore the binding time here is not a preset parameter;
rather, it is determined by other parameters.

The behavior of each of the species in our simulations is
described as follows. Each binder is assumed to contain a
maximum number of binding, or storage, sites for ions (here,
a maximum of five). An interaction zone around each binder
is prescribed; the size of the interaction zone reflects the
strength of binders, as schematized in Fig. 4. For simplicity,
we use a circular or spherical domain centered on the binder
to model this zone. No inertial effects, e.g., acceleration of
ion or change in direction of motion, are considered in mod-
eling an ion while it is entering the binding zone.

increased binder
density and ion
diffusion speed at

a calcium wave
is formed

(b) the regenerative process of ion
release forms the propagation of a
calcium wave.

Two triggering mechanisms for release of ions are imple-
mented, as simplified versions of the protein conformational
changes known to occur in the presence of a change to the
electromotive force field around an ion-binding protein.
First, release of ions by a binder is triggered by sufficiently
close approach of another ion; once the triggering occurs, all
ions are released simultaneously. Second, a fixed binding
time is assigned to each binder, to reflect the statistically
random conformational changes occurring in proteins and
triggering release of ions, apart from triggering due to local
changes in concentration of the ionic species of interest. The
high affinity (nanomolar) cation binding site in the actin
cleft, for example, is readily exchangeable, with association
and dissociation rate constants of 2.1 X107 M~'s™! and
0.014 s7!, respectively, for calcium on the ATP-bound actin
monomer, and corresponding association and dissociation
rate constants of 2.3 10° M~'s7! and 0.0015 s~! for mag-
nesium binding on the same site [37]. For a low probability
of triggering apart from the first mechanism, this time may
be set to infinity. Once emptied of ions (by either mecha-
nism), binders are immediately able to absorb new ones, set-
ting up the dynamic equilibrium.

Local concentrations of binders are cell specific; spatial
arrangements of Ca®* binders play an important role in de-
termining wave-front shape. In Callamaras et al.’s investiga-
tion [9] on elementary Ca’* release events in Xenopus oo-
cytes, a curve was given for the numbers of release sites
responding as a function of [IP;], from which it can be seen
that ultimate number of responding sites is approximately
0.34/um on average. According to Bootman et al.’s study
[13], on the other hand, if uniform distribution of release
sites is assumed, there would be approximately 300 Ca>*
puff sites along a straight line with a length of 1.2 mm (i.e.,
the egg diameter). Based on this estimation, there could be
70 000 sites in the cross sectional plane of the egg, and in a
full 3D spherical domain, we estimate that as many as 1.41
X 107 calcium release sites are available; the average number
of ions stored in a single site exceeds 6500.
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TABLE II. Simulation parameters used in the present stochastic model (parameters are normalized to

domain diameter in the 2D simulation.)

Time step dt Domain Binder Max.ion  Number Speed Simulation time Binder

(s) diameter speed  number of binders of free ions (s) radius

2D 0.01 0.5 0 600 0.5 2.5 0.005
3D 0.01 1.2 mm 0 1.4x107 150 um/s 2.5 1 pm

We begin with a set of two-dimensional problems, which
can be readily extended to three dimensions. Other assump-
tions include homogeneous distribution of binders, concen-
trated distribution of stores in cortical region, and assigned
diffusion speed versus simulated diffusion speed based on
local concentration of Ca** ions. Considering the large num-
ber of sites as well as the large number of ions stored in each
site, full-scale simulation is extremely computationally inten-
sive in both two-dimensional and three-dimensional prob-
lems. Therefore, while using the discrete model in simulating
the elementary events, some averaging is required to obtain
parameters for binders, ions, and calcium stores, and other
physical parameters.

1. Simple diffusion simulation with uniformly distributed
binders

The main parameters used in the simulations are given in
Table II. A two-dimensional circular domain was used to
represent a Xenopus egg; the Ca>* wave was triggered by a
single free sperm introduced at a certain location on the do-
main surface. We assumed homogeneous distribution of
ionic binders in motion at a constant speed, within the do-
main. The boundary was assumed to be fully elastic, namely,
free ions were reflected back with the same absolute velocity
upon collision with boundaries.

2. Diffusion simulation with increased distribution of binders
near the boundary

As a first alternative to Wagner ef al.’s continuum ap-
proach [28] with a graded distribution of diffusive properties
within the plane of fertilization, we simulated discrete binder
distributions with biased densities near the boundaries. Spe-
cifically, the concentration of binders was doubled in the
outer layer relative to the inside, to study the change in the
resulting distribution of ions due to change in binder distri-
bution. The thickness of this layer was fixed as 1/10 of the
egg radius. The speed of released ions (0.5/s, normalized to
the domain diameter) was assigned as the same as those in
the center of domain.

3. Diffusion simulation with increased assumed diffusion speed
near the boundary

As a second alternative to the continuum diffusion model
of Wagner et al. [28], a faster diffusion speed was assumed
for ions near the boundary. This could result from either high
localized production of IP; at the plasma membrane [28], or
the faster transport afforded by the relatively denser cytosk-
eletal proteins transporting ions near the membrane. The

density of actin filaments within most cells is greatest within
the cell cortex at the cell periphery, directly beneath the
plasma membrane [41]. We doubled the velocity of the re-
leased ions in the boundary layer, in order to study the trend
of change in the resulting distribution of ions due to change
in ion velocity. As before, the concentration of binders was
assumed to be uniform elsewhere in the domain. Other pa-
rameters remain the same as those in the model possessing
homogeneous properties.

4. Diffusion simulation with increased distribution of binders
and assumed diffusion speed near the boundary

Combining the previous two approaches, we simulta-
neously doubled the binder concentration and the velocity of
the released ions in the boundary layer to investigate their
combined effects on the wave-front shape, etc. Other prop-
erties remained the same as the previous models.

5. Full-size simulation model

By indexing binder positions, we extended the previously
described two-dimensional models to three dimensions.
Binder positions were stored in computer memory, and were
checked at each iteration in examination of binder-ion inter-
actions. Typically, only a few seconds were required by a
SUN Blade series workstation to run a full-size two-
dimensional simulation with 70 000 binding sites. By com-
parison, approximately 10—20 h were required to run a full-
size three-dimensional simulation (with >1.0X 107 binding
sites).

Similar to conditions simulated in the 2D model, we ex-
amined six cases: (1) uniform distribution of binder concen-
tration and ion release speed in the entire egg; (2) doubled
binder concentration in the boundary layer with respect to
the interior of the cell; (3) doubled ion release speed in the
boundary layer with respect to the interior of the cell; (4)
linearly increased binder concentration and ion release speed,
along the radial direction with respect to the interior of the
cell; (5) quadratically increased binder concentration and ion
release speed along the radial direction with respect to the
interior of cell; and (6) constant binder concentration and ion
release speed uniform in the interior of the cell, but doubled
values of both in the boundary layer. Numerical values of
model parameters are summarized in Table II.

6. Incorporation of 1P; effects in the simulation model

IP; and Ca®* production at the point of fertilization is
followed by the diffusion of both species into the cell interior
[42-44]. IP5, which has a diffusion coefficient of 280 um?/s
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in the cytoplasm, propagates rapidly and serves as the global
messenger, whereas Ca?* with its smaller diffusion coeffi-
cient of 13 um?/s is less mobile and acts within restricted
domains of ~5 wm within the cell [44]. Based on this signal
transduction mechanism, Wagner et al. [28] hypothesized an
exponential distribution of IP; concentration along both tan-
gential and radial directions in the vicinity of the fertilization
site. We incorporate this assumption into our simulation
model to study the effect of varying concentration of IP; on
the Ca’?* wave propagation. In this assumption, the radial
distribution of IP; has the form

[IP3]=IY{1 +I/1 exp[(r/rc_ 1)/Iw:|}a (12)
while the tangential distribution has the form
[1Ps] =1, exp[(r/r. = 1)1, Jexpl=[y/(1,r )]} (13)

x <333 uM,

where the constants involved are 1,=0.12 uM, 1,=1.0, I,
=0.84 uM, 1,,=0.015, I:;:O.S; (x,y) is the Cartesian coordi-
nate of a point in the egg with (0,0) at the center. Apparently
the IP; concentration is maximal at the fertilization site and
declines rapidly away from the site.

The relation between the concentrations of IP; and Ca* is
complex [45-47]. Since it is not our intention to conduct a
detailed study on IP; dynamics or feedback processes be-
tween IP; and Ca*, here we simply assume the relation is
linear—that is, an increase of IP; concentration causes a pro-
portional increase in the concentration of Ca’**. The magni-
tude of the maximal increase of Ca** induced by IP; is nor-
malized by the average concentration of cytosolic Ca>*. Full
3D simulations are performed to investigate the effect of
inhomogeneity of IP; concentration on the Ca?>* wave pro-
file. To make the simulation tractable, here IP; concentration
is considered as the only inhomogeneous property in the
model while the ion speed and the binder distribution are
assumed constant and uniform throughout. The radial and
tangential gradients of IP; concentration are applied as
sources of the initial triggering Ca?* ions. These triggering
ions are distributed tangentially and radially, depending on
IP; distribution. Once the wave is triggered, localized
Ca®*-induced Ca®* concentrations are superposed with the
IP;-induced Ca®* increases. Since IP; concentration decays
rapidly in the radial direction away from the fertilization
size, the role of the tangential gradient of IP; dominates in
the initial development of Ca’* wave, which is consistent

100

150 200

position along circumference (degree)

(b)

with the experiments in which a fast initial tangential wave
propagation velocity was observed [17]. The simulation re-
sults are interpolated over a set of evenly spaced “grids”
from which the cross sectional profile of the contour plots for
the Ca®* concentration distribution is generated.

III. RESULTS

We simulated the spatial and temporal changes in Ca**
concentration during the wave propagation. Both the con-
tinuum diffusion model and stochastic model are used in the
simulations for the purpose of comparison.

A. Reconsideration of the 3D continuum diffusion model

The numerical solution of the simple, 3D continuum dif-
fusion model as discussed in the above section showed that
the contour lines of Ca®* concentration are concave near lo-
cations opposite to the source, i.e., after the wave front has
traveled through the center. Similar phenomena were also
observed under different loading or boundary conditions, im-
plying the concave wave-front shape in the late stage of
wave development is intrinsic to diffusion. In Figs. 5(a) and
5(b), we plotted the wave-front traveling speed versus loca-
tions on the diameter and circumference, respectively. The
wave speed is greatest at the beginning and end, and is at a
minimum at the center. This again agrees well with Fonta-
nilla and Nuccitelli’s experimental observation in which the
cortical wave speed starts out rapidly, slows down as it ap-
proaches the center, and then speeds up again. However, this
mechanism of geometrical shape alone is unable to explain
why the wave-front shape turns to concave at the very be-
ginning of the process, and why the wave speed is the fastest
at the center on diameter. The introduction of nonuniformity
in diffusion speed of the stochastic model (or, as a counter-
part, nonuniform distribution of diffusivity in the continuous
model) is thus a necessary assumption in successful explana-
tion of the experimental observation. As we have seen, the
measured diffusion speed " is a function of viewing angle
a, shown in Eq. (6) and in Fig. 6.

B. Direct simulations

The simulation results presented below follow the same
sequence as in Sec. II. We begin with the simulation results
from a simplified two-dimensional model; then the results
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FIG. 6. Ditfusion speed as a function of circumferential position
under a different view angle.

from the full-size three-dimensional model with and without
the explicit incorporation of IP5 distribution.

In Fig. 7, the static images of wave propagation in homo-
geneous cytoplasm with uniformly distributed binders are
sequentially presented at time interval of 0.5 s. In the im-
ages, each dot represents an individual ion. The wave ini-
tiates at a single point, at the fertilization site, then propa-
gates to the antipode. Shown in Fig. 8 is a series of
simulation frames for wave propagation resulting from dou-
bling of the binder concentration in the boundary layer. In
Fig. 9, the diffusion speed was doubled in the boundary
layer, and thus the ions moved much faster in the outer part
of the wave. Figure 10 shows the simulation results when
both diffusion speed and binder concentration in the bound-
ary layer were increased.

Examples of full-size simulations are shown in Fig. 11,
where the ion concentration fields of wave propagation in the
3D full-size models are plotted. The diffusion speed and
binder concentration are doubled in the thin outer layer. It
should be pointed out that the quantity shown in the contour
plot of Fig. 11 represents free ion concentration, rather than
the individual ions previously presented in the plots of the
reduced model. In addition, the discrete result data were in-
terpolated over a “coarse mesh” to exhibit the dynamic, local
variation of ion concentration. On the other hand, the 3D
profile of the wave front in Fig. 11(a) was constructed by
smoothing and interpolation of the ion concentration and

PHYSICAL REVIEW E 72, 021913 (2005)

FIG. 8. Simulation of Ca®* motion using the stochastic model.
Binders doubled at the boundary layer.

then by mapping the isosurface of the resultant field. Figure
12 involves 1.4 X 107 binding sites and totally 7.0 X 107 ions.

The tangential gradient of IP;, as given in Eq. (10), is
presented in a plot against the angular position of the cortical
location, as shown in Fig. 12. Nonuniformity in IP; concen-
tration in the cortical region results in the tangential gradient
of the initial Ca®* distribution. This is equivalent to adding a
thin layer of triggering Ca* to the system, which leads to the
concavity in the Ca?* wave fronts, as shown in the six con-
secutive images in Fig. 13. The simulation parameters used
here are identical to those listed in Table II, except that the
simulation time in this case is about 4.0 s, beginning with the
image on the top left when the initial thin crescent of Ca**
ions (induced by the cortical IP5) start to initiate the wave,
and ending with the image on the bottom right when the
wave front reaches the antipode and the equilibrium is estab-
lished. The time interval between two consecutive images in
Fig. 13 is approximately 0.5 s, except for the last image
where it takes a little longer (2 s) for the system to reach a
dynamic equilibrium phase, since the wave front would
bounce back after reaching the antipode.

IV. DISCUSSION

Our present approach differs from some continuum mod-
els in which depletion is not modeled. It should be pointed
out that although our study is not focused on the biochemical
processes underlying the different behaviors of Ca®* chan-

FIG. 7. Simulation of Ca?* motion using the stochastic model.
Homogeneous properties are assumed.

FIG. 9. Simulation of Ca2* motion using the stochastic model;
ion diffusion speed doubled at the boundary layer.
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FIG. 10. Simulation of Ca** motion result using the stochastic
model; both ion storage capacity and ion diffusion speed doubled at
the boundary.

nels, these behaviors can actually be included in the model
by simply setting up rules for ion release from binders. As
discussed previously, modeling of calcium diffusion as a glo-
bal phenomenon cannot explain some experimental observa-
tions. Almost all the existing models, including the cellular
automata approach, ignore the structural complexity of cells
and eggs. In contrast, we proposed a multiscale modeling
scheme for the calcium diffusion problem. The local model-
ing is stochastic and can include different release mecha-
nisms (e.g., calcium blips and puffs) and local structures
(e.g., ER, mitochondria, and microtubules). Local spatial dis-
tribution of ion binders combined with mechanisms for re-
lease can produce special mechanisms of ion diffusion, e.g.
anisotropic diffusion of calcium near the cortex. Specific
findings from our simulations follow.

PHYSICAL REVIEW E 72, 021913 (2005)

A. Reconsideration of the 3D continuum diffusion model

It has been seen from Figs. 5 and 6 that the wave speed is
greatest at the beginning and end, and is at a minimum at the
center. This agrees with experimental findings [17], in which
the cortical wave is initially fast, but slows down as it ap-
proaches the center, and then speeds up again. However, this
alone is unable to explain why the wave-front shape becomes
concave at the very beginning of the process, and why the
wave speed is the fastest at the center on diameter. The in-
troduction of nonuniformity in diffusion speed of the sto-
chastic model (or, as a counterpart, nonuniform distribution
of diffusivity in the continuous model) is thus a necessary
assumption in successful explanation of the experimental ob-
servation.

Per Fig. 6, the wave in the observation plane starts some
time later than the wave as actually initiated. The time lag
between the real and observation starting times is a/w. The
wave in the observation plane initially proceeds rapidly, but
slows down and reaches a minimum value 1/cos® @ as it
passes through the center, whereupon it speeds up again. The
phenomenon agrees with the cortical diffusion speed profile
reported by the previous experiments [17]. It is also found
that the measured diffusion speed " is always greater than
the actual diffusion speed w for any «. In addition, the ob-
served diffusion speed increases with an increase of «. This
is even more apparent at locations away from the center.

In short, the variation in view angle can alter the diffusion
speed. The fact that small changes in a could result in sig-
nificant changes of the measured wave speed makes it ex-
tremely important in experiments to properly align the obser-
vation plane to the plane where the diffusion actually occurs.
If the precise alignment cannot be realized in experiments,

(a) 3-D

(b) cross section

FIG. 11. (Color) Ca®* concentration in 3D (a) and its cross sectional plane (b) full-size stochastic models. Linear interpolation was used

in production of the contour plots.
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FIG. 12. Assumed distribution of IP; concentration as a function

of angular position on the cortical surface. The center of the coor-

dinate system is located at the center of the egg and zero degree of
angle corresponds to the fertilization site.

PHYSICAL REVIEW E 72, 021913 (2005)

the effect of view angle must be taken into consideration via
Eq. (6) during the evaluation of the diffusion properties.

B. Direct simulations

In simple diffusion simulation with uniformly distributed
binders as shown in Fig. 7, after 2.5 s, the entire domain is
full of ions and reaches a status of dynamic equilibrium.
Interestingly, according to Eq. (8), the number of free ions is
approximately 0.5 X5 X 600=1500 at equilibrium. Since the
process is stochastic, the wave front is not smooth, though it
is approximately convex throughout the process, and circular
at the boundary upon initiation, due to uniform distribution
of binders, identical speed of released ions, and reflectivity
of the boundary. This differs markedly from the result of the
continuum model studied, in which a transition of the wave
front shape is observed even if the homogeneous properties
of cytoplasm are assumed.

The convex wave front resulting from diffusion simula-
tions with increased distribution of binders near the bound-
ary (as represented by Fig. 8) is materially similar to that
resulting from a model having a uniform distribution of bind-
ers. However, as the wave propagates, the convex shape flat-

FIG. 13. (Color) Simulation result of Ca>* motion using inhomogeneous IP; distribution. ¢ represents simulation time. Contour plots on
the cross sectional plane are shown. Local concentration of Ca** lower than 10% of the maximum value is shown empty in the plots.
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tens in comparison with the former model. This results from
the higher probability of triggering binders and hence the
higher density of free ions in cortical regions. This higher
probability increases wave speed in the tangential direction.
Nevertheless, this increase of speed alone is not high enough
to induce a concave wave front.

Doubling of diffusion speed in the boundary layer (Fig. 9)
resulted in a sufficiently high increase in ion speed to induce
a reversal in the wave front shape, from convex at the initia-
tion site, to concave at the antipode. The transition occurred
after the wave front reached the center of the egg. Appar-
ently, the degree of concavity is determined by the speed of
free ions at the boundary relative to those in the interior. Use
of a continuous, linear or quadratic distribution profile in the
radial direction also produced a similarly concave wave
front.

Obviously, simultaneous increase in diffusion speed and
binder concentration in the boundary layer encourages devel-
opment of concavity in the wave relative to increasing either
parameter singly, as shown by comparisons of Figs. 8—10.

Unsurprisingly, similar results were found in the full-scale
simulation as shown in Fig. 11, in comparison to the reduced
model: change of binder concentration distribution alone
does not affect the wave-front shape significantly; a concave
wave will not form unless the inhomogeneity of ion speed
distribution is introduced. Further, a combination of nonlin-
ear distribution of both binder concentration and ion release
speed along the radial direction has yielded greater concavity
in the wave front.

V. CONCLUSIONS AND FUTURE WORK

Our approach has several apparent advantages over others
proposed, including ease of direct incorporation of structural
complexity, and ease of addition of newly discovered mecha-
nisms for ion release or binding. In a broader sense, we have
provided a multilevel model for intracellular ionic transport,
whose capabilities not generally available in other contem-
porary computational approaches.

PHYSICAL REVIEW E 72, 021913 (2005)

In summary, there are three possible reasons to explain
the concavity in the Ca®* wave shape during the fertilization
of Xenopus eggs: (1) the spherical shape of the domain; (2)
the nonuniform distribution of Ca?* diffusion speed; (3) the
initial crescent distribution of triggering Ca®* in the cortical
regions due to the initial tangential development of IP; in
that region. The last two make stronger contributions to the
formation of the concave wave front. The first reason alone
can only explain the wave shape in the late stage of wave
propagation, but is unable to explain the consistency of the
concavity from the very beginning. Also, nonuniformity in
calcium ion release rate can change the wave front to a small
extent, but cannot change the overall convexity of wave
shape. With increased rate or volume of calcium release at
one location, the probability of triggering a neighboring store
is also higher, which could lead to a higher diffusion speed.
However, this may not be enough to explain the experimen-
tal observation. The only possible way to achieve a reason-
able correlation to experiments would be to assume escalat-
ing distribution of diffusion speed and tangential distribution
of initial triggering Ca>*, per our simulations.

In addition, we provided an explanation for the observa-
tion [17] that diffusion speed is much higher at the wave
initiation site and antipode: the change of diffusion speed
may have resulted from misalignment of the observation
plane.

Finally, it should be pointed out that Fontanilla and Nuc-
citelli [ 17] interpreted their images as representing a confocal
“slice” through the center of the egg. However, the egg is
nearly opaque [30,48], and what they imaged could be actu-
ally a cortical wave, and the slower velocity along a diameter
can be expected simply from the spherical geometry. In order
to test the hypothesis, more experiments should be con-
ducted.
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