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Analytic approximations for percolation points in two-dimensional and three-
dimensional particulate arrays have been reported for only a very few, simple particle
geometries. Here, an analytical approach is presented to determine the percolative
properties (i.e. statistical cluster properties) of permeable ellipsoids of revolution. We
generalize a series expansion technique, previously used by other authors to study
arrays of spheres and cubes. Our analytic solutions are compared with Monte Carlo
simulation results, and show good agreement at low particle aspect ratio. At higher
aspect ratios, the analytic approximation becomes even more computationally inten-
sive than direct simulation of a number of realizations. Additional simulation results,
and simplified, closed-form bounding expressions for percolation thresholds are also
presented. Limitations and applications of the asymptotic expressions are discussed
in the context of materials design and design of sensor arrays.
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1. Introduction

The importance of percolation phenomena in materials design cannot be overstated.
Selection of particle shapes, sizes and volume fractions of phases in heterogeneous or
porous materials often begins with a determination of criticalities in interconnections,
particularly in their effect upon mechanical, conductive or magnetic properties. We
define the key percolation parameter as the fractional volume or mass of a given
phase at which it forms a continuous, domain-spanning path across a representative
volume element.

It is important to note that for finite areas or volumes, the percolation point is
probabilistic, i.e. realizations of the particle arrays generated from the same distri-
butions in particle sizes, shapes, locations and orientations may or may not percolate
(e.g. as studied in conductive fibrous arrays, by Sastry et al . (1998), Cheng et al .
(1999), Cheng & Sastry (1999) and Cheng et al . (2001) and, previously, in gen-
eralized two- and three-dimensional (3D) stick systems, by Balberg & Binenbaum
(1983, 1984)). For infinite domains, however, we can define this point precisely as
the phase fractional volume at which the mean cluster size of particles of the phase
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becomes unbounded. It has been rigorously shown for lattice systems and also for
many continuum systems that the (random) percolation point for the finite-volume
system converges in probability to the (deterministic) percolation point for an infinite
system (Grimmett 1999). Expressions using series expansions of mean cluster sizes
to arrive at percolation points for infinite domains render deterministic predictions
of percolation point, both in lattice problems (e.g. Sykes & Essam 1964; Coniglio
et al . 1977a, b) and continuum percolation problems (e.g. the integral formulation,
by Coniglio et al . (1977a, b); the series expansion formulation, by Haan & Zwanzig
(1977), Given et al . (1990); and the continuum Potts model, by Fortuin & Kasteleyn
(1972) and Drory (1996)).

In derivation of analytic solutions for continuum percolation, a series expansion of
cluster density is typically used to determine percolation thresholds, via convergence
analysis. These series expansions invariably involve an integral expression that arises
from the virial theory for a generalized particulate system (e.g. Hill 1955; Balberg
1987; Drory 1996). Such integrals have been evaluated for circles and spheres (Chiew
& Stell 1985; Torquato et al . 1988), as well as for oriented squares and cubes (Haan
& Zwanzig 1977). Also, Quintanilla & Torquato (1996, 1997) reinvestigated the pro-
totypical continuum percolation model, a system of spatially uncorrelated, equally
sized circles or spheres, and evaluated its cluster properties using Penrose’s (1991)
integral expression. Their approximation showed good agreement with those derived
by earlier researchers.

It has been widely conjectured, however, that analytical solutions for percolation
thresholds can be derived only for a few simple cases of particle geometry (e.g.
triangular, simple quadratic and honeycomb lattices (Fisher & Essam 1961; Sykes
& Essam 1964) and the one-dimensional continuum model (Drory 1997)). Thus,
numerical models have been used to determine percolative properties of arrays of non-
circular particles. For example, the now classic work of Kirkpatrick (1973) revealed a
power-law relationship between conductivity and bond fraction, useful in determining
critical volume fraction. Pike & Seager (1974) presented Monte Carlo simulation
results illustrating the effects of hardcore interactions, probabilistic and deterministic
bonding parameters, and various forms for the bonding function.

Recently, Yi & Sastry (2002) presented probably the first series expansion solution
for the generalized problem of arrays of overlapping ellipses, by extending Penrose’s
(1991) integral technique to analytically estimate percolation thresholds in arrays
of ellipses of uniform shape and size. The dependence of percolation threshold on
particle aspect ratio was specifically examined, and the analytical approximations
showed good agreement with the Monte Carlo simulations performed by the present
authors, as well as those reported previously by Xia & Thorpe (1988). This solution
technique offered a ready means of investigating percolation in both moderate aspect
ratio particle networks, and fibrous materials, in two dimensions. However, two key
tasks arise in application of these results, namely, determination of the limitations
of the two-dimensional results for three-dimensional systems, i.e. quantification of
the relatively higher percolation points in arrays of elliptical versus ellipsoidal parti-
cles. As such, analytical approximations of percolative properties of oriented, three-
dimensional, high-aspect-ratio phases are highly desirable. Thus, we now extend our
previous technique to the three-dimensional problem of percolation in arrays of ellip-
soids of revolution. We also develop techniques for efficient numerical implementation
of both the analytical and numerical schemes, including a computationally efficient
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algorithm for determination of particle overlap. Finally, we validate the analytical
approach using three-dimensional Monte Carlo simulations, and compare both ana-
lytical and numerical results with previously reported simulation results.

2. The series expansion for three-dimensional overlapping particles

We define g(ri, rj) as the probability that two particles positioned at ri and rj are
directly connected, by closing the edge {ri, rj}. We also define the function g1 as the
probability that the particle centred at r is connected to the graph G, which is formed
by closing the edges {ri, rj} in {r1, r2, . . . , rk}; g2 is defined as the probability that
the graph G is connected. Using these definitions, we write an integral representation
for the density of clusters (number of clusters per particle) containing k particles from
the conventional theories of statistics, as

nk =
ρk−1

k!

∫
dr1

∫
dr2 · · ·

∫
drk−1 exp

{
− ρ

∫
g1(r; r〈k〉) dr

}
g2(r〈k〉). (2.1)

which can be expanded in a Taylor series as

nk =
∞∑

i=0

(−1)i ρ
k−1+i

k!i!

∫
dr1

∫
dr2 · · ·

∫
drk−1

[ ∫
g1(r; r〈k〉) dr

]i

g2(r〈k〉). (2.2)

These relations, though originally derived in the context of Poisson points (Pen-
rose 1991) and circular/spherical particles (Quintanilla & Torquato 1996; Torquato
2002), can be written more generally for oriented particles in R

3. We first intro-
duce additional sequential and non-interchangeable degrees of freedom α, β and ϕ,
representing particle rotational angles about the x-, y- and z-axes, respectively. Intro-
duction of these angular degrees of freedom requires that the previous integration
be performed over the domain r(x, y, z, α, β, ϕ). We can further modify the origi-
nal integral equations by introducing probability density functions in the integrand
representing particle shapes and sizes, as

nk =
ρk−1

k!

∫
f(l(1)1 , l

(1)
2 , . . . ) dl

(1)
1 dl

(1)
2 · · · dr1

∫
f(l(2)1 , l

(2)
2 , . . . ) dl

(2)
1 dl

(2)
2 · · · dr2 · · ·

×
∫

f(l(k−1)
1 , l

(k−1)
2 , . . . ) exp

{
− ρ

∫
f(l(k)

1 , l
(k)
2 , . . . )g1(r; r〈k〉) dl1 dl2 · · ·drk

}
× g2(r〈k〉) dl

(k−1)
1 dl

(k−1)
2 · · · drk−1, (2.3)

where li is the probability density function for the ith characteristic parameter; ri

is the position vector connecting the centrepoints of particle 0 and particle i. The
particle 0 is defined as a particle centred at the origin of the frame of reference.

For a general (triaxial) ellipsoid, the lengths and orientations of the three semi-
axes, along with the position of the centre, are required to completely describe the
particle shape and position in R

3. For an ellipsoid of revolution (as shown in figure 1),
however, one of these axes degenerates, and the shape is determined solely by the
orientation of the axis of revolution in R

3, and its radius. The orientation of the
axis can be described, for example, by the elevation angle θ ∈ (0, π) from the z-axis
and the rotation angle ϕ ∈ (0, π) about the z-axis, in a spherical coordinate system

Proc. R. Soc. Lond. A (2004)



2356 Y.-B. Yi and A. M. Sastry

Z*

z

y

x

Figure 1. An ellipsoid of revolution. Cell edges mark the extreme
values on the ellipsoidal surface in x-, y- and z-directions.
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Figure 2. Spherical coordinate system for expression of the orientation of an ellipsoid.
Z∗ is the axis of revolution for the ellipsoid, and θ and ϕ are the angular positions of Z∗.

(figure 2). For the problem of uniform ellipsoids of revolution whose geometric centres
are positioned by a Poisson process, we have uniform probability density functions for
the x, y and z centrepoint coordinates of particles. The density function for angular
position ϕ, also has a uniform density of 1/π over (0, π).

However, the density function for the elevation angle θ ∈ (0, π) is not uniform.
This can be explained as follows. Suppose an event occurs uniformly on a spherical
surface of unit radius. The probability that a particle is located in a region of area ∆S
is simply ∆S/4π, where 4π is the total surface area of the sphere. We can consider a
narrow ring [θ, θ+∆θ] parallel to the equator, having area 2π sin θ∆θ. The probability
that the particle is located inside the ring is simply sin θ∆θ/2. By definition, the
probability density function is found by dividing the probability by ∆θ, resulting
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in a non-uniform density of sin θ/2. This must be considered in simulations, and is
discussed later as a possible explanation for discrepancies in reported percolation
thresholds.

Using these distributions, can write explicitly, for the cluster density for overlap-
ping ellipsoids of revolution,

nk =
1
k!

(
ρ

2π

)k−1

×
∫

· · ·
[
g2(r〈k〉) exp

{
− ρ

2π

∫
g1(r; r〈k〉) sin θ dxdy dz dϕ dθ

}

×
k−1∏
j=1

sin θj

]
dx2 dy2 dz2 dϕ2 dθ2

· · ·dxk dyk dzk dϕk dθk,
(2.4)

which can be expanded in a Taylor series as

nk =
∞∑

i=0

(−1)i 1
k!i!

(
ρ

2π

)k−1+i ∫
· · ·

[∫
g1(r; r〈k〉) sin θ dxdy dz dϕ dθ

]i

×
k−1∏
j=1

sin θjg2(r〈k〉) dx2 dy2 dz2 dϕ2 dθ2 · · ·dxk dyk dzk dϕk dθk, (2.5)

where xq, yq, zq are the x-, y- and z- components of the centrepoint of the qth
ellipsoid, and q = 2, . . . , k; ρ is the particle density per unit volume. Note that the
integrals in equations (2.4) and (2.5) are evaluated over the domain r(x, y, z, ϕ, θ),
and both g1 and g2 are actually either 0 or 1. Again, the sin(θ) term in the integrand
results from the non-uniform density function of particles along the θ-direction. To
generate particles with density function sin θ/2 for the orientation angle, a set of
random numbers {τ} is first generated, with uniform distribution over [0, 1]. We
present here without proof that τ∗ = arccos(1−2τ) has density function sin θ/2, and
thus {τ∗} is used to generate particle elevation angles.

The coefficients of the power series of equation (2.4) can be used to obtain the
low-density series expansions of mean cluster size, S, and expected cluster size, Q,
for a particular particle geometry. These two quantities can be related to cluster
density nk (Quintanilla & Torquato 1996) as

S =
∞∑

k=1

k2nk, Q =
1∑∞

k=1 nk
. (2.6)

Since cluster density nk can be expressed in terms of particle density ρ via a power
series

nk =
∞∑

i=0

ciρ
i, (2.7)

Proc. R. Soc. Lond. A (2004)



2358 Y.-B. Yi and A. M. Sastry

we rewrite equation (2.6), the series expansion expression of S and Q, in terms of ρ,
as

S =
∞∑

i=0

aiρ
i, Q =

∞∑
i=0

biρ
i. (2.8)

Percolation thresholds can then be estimated by checking for convergence in S or Q.
We point out that Q does not, in fact, diverge at the percolation threshold, since

Q =
1∑∞

k=1 nk
<

1
n1

= exp
{

ρ

2π

∫
g1(r; r〈k〉) sin θ dxdy dz dϕ dθ

}
(2.9)

and, for a finite value of density ρ, the right-hand side of the expression is always
bounded. Nevertheless, the low-density series expansion of Q can still be used to
provide a reasonable estimate of the percolation threshold, by study of the problem
of overlapping spheres (Quintanilla & Torquato 1996).

Among various ways to study series convergence, the use of Padé approximants
(Baker & Graves-Morris 1995) offers a reliable technique. In this method, a power
series Φ(ρ) is approximated as a ratio of two series, with the denominator being a
series of order l and the nominator being a series of order m, as

Φ(ρ) =
∑m

i=0 Aiρ
i∑l

i=0 Biρi + O(ρm+l+1)
. (2.10)

The percolation threshold, ρc, is reached when Φ diverges. The value of ρc (where
the subscript ‘c’ denotes ‘critical’) can be approximated by one of the real roots of
the denominator (Alon et al . 1990). To ensure existence of at least one solution, we
consider l � 1 approximants, or

Ξ(ρc) =
l�1∑
i=0

Biρ
i
c = 0. (2.11)

In many applications, including the present work, l = 1 is used and ρc is determined
simply by ρc = −B0/B1.

3. Contact/overlap criteria

Efficient detection of interparticle contact or overlap is essential for both the analytic
approach and Monte Carlo simulations of percolation. For spheres, particle location
and geometry are completely defined by particle centrepoint location (x, y, z) and
radius a. Two particles are in contact (tangent or overlapping) if d � a1 + a2,
where d is the distance between the centres; a1 and a2 are the radii of the two
spheres, respectively. For spheres of uniform size, the overlap criterion can be simply
expressed in Cartesian coordinates as√

(x1 − x2)2 + (y1 − y2)2 + (y1 − y2)2 →
{

� 2a, overlap,

> 2a, separate.
(3.1)

For ellipsoids of general orientation, however, it is more difficult to explicitly derive
an overlap criterion, due to the added complexity of ellipsoidal surfaces, expressed
as

u2

a2 +
v2

b2 +
w2

c2 = 1, (3.2)
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where ⎡
⎣u

v
w

⎤
⎦ = R

⎡
⎣x − x0

y − y0
z − z0

⎤
⎦ , (3.3)

in which x0, y0 and z0 represent the centrepoint position of the ellipsoid, and R is
the rotation matrix of the axis of revolution. In R

3, rotations about the x-, y- and
z-axes require operations

Rx(α) =

⎡
⎣ 1 0 0

0 cos α sin α
0 − sin α cos α

⎤
⎦ ,

Ry(θ) =

⎡
⎣ cos θ 0 − sin θ

0 1 0
sin θ 0 cos θ

⎤
⎦ ,

Rz(ϕ) =

⎡
⎣ cos ϕ sin ϕ 0

− sin ϕ cos ϕ 0
0 0 1

⎤
⎦ .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.4)

Because any arbitrary rotation can be decomposed into rotations about each of the
three axes, by Euler’s rotation theorem, we can write a 3 × 3 rotation matrix as

R = Rx(α)Ry(β)Rz(θ) =

⎡
⎣R11 R12 R13

R21 R22 R23
R31 R32 R33

⎤
⎦ , (3.5)

which operates on a vector R. For ellipsoids of revolution about the z-axis, we have
b = c, and the rotation matrix becomes

R = Ry(θ)Rz(ϕ) =

⎡
⎣cos θ cos ϕ cos θ sin ϕ − sin θ

− sin ϕ cos ϕ 0
sin θ cos ϕ sin θ sin ϕ cos θ

⎤
⎦ . (3.6)

To determine overlap among arbitrarily sized ellipsoids, a commercial equation solver
can be used to iteratively solve the pairwise nonlinear equations; interconnectedness
is detected by the presence of at least one real solution. Although such a scheme
is workable for low-density arrays, it quickly becomes cumbersome for mid-range
densities, since the number of connectedness detections grows exponentially with
particle number in any given realization.

For the arrays of identical ellipsoids investigated here, however, the efficient overlap
detection algorithm of Vieillard-Baron (1972) can be used, described as follows. For
two identical ellipsoids of revolution E1 and E2, we denote as u1, u2 the unit vectors
of the axes of revolution for E1 and E2. Each ellipsoid has major axis length 2a (along
the axis of revolution) and transverse axis length 2b, and u is the vector connecting
the centrepoints of the two ellipsoids. The necessary and sufficient condition for two
ellipsoids to have no real point in common, or to be exteriorly tangential, is that the
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three following functions (ψ, s1, s2), by

ξ =
a

b
− b

a
, (3.7)

t1 = 4 + ξ2(u1 × u2)2 − |u|
b2 +

(
1
b2 − 1

a2

)
u1 · u, (3.8)

t2 = 4 + ξ2(u1 × u2)2 − |u|
b2 +

(
1
b2 − 1

a2

)
u2 · u, (3.9)

h = t1 + t2 − 2 − ξ2

b2 (u1 × u2) · u, (3.10)

p = −h, (3.11)

q = t1t2 − 4, (3.12)

w = 4h − t21 − t22, (3.13)

ψ = 4(p2 − 3q)(q2 − 3wp) − (9w − pq)2, (3.14)

s1 = h2 − 2t1t2 − 4, (3.15)

s2 = t21t
2
2 + 8t1t2 − 2h(t21 + t22), (3.16)

be positive or zero, and that at least one of the quantities t1, t2 and h be negative.
We denote function ψ as the contact function. Using the relations

u1 = m1i + m2j + m3k,

u2 = l1i + l2j + l3k,

u = xi + yj + zk,

⎫⎪⎬
⎪⎭ (3.17)

|u| =
√

x2 + y2 + z2, (3.18)

u1 × u2 = (m2l3 − m3l2)i + (m3l1 − m1l3)j + (m1l2 − m2l1)k, (3.19)

(u1 × u2)2 = (m2l3 − m3l2)2 + (m3l1 − m1l3)2 + (m1l2 − m2l1)2, (3.20)

(u1 × u2) · u = (m2l3 − m3l2)x + (m3l1 − m1l3)y + (m1l2 − m2l1)z, (3.21)

u1 · u2 = m1l1 + m2l2 + m3l3, (3.22)

u1 · u = m1x + m2y + m3z, (3.23)

u2 · u = l1x + l2y + l3z, (3.24)

we evaluate ψ, s1, s2, t1, t2 and h.

4. Integral reduction

Because each ellipsoidal particle of revolution has five degrees of freedom, i.e. three
Cartesian coordinates to define the particle centre and two angles to define the
orientation of the axis of revolution, we have, in the integral expression of cluster
density, five integration variables for each dummy particle. These two additional
degrees of freedom for ellipsoids, over the three required for spheres or parallel cubes,
make computation of the integral expression considerably more intensive; reduction
of integral domain is thus of key importance in the analytical approach.

Proc. R. Soc. Lond. A (2004)



The percolation threshold for overlapping ellipsoids of revolution 2361

(a) (b) (c)

Figure 3. Clusters of (a) two, (b) three and (c) four permeable ellipsoids.
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Figure 4. Connected graphs for three-point and four-point integral reductions. Each graph rep-
resents a cluster configuration, and each particle in a graph must be connected to at least one of
the remaining particles, to form a connected path. The total number of ways to connect particles
is the summation of the permutation numbers of all graphs.

(a) Connected graphs

In the integral expression of cluster density, the integral domain spans R
3, but

the integrand is non-zero only when the dummy particles form a connected path.
As a result, the actual integral domain comprises a set of finite regions, offering an
opportunity to reduce the integration domain. We find by the arrival method (Roach
1968) that the number of possible ways to connect k particles is

∑
k0<k1<···<ki

(k − 1)!
(k1 − k0)! · · · (ki − ki−1)!

2{(k0−ki+(k1−k0)2+···+(ki−ki−1)2)/2}

× (2k1−k0 − 1)k2−k1 · · · (2ki−1−ki−2 − 1)ki−ki−1 , (4.1)

where k0 = 1 and ki = k.
There is one and only one way to connect two particles. It can readily be verified

that there are four possible ways to connect three particles and 38 ways to connect
four particles (Hill 1955), as shown in figures 3 and 4. Because each particle is
distinct, we must consider each connection permutation, in addition to the cluster
configurations, to calculate the number of possible connection scenarios. The original
integral domain is then rewritten as the summation of all the possible connected
graphs.
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We give an example of our approach for a cluster of three particles, i.e. k = 3. We fix
the position of particle zero, allowing a double, instead of triple integral expression,
as seen by the absence of the term dx1 dy1 dz1 · · · from the integral expression of
cluster density,

n3 =
1
6

(
ρ

2π

)2

×
∫∫ [

g2(r〈3〉) exp
{

− ρ

2π

∫
g1(r; r〈3〉) sin θ dxdy dz dϕ dθ

}

×
2∏

j=1

sin θj

]
dx2 dy2 dz2 dϕ2 dθ2 dx3 dy3 dz3 dϕ3 dθ3.

(4.2)

We use

n3 =
∫∫

(4.3)

as a simplified notation to represent the original integral expression for k = 3. Clearly,
from the three-point graph (the connected graph consisting of three particles), we
have two different cluster configurations with the weight (permutation number) 3
and 1, respectively, as

n3 = 3n∗
3 + n∗∗

3 , (4.4)

where n∗
3 represents the probability of the occurrence of the first cluster configu-

ration, in which particle 0 is connected to both particles 1 and 2, but particles 1
and 2 are not connected directly. If B0 represents a domain such that all particles
connected to particle 0 must fall in this domain (but a particle in this domain need
not be connected to particle 0), then particles 1 and 2 must be in B0. Further, if
B∗

1 represents a domain such that a particle in the domain must be connected to
particle 1, then particle 2 must fall outside B∗

1 . Thus, particle 1 is in B0; particle 2
is in B0 but not in B∗

1 . We denote this cluster probability as

n∗
3 =

∫
B0

∫
B0\B∗

1

. (4.5)

Similarly, n∗∗
3 represents the probability of the second cluster configuration in which

particles 0, 1 and 2 are all interconnected. If B1 represents a domain such that all
particles connected to particle 1 must fall inside this domain (but a particle inside
this domain may not be connected to particle 1), then particle 2 must be inside B1.
Thus, particle 1 is in B0; particle 2 is in both B0 and B1. We thus write

n∗∗
3 =

∫
B0

∫
B0∩B1

, (4.6)

and for the three-particle integration involved in evaluation of n3 we have

n3 =
∫∫

= 3
∫

B0

∫
B0\B∗

1

+
∫

B0

∫
B0∩B1

. (4.7)
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Bi*

2b

Bi

∆y

∆x

∆y+2a

∆ x+2a

√

Figure 5. Illustration of Bi and B∗
i for integral reduction. If two particles intersect, the centre

of the second particle must be located inside Bi of the first particle; if they do not intersect,
the centre must be located outside B∗

i . Note in the 3D case, the cube B∗
i has a length 2/

√
3b

instead of
√

2b.

Following the same approach and notation, we have, for the four-particle integra-
tion,

n4 =
∫∫∫

= 4
∫

B0

∫
B1\B∗

0

∫
B1\(B∗

0∪B∗
2 )

+12
∫

B0

∫
B1\B∗

0

∫
B2\(B∗

0∪B∗
1 )

+ 3
∫

B0

∫
B1\B∗

0

∫
(B0∩B2)\B∗

1

+12
∫

B0

∫
B0∩B1

∫
B0\(B∗

1∪B∗
2 )

+ 6
∫

B0

∫
B0\B∗

1

∫
B0∩B1∩B2

+
∫

B0

∫
B0∩B1

∫
B0∩B1∩B2

, (4.8)

where Bi is a cell centred at the origin of the ellipsoid i and has lengths ∆x + 2a,
∆y+2a and ∆z+2a along the x-, y- and z-axis, respectively; B∗

i represents a smaller
cell, centred at the same location, with lengths 4

√
3/3b = 2.3b along all the three axes,

as shown in figure 5. We note that a � b is assumed in the above discussion.
In principle, higher-order integral reduction could be constructed in a similar fash-

ion, but the number of connected paths increases exponentially. In the five-point
connected graphs as shown in figure 6, for example, there are 21 possible cluster
configurations and 728 possible means of connectivity. An attempt to reduce higher-
order integrals would require even more extensive categorization.

It should be pointed out that Bi and B∗
i are actually regions of three-dimensional

space in the above integral reduction, and they are brought up to five dimensions
by integrating over the whole range of values for the other two dimensions ϕ and θ.
It would be mathematically more elegant to express Bi as a five-dimensional region
instead, although it would be less convenient for direct numerical implementation.
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Figure 6. Connected graphs for the five-point integral reduction.

For example, we could write

n3 = 3
∫

B
¯ 0

∫
B
¯ 0\B

¯ 1

+
∫

B
¯ 0

∫
B
¯ 0∩B

¯ 1

, (4.9)

where B
¯ i represents a five-dimensional region. Note that g2 in equation (4.2) would

be removed in this case, since its value is always unity.
Geometrical symmetry of the first particle at the origin can be considered, in order

to reduce computational effort. Here, we reduced the integration domain to the first
octant of the 3D space. Indeed, one of the integration variables could be actually
eliminated from the integrals if we considered the rotational symmetry of the first
particle, although it would not help us much in saving computational effort. The
incorporation of this reduction is a non-trivial exercise, which may be part of our
future work.

(b) Determination of extreme values of ellipsoids

To calculate ∆x, ∆y and ∆z in the integral reduction, we define a cell that mini-
mally encompasses each ellipsoid. The smallest, right prismatic cell for each ellipsoid
which satisfies this requirement has eight edges tangential to the ellipsoid, mark-
ing the maximum and minimum values in the x-, y- and z-directions, respectively
(figure 1). To determine the maximum and minimum values of the ellipsoid in the
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z-direction, for example, we set

∂z

∂x
= 0,

∂z

∂y
= 0, (4.10)

and, after simplification, obtain

u = ±

√
a4(R21R32 −R22R31)2

a2(R21R32 −R22R31)2 + b2(R11R32 −R12R31)2 + c2(R22R11 −R12R21)2
,

v = − b2

a2

R11R32 − R12R31

R21R32 − R22R31
u,

w =
c2

a2

R22R11 − R12R21

R21R32 − R22R31
u,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.11)
where Rij represents the components of the rotation matrix. For ellipsoids of revo-
lution, the results can be simplified as⎡

⎣u
v
w

⎤
⎦ = ± 1√

a2 cos2 θ + b2 sin2 θ

⎡
⎣ b2 sin θ

0
−a2 cos θ

⎤
⎦ . (4.12)

Hence,

⎡
⎣x

y
z

⎤
⎦ = ± 1√

a2 cos2 θ + b2 sin2 θ

⎡
⎢⎣(a2 − b2) sin θ cos θ cos ϕ

(a2 − b2) sin θ cos θ sin ϕ

a2 cos2 θ + b2 sin2 θ

⎤
⎥⎦ +

⎡
⎣x0

y0
z0

⎤
⎦ . (4.13)

Likewise, setting
∂y

∂x
= 0,

∂y

∂z
= 0

leads to⎡
⎣x

y
z

⎤
⎦ = ± 1√

b2(cos2 θ sin2 ϕ + cos2 ϕ) + a2 sin2 θ sin2 ϕ

×

⎡
⎢⎣ (a2 − b2) sin2 θ sin ϕ cos ϕ

b2(cos2 θ sin2 ϕ + cos2 ϕ) + a2 sin2 θ sin2 ϕ

(a2 − b2) sin θ cos θ sin ϕ

⎤
⎥⎦ +

⎡
⎣x0

y0
z0

⎤
⎦ , (4.14)

and setting
∂x

∂y
= 0,

∂x

∂z
= 0
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Figure 7. Percolation simulation algorithm for overlapping particles.
Cluster architectures show connectivity among members of a cluster.

leads to⎡
⎣x

y
z

⎤
⎦ = ± 1√

b2(cos2 θ cos2 ϕ + sin2 ϕ) + a2 sin2 θ cos2 ϕ

×

⎡
⎣b2(cos2 θ cos2 ϕ + sin2 ϕ) + a2 sin2 θ cos2 ϕ

(a2 − b2) sin2 θ sin ϕ cos ϕ
(a2 − b2) sin θ cos θ cos ϕ

⎤
⎦ +

⎡
⎣x0

y0
z0

⎤
⎦ . (4.15)

The cell is thus defined as a block centred at (x0, y0, z0) whose lengths in x, y and
z are

∆x = 2
√

b2 cos2 θ cos2 ϕ + b2 sin2 ϕ + a2 sin2 θ cos2 ϕ, (4.16)

∆y = 2
√

b2 cos2 θ sin2 ϕ + b2 cos2 ϕ + a2 sin2 θ sin2 ϕ, (4.17)

∆z = 2
√

a2 cos2 θ + b2 sin2 θ. (4.18)

5. The Monte Carlo simulation algorithm

Researchers have developed a variety of techniques including the ‘burning algorithm’,
or a ‘forest-fire model’ (Bak & Chen 1989; Dhar 1990; Dhar & Manna 1994) to
detect percolation in lattice or continuum networks. We introduce a similar strat-
egy, illustrated schematically in figure 7. Specifically, the particles across one side
of the simulation window in a certain direction, say the x-direction, are identi-
fied. These particles are the starting points of clusters potentially percolating along
the x-direction. We classify these particles as members of level 1. The connectivity
between the particles in level 1 and the rest of the particles is then examined. Those
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connected are advanced to the second level of cluster architecture. The search proce-
dure continues, generating a cluster architecture in which the members of a certain
level can only have connections to the adjacent levels and must have connections to
the members at the immediate lower level. Connections to the immediately higher
level are checked in each step. The system percolates if at least one particle in the
cluster reaches the opposite side of the window in the x-direction. This percolation
algorithm is efficient in that we do not check interparticle connectivity inside the
same level and we do not check the structure of those clusters isolated from the left
boundary.

Results for each condition reported here were generated using 500 separate realiza-
tions. The probability of percolation in each network was determined as simply the
ratio of the percolating to total number of simulations performed. The overlap crite-
rion was validated by numerically computing the excluded volume of pairs of iden-
tical ellipsoids with random centres and orientations. The numerically determined
excluded volume was found to be almost identical to the exact solution (previously
given analytically by Ogston & Winzor (1975)). Equipped with the verified over-
lap criterion, we then validated the percolation algorithm using the two-dimensional
circle problem, and the three-dimensional sphere problem.

There are several different techniques for estimation of percolation threshold in
finite system. The simplest approach is to generate a curve of percolation probability
p as a function of volume fraction f and define the percolation threshold as the
point of maximum slope on the resulting p–f curve (Safran et al . 1985). Since the
curve is approximately linear in an extended region, the value at the mid-point of
the linear portion is typically used in rougher estimations. An alternative and more
accurate approach is to obtain p–f curves from a pair of independent simulations with
different cell sizes (or equivalently, different particle sizes); the value of f at which
the two curves intersect is a good estimate of the percolation threshold fc (Stauffer
1979; Saven et al . 1991). Nightingale (1975) proposed another strategy in which
the critical threshold for several different pairs of cell sizes was used to extrapolate
results for infinite systems. Later, Garboczi et al . (1995), studying thresholds in
fields of overlapping ellipsoids, recorded the number of particles at percolation for
each realization, and averaged the results for several realizations.

In the present study, however, an alternative strategy is employed: the percolation
probability p is plotted against f in a smooth curve by the method of cubic spline
fitting; curves are generated for at least three different ellipsoid sizes. The percolation
threshold fc is then estimated by the value of f at which

min
{ ∑

0<i<j<m

(pi − pj)2
}

(5.1)

is reached, where m is the number of curves.

6. Results

(a) Effects of aspect ratio

As with fields of overlapping ellipses (Yi & Sastry 2002), the density of smaller clus-
ters of ellipsoids is higher at low density. Figure 8 shows typical simulation results
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Figure 8. Simulation results for cluster densities in arrays of overlapping ellipsoids. The simula-
tion window is a unit cell; ellipsoids have aspect ratio 10. Averaged results for 500 simulations
are shown at each point. Results for cluster sizes k = 1, 2, 3 and 4 are shown.

for cluster densities for fields of overlapping ellipsoids of aspect ratio ε = 10. Clus-
ter densities are plotted against volume fraction f . At low particle densities, most
particles are isolated, and small clusters dominate. As the volume fraction increases,
interparticle connections become more probable, and the density of isolated particles
drops, while the number of larger clusters increases rapidly. At high density, most
particles are interconnected, and a small number of large clusters arises. In fact,
there exists for each cluster size k a certain volume fraction fk, at which the cluster
density of this size is maximum. Specifically, fk = 0 for k = 1, and fk increases
monotonically with k.

It has been observed that the nk–f curve translates to lower volume fractions
with increasing aspect ratio. And, since more particles become interconnected at
high aspect ratios, percolation threshold is reduced, implying such systems percolate
at lower volume fractions. Here, we parametrically studied the effect of aspect ratio
on percolation probability, wherein particle aspect ratio was altered, while total
particle volume was held constant. Our simulations (figure 9) show that percolation
probability p increases monotonically with volume fraction f , and that the p–f curves
shift to lower volume fractions, with unchanged slope, for increasing aspect ratio. This
implies that particle volume, rather than aspect ratio, predominantly determines the
slope of the curve. However, the position of p–f curve along the f -axis is determined
primarily by the aspect ratio of the particles.

Thus, in general, the probability of percolation in a finite network is a function of
particle volume and aspect ratio, provided that the simulation window size is fixed.
For an infinite window size, percolation threshold is deterministic, and expressible
as a volume fraction for an aspect ratio only, namely, fc(ε). In figure 10 we show
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Figure 9. Effect of particle aspect ratio on percolation probability for ellipsoids. Averaged results
for 500 simulations, for each of aspect ratios 1, 2, 4 and 10 are shown. Particle sizes are normal-
ized, and volume is normalized by 4

3πr3, r = 0.05.
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Figure 10. Comparison of analytical approximation and Monte Carlo simulations for the problem
of overlapping ellipsoids, compared with simulation results of Garboczi et al . (1995). Error bars
represent ±1σ for simulation results, obtained via extrapolation of the linear region of the curves
shown in figure 9.
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Figure 11. Simulation results for percolation probability versus
particle size for arrays of overlapping ellipsoids of aspect ratio 10.

values of percolation thresholds as a function of particle aspect ratio. Both simulation
results and analytic approximations are presented, with analytic solutions obtained
by application of the series expansion technique discussed in the preceding sections.
The four-point connected graphs are used in the integral evaluation for ε � 2, and
the three-point connected graphs are used for ε > 2 due to the numerical demands
of the increased complexity in the ellipsoidal particle geometry. The percolation
thresholds were estimated by application of the first-order Padé approximants in the
power series expansion of the mean cluster number, Q. We see that Q converges
much faster than S with large integration intervals; Q was therefore selected for the
threshold estimations in this study, though Q leads to an overestimate for spheres.
The analytic solution exhibited slight oscillations for different integration intervals;
average values for each aspect ratio are presented here.

In determination of percolation threshold from simulations (figure 10), we plot
the percolation probability p against f for several particle sizes (figure 11), and
then use our least squares scheme to locate the intersecting point of the curves,
as discussed previously. The error bars on the simulation curve show the standard
deviation in the simulation result, extrapolated from the linear region of the p–
f curves. Each curve involved in the approximation was obtained using particles
of normalized size r = 3

√
ab2 = 0.03. Simulation results reported by Garboczi et al .

(1995) are also shown for comparison.
We note that the simulation results of Garboczi et al . lie somewhat above the

values obtained here. In order to investigate these differences, we implemented the
numerical scheme described by Garboczi et al . by successively adding particles to a
domain until percolation occurred, and thereupon recording the percolation volume
fraction. Our implementation of this technique resulted in a threshold value of 0.0317
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for ellipsoids of aspect ratio 20, a number very close to that obtained using our own
numerical approach, 0.0315.

We did find, however, that use of either a binary or unbiased distribution function
for the particle elevation angle to the z-axis, θ, results in overestimation of the
percolation threshold. We found that use of a binary mixture of 0 and π/2 for the
elevation angle θ of the ellipsoids results in an average simulated percolation threshold
of 0.046. A uniform distribution in θ yielded an average threshold of 0.035. Garboczi
et al . (1995) reported a value of 0.0415 for ellipsoids of aspect ratio 20. It is possible
that the non-uniformity of the density function of θ (as described earlier in § 2)
was overlooked in programming an algorithm for random particle generation by
those workers, or that a ‘binning’ approach was used in specifying elevation angle.
Nevertheless, in view of the tolerance range provided by the error bars in figure 10,
the two independent sets of simulations are roughly in agreement.

(b) Effect of particle size versus simulation size

Boundaries in a network simulation impose constraints on the system, and change
percolation probability. This scale effect becomes more pronounced as the particle
size approaches the window size. Figure 11 shows how simulation window size (or
equivalently, particle size) affects the percolation probability in an ellipsoid problem
of aspect ratio 10. We investigated the scale effect in simulation by varying the
particle size, while maintaining window size and particle aspect ratio.

Each percolation probability curve p–f can roughly be divided into three separate
regions: (a) p ≈ 0; (b) 0 < p < 1; (c) p ≈ 1. Accordingly, a given network can
be characterized as (a) unpercolated; (b) probabilistic; or (c) percolated. For large
particle-to-window sizes, the probabilistic region is relatively wide. In the case of
a = 0.186, for instance, the p–f curve has a mild slope. The system can percolate at
volume fraction as low as 0.05, but an unpercolated realization was also generated
at a volume fraction of 0.11. For smaller relative particle sizes, the deterministic
regions dominate. In the case of a = 0.0696, for instance, the percolation probability
becomes non-zero at f ∼ 0.06, and approaches 100% at f ∼ 0.08. The ‘probabilis-
tic region’ is significantly smaller than in the former case. Finally, for the smallest
particle-to-window sizes, the ‘probabilistic region’ disappears entirely, and the perco-
lation status becomes binary. In such a ‘percolated’ array, a cluster with infinite size
exists somewhere in the network, and the probability of percolation is unity; in an
‘unpercolated’ array, there are no such clusters and the probability of percolation is
zero. Therefore, as shown in figure 11, the probability curve becomes nearly vertical
as the window size is increased. The curve has a sudden jump at fc = 0.072 when
a = 0, and the percolation probability curve becomes a step function at the perco-
lation threshold fc. Thus, the system is unconditionally percolated when f < 0.072
and unpercolated when f � 0.072.

The effect of particle size on mean cluster density was also studied, and only a
slight correlation was observed. We conclude that boundary conditions generally do
not have significant effects on statistical cluster properties in terms of mean values,
provided the maximum length of particle is sufficiently smaller than the window size
(in general, less than one-fifth or one-tenth). However, boundary conditions typically
change standard deviations of statistical properties.
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7. Discussion

(a) Approximation formulae and bounding expressions

Roach (1968) suggested, and Quintanilla & Torquato (1996) restated, that at low
density, nk can be approximated by

nk ≈ n1(1 − n1)k−1

k
. (7.1)

This formula is satisfactory at low densities. For spheres of equal size, we expand
equation (7.1) in the form of Taylor series as

n2 = 4η − 48η2 + 298.7η3 − 1280η4 + O(η5),

n3 = 21.3η2 − 341.3η3 + 2844η4 + O(η5),

n4 = 128η3 − 2560η4 + O(η5),

⎫⎪⎬
⎪⎭ (7.2)

by using the relation n1 = e−ρVe = e−ηc, where ρ is particle density; Ve is excluded
volume; η is the reduced density (equal to ρV0; V0 is the volume of a single particle); c
is Ve/V0. These results are in excellent agreement with those reported by Quintanilla
& Torquato (1996).

It seems, however, neither group extended equation (7.2) to estimate percolation
threshold. This is, in fact, possible, since

S =
∞∑

k=1

k2nk ≈ n1

∞∑
k=1

k(1 − n1)k−1, (7.3)

and from a Taylor series expansion, by

1
(1 − x)2

=
∞∑

k=1

kxk−1, (7.4)

we have immediately

S ≈ n1[1 − (1 − n1)]−2 =
1
n1

. (7.5)

This implies an important, intrinsic relation between the mean cluster size and
the probability that a particle is isolated. We must note, however, that 1/n1 never
diverges and therefore this formula is accurate only at low density. The series expan-
sion form of S gives

S = eηc =
∞∑

k=0

(ηc)k

k!
, (7.6)

whereupon we calculate an estimate of percolation threshold from Padé approxi-
mants, i.e. equation (2.10). The form of the approximants can be written succinctly
as [m, l]. For example, Padé approximant [2, 1] for f(x) is

f(x) =
a2x

2 + a1x + a0

b1x + b0
+ O(x4). (7.7)

Thus, use of the Padé approximants results in η = 1/c for [0, 1]; 2/c for [1, 1]
and 3/c for [2, 1], and so forth. The known percolation threshold in volume fraction
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is ca. 68% for circles, which is bounded by the approximants [3, 1] and [4, 1]; this
threshold is ca. 29% for spheres, which lies between values evaluated from [1, 1] and
[2, 1].

Although this discussion is based on circular and spherical particles, we postu-
late that similar relations exist for ellipses and ellipsoids, since no limitations were
imposed on the particle geometry involved in the original derivation by Roach. Exten-
sion of equation (7.7) to particles of a particular shape requires knowledge of their
excluded volume. For ellipses, Mack (1954) derived an analytic solution of excluded
volume as

c = 2 +
8E2

π2 (7.8)

where E is the elliptic integral

E =
1
ε

∫ π/2

0

√
sin2 θ + ε2 cos2 θ dθ. (7.9)

For ellipsoids of revolution, Ogston & Winzor (1975) obtained

c = 2 + 3
2ε

{
1 +

1 − ζ2

2ζ
ln

1 + ζ

1 − ζ

}{√
1 − ζ2 +

sin−1 ζ

ζ

}
, (7.10)

where
ζ = 1 − 1

ε2 , ε =
a

b
. (7.11)

Applying these results, the percolation threshold for ellipses and ellipsoids can be esti-
mated with the aforementioned Padé approximants. Figure 12a shows a comparison
of the critical area fraction for ellipses between simulations and the approximation
formulae. We find that η = 4/c is a good estimate for an extensive range of aspect
ratios. Figure 12b shows a similar comparison for ellipsoids. Simulation results are
bounded between η = 2/c and η = 3/c for ε < 10. For aspect ratios higher than 10,
however, the upper and lower bounds change to η = 1/c and η = 2/c, correspond-
ingly.

If η = 4/c is used as an estimate of percolation threshold for ellipses as ε → ∞,
then

η ≈ 4
(

2 +
8ε

π2

)−1

≈ π2

2ε
≈ 4.9

ε
. (7.12)

This is indeed a good approximation, compared with the asymptotic formula η =
4.2/ε obtained by Xia & Thorpe (1988) from direct Monte Carlo simulations.

Likewise, for the ellipsoid problem, it is found that the normalized excluded volume
is asymptotic to

c = 2 + 3
4πε (7.13)

when ε → ∞. If η = 1/c is used as an estimate of percolation threshold for ellipsoids
of large aspect ratio, then

η ≈ (2 + 3
4πε)−1 ≈ 0.42

ε
. (7.14)

Garboczi et al . (1995) obtained an asymptotic formula η = 0.6/ε for ellipsoids
from Monte Carlo simulations. Since significantly lower values were observed in the
simulations conducted in this study, η = 0.42/ε may be a more accurate estimate.
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Figure 12. Comparison of simulation results and approximate formulae for
(a) percolation threshold of ellipses and (b) percolation threshold of ellipsoids.

(b) Comparisons between ellipses and ellipsoids

In table 1 we give the power series expansion forms for cluster density of nk for
ellipsoids of three different aspect ratios, based upon the integral method discussed in
the preceding sections. We also present the results for the sphere problem, in order to
verify our integration technique for ellipsoids. Please note that the analytic expression
for the ‘union volume’ has not been employed in the integrations for spheres in the
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Table 2. Previously reported values for percolation points in circular and spherical arrays

author circle sphere

Quintanilla et al . (2000) 0.67634
Rintoul & Torquato (1997) 0.2895
Quintanilla & Torquato (1996) 0.632a 0.336a

Garboczi et al . (1995) 0.285
Lorenz et al . (1993) 0.6764
Rosso (1989) 0.6766
Xia & Thorpe (1988) 0.68
Gawlinski & Stanley (1981) 0.676
Haan & Zwanzig (1977) 0.683a 0.295a

Fremlin (1976) 0.667 0.286
Pike & Seager (1974) 0.675 0.283
Gayda & Ottavi (1974) 0.283
Ottavi & Gayda (1974) 0.641
Kurkijarvi (1974) 0.292
Holcomb et al . (1972) 0.25
Domb (1972) 0.68 0.29
Roberts (1967) 0.62

aAnalytic approximations.

table. As a result, we expect that the computational resolution here is perhaps not
as good as that of Quintanilla & Torquato (1996), but acceptable nonetheless. For
example, in the series expansion of n2, the coefficient of η1 in this work differs by only
4.1% from Quintanilla & Torquato’s results, and η2 differs by 8.5%. These are both
within a standard of acceptability of 10%. We note that integration is still required
in evaluating n1, when an analytic expression for g1 is not applied to equation (2.5).
Here, we employed a fivefold integration (with integration variables being the three
centre positions, plus two angles of a particle) to evaluate the term related to the
integration of g1, even for spheres. This seemingly redundant work served as a check
for the ellipsoidal case, in which no analytic solutions for ‘union volume’ of multiple
particles (three and above) are available. In short, we do not intend to present exact
solutions of n1 for spheres or ellipsoids in table 1. Instead, we present the non-exact
but acceptable solutions for the sphere case, in order to validate the integration
method used in the ellipsoidal case for k � 2, which is the main focus of the present
work.

Table 2 comprises a survey of simulation and closed-form results for percolation
points in circular and spherical particle arrays. Table 3 reports previous percola-
tion thresholds in terms of area fraction obtained from simulations and analytical
approximations for two-dimensional ellipses. Table 4 reports present and previous
results for three-dimensional ellipsoids. The approximate relations are also included
in the tables for comparison. Some data in the table were determined via linear
interpolation of reported values.

It is unsurprising to find that the critical percolation volume fraction of ellipsoids is
lower than that of ellipses, because of the greater likelihood of formation of connected
paths in three-dimensional versus two-dimensional networks, assuming the same vol-
ume (area) fraction of particle phase. We also find that the percolation threshold of
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Table 3. Previously reported percolation thresholds (in terms of area fraction)
from simulations and analytical approximations, for overlapping ellipses

(Data taken from: A, Xia & Thorpe (1988) simulation; B, Yi & Sastry (2002) simulation; C, Yi
& Sastry (2002) series expansion approximation; D, Yi & Sastry (2002) approximation formulae;
NA, not available.)

ε η 1 5 10 20 50 100 1000

A 0.67 0.46 0.30 0.17 0.080 0.045 0.004 4
B 0.679a 0.455 0.301 0.178 0.081 0 0.041 7 0.004 3
C 0.72 0.43 0.31 0.19 0.083 0.040 NA
D 5/c 0.714 0.538 0.383 0.238 0.011 1 0.058 4 0.006 13
D 4/c 0.632 0.461 0.320 0.196 0.089 6 0.047 0 0.004 91
D 3/c 0.052 8 0.371 0.251 0.151 0.068 0 0.035 5 0.003 70

aThe best currently available numerical estimate is 0.676 339, given by Quintanilla et al . (2000).

Table 4. Present and previous percolation thresholds (in terms of volume fraction)
from simulations and analytic approximations for overlapping ellipsoids

(Data taken from A, Garboczi et al . (1995) simulation; B, Yi & Sastry (2002) simulation;
C, present work, series expansion approximation; D, present work, approximation formulae.)

ε η 1 5 10 20 50 100 1000

A 0.285 0.163 0.087 0.041 5 0.015 0 0.006 95 0.000 60
B 0.290a 0.137 0.072 4 0.031 7 0.011 5 0.005 18 0.000 385
C 0.288 0.110 0.063 1 0.025 1 0.010 2 NA NA
D η = 3/c 0.313 0.180 0.108 0.058 7 0.024 7 0.012 5 0.001 27
D η = 2/c 0.221 0.124 0.073 0.039 5 0.016 5 0.008 4 0.000 85
D η = 1/c 0.118 0.064 0.037 0.020 0 0.008 3 0.004 2 0.000 42

aThe best currently available numerical estimate is 0.2895, given by Rintoul & Torquato (1997).

ellipsoids drops much more rapidly than that of ellipses as the particle aspect ratio
increases. For example, fc for ellipsoids at ε = 10 is about 0.072. This value is only
25% of that for spheres (0.290). By contrast, fc for ellipses at ε = 10 is 0.3, which
is 44% of the value for circles (0.68). Percolation points for ellipsoidal arrays have
stronger dependence on aspect ratio, in that the interparticle connectivity is more
sensitive to the particle geometry in the three-dimensional domain than in its two-
dimensional counterpart. In fact, considering the limiting case when ε → ∞ (i.e. zero
particle width), it becomes impossible for randomly located three-dimensional par-
ticles to overlap, and hence the percolation threshold in terms of particle density is
unbounded. However, two-dimensional particles of zero width can still overlap, and
the percolation density has an asymptotic and bounded value.

There is a persistent and non-negligible difference between our simulation results
and analytical approximations of percolation threshold. The discrepancy has sev-
eral sources. In simulations, a finite system is used to estimate percolation point for
an infinite system, inevitably resulting in an inaccuracy. In the analytic approach,
however, percolation threshold is estimated by studying the convergence of an infi-
nite power series, using only the first few terms. Also, the analytic approximation
requires a relatively large integration interval due to the present limitation in com-
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puter capacity. This results in oscillatory solutions for different integration intervals.
We admit that cumulative errors resulting from inaccuracy in successive coefficients
in the series expansion, may in fact be non-trivial. The propagation of error from the
coefficients of nk to the percolation threshold estimates must be specifically consid-
ered in evaluating the accuracy in the solutions. For example, if the two coefficients
used in the Padé approximants have a relative error of 5% each, then the reported
percolation threshold could have a relative error of 10%.

Nonetheless, the approximate solution we have presented here will undoubtedly be
refined with advances in computing memory and speed. We offer these approaches as
a way of eliminating the need for simulations in a wide range of practical materials,
through continuing the work of researchers in this area of ‘cataloging’ percolation
points to aid in materials design. Perhaps even more importantly, the combination
of analytic and numerical solutions of percolation of penetrable fields allows for
direct assessment of sensing probability, since efficient and effective sensor fields
must necessarily overlap in order to achieve high probability of sensing events or
targets.
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